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Abstract

Nitrogen (N) deposition (NDEP) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In

the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy.

A 15N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce

a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy

NDEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then

estimates of the effects of NDEP on the relative change in C (ΔC/ΔN) based on short-term isotope-labelled mineral fer-

tilizer additions should be questioned. We used 15N labelled litter to track decomposed N in the soil system (litter,

soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15N to

an equivalent amount in simulated NDEP treatments. By the end of the experiment, three times as much 15N was

retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions

(60% and 20%, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more
15N tracer from litter decomposition than from simulated mineral NDEP (7.5% and 4.5%) and compared to soil recov-

ery, expressed proportionally more 15N in the A layer than the O layer, potentially indicating uptake of organic N

from decomposition. These results suggest effects of NDEP on forest ΔC/ΔN may not be apparent from mineral 15N

tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of NDEP is its

influence on the rate of N release from litter.
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Introduction

Quantitative estimates of the effect of anthropogenic

nitrogen deposition (NDEP) on temperate forest C

uptake and sequestration can vary by an order of mag-

nitude (de Vries et al., 2009). Some studies comparing

regional NDEP with indices of forest productivity or

growth (Magnani et al., 2007; Thomas et al., 2009; Fer-

retti et al., 2014) report greater effects of N addition on

C uptake (DC/DN) than estimates obtained from N

budget or 15N-tracer additions (Nadelhoffer et al., 1999;

de Vries et al., 2009). These low estimates are based on

evidence indicating low C : N sinks (e.g. microbial

communities and immobilization in soil fractions) are

more competitive than trees for mineral 15N (Templer

et al., 2012). Only about ¼ of added 15N fertilizer

obtained by trees is assigned to high C : N wood

(Nadelhoffer et al., 1999). Consequently, process-based

models tend to represent soil immobilization of N as

limiting tree N uptake (Gerber et al., 2010; Zaehle et al.,

2010; Thomas et al., 2013) and similarly predict modest

effects of N deposition on forest C uptake.

This difference in DC/DN among the studies above is

usually attributed to covariance of NDEP at the conti-

nent or country scale with other drivers of a growth

response (de Schrijver et al., 2008; Sutton et al., 2008; de

Vries et al., 2008) as while temperate and boreal regions

are typically considered N-limited (Vitousek

& Howarth, 1991), many other global change drivers

(Sedjo, 1992; Norby, 1999; Prentice et al., 2001; Saxe

et al., 2002) vary over the geographic range of correla-

tive studies. Relatively little attention has been paid

to artefacts of isotope studies which may affect

understanding of ecosystem level N effects. 15N tracer

experiments are predominantly applications of isotope-

enriched mineral N fertilizers, for example ammonium

nitrate, made periodically directly to the soil surface.
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These may raise total N inputs substantially above

ambient levels of atmospheric deposition, especially if

enrichment is low. Conversely, real-world ambient

NDEP is of low intensity (Aber et al., 1998) and chronic

(Lovett & Goodale, 2011), occurring over forest cano-

pies in a variety of organic and inorganic forms. Addi-

tionally, even under high NDEP, N mineralized from

litter recycling is usually greater than N added in depo-

sition or fertilizer (Schulze, 2000; H€ogberg, 2012) or N

fixation (Cleveland et al., 1999). N from litter sources is

available continuously and is slowly depolymerized

through many intermediate forms before becoming

mineral NHþ
4 or NO�

3 . These organic products of litter

are typically considered unavailable to plants before

being fully mineralized.

In some situations, plants, or plant–mycorrhizal sym-

bioses, can, however, take up organic N forms without

initial reduction to NHþ
4 (N€asholm et al., 2009). Organic

N can reach high concentration in soils and includes

amino acids, peptides, and proteins (Schulten & Sch-

nitzer, 1997). Bioavailability of organic N could increase

N availability for trees, allowing more N to be obtained

despite strong soil sinks for mineral ions N repeatedly

demonstrated in mineral fertilization experiments.

Some of these forms may be acquired by mycorrhizal

symbionts (Leigh et al., 2009), and reduced before trans-

fer to plants, while molecules as large as proteins may

be utilized directly by roots in the laboratory (Paung-

foo-Lonhienne et al., 2008) without mycorrhizal or

microbial assistance. In the field, dual 13C/15N labelling

also demonstrates amino acids incorporated whole into

temperate forest roots (Rothstein, 2014) as well as in

high latitude forests where amino acids dominate N

availability (Inselsbacher & N€asholm, 2012). Most evi-

dence suggests that organic N uptake is most important

under such conditions of limiting mineral N supply

(Chapin et al., 1993; N€asholm et al., 1998; Schiller et al.,

1998; Rennenberg et al., 2009). However, as older litera-

ture suggests that mineral N is the only ecologically rel-

evant pool for N uptake, this process is also relatively

understudied (N€asholm et al., 2009) so may be over-

looked in other forest ecosystem studies. In forests,

availability (and hence potential for uptake) of organic

N may also depend on stand age and microbial com-

munity development, and organic N may be a substan-

tial proportion of total N availability (Leduc &

Rothstein, 2013). Uptake of N from heterogeneous

organic sources such as microbial cells (Vadeboncoeur

et al., 2015) and plant litter (Zeller et al., 2000; Guo et al.,

2013a) has been demonstrated, although plant 15N

recovery varies. Uptake of organic decomposition prod-

ucts may also be more energetically efficient (Zerihun

et al., 1998; Gruffman et al., 2013) than incorporating

mineral N and may affect structural development both

above- and belowground (Gruffman et al., 2012),

increasing the potential to alter overall C sequestered in

woody tissues. Addition of mineral as opposed to

organic forms of N also shows different effects on soil

processes (Du et al., 2014), which may also mean N

released from litter turnover has different effects on soil

C and N cycling than mineral additions.

If decomposed N is better retained in soil or plants

than mineral N, this would indicate mineral tracer-

based frameworks may underestimate DC/DN. As N

inputs can affect litter decomposition rates both

upward and downward (Knorr et al., 2005), mediating

decomposer community structure (Frey et al., 2004), lit-

ter C/N ratios (McNulty et al., 1991) and interacting

with litter quality and environmental drivers, mineral

‘NDEP’ treatments may also have effects on amounts of

N released from decomposition and available in an

organic form. Increases or decreases in this N released

from litter decomposition may have different effects on

N availability to both plants and soil biota than mineral

N inputs.

Here, we combine an experiment replacing the litter

layer with a unique source of 15N-labelled litter, with a

‘deposition’ experiment where we apply a solution of
15N-labelled NH4NO3. While wet-applied NH4NO3 is

neither necessarily representative of heterogeneous

atmospheric N inputs, which are both wet and dry

forms of N, nor of throughfall and stemflow N, which

have passed through the canopy, it is consistent with

the majority of N addition studies, which employ either

NH4NO3 or either ion, usually directly to the soil.

Hence, our applications are used to simulate typical N

deposition treatments, rather than being strictly repre-

sentative of N deposition itself.

Few studies (Zeller et al., 2000; Weatherall et al., 2006;

Zeller & Dambrine, 2011; Hatton et al., 2012; Guo et al.,

2013a,b) have used a 15N-enriched litter source in the

field to trace N from decomposition and we could not

identify any work where the fate of 15N in deposition

or added as fertilizer in the field is directly compared

to 15N from litter release. Here, we use small N amend-

ments in frequent dilute applications and our N fertil-

ization treatments are similar to ambient N inputs and

not intended to induce a N dosage treatment effect,

while also close to expected N release from litter to

minimize differences in patterns of 15N distribution

due to different temporal patterns of N availability. Dif-

ferences, if observed, are designed to be attributable to
15N source rather than differences in total 15N or N

availability between treatments.

Our null hypotheses were that recovery of 15N from

litter is the same as from conventional mineral 15N

deposition-simulating additions (henceforth ‘deposi-

tion’) in (1) soils, (2) tree roots, (3) other litter, and
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(4) soil microbial biomass (SMB). Identical recovery

would imply that mineral 15N traces can all explain

ecosystem N partitioning. We expected recovery of 15N

to be greatest in the upper soil horizons as these were

closest to the 15N-enriched sources in soils and litter.

Materials and methods

Study site

We worked at Cloich forest, a managed Sitka spruce (Picea

sitchensis (Bong. (Carr.))) plantation 34 km outside of Edin-

burgh, United Kingdom (55°420N, 03°160W). It was established

in 1970 at 2500 stems per hectare (2 m intertree spacing), and

the area used for our experiment was unthinned. Previous

work at the site (Greens et al., 1995) removed some low-level

branches to improve access, which we repeated, removing all

branches up to 1.5 m above the ground. Our plot is approxi-

mately 400 m above sea level, and the soil is a shallow peat

overlaying Silurian Ordovician greywacke (Sheppard et al.,

1995). There is no understory, and the litter (L horizon) is

mostly acidic needles with a layer of partially decomposed lit-

ter (O horizon). In this study, we combined the fermentation

fraction of the litter with the O horizon. Below, there is a

thicker, dark-coloured A horizon of organic dominated peaty

topsoil, with a sharp divide before an orange-brown B hori-

zon. This study focused on the organic horizons (L, O and A).

Due to ploughing at establishment, soils were approximately

30 cm deep on furrows and 45 cm deep on ridges, layer

depths varying with microsite topography: litter (1–7 cm) and

O (3–11 cm) layers being deeper in furrows than on ridges.

Local climate is typical of southern Scotland with annual

minimum temperatures of �0.2 °C in December and maxima

of 18.8 °C in July. Annual rainfall is 980 mm, which frequently

falls as snow in the winter. Background nitrogen deposition is

estimated to be 14–16 kg ha�1 yr�1. In the area we selected,

average dbh was 21.5 � 5.70 (SD) cm.

15N manipulation treatments

We obtained artificially produced Sitka spruce ‘litter’ (foliage

and small twigs) with an elevated 15N/14N ratio from a

whole-canopy harvest of 15N-labelled trees (Nair et al., 2014).

This was separated from branches by drying until needles

were shed and then mixed, keeping source trees separate.

Mean N concentration by dry weight in this artificial litter was

1.2%, while C % was 51.0% (C/N ratio 34). Fresh litterfall at

the study site had an average N concentration of 1.1% and C

concentration of 47.1% (C/N ratio 47.5).

We established twelve rectangular plots, each containing a

central tree within a grid of up to eight peripheral trees (a sin-

gle tree was missing from the corner of some plots), with an

edge of c. 4 m on each side. Each plot was randomly assigned

to one of four (n = 3) treatments, as follows:

Two treatments (LIT and DEP) had the entire litter layer

removed with a shovel in November 2012 and immediately

replaced with dry 15N-labelled litter (treatment: LIT) or dry

unlabelled litter [0.366 atom % (0& d15N), treatment: DEP].

The unlabelled replacement litter (DEP) was litter previously

removed from the site, dried to a similar dry weight as the

labelled litter, and sorted to remove large twigs and other deb-

ris. For the LIT plots, we combined litter from three source

trees per plot, selecting from the set of heterogeneously

enriched source trees to minimize the difference in mean 15N

concentration per plot while also minimizing litter mixing.

Thus, the individual LIT plots had 15N concentrations of 1.53

atom %, 1.87 atom %, and 2.09 atom %, while there were no

significant differences in mean C or N concentration among
15N-labelled mixes. The total dry mass of the litter applied

varied slightly: 23.0, 22.2, and 21.7 kg for the 15N litter and

29.81, 29.52, and 27.07 kg for the unlabelled.

Litterbags

We established a concurrent litterbag experiment in April

2013 to estimate rates of 15N loss from the labelled litter plots

without disturbing the main experiment, and to estimate

movement of litter-derived 15N to other litter within the litter

pool, via spatial separation of unlabelled litter and 15N-

labelled litter. The litter in litterbags was obtained from two

trees with the same source as the labelled litter in the main

experiment, one of which was 15N labelled, while one was an

unlabelled ‘control’ tree from the same site. Sixty litterbags

filled with 2-g oven dry litter [20 15N-labelled litter (d15N
~9000& ) and 40 natural abundance litter (d15N ~0&)] were

constructed from 1.1-mm aperture polypropylene mesh and

sealed with a hot glue gun, then buried in the litter layer of

the three additional plots (labelled/unlabelled/unswapped

litter) established simultaneously with the main experiment,

to avoid disturbance caused by litterbag removal and replace-

ment. A plot of labelled litter (~2400&) received 20 natural

abundance litterbags (Treatment: ‘high 15N litter’), an unla-

belled plot received 20 (~9000&) litterbags (Treatment: ‘high
15N litterbag’), and a control natural abundance plot received

20 natural abundance litterbags (Treatment: ‘natural abun-

dance control’). Three litterbags were retrieved per plot on

nine occasions between April 2013 and May 2014. The litter

from litterbags was processed in the same way as sequential

litter samples from the main experiment.

Sampling strategy

On eight occasions [immediately before the first deposition

treatment (January 2013) until 6 weeks after the last deposi-

tion treatment (May 2014)], we removed soil samples at three

locations per plot (36 cores in total per date) using a 5.5-cm-

diameter, 20-cm-deep soil auger. On three occasions, a larger

corer (6.5 cm diameter) was used and masses were adjusted

accordingly. Cores were removed by removing and bagging

the surface litter layer, then driving the auger directly into the

soil. The coring locations were determined by stratified ran-

dom sampling, such that at least one ridge and one furrow

were always sampled from each plot. Locations were rese-

lected if the core location was within 5 cm of a previous core,

or if the auger encountered an irremovable stone or other
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obstacle. The soil from the cores was separated on-site into the

O and A soil horizons and combined to give one composite

sample per plot per date for each of the two soil horizons,

except for the first three dates when only the O horizon was

sampled. If the B horizon was encountered, this was dis-

carded, with its depth recorded, to allow appropriate adjust-

ment of volume. The soil samples were stored in a coolbox

and transported back to the laboratory (approximately two

hours from sampling time) then held overnight at 4 °C, or pro-
cessed immediately.

Processing and measurement

All soil cores were immediately weighed to establish field wet

weight then allowed to equilibrate to ambient humidity at room

temperature (rewetting if necessary to prevent drying), before

sieving to pass through a 2-mm mesh. From this <2 mm soil

fraction, small needle and root debris were removed with

tweezers. Subsamples (15–20 g) were weighed into stainless

steel trays and then dried in a 80 °C oven overnight, until a

stable mass was reached. After drying, the soil was reweighed

and used to calculate the dry mass of the whole core, and a sub-

sample was milled in a stainless steel capsule on a Retsch

MM400 ball mill (Retsch Ltd, Hope, UK), until a fine powder

was achieved, suitable for mass spectrometry.

The material that did not pass through the sieve was

washed in deionized water, gently dried, and sorted to sepa-

rate roots from stones and other debris. The total mass of dry

roots from each set of three composite cores was recorded,

and subsamples were ball milled. Litter samples were washed

in deionized water to remove surface residues and dried over-

night at 80 °C. These were then ball milled.

At the end of the experiment, a single-point assessment of

soil microbial biomass N and 15N concentration was also

made. A 10-g equivalent dry weight of wet soil from the

<2 mm soil fraction was weighed into glass jars for fumiga-

tion. The fumigation samples were exposed to chloroform in a

dark vacuum oven for 3 days, then extracted, while unfumi-

gated controls were extracted immediately. To extract N, both

fumigated and unfumigated samples were shaken for three

hours with 50 ml 0.5 M K2SO4, then filtered through pre-

leached Whatman no. 1 filter paper. The filtrate was freeze

dried for 2 days to remove all water, and a small subsample

(~10 mg) was analysed for C and N content on a Carlo Erba

NA 2500 elemental analyser. The remaining filtrate was rehy-

drated with deionized water to deliver an appropriate amount

of N for capture in an acid diffusion trap, and processed via

the N diffusion technique (Stark & Hart, 1996) by adjusting

the pH of the solutions with conc. NaOH, adding 0.4 g of

Devarda’s alloy, and trapping the solution N on a preprepared

PTFE-enclosed KHSO4-infused paper disc.

Samples were analysed for 14/15N (all samples) and 12/13C

(all samples apart from diffusion traps) on a SerCon Callisto

CF-IRMS Isotope Ratio Mass Spectrometer, along with sam-

ples of known isotope abundance and method blanks for the

N diffusion discs. To calculate N and 15N in the traps, the

method blank discs were subtracted from the sample diffusion

trap N concentrations.

Statistical analysis and mass balance

We modelled the change in d15N in O and A horizon roots

and soil separately, with linear mixed effects models. We used

treatment and date as fixed factors and plot as a random fac-

tor. A correlation structure was used to control for pseu-

doreplication among successive measurements of the same

plots over time and a weighting structure was employed to

allow the residuals to increase later in the experiment when

cumulative 15N inputs and potential d15N were larger. All

statistics were performed in R v 3.01 (R Core Team, 2013), and

linear mixed effect models were run with the NLME package

(Pinheiro et al., 2013) with residuals inspected using normal

probability quantile plots (qqnorm). Subsequent post hoc

Tukey HSD tests were performed with the general linear

hypothesis (glht) in the MULTCOMP package (Hothorn et al.,

2008). We also calculated R2
m (Nakagawa & Schielzeth, 2013)

in order to break down linear model R2 into a component

relating to the fixed effects we were interested in.

As dry masses of soil horizons and roots were highly vari-

able and did not differ statistically among treatments, we used

their average masses and N concentrations to calculate N pool

sizes in the bulk soil, roots, litter, and microbial biomass as

enrichment in all plots with a 15N source (LIT, DEP, DEPu)

over CONTROL. The experiment was designed to be main-

tained in the long term, so we did not remove, dry, and weigh

the litter layer at this point, mass instead being informed by

the dry masses of litter removed at the start of the experiment.
15N-tracer recovery was expressed as a % of total applied

15NDEP (DEP, DEPu), or total 15N calculated to have been

released from the 15N-labelled litter (LIT). This latter calcula-

tion was based on litterbag mass loss and changes in litter N

concentration; net litter 15N release was assumed equal to the

change in 15N concentration of the litter N pool (in g) since the

beginning of the experiment. Errors on these estimates were

propagated using standard methods, from measurements and

between replicates, through to a final 15N-tracer recovery.

Results

15N inputs in litter and decomposition treatments

We added a total of 1.18 g 15N per plot in the deposi-

tion treatments (DEP and DEPu) over the whole experi-

ment. Over the year, the litterbags lost almost 50% of

their mass (Fig. 1a), which fit a logarithmic curve

(R2 = 0.92), while N concentrations rose from 1.5% to

~2.25% (Fig. 1c). We used the litterbag change in mass,

and observed changes in N concentration in litter in the

main plots (Fig. 2, Table 1), to estimate that the litter

layer mineralized a net ~32.5 kg N ha�1 yr�1. d15N
stayed relatively constant in the high 15N litterbag treat-

ment, while the unlabelled litterbags decomposing in

the high 15N litter displayed some variance in d15N over

time but did not significantly differ from the control lit-

ter (P > 0.05). Hence, in the main experiment, 15N

released in LIT over natural abundance was 0.79–1.05 g
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per plot (varying due to litter source), close to the

~1.15 g 15N added in deposition to DEP and DEPu over

the same time period.

N concentration and 15N expression in soil system pools
over time

Soil system pools did not vary in N concentration over

time, with no statistically significant differences among

treatments in any of the five pools (O and A soil, O and

A roots, and litter) over the treatment period (Fig. 2). In

most pools, N concentration remained constant, except

for the litter; here, average N concentrations were ini-

tially higher in the two swapped litter treatments (LIT

and DEP), than the two unswapped treatments (DEPu

and CONTROL) although this difference was quickly

lost over time.

As 15N release from LIT and 15N added in DEP/

DEPu was similar, we directly compared the d15N of

soil horizons over time. The LIT litter layer was very

highly 15N-enriched (averaging around 2500&) as this

was the source of 15N enrichment. d15N fluctuated

(Fig. 3) and variance was very high, which was

expected as the litter mixes used for the swap were not

completely homogeneous. Otherwise a consistent, but

smaller increase was visible in litter d15N from the two

labelled NDEP treatments (Fig. 3) reaching a d15N in

May 2014 of 670 � 70& in DEP and 600 � 90 in DEPu.

When LIT treatment was removed from the data set to

facilitate comparisons among the other treatments

(which could be expected to have the same mean d15N
if there was no effect of 15N treatments), Tukey HSD

comparisons (Table 2) indicated that DEP and DEPu

treatments were significantly (P = 0.004) different from

CONTROL, but not from each other (P = 0.654).

In the O horizon soil, d15N increased in all
15N-enriched treatments (Fig. 4), with the largest

increases from LIT. In contrast, the DEP and DEPu had

mean d15N slightly above natural abundance in the lat-

ter part of the experiment but remained similar to

Fig. 1 Decomposition in the litterbag experiment. Figures show (a) mass loss, (b) changes in 15N concentration, and (c) changes in N

concentration over time. Treatments are as follows: unlabelled litterbag in unlabelled litter (white), unlabelled litterbag in 15N-litter

(grey), and 15N-litterbag in unlabelled litter (black). Error bars show standard deviation.
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CONTROL (Table 3). By May 2014, the O soil had a

d15N of 65.9 � 13.6& (SD) in LIT, 29.5 � 14.5& in

DEP, 26.0 � 6.9& in DEPu, and 2.2 � 0.4& in CON-

TROL. Variance was large as our sample size was

small. The linear relationship fit to these data revealed

significant effects of both treatment (P = 0.002) and

date (P < 0.001) on d15N in this horizon, due to

Fig. 2 N (% by dry mass � standard deviation) of forest floor (a: litter, b: O layer soil, c: O layer roots, d: A layer soil, e: A layer roots)

pools over time. Treatments are as follows: CONTROL (white square), DEPu (grey circle), DEP (grey triangle), and LIT (black triangle)

as described in Table 1. A small offset has been applied to the x-axis to distinguish treatments.

Table 1 Summary of treatment combinations by levels of
15N-enrichment of the litter layer and of the deposition

Treatment ID Litter layer Deposition

LIT Swapped,
15N-enriched

Natural abundance

NH4NO3

DEP Swapped, natural

abundance

98% 15N – 15NH4
15NO3

DEPu Unswapped, natural

abundance

98% 15N – 15NH4
15NO3

CONTROL Unswapped, natural

abundance

Water

Fig. 3 15N concentrations (d15N � standard deviation) of the

litter layer over time. Treatments are as follows: CONTROL

(white square), DEPu (grey circle), DEP (grey triangle), and LIT

(black triangle) as described in Table 1.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd, 23, 1711–1724
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contrasts between LIT and the other treatments (post

hoc Tukey HSD). R2
m for this model indicated that fixed

effects (treatment and date) accounted for 49 % of the

variation.

In contrast in the A horizon soil, there were no signif-

icant differences among any of the treatments

(P = 0.065) and over time (P = 0.758) in d15N& (Fig. 4).

d15N measured in the CONTROL A horizon was

6.5 � 0.8&, similar to unlabelled control treatments in

other 15N-NDEP experiments (Nadelhoffer et al., 1995),

and slightly more enriched than our O horizon frac-

tions (3.6 � 1.0&).

N concentration and 15N expression in roots over time

Like the soil, d15N also increased in the roots (Fig. 5). In

the O horizon, the treatment 15N increased, reaching

maxima of LIT 149.7 � 29& (SD) DEP 79.7 � 18&, and

DEPu 65.9 � 26&. The mixed effect model for this

horizon had a significant effect of date (P = 0.036),

treatment (P < 0.001) and their interaction (P < 0.001)

which overall explained 69% (R2
m) of the variation

Table 2 Tukey HSD comparisons for treatments in the most

parsimonious model to explain litter layer d15N

Litter DEPu DEP LIT

CONTROL 0.004** 0.004** N/A

DEPu 0.654 N/A

DEP N/A

Treatments are as described in Table 1. Asterisks indicate

significance at the P < 0.05 (*), P < 0.01 (**), and P < 0.001

(***) level. Comparisons with LIT treatment were not made as

this treatment did not have a null assumption of the same

d15N as other treatments.

Fig. 4 d15N (�standard deviation) of (a) O and (b) A soil layers over time. Treatments are as follows: CONTROL (white square), DEPu

(grey circle), DEP (grey triangle), and LIT (black triangle) as described in Table 1. A small offset has been applied to the x-axis to distin-

guish treatments.
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(Table 4). All treatments were significantly (Tukey

HSD) different than CONTROL, and LIT was signifi-

cantly different from all other treatments, although

DEP and DEPu were not significantly different from

each other.

For the A horizon, the regression showed significant

differences, both for treatment (P < 0.01) and over time

(P < 0.001), with LIT, DEP, and DEPu being all signifi-

cantly different from CONTROL but not from each

other (Table 4). d15N in the roots of this horizon was

higher in the 15N-enriched treatments than CONTROL

but tended to be below 50& (Fig. 5). There was no sig-

nificant interaction between date and treatment in the

most parsimonious model. R2
m for this was lower,

explaining only 25% of the variation.

K2SO4 extractable
15N and microbial 15N return

There were no significant differences in extractable N

among the four treatments and two soil layers

(P > 0.05) in the May 2014 harvest. The mean N extrac-

table was 0.024 � 0.03 (SD) mg g�1 in the O layer, and

0.010 � 0.01 mg g�1 in the A layer. d15N of the horizon

Oh extract was significantly greater in LIT, DEP, and

DEPu (combined mean = 171.2 � 40) than CONTROL

(mean 66.3 � 8, P = 0.004) but these were not different

Table 3 Tukey HSD comparisons for treatments in the most

parsimonious model to explain Oh soil d
15N

Oh horizon DEPu DEP LIT

CONTROL 0.540 0.426 <0.001***
DEPu 0.997 0.004**

DEP 0.027*

Treatments are as described in Table 1. Asterisks indicate

significance at the P < 0.05 (*), P < 0.01 (**), and P < 0.001

(***) level.

Fig. 5 d15N (�standard deviation) of (a) O and (b) A soil layer roots over time. Treatments are as follows: CONTROL (white square),

DEPu (grey circle), DEP (grey triangle), and LIT (black triangle) as described in Table 1. A small offset has been applied to the x-axis to

distinguish treatments.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd, 23, 1711–1724

1718 R. K. F . NAIR et al.



from each other (data not shown). There were no signif-

icant differences in the A layer extractable N d15N.

We did not apply a correction factor for microbial

nitrogen. The difference in N extracted between fumi-

gated and unfumigated samples (indicative of micro-

bial N) was 0.092 � 0.06 (SD) mg g�1 in the O horizon

and 0.043 � 0.04 (SD) mg g�1 in the A horizon. Mean

d15N of the O microbial biomass was significantly

higher in LIT, DEP, and DEPu (overall

mean = 171.8 � 140&) than CONTROL (29.2 � 9&,

P = 0.02) but not different among treatments. There

were no significant differences in d15N of this pool in

the Ah horizon, where the control d15N was

47.4 � 13&.

Mass balance estimates of soil 15N return

We could account for most of the 15N available in the

soil system in both LIT and DEP in the endpoint mass

balance (Table 5), although propagated errors tended

to be high due to the high number of uncertain quanti-

ties and small sample size. Most 15N recovery was in

the litter horizon, where we recovered ~80–90% of N in

DEP and DEPu. A similar assessment was not available

for LIT; we intended to use the litterbags to estimate lit-

ter–litter transfer of N but had no returns in this pool

(see Discussion) so we used mineral 15N-addition reten-

tion in litter to estimate retention of litter 15N in the lit-

ter layer for the mass balance.

With litter excluded, total system recovery was

60.39% from LIT, and 20.12% from DEP and DEPu

together, despite the slightly larger total 15N inputs in

the DEP treatments. N recovery was highest in the O

horizon; here in the LIT treatment, we calculated a

recovery of ~50% of 15N released from the litter, com-

pared to 14% of 15N from inputs in DEP. Very little 15N

was found in the A horizon, being 1–3% of 15N avail-

able in all treatments and standard errors in this treat-

ment were greater than the mean.

Similarly, root recovery of 15N was higher in the O

horizon. Because the mass of the root pool was rela-

tively smaller than soil, the high d15N observed

accounted for only ~3.5% in DEP and ~6.5% in LIT.

Root 15N return in the A horizon was about 1% of the

total N in all treatments.

Only small proportions of the soil 15N recovery were

derived from microbial biomass in all treatments which

accounted for around 0.5–1.5% of 15N in the O horizon

and none of the 15N in the A horizon. As total extracted

N from the soils was low and already included in total

soil 15N return, we did not include K2SO4 extractable
15N in our mass balance calculations. Overall, the litter

(LIT)-derived 15N appeared to be retained in the soil

around three times as much as deposition (DEP) 15N.

When litter was included, close to 100% of DEP was

estimated to have been recovered from the system.

Table 4 Tukey HSD comparisons for treatments in the most

parsimonious model to explain root d15N in both soil layers

DEPu DEP LIT

Oh horizon

CONTROL <0.001*** <0.001*** <0.001***
DEPu 0.977 0.007**

DEP 0.018*

Ah horizon

CONTROL 0.033* <0.001*** 0.015*

DEPu 0.581 0.998

DEP 0.756

Treatments are as described in Table 1. Asterisks indicate sig-

nificance at the P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***)
level.

Table 5 Mean mass and N%, and (below the line) mean percent mass balance 15N balance recovery of 15N tracer in May 2014 in

treatments DEPu, DEP, and LIT as enrichment above CONTROL (see Table 1 for definitions)

Litter

O horizon A horizon

Roots Soil Microbes Roots Soil Microbes

Mass (kg ha�1) 3800a 8100 (3000) 61 600 (1400) 5.70b (1) 7800 (2000) 174 800 (31 000) 7.70b (1.1)

N (%) 1.58 (0.3) 0.89 (0.1) 1.35 (0.4) 0.66 (0.1) 0.81 (0.3)

DEPu 83.58a (48.08) 2.44 (1.6) 15.78 (10.9) 0.59 (0.17) 1.05 (0.7) 0.66 (2.0) 0.13c (0.11)

DEP 90.98a (51.97) 3.49 (2.3) 13.87 (9.5) 0.96 (0.23) 1.06 (0.8) 1.59 (2.9) �0.04c (0.07)

LIT NAa 6.42 (3.0) 50.71 (24.4) 1.48 (0.48) 1.06 (0.5) 2.19 (5.9) �0.10c (0.06)

Values show standard errors of the mean in parentheses. Subscripted values indicate the following: (a) estimates were obtained

using litter pool masses (which may be overestimates). (b) Microbial N is a proportion of the measured soil pool and should not be

included as a separate component of the total. This figure is not adjusted by a correction factor for total microbial biomass so N % is

also not presented. (c) In some cases, the A layer microbial biomass was on average 15N depleted relative to the control and hence a

negative tracer recovery.
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Discussion

Overall, we found greater soil system retention of N

released from litter (LIT) compared to new N inputs

from mineral N additions (DEP). Excluding the litter,

where most DEP recovery was found, but intralitter
15N transfer was uncertain, around 60% of litter decom-

position 15N was recovered in the soil, while 20% of
15N added as mineral fertilizer was recovered in the

same pools (Table 5). Most of this difference was in the

organic (O) horizon, and tracer recovery decreased with

soil depth. However, there was proportionally greater
15N expression in roots, compared to soil. As total N

additions were near-identical between ‘deposition’ and

litter treatments, and total 15N availability was similar,

N from the litter source was substantially better

retained than the fertilizer additions.

Representativeness of litter and ‘deposition’ simulation

An important caveat to interpreting our results is

whether our ‘DEP’ treatment faithfully represented

nitrogen deposition, and whether our litter swaps pro-

vided a realistic litter layer. For the latter, there were no

differences between disturbed (DEP) and undisturbed

(DEPu) litter with N additions, indicating that 15N

recovery was driven by 15N source (simulated deposi-

tion or litter) not an effect of the litter swap. However,

our ‘deposition’ inputs differ from atmospheric inputs,

which contain other compounds, are deposited chroni-

cally in both wet and dry forms, and are intercepted by

the canopy before reaching the soil. Our low concentra-

tion, frequent NH4NO3 additions matched as best pos-

sible chronic deposition. And ammonium and nitrate

are commonly used as a proxy for N deposition reach-

ing the soil in field experiments, particularly when a
15N fertilizer is used (e.g. Tietema et al., 1998; Yao et al.,

2011). Dry deposition inputs are typically not simulated

due to the logistical complications involved, and in

many cases, the magnitude and chemical composition

of these background inputs is badly documented and

variable. N deposition experiments also commonly

assume an instantaneous mixing of inputs into soil

pools when in ambient conditions movement of dry

deposition depends on subsequent rainwater inputs. As

such, 15N-partitioning from our ‘DEP’ treatments is rep-

resentative of common 15N experimental methodology,

and many of the caveats relevant to interpreting this

directly as N deposition partitioning also apply here.

Depth-dependent 15N recovery

In both our deposition-simulating and labelled litter

treatments, most 15N recovered was found in the litter

(Fig. 3) and O layer soil (Fig. 4), where more 15N was

recovered from the litter source (50%) than the mineral

inputs (13–15%). Summed, and excluding the high litter

recovery, mineral N recovery in soil was lower than

most fertilization studies (Templer et al., 2012), but sim-

ilar to recovery in studies of low N additions (Koop-

mans et al., 1996; Micks et al., 2004) and similarly

biased towards upper (organic) soil. Total soil and root
15N recovery from the A horizon were lower (1–3% of

total 15N released) and correspond to low recovery in

this horizon from the majority of forest 15N-fertilizer

studies (Nadelhoffer et al., 1999; Templer et al., 2012).

Most of the 15N recovery in LIT (around three times

the recovery of DEP) was also in the O horizon, but

similarly low in the A horizon. Some litter 15N can be

recovered in deeper soil layers in long-term trace exper-

iments (Eickenscheidt & Brumme, 2012), but sinks in

upper soil layers predominate, and our results indicate

that 15N released from litter was more resistant to

leaching down through the soil profile. Some of this
15N decomposed from litter may have remained in the

litter layer, but litter–litter 15N transfer was not found

in our litterbag experiment. If it is assumed that this is

an artefact, and litter 15N was similarly retained within

the litter layer as in DEP (discussed in the litter decom-

position section), we can account for more than 100% of

the released label. Even if litter retains less decomposed
15N, this is still substantially more than inferred from

DEP, implying an overall greater recovery of the tracer

in the soil system.

Most of this extra litter source N is probably in

organic forms (Warren, 2014) but not all forms of

organic N are likely equally bioavailable, if at all. Lar-

ger molecules are unlikely to be accessible, but also less

mobile in soil than mineral ions (particularly NO�
3 ),

and less vulnerable to gaseous losses via denitrification

or leaching (Butterbach-Bahl et al., 2011). Further

decomposition of this N may be gradual, slowly releas-

ing N into plant-available forms, such as amino acids.

These are most chemically similar to NH3 and may

dominate N uptake in boreal zones, while less is known

about their importance in temperate regions where

mineral forms of N are more available. Amino acid 15N

addition recovery in soils is typically not different than

mineral 15N additions, unlike recovery in plant tissues

(N€asholm et al., 2009; McFarland et al., 2010), so in LIT,

the presence of larger 15N-enriched products of decom-

position explains the high O horizon 15N recovery. We

could find no studies on recovery of additions of larger
15N-labelled polymers in the field to understand how

representative ~50% 15N recovery in this horizon may

be. Additionally, in our time series (Fig. 4), it is not

clear if the increasing (variable) recovery in the soil

only develops after October 2013. This could indicate
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release of these less mobile products at this time but

not earlier during the litter mass loss (Fig. 1a). Earlier

losses of 15N from the litter are visible from increasing

root 15N early in the experiment (Fig. 5) so this differ-

ence may be due to sequential release of N-compounds

from decomposition.

Litter decomposition and litter layer recovery of 15N-
nitrogen

Including litter, our total 80–90% recovery of the min-

eral-applied isotope treatments is higher than most lit-

erature, although uncertainty is large due to small

sample size and variability in biomass pool estimates.

Recovery of mineral 15N in litter is variable but can be

around 50% of added 15N (Downs et al., 1996) as

decomposers assimilate N for the early stages of litter

decomposition (Parton et al., 2007), litter having a

higher C/N ratio than decomposer organism. Our

higher than usual recovery may be due to frequently

supplying the N sink in the litter layer with small

inputs of 15N while never saturating N demand. Rather

than variation in d15N of fresh litterfall (which is a few

parts per million, Weber et al., 2008), variability in litter

layer d15N (Fig. 3) probably reflects differences in

decomposition rates, or decomposer colonization across

the plot (Wang et al., 2013) which our small sample size

would be unlikely to capture at any single time point.

Stand establishment meant that litter depths varied

substantially on ridges and in furrows, which may

cause variation in thermal properties (Og�ee & Brunet,

2002) and water retention (Putuhena & Cordery, 1996)

across microsites.

Similarly, in LIT, litter d15N did not change over time

(Fig. 3) but was highly variable, indicating a great deal

of heterogeneity in 15N expression. Decomposition and

variation in these rates across the plot could raise 15N

concentrations due to fractionation (Kramer et al.,

2003), but d15N variance was also likely due to insuffi-

cient mixing of the labelled litter at the start of the

experiment. Litter mixing was carried out to control for

factors which would affect 15N release from the litter

across the plots, including differences in d15N of the

source canopies (Nair et al., 2014), and litter quality

between trees (Knorr et al., 2005; Berg & McClaugherty,

2008). Such a difference was evident early, where mass

change differed between litterbag treatments (Fig. 1a),

reflecting early loss of nonstructural C and acid-hydro-

lysable materials (Berg, 2000) in fresh litter that had not

naturally senesced (Chapin et al., 1990, 1993).

From these litterbags, we also did not detect any litter

to litter 15N transfer. Tracer exchange between litters

(Schimel & H€attenschwiler, 2007; Berglund et al., 2013)

may only be possible in litter mixes when distinct

components [e.g. mixed-species litters, Berglund et al.

(2013)] can be identified without physical separation

imposed by litterbags. Thus, the lack of recovery of lit-

ter-derived N in unlabelled litter may be an artefact of

design and some litter 15N lost from decomposing litter

was likely subsequently reincorporated by colonizing

decomposers. If we assume a similar (80–90%) recap-

ture of litter-derived N in litter to DEP 15N additions,

LIT recovery is more than 100% of the litter-applied

label. Deposition treatments were applied to the litter

surface and percolated through the entire litter layer,

while organic decomposition products are released

throughout this horizon, so more DEP-15N than LIT-15N

may be incorporated into litter but it is not clear how

much this differs.

Microbial recovery of tracer

Apart from litter and soils, microbes are major assimila-

tors of mineral N additions over the short term (Jackson

et al., 1989; Zak et al., 1990; Zogg et al., 2000; Morier

et al., 2012) but recovery rapidly declines over the

longer term (Zogg et al., 2000; Providoli et al., 2006;

Templer et al., 2012) due to rapid pool turnover. Most

of the soil recovery in both our mineral and litter 15N

treatments was not found in microbes at the end of the

experiment (some 2–3% 15N in O in all three treatments,

and lower in A). Much of the 15N added earlier in the

experiment may have been processed by this pool and

be found elsewhere by the end of the experiment. We

did not apply a correction factor for extraction effi-

ciency, as little literature is available to obtain appropri-

ate values for forest soils at 0.5 M K2SO4. Applying a

similar 0.54 KEN as in (Brookes et al., 1985) would indi-

cate microbial 15N return almost two times larger and

suggest a larger absolute difference in microbial return

among treatments, although still a small proportion of

total amendments.

Potential losses

We can interpret differences in ‘missing’ 15N as 15N

moved aboveground by root uptake if we can discount

potential losses due to leeching and trace gases. Our

design did not measure these losses, but leachate losses

commonly amount to <10% of added mineral N from

low additions of 15N fertilizer (Tietema et al., 1998; Zak

et al., 2004; Providoli et al., 2005). The acidic soils at our

site may have increased these losses due to their ion

retention capacity, although the overall high recovery

of tracer (80–90%) suggests that magnitude of N inputs

and losses via leaching were not higher than usual. 15N

losses as gases (such as NOx) from NDEP are also rarely

quantified (Templer et al., 2012), although likely to be
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low (Tietema et al., 1998; Christenson et al., 2002). For

litter-15N additions, organic N in leachate and tracing

of losses of litter 15N via soil water have not been mea-

sured in many other labelled litter studies (Zeller &

Colin-Belgrand, 2001; Blumfield & Xu, 2004; Weatherall

et al., 2006) but Eickenscheidt & Brumme (2012) found

around 1% of 15N from labelled beech litter was lost as

N2O over 10 years. Hence, for both DEP and LIT, 15N

lost by these pathways is also likely to be minimal, and

in both DEP and LIT treatments, the N cycle likely

remains closed.

Root recovery of tracer and implications for whole tree
nutrition

Any ‘extra’ decomposition N found in the soil system is

important for additional primary productivity and C

uptake only if it is also obtained and distributed within

plants. Around 20% of deposition treatment 15N

(Nadelhoffer et al., 1999; Templer et al., 2012) is typi-

cally found in trees, which is plausible in our experi-

ment but potentially obscured by high errors on soil

pools. Our root recovery of 15N (Fig. 4) corroborated

such findings; we found similar 15N recovery (~4.5% in

total, Table 5) in DEP to other mineral N addition stud-

ies (c.f. Nadelhoffer et al., 1999b; Templer et al., 2005)

and around three-quarters of 15N acquired is moved

aboveground and expressed in aboveground tissues

(Templer et al., 2012) and thus not represented in

belowground recoveries. However, when our 15N tracer

was from decomposition (LIT), root recovery (~8.5%)

was on average almost double that in DEP. Hence, rela-

tive to total availability, more recycled litter N may be

obtained by plants than when added in mineral fertiliz-

ers. While we did not measure aboveground pools (due

to the large standing biomass and consequent isotope

dilution effect), evidence for a proportionally greater

whole tree recovery can be found in the roots as pro-

portionally more litter 15N recovery was found in the A

horizon roots (1%) than A horizon soil (6.5%) compared

to the O horizon roots (2%) and O horizon soil (50%).

This was despite the greater soil 15N recovery in the O

horizon. 15N expression in deeper roots indicates

translocation of 15N within the plant following uptake

in the O horizon and may be reflected in other above-

ground tissues.

Even with isotope techniques, it is difficult to quan-

tify plant uptake of organic N as tracer recovery is

insensitive to the form in which N is obtained, and N

may be mineralized before uptake. Dual 13C and 15N-

labelling can address this problem, but this is not with-

out difficulty in interpretation (Jones et al., 2005) and it

was not possible to label the litter created for this study

with 13C. Observed 15N enrichment in roots could be

due to uptake of organic 15N or an overall more sus-

tained mineral availability as organic N is decomposed

continuously rather than added in distinct pulses. We

tried to limit these differences by applying high fre-

quency, low doses of 15N fertilizer in DEP/DEPu treat-

ments, although this was monthly and to the soil

surface and not continuous from the litter. However,

K2SO4-extractable
15N did not differ, so labile 15N was

similar between DEP and LIT 6 weeks after the last

application of the mineral tracer, indicating that varia-

tion in 15N availability to plants due to infrequent fertil-

izer use was minimal.

In addition to this evidence for greater nutrition from

litter N due to 15N recovery, the lack of litter–litter
transfer in the litterbags (Fig. 1b) could indicate,

instead of the artefact previously discussed, that all

decomposed litter 15N left the litter layer and was lea-

ched deeper into the soil, lost as trace gases, or moved

into aboveground portions of the tree. If this ‘missing’

(40%) N is in the tree, then contribution of litter 15N to

plant nutrition is beyond what is implied by root recov-

ery. We took the most conservative approach and

assumed that this missing litter-derived 15N was in the

litter, but not measurable in our litterbag experiment,

although this may underestimate its importance rela-

tive to mineral N. Assessing the importance of litter
15N to aboveground growth is critical for future work

in this area.

Comparing nitrogen fate from litter and from atmospheric
deposition

So how important is uptake of N from decomposition

compared to deposition (or deposition-simulating fer-

tilizer experiments)? Biomass growth requires N but

different N sources and forms may differ in their

importance for tree N nutrition between ecosystems

and N availability gradients. As knowledge for models

of the global effects of N deposition on forest growth

and function are based on processes measured in

experiments, understanding the difference between

ecosystem partitioning of mineral fertilizers (usually

used to describe N uptake) and root uptake of recycled

organic N is necessary to predict the effect of N deposi-

tion which may affect rates of N release from litter.

In this study, we showed that in a temperate forest,

N released from an isotopically distinct litter substitute

is both better retained in ecosystems and partitioned

differently among litter, soils, and roots when com-

pared to the mineral N additions typically used to sim-

ulate NDEP. Our mineral additions produced results

similar to the wide body of literature using 15N fertiliz-

ers for N tracing, while higher soil retention of lit-

ter-15N was paired with partitioning favouring
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reacquisition of litter N by trees. Therefore, the effect of

NDEP on forest growth and C sequestration potential

may also depend on the effect of extra N inputs on litter

quantity, quality, and subsequent rates N release from

litter, as well as the frequently measured short-term

partitioning of mineral N within ecosystems. Similarly,

there is a lack of knowledge of rate-dependent effects

of N additions, and the degree to which NHþ
4 and NO�

3

added as fertilizer treatments reflect not only N-com-

pounds released from decomposition but also all atmo-

spheric inputs, for example dry deposition. Litter

decomposition releases N continuously and most N

‘deposition’ treatments apply fertilizer N/15N tracers in

large pulse events cumulative with and in excess of

ambient N deposition. A fuller understanding of the

fate of litter-decomposed N is critical for predicting the

effect of nitrogen additions on forest C uptake.
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