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Concurrent multiscale coupling is a powerful tool for obtaining quantum mechanically (QM) accurate
material behavior in a small domain while still capturing long range stress fields using a molecular
mechanical (MM) description. We outline an improved scheme for QM/MM coupling in metals which
permits the QM treatment of a small region chosen from a large, arbitrary MM domain to calculate total
system energy and relaxed geometry. In order to test our improved method, we compute solute–vacancy
binding in bulk Al as well as the binding of Mg and Pb to a symmetric R5 grain boundary. Results are cal-
culated with and without our improvement to the QM/MM scheme and compared to periodic QM results
for the same systems. We find that our scheme accurately and efficiently reproduces periodic QM target
values in these test systems and therefore can be expected to perform well using more general
geometries.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Quantum mechanical (QM) calculations provide access to a
large number of material parameters and atomistic details. As
computational power continues to increase, more and more com-
plex situations can be studied. However, even with very efficient
QM methods such as the Kohn–Sham (KS) density functional the-
ory (DFT) and the use of pseudopotentials (PPs), structural opti-
mization is still limited to a few hundreds of atoms. While DFT
captures the electronic and magnetic details with high accuracy,
the constraints on system size prevent the representation of many
interesting geometries and can cause inaccuracies in energies and
forces due to mistreatment of long-range strain effects.

In contrast to QM calculations, molecular mechanical (MM) cal-
culations relying on classical atomic interactions can easily treat
systems of millions of atoms. However, common many-body
potentials for metals like those constructed using the embedded
atom method (EAM) are unable to capture all of the complexity
that is found during electronic QM calculations. Even more impor-
tantly, the generation of these high-quality potentials is itself very
time consuming and not straightforward. In the case of alloys, sep-
arate potentials must be generated for each interaction between
species of atoms. This is particularly limiting in computationally
aided alloy design, where it is often necessary to scan through
many different alloying elements to search for trends in properties
that act as indicators for macroscopic material behavior.

Atomistic QM/MM schemes attempt to obtain the best of both
of these techniques by partitioning a large system into two
domains and treating a small domain of particular interest (e.g. a
crack tip, dislocation, or solute) with QM accuracy, while concur-
rently coupling this small subsection to a much larger domain
where a MM treatment is sufficient [1–5]. Such methods harness
the power of QM calculations for chemical interactions while rely-
ing on efficient MM techniques to capture long-range elastic
behavior. The region of interest could also be coupled to a contin-
uum description of the larger system [6–12], but here we focus on
coupling exclusively to a classical atomistic representation.

QM/MM methods are particularly sensitive to how the parti-
tioning of the system and the interaction between the different
domains is handled. For molecular systems, electrons are well
localized in bonds, and there are mature methods in the vein of
the ONIOM [13–15] scheme (implemented in the GAUSSIAN code pack-
age,) which partition the system by cutting the bonds and saturat-
ing them with ‘‘link atoms”. For metals, the delocalized nature of
the electrons makes this a poor approximation, and a different par-
titioning scheme must be used. While not as well established as
molecular QM/MM, atomistic QM/MM for metals have seen impor-
tant developments in recent years [1–5].

Since the atoms in the QM domain for a QM/MM calculation do
not necessarily repeat periodically inside reasonably sized
boundaries, atomistic QM/MM calculations frequently use vacuum
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clusters for the QM component calculations. The resulting vacuum
surfaces interfere with the perception of the QM domain of being
embedded in a much larger MM region. To mitigate this effect,
Liu et al. [3] introduced a set of boundary—or buffer—atoms, which,
while present in the QM calculation, draw their relaxation forces
from the MM calculation. Although this is a distinct improvement,
the strong electronic perturbations created by the vacuum surface
penetrate deeply, and very large buffer regions are needed to iso-
late the QM core from the vacuum surface. Recently, in an effort
to resolve this problem, Zhang et al. [5] suggested a method in
which the KS DFT Hamiltonian is modified by the addition of a
term which penalizes charge densities that deviate from a target
density. By using a bulk-like charge density as a target and giving
the penalty term a spatial dependence so that it is fully active only
near the outer edge of the QM domain, the presence of the vacuum
surface is masked. The problem of vacuum surfaces was also
addressed by Woodward and Rao [6] in the context of coupling
QM to a lattice Green’s function (LGF) solution. They eliminate
the vacuum by extending the domain of atoms treated by the
LGF right to the edges of the QM simulation cell. However,
QM/LGF coupling is not straightforward when grain boundaries
pass through the coupling domain [7]. Moreover, by using EAM
potentials instead of LGFs we can account for nonlinear
deformations.

In this paper, we propose an improved method in the context of
existing atomistic QM/MM schemes. In a similar vein as
Woodward and Rao, we eliminate the vacuum surfaces with the
introduction of extra material. Unlike Woodward and Rao, the
atoms we introduce are not part of the system being relaxed.
Replacing the vacuum surface with a material–material interface
reduces the electronic contrast at the edges of the QM domain,
consequently improving the quality of QM forces and energies.
We implement the method using KS DFT and molecular statics to
calculate solute–vacancy binding in bulk Al, and solute–grain
boundary (GB) binding at a symmetric R5ð120Þ½001�53:1� tilt GB
in Al for the solutes Mg and Pb. These systems were chosen so that
they can also be studied using regular periodic DFT, which serves
as a benchmark for the QM/MM method. Sources of error in the
multiscale scheme are evaluated critically, and the performance
of our improved method is assessed by the accuracy of binding
energies obtained.

2. Method

2.1. Theory

Consider the decomposition of a very large system into two
regions: a small region (I) of great interest that we would like to
treat with QM accuracy, and a much larger region (II) for which a
simpler classical MM representation will suffice. As in Refs.
[16,8], we can decompose the total energy of this system as

EIþII ¼ EQM
I þ EMM

II þ Eint; ð1Þ
where subscripts indicate the region of the system or the interac-
tion introduced by the decomposition, and superscripts QM and
MM indicate association of the energy with a quantum or classical
representation, respectively. This ideal decomposition is shown
schematically in Fig. 1(a). The description of the interaction energy,
Eint, between the two regions will define the flavor of the coupling
scheme. Following the work of Choly et al. [1], we choose a classical
approximation of Eint:

Eint � EMM
int ¼ EMM

IþII � EMM
I � EMM

II : ð2Þ
Substituting this approximation back into Eq. (1), we obtain the

QM/MM coupled energy, EQM=MM
IþII , as
EIþII � EQM=MM
IþII ¼ EMM

IþII þ EQM
I � EMM

I : ð3Þ
Calculations in this representation involve a single MM calcula-

tion of the entire large system, and two vacuum cluster calcula-
tions of the smaller region I with QM and MM, respectively. This
is shown schematically in Fig. 1(b), where we have followed the
work of Liu et al. [3] and introduced the labels, ‘‘core” and ‘‘buffer”,
to subdivide region I into two zones. In the core, the energetic con-
tributions from the MM representations of region I and region I + II
cancel out, and we are left with a QM contribution to the total
energy. In the buffer, we would hope that the energy contributions
from the QM and MM representations of the buffer-vacuum sur-
face also cancel, but this can in general not be expected. This poor
cancellation between QM and MM representations in the buffer
zone is a direct result of the interaction energy approximation in
Eq. (2). However, when considering energy differences between
two systems, one may expect an increasing amount of error cancel-
lation depending on the degree of similarity of the buffer zone
geometries.

In addition to the energetics of our coupled system, we are also
interested in obtaining accurately relaxed structures. To calculate

atomic forces, we take derivatives of EQM=MM
IþII from Eq. (3) with

respect to atomic positions, R. For atoms in region II, atomic forces
are very simple since these atoms are only represented in the MM
calculation of the entire region I + II,

FQM=MM
IþII ðR 2 IIÞ ¼ �rR2IIE

QM=MM
IþII ¼ �rR2IIE

MM
IþII ¼ FMM

IþII ðR 2 IIÞ: ð4Þ
When calculating forces on atoms in the core of region I, there

are contributions from all three components:

�rR2IcoreE
QM=MM
IþII ¼ FMM

IþII ðR 2 IcoreÞ þ FQM
I ðR 2 IcoreÞ � FMM

I ðR 2 IcoreÞ:
ð5Þ

If the thickness of the buffer zone is greater than the MM poten-
tial’s cutoff radius, then the two MM forces above are identical and
cancel perfectly. Even when the buffer thickness is slightly less
than the cutoff distance, the difference between FMM

IþII ðR 2 IcoreÞ
and FMM

I ðR 2 IcoreÞ is small since the potential must go to zero near
the cutoff. To ensure that the net forces in the core of region I come
from the QM calculation, we introduce a correction force

Fcorr
Icore ðR 2 IcoreÞ ¼ �FMM

IþII ðR 2 IcoreÞ þ FMM
I ðR 2 IcoreÞ; ð6Þ

such that the forces in the region I core are purely QM,

FQM=MM
IþII ðR 2 IcoreÞ ¼ FQM

I ðR 2 IcoreÞ: ð7Þ
We follow a similar approach in the buffer of region I, where we

have

�rR2IbuffE
QM=MM
IþII ¼ FMM

IþII ðR 2 IbuffÞ þ FQM
I ðR 2 IbuffÞ � FMM

I ðR 2 IbuffÞ:
ð8Þ

Since forces FMM
IþII ðR 2 IbuffÞ are drawn from an MM calculation of

the entire system, these forces are theMMrepresentation of the true
forces on buffer atoms. Their quality is tied to the quality of the MM
potential itself, which can be expected to represent the long range
elastic behavior well. Both FQM

I ðR 2 IbuffÞ and FMM
I ðR 2 IbuffÞ, how-

ever, are strongly influenced by their vacuum surfaces. Since these
surfaces are artifacts of ourdecompositionanddonoexist in the true
system, these forces are not physically reasonable. While these
terms enter with opposite signs, there is, unfortunately, no guaran-
tee that the MM and QM forces in the buffer will cancel well. This
observation can be found in Ref. [3] and we follow their proposed
solution to apply another correction force to atoms in the buffer
region:

Fcorr
Ibuff

ðR 2 IbuffÞ ¼ �FQM
I ðR 2 IbuffÞ þ FMM

I ðR 2 IbuffÞ: ð9Þ



Fig. 1. Schematic of the system partitioning into (a) ideal decomposition, (b) approximating Eint classically and subdividing region I into core and buffer zones [3], and (c) our
proposed method, with filler region shown in gray. The schematic is not shown to scale. Red is used to indicate a MM representation, while blue indicates a QM
representation. Gray filler atoms are represented with either QM or MM depending on the representation of region I. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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As a result, buffer atoms are relaxed by physically reasonable
MM forces:

FQM=MM
IþII ðR 2 IbuffÞ ¼ FMM

IþII ðR 2 IbuffÞ: ð10Þ
For a sufficiently large region I, this provides forces for relaxing

the coupled system that are equal in quality to the forces from the
component representations: MM forces from a simulation of the
entire system for region II and the region I buffer, and QM forces
from a simulation of region I for the core of region I. The addition
of correction forces introduces work energy into the total energy
calculated at each step equal to the dot product of the displace-
ment of the core and buffer atoms in that step with the correction
forces applied to them. These work terms become small as the
structure relaxes. The fully relaxed atomic configuration we are
interested in can thus be obtained by iteratively updating atomic
positions in the core of region I and in the rest of the system using
QM and MM forces, respectively.

The method described above constitutes a mechanical coupling
between the atomistic QM and MM domains. Because of the cor-
rection forces introduced, the MM representation of region I does
not contribute to the relaxation of atoms in this QM/MM scheme.
For calculating energies (which requires taking an energy differ-
ence of two or more systems), however, this smaller MM compo-
nent plays an important role. By entering the QM/MM total
energy in Eq. (3) with the opposite sign as the QM representation
of region I, this component ensures that the fictitious energy con-
tribution from variance in the buffer geometry between systems
comes from the difference of QM and MM representations; i.e.
the error from non-identical buffer geometries appears only as a
difference of energy differences.

QM/MM calculations using ‘‘vacuum clusters” are performed as
we have described so far, based on the literature cited throughout
the description. However, this method suffers from one critical
problem: except for extremely large buffer sizes, the electronic
state in the core of region I is perturbed by the presence of the
vacuum surface in the QM cluster calculation. This has an effect
on the quality of forces for atoms in the core.
For molecular systems where the electrons are well localized to
orbitals, the edge of the quantum domain can be handled by fitting
a static orbital density or by placing a ‘‘link atom” at each dangling
bond after cutting between QM and MM domains [15,17]. In met-
als, however, the sudden drop of the electronic background poten-
tial creates a deeply penetrating change in the electronic charge
density due to Friedel oscillations that destroys the core atoms’
perception that they are embedded in a much larger system.
Recently, Zhang et al. [5] have proposed to resolve the issue of this
long-range impact on the charge density by modifying the under-
lying KS DFT Hamiltonian to restrict the electron density near the
outer edge of region I to be ‘‘bulk-like”. We take an alternative
approach which does not require altering the Hamilton used for
QM component calculations and can be easily implemented with
any existing DFT code package; to isolate the QM core from elec-
tronic perturbations, we replace the material-vacuum interface
with a material–material interface that is less electronically
extreme.

We introduce a set of ‘‘filler” atoms, of the same species as the
host, to fill the computational cell and eliminate the presence of
the vacuum surface. This replacement of the buffer-vacuum sur-
face with a buffer–filler atom interface removes the strong elec-
tronic perturbation and replaces it with a much weaker one. To
make this approach computationally attractive, the savings in
CPU time from requiring fewer atoms in the buffer zone must out-
weigh the cost of adding filler atoms to modify the interface.
Unlike the method in Ref. [5], our method does not require changes
at the level of the KS formalism (and thus changes to the DFT code,)
and, therefore, can be used with any of the available DFT packages.
Strategies to optimally place the filler atoms in the vacuum region
are discussed in more detail in Section 2.2. The setup of this
approach is shown schematically in Fig. 1(c). We note that filler
atoms exist only in what were previously cluster calculations and
not in the MM calculation of the entire region I + II superstructure,
from which region II and buffer atom forces are drawn; i.e. filler
atoms do not directly influence the forces on the buffer atoms to
which they are adjacent.
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In plane-wave DFT codes with periodic boundary conditions
(PBC)—which are common for simulating metals—the introduction
of these filler atoms creates new interfaces: the material–material
interface between filler atoms and buffer atoms discussed previ-
ously, and also interfaces at the periodic boundaries of the simula-
tion cell between filler atoms. By choosing the same filler atom
geometry across the multiple calculations necessary to compute
a physical energy, and by holding filler atom positions totally fixed
throughout the QM/MM atomic relaxations, the energetic contri-
butions from the filler–filler interfaces largely cancel each other
when energy differences are taken. Because the geometry of region
I may change during relaxation, the energies from the interface
between buffer and filler atoms will not cancel as well. However,
this is a concern even for any method using vacuum clusters,
where the geometry of the vacuum surface also changes. The
extent of filler–buffer interface cancellation can be controlled by
increasing the size of region I so that buffer atoms near the filler
experience less deformation.

This method is similar to an earlier approach by Woodward and
Rao [6] coupling a QM domain to a LGF. Surrounding a QM-relaxed
core, Woodward and Rao fill the remaining QM simulation cell
with atoms relaxed by the LGF. Similarly to the method proposed
here, this eliminates vacuum surfaces and replaces them with
material–material interfaces. However, unlike the proposed filler
atoms, all of the atoms in the QM domain of Woodward and Rao
are permitted to relax. For the QM/MM coupling discussed here,
the equivalent method would be to simply extend the buffer atoms
to fill the entire QM periodic domain.

The method of Woodward and Rao works well when accurate
forces and geometries are a key objective, and has been used to
study dislocation cores [18,19] and a crack tip [12] (coupling to
finite elements in the latter, rather than a LGF.) However, it does
not work as well for determining accurate energetics. Because
atoms right up to the edge of the QM simulation domain are per-
mitted to relax via the long range coupling force (a LGF, finite ele-
ments, MM, etc.), any expansion or contraction of these buffer
atoms due to the QM core is mirrored across the QM domain
boundary, causing changes in the buffer–buffer interface. While
this is still a concern with our buffer–filler interface, the problem
is much less severe because the filler atoms are held fixed and
do not mirror the motion of the buffer atoms they form an
interface with. As a result, by using filler atoms the fictitious
buffer–filler interface has better cancellation across the multiple
calculations required to take an energy difference than a buffer–
buffer interface.

Our scheme is summarized as follows:

1. Start with a large system suitable for MM, and decompose the
system by choosing atoms for region I core and buffer.

2. Choose a geometry for filler atoms, thereby creating a new
region I + filler sub-system.

3. Relax region II and the region I buffer atoms using forces from
the MM calculation of the entire region I + II system while hold-
ing atoms in the region I core fixed. Then relax region I core
atoms using forces from the QM calculation of region I + filler
while holding buffer and filler atoms fixed.

4. Evaluate EQM=MM
IþII using Eq. (3) and any work done by the correc-

tion forces in the last multiscale step.
5. Check for force and/or energy convergence and return to step 3

if not converged.

These steps are modified from the existing ‘‘vacuum cluster”
scheme by the inclusion of filler atoms.

In principle, there is no guarantee that such a scheme con-
verges. Because relaxations in the core and elsewhere are made
sequentially, we must check force convergence either after the
MM relaxation step is complete and region II and buffer atom posi-
tions are updated, or after the QM relaxation step is complete and
the core atom positions are updated. In the first case, it is possible
that the MM-updated positions of buffer atoms will create QM core
atom forces above the desired cutoff, and in the latter case the QM-
updated positions of core atoms may create MM buffer atom forces
that are too large. Such non-convergence would indicate that the
MM potential is not sufficiently similar to the QM representation.
Constructing a new MM potential just for the QM/MM calculation
would largely defeat the purpose of such a coupling scheme. In
practice, however, we have found no problems obtaining force con-
vergence below 0:01 eV=Å with our filler atom scheme after a sim-
ple rescaling of existing EAM potentials to match the DFT lattice
constant. This was the case even for complex geometries like a
R5 grain boundary.

In the present study, the target quantities we seek to compute
are binding energies between solute atoms and structural defects.
We follow a convention with attractive binding defined positively,
and evaluate it using four separate calculations which can be inter-
preted as comparing the energy of the system with the solute pre-
sent at the spatial defect and the solute infinitely separated from
the defect. For solute–vacancy binding we have

EX�vac
bind ¼ ðEðN�1Þ� þ EðN�1ÞXÞ � ðEðN�2Þ�X þ ENÞ; ð11Þ

where EN is the energy of a bulk system of N atoms, EðN�2Þ�X is the
bulk system with a solute, X, and vacancy adjacent to each other,
and EðN�1Þ� and EðN�1ÞX are the bulk system with an isolated vacancy
and solute, respectively. For solute–GB binding we obtain

EX�GB
bind ¼ ðENGB þ EðN�1ÞXÞ � ðEðNGB�1ÞX þ ENÞ; ð12Þ

where ENGB is a system of NGB atoms and GB structure, and EðNGB�1ÞX
is the same system with a solute at the planar GB site.

2.2. Implementation

MM calculations are performed with LAMMPS [20,21] using EAM
potentials for Al–Mg and Al–Pb by Mendelev et al. [22] and Landa
et al. [23], respectively. By varying their measure of distance, the
EAM potentials were isotropically rescaled to match DFT lattice
constants. MM superstructure calculations consist of 364,500
atoms of ideal face centered cubic (FCC) Al in a periodically repeat-
ing cubic cell with side length 179:06 Å for bulk calculations; theR5
boundary uses two symmetric grains with a total of 720,000 atoms
in a rectangular box measuring 177:83 Å� 357:03 Å� 178:91 Å
with the GB lying in the XZ-plane. These superstructures were per-
mitted to relax once using the rescaled EAM potential [22] without
any solutes or vacancies. Then they are usedwith the fixed box sizes
given above when site defects are introduced. Compared to smaller
MM domains—each with approximately half as many atoms—these
superstructures give MM binding energies which are converged to
within 0:01 eV.

All QM calculations are performed using the Vienna Ab initio
Simulation Package (VASP) [24–27] plane-wave DFT code. Since
we perform size convergence tests up to very large numbers of
atoms, we use simple ultra-soft pseudopotentials (US PP) [28,29]
from the standard VASP library with the local density approximation
exchange–correlation functional [30]. We use a plane wave basis
set with an energy cut-off of 200eV and Methfessel–Paxton smear-
ing [31] with a width of 0:1 eV.

Periodic DFT results use k-meshes with at least 32,000 k-points
per reciprocal atom (KPPRA). This gives well converged energies
and converges the unit cell lattice constant on the order of 1 mÅ,
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which is <0.03% of the 3:98 Å lattice constant found for the USPP
for Al. This provides a precise target for rescaling EAM potentials.

Size convergence for periodic DFT calculations and for the size
of region I in QM/MM calculations is shown explicitly in the plots
of Section 3. For vacuum clusters, an inter-cluster vacuum distance
of 10 Å was found to be sufficient to decouple the cluster from its
periodic images. Since the vacuum clusters are aperiodic to a good
approximation, we use only a single k-point, the Gamma point, in
those calculations.

Our general scheme for QM/MM coupling is described in Sec-
tion 2.1 and a detailed description of the implementation can be
found in Appendix A, but it is important to discuss some details
of the geometry of the method.

Construction of region I is performed by choosing a small num-
ber of ‘‘seed” atoms around which concentric shells of neighboring
atoms are built, together making up core and buffer layers. In the
calculations using bulk geometry, we always use two seed atoms:
one at which we may place the solute, and the other at which we
may place a vacancy, as shown in Fig. 2(a). For calculations using
the GB geometry, we use only the GB site of interest, see Fig. 2
(b). Constructing region I by forming concentric shells keeps these
locations of most interest as far from the outside edge of region I as
possible. For the QM/MM method with vacuum clusters, we place
the clusters in a rectangular prism cell with 10 Å between the
extremal atoms of the clusters and the closest atoms in the peri-
odic images.

For our improved QM/MM method with filler atoms, we have a
great deal of freedom in how we might choose the position of filler
atoms. In the spirit of isolating the core of region I as best as pos-
sible, we choose the positions of filler atoms from among the initial
position of atoms in region II such that a rectangular prism encas-
ing region I has empty space filled, as shown in Fig. 2 for both bulk
and GB geometries. Since region II is not periodic in this small box,
this method creates six filler–filler interfaces on the sides of our
rectangular prism where we have forced periodicity, with a mini-
mum distance of 2:7 Å (1:4 Å) between filler atoms and the closest
filler atom in a periodic image cell for bulk (GB) geometry. At the
interface between the filler and buffer zones there is, initially, no
imperfection. As the QM/MM system relaxes these filler atoms
are held fixed and no longer correspond to the positions of atoms
in region II, so a small interface also develops between buffer
and filler atoms. Because the interface between the buffer and filler
atoms is due to the relaxation of the buffer from its initial position,
its severity can be controlled by the size of region I and we can
Fig. 2. Region I + filler atomic structures for (a) bulk structure and (b) R5 GB each with
rotation for the GB. Seed atoms are shown large in blue, the remaining core atoms are s
atoms are shown very small in gray. Black boxes indicate the periodic domain. Visualised
the reader is referred to the web version of this article.)
expect it to be less extreme than the interfaces at the cell bound-
aries and much less extreme than the vacuum surface of the orig-
inal method.

Because our test systems can be simulated using regular peri-
odic DFT, we could in principle have chosen filler atom positions
very carefully to eliminate any filler–filler interface. Since the true
interest of QM/MM methods is to push beyond systems which can
be simulated by DFT alone, we have avoided this. Our method for
constructing region I and the filler geometry is completely general,
and results in imperfections on all six faces of the QM simulation
domain. Therefore, our comparison between QM/MM and fully
periodic DFT results provides and accurate estimate of the perfor-
mance that can be expected in novel geometries not obtainable
with periodic DFT.
3. Results

3.1. MM/MM results

We rely on the MM domain to provide accurate positions for the
buffer atoms and to capture the long range elastic behavior of the
system. To probe the effect of structural and elastic mismatch
between the QM and MM representations systematically, we
replace the QM calculation with another MM calculation and
implement a MM/MM coupling. By using a different potential or
the same potential with a different lattice constant for the
QM-replacement than we use for the regular MM domain, we
can systematically vary the degree of structural and elastic
disagreement between the two representations and observe the
effect on the energetics.

To this end, we must first establish the sensitivity of the bulk
moduli of the two EAM potentials to the scaling of their lattice
parameters. Fig. 3 shows that the moduli vary by less than ±8%
for lattice constant variations of ±2%. We can also see that, when
scaled to match the DFT lattice constant, both potentials slightly
underestimate the DFT value of the bulk modulus. Because the bulk
modulus responds differently to lattice rescaling for the two poten-
tials used, we are able to isolate the effect of bulk moduli differ-
ences with the same lattice constant in MM/MM coupling. For
elastic mismatches on the order of 2 GPa—the difference between
DFT and the Mendelev potential used in full QM/MM calcula-
tions—the impact on binding energies is small, with the largest
changes lying between 0:005 eV and 0:02 eV depending on the
system.
two core shells and two buffer shells looking down the c-axis, which is the axis of
hown medium in green, the two buffer shells are shown small in red, and all filler
using OVITO [32]. (For interpretation of the references to color in this figure legend,



Fig. 3. Bulk moduli for the two EAM potentials of Mendelev [22] (blue +) and Landa
[23] (red �) scaled to various lattice constants, and the USPP DFT result (green �).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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We can also investigate the combined effect of lattice and
moduli mismatches on binding energies by using differently scaled
potentials. Fig. 4 shows the binding energies as the
QM-replacement potential is rescaled to lattice constants of ±1%
while the MM potential is held fixed at the reference scaling that
matches the DFT lattice value. Results are shown for several sizes
of region I; while the system with the largest choice of region I
tends to show the weakest dependence on lattice mismatch, the
effect is small and all three choices give very similar results. This
rapid convergence with respect to the size of region I should not
be expected in full QM/MM calculations, where electronic pertur-
bations can have an impact on length scales larger than the EAM
cutoff distance used in these simpler MM/MM calculations. Across
all four combinations of solute and defect, the response to strain is
Fig. 4. Solute–vacancy and solute–GB binding energies with MM/MM coupling as a func
MM potential. Two core shells are used, and one, two, and three buffer shells are used for
and d) binding to a vacancy (a and c) and a GB site (b and d). (For interpretation of the ref
article.)
smooth. In general we see a much stronger sensitivity to lattice
constant mismatch for Pb than for Mg, with relative energy errors
for Pb of order 15% at a strain of 1%. For QM/MM calculations, EAM
potentials are rescaled to exactly match DFT lattice constants, thus
we expect very little error for the bulk geometry. For the case of the
GB, the EAM potential does not yield the exact same GB structure
as the DFT and we expect mismatch effects to be more significant.

3.2. QM/MM results

Before performing a full set of QM/MM calculations of binding
energies, we first assess whether the electronic perturbations at
the interfaces are indeed mitigated by the use of filler atoms. To
this end, we examined the maximum initial forces for the QM com-
ponent of the perfect bulk, F0

max, shown in Fig. 5 plotted against the
number of atoms in the QM component calculation, NQM. Since we
simulate the perfect bulk, the forces should ideally be zero,
although we see this is not the case. When using vacuum clusters,
the vacuum surface perturbs forces in the QM core, while the cal-
culations using filler atoms experience a smaller perturbation from
the filler–filler interfaces at the periodic boundaries. For both the
red filler atom and blue vacuum cluster series in Fig. 5, the left-
most data point corresponds to a system with two shells of core
atoms and one shell of buffer atoms; each further point adds a buf-
fer shell.

We can see that the filler atom method provides a much higher
quality of forces, and even the smallest filler atom calculation (450
atoms) out-performs the largest vacuum cluster (1584 atoms)
examined. These results are qualitatively consistent with other
QM multiscale schemes: Choly et al. [1] report a maximum initial
force of 0:45 eV=Å using a 32-atom vacuum cluster for the QM cal-
culation (in which all atoms belong to the QM core, i.e. no buffer
atoms,) and Nair et al. [12] report a maximum initial force slightly
below 0:01 eV=Å in the QM core of a calculation with 452 atoms
and no vacuum surface (using the method of Woodward and Rao
tion of the lattice mismatch between the QM-replacement potential and the regular
blue �, red +, and greens, respectively. Results are shown for Pb (a and b) and Mg (c
erences to color in this figure legend, the reader is referred to the web version of this



Fig. 5. Largest QM/MM initial force for bulk Al system using vacuum cluster (blue
�) and filler atom method (red �). Desired bulk force, 0 eV=Å, is shown in green.
Results are plotted against the number of atoms in used for the QM calculation. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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similar to our filler atom calculations). The moderately better
performance-per-atom achieved by Nair et al. [12] may be attribu-
ted to the fact that they maintain regular DFT periodicity in one
dimension, while we break periodicity in all three dimensions.

However, the improved quality of using filler atoms comes at a
cost: filler atom calculations are more expensive than their vac-
uum cluster counterparts with the same number of atoms in region
I because they require a k-mesh grid with more than a single point
and carry the extra cost for adding filler atoms. Since we want a
method that is not only accurate, but also efficient, it is important
to be able to compare the computational cost of our QM/MM cal-
culations. Because the overhead for coupling is minimal, and we
begin with a MM relaxed superstructure so that the MM calcula-
tions only need to accommodate strains from relaxation in the
small QM core, the cost of the QM component calculations
Fig. 6. Solute–vacancy and solute–GB binding energies for QM/MM coupling with vacuum
DFT (green M), plotted against a normalized estimate of the calculation cost. The green
shown for Pb (a and b) and Mg (c and d) binding to a vacancy (a and c) and a GB site (b an
referred to the web version of this article.)
completely dominates the total computational effort. The cost of
plane-wave DFT calculations scales roughly with the third power
of the number of electrons (which is proportional to the third
power of the number of atoms, NQM, in systems made up mostly
of one species) and linearly with the number of irreducible
k-points, nk. The total cost for a calculation can thus be estimated
as

Cost � N3
QM � nk � nec; ð13Þ

where nec is the total number of electronic cycles the calculation
uses. Calculations which are electronically more complex or which
require multiple iterations of ionic relaxation will have a larger
value of nec than those which are simple or already close to their
relaxed state. This approximation correlates linearly with CPU time
and is independent of the hardware on which the calculation is per-
formed. We use this formula to compare the total cost of different
calculations, rescaled by the cost for a four-atom unit cell of Al with
good lattice parameters that requires only electronic convergence.

To see the aggregate effect of all the sources of error (intrinsic
representation error, differences in structural and elastic represen-
tation, and fictitious electronic forces), we have performed a series
of fully coupled QM/MM calculations with both the vacuum cluster
method and the improved filler atom method. The comparison of
these results to periodic DFT results is shown in Fig. 6 plotted
against our estimated computational cost from Eq. (13) normalized
by the unit cell cost. As in Fig. 5, the leftmost data point for the vac-
uum cluster and filler calculations have two core shells of atoms
and one buffer shell, with an extra buffer shell being added at each
further data point; detailed run parameters can be found in Tables
1–3. We have also included a band of ±0.03 eV about the best-
converged periodic results as a suggestion for the window of
results which are of high quality.

For Mg-vacancy and Pb-GB binding energies, the vacuum
cluster and the filler method give comparable results: at similar
computational cost, both QM/MM methods agree well with peri-
odic DFT results and, importantly, neither display large changes
clusters (blue �), QM/MM coupling with filler atoms (red �), and regular periodic
band of �0:03 eV is centered about the best converged periodic result. Results are
d d). (For interpretation of the references to color in this figure legend, the reader is



Table 1
Periodic DFT binding energies. Run parameters given for GB binding are for the GB
component calculations. System sizes, Lx; Ly; Lz are for relaxed pure systems (i.e. no
solutes or vacancies).

System Atoms Lx; Ly; Lz (Å) k-mesh Binding (eV)

Pb-vacancy 32 8:0;8:0;8:0 10� 10� 10 0.42
Pb-vacancy 108 11:9;11:9;11:9 7� 7� 7 0.37
Pb-vacancy 256 15:9;15:9;15:9 5� 5� 5 0.38
Pb-vacancy 500 19:9;19:9;19:9 4� 4� 4 0.38
Pb-vacancy 864 23:9;23:9;23:9 4� 4� 4 0.39
Mg-vacancy 32 8:0;8:0;8:0 1� 3� 5 �0.06
Mg-vacancy 108 11:9;11:9;11:9 7� 7� 7 �0.00
Mg-vacancy 256 15:9;15:9;15:9 5� 5� 5 �0.01
Mg-vacancy 500 19:9;19:9;19:9 4� 4� 4 �0.00
Mg-vacancy 864 23:9;23:9;23:9 4� 4� 4 �0.00
Pb-GB 400 17:7;45:6;7:9 4� 2� 10 1.06
Pb-GB 1080 26:6;54:4;11:9 3� 2� 5 1.06
Mg-GB 400 17:7;45:6;7:9 4� 2� 10 0.32
Mg-GB 1080 26:6;54:4;11:9 3� 2� 5 0.30

Table 2
QM/MM binding energies using vacuum clusters. Run parameters given for GB
binding are for the GB component calculations.

System QM atoms Buffer shells k-mesh Binding (eV)

Pb-vacancy 184 1 1� 1� 1 0.31
Pb-vacancy 370 2 1� 1� 1 0.41
Pb-vacancy 651 3 1� 1� 1 0.37
Pb-vacancy 1050 4 1� 1� 1 0.45
Pb-vacancy 1584 5 1� 1� 1 0.42
Mg-vacancy 184 1 1� 1� 1 0.10
Mg-vacancy 370 2 1� 1� 1 �0.02
Mg-vacancy 651 3 1� 1� 1 0.02
Mg-vacancy 1050 4 1� 1� 1 0.03
Mg-vacancy 1584 5 1� 1� 1 �0.00
Pb-GB 147 1 1� 1� 1 1.03
Pb-GB 309 2 1� 1� 1 1.04
Pb-GB 561 3 1� 1� 1 1.01
Pb-GB 923 4 1� 1� 1 1.07
Pb-GB 1415 5 1� 1� 1 1.03
Mg-GB 147 1 1� 1� 1 0.09
Mg-GB 309 2 1� 1� 1 0.23
Mg-GB 561 3 1� 1� 1 0.38
Mg-GB 923 4 1� 1� 1 0.41
Mg-GB 1415 5 1� 1� 1 0.32

Table 3
QM/MM binding energies using filler atoms. Run parameters given for GB binding are
for the GB component calculations.

System QM atoms Buffer shells k-mesh Binding (eV)

Pb-vacancy 450 1 4� 4� 5 0.39
Pb-vacancy 792 2 4� 4� 4 0.42
Pb-vacancy 1274 3 3� 3� 3 0.39
Mg-vacancy 450 1 4� 4� 5 �0.02
Mg-vacancy 792 2 4� 4� 4 0.01
Mg-vacancy 1274 3 3� 3� 3 �0.02
Pb-GB 517 1 4� 4� 4 1.04
Pb-GB 991 2 3� 3� 4 1.09
Mg-GB 517 1 4� 4� 4 0.33
Mg-GB 991 2 3� 3� 4 0.31
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in energy with respect to increasing system size. In contrast, for
Pb-vacancy and Mg-GB binding energies, the filler method pro-
vides much more reliable results. At the first point of overlapping
cost for Pb-vacancy binding (i.e. at a rescaled cost of �1:5� 106),
the vacuum cluster calculation returns an energy that deviates
by nearly 0:06 eV from the periodic DFT value—twice the deviation
of the worst-performing filler method calculation across all four
binding energies. Further, the vacuum cluster results for this sys-
tem appear to be drifting upwards with increasing system size,
so while the largest calculation performed lies within the
�0:03 eV band it is possible that a larger calculation would again
return a result further from the desired value. For Mg-GB binding,
the vacuum cluster method gives absolutely no indication of
being converged with respect to size, with an energy change of
0:08 eV—more than 25% of the total binding energy—between
the two largest calculations.

The filler atom calculations give results which are consistently
well grouped within 0:04 eV of each other with respect to increas-
ing system size. Moreover, while sometimes overestimating and
other times underestimating the benchmark result, the filler atom
method always gives values within �0:03 eV of the best periodic
DFT result. In comparison, the vacuum clusters sometimes yield
good results—e.g. Mg-vacancy binding—but at other times the
results are poor, lying farther from the periodic DFT value or failing
to indicate convergence. Using the smallest QM domain, filler atom
QM/MM calculations yield more reliable results than vacuum clus-
ter QM/MM calculations of similar computational cost.

Our work can be compared to the work of Zhang et al. [5], which
resolves the problem of vacuum surface perturbations by modify-
ing the KS DFT Hamiltonian to constrain the electron density to be
bulk-like and is the only other state-of-the-art QM/MM scheme to
address this issue successfully. The energetic tests presented by
Zhang et al. include the vacancy formation energy in bulk Al, for
which their scheme differs from the periodic DFT calculations by
0:04 eV. Similarly, for the chemisorption of CO on a Pd surface,
the binding energy to the surface differs from the periodic DFT
benchmark by 0:02 eV. These values are comparable to the level
of agreement in the present work, and are on the same order as
inherent differences in energy due to the exchange–correlation
approximation in DFT, i.e. their method was successful. Among
the other tests of Zhang et al. is an investigation of the magnetic
moment of Fe. In this they demonstrate that their constrained den-
sity approach handles magnetic systems well. It would be of inter-
est to perform similar tests on magnetic systems with our scheme,
which would rely on the magnetic perturbations from filler–filler
and filler–buffer interfaces decaying at a comparable speed as
the electron density perturbations. While Zhang et al. do not
explicitly report the computational cost of their method, the QM
domains used in the previously mentioned tests contain somewhat
fewer atoms than our smallest filler atom calculations, thus we
expect their method to be more cost effective. However, their
method is less straightforward to port to different QM codes since
it involves a change in the KS formalism. It is also not obvious how
the method of Zhang et al. handles complex systems with defects
running through the QM/MM interface (e.g. GBs, which were the
motivation for developing the present methodology)—in such sys-
tems a bulk-like charge constraint may not work well when
applied to non-bulk-like atoms.
4. Conclusions

We have developed an improved method for QM/MM coupling
for metallic systems that uses extra filler material surrounding the
QM region to reduce the undesirable influence of fictitious elec-
tronic perturbations on forces and energies in the QM core. In com-
bination with buffer atoms [3], our method provides high quality
QM energetics for systems that could not be calculated by DFT
alone and can be straightforwardly implemented using any exist-
ing QM or MM code. The addition of filler material may be useful
for other QM multiscale schemes which currently utilize DFT vac-
uum clusters; here we have explored only one possible implemen-
tation of this general principle.

A particular novelty to the approach presented here is its easy
applicability to structures in which a defect (e.g. GB) passes
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through the coupling domain. This was a driving motivation for
choosing to couple the QM domain to a larger MM system instead
of some other representation of the far field. For simple metals,
EAM potentials offer a powerful tool to capture the elastic nonlin-
earities in the defect structure. However, these EAM potentials do
not contain any directionally dependent terms and do not capture
the strongly directional bonding that may be important in some
metals, e.g. Nb or Mo. This is in general a limitation for QM/MM
coupling, and the method presented here is not immune to it.

To test the computational efficiency of the proposed approach
we considered FCC Al as a host system and calculated the binding
energies of Mg and Pb to both vacancies and to a symmetric R5 GB
at the site lying in the GB plane. By replacing the QM calculation
with another MM calculation that uses a different MM potential,
we provided estimates for the effect of lattice and elastic mismatch
between the two domains on these binding energies. While errors
due to mismatched elastic properties remain small, our analysis
shows that it is important to use empirical potentials that provide
a good description of the geometry.

By studying the initial forces in a fully coupled QM/MM calcu-
lation of bulk material, where all forces should be zero, we demon-
strated that our improved filler atom method gives much higher
quality forces for systems with far fewer atoms than the vacuum
cluster method. While the filler atoms add to the cost of the calcu-
lation, we found that the quality of binding energies was superior
to the vacuum cluster calculations when costs are similar. QM/MM
filler atom results for all sizes of QM domain studied lie within
0:04 eV of each other. This is not the case for QM/MM calculations
that use vacuum clusters, where results can vary widely and, in a
number of cases, do not show clear evidence of converging, even
at large system sizes. Further, all of the filler atom QM/MM results
agree within �0:03 eV with periodic DFT results for the same sys-
tem. In conclusion, we expect this approach to provide a robust
starting point for studies of low-symmetry defect structures. A
prominent example that this approach could be applied to is
arbitrarily misoriented GBs, which have so far been inaccessible
to ab initio calculations.
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Appendix A. QM/MM implementation details

Since the elastic coupling between the QM and MM domains is
mediated by the motion of atoms in region I, coupling can be
achieved without modifying the QM or MM codes, and the details
of coupling described here may be implemented in any general
scripting language and can make use of any QM and MM codes
which will perform energy minimization and output atomic posi-
tions and forces.

Topartition the system,webeginwith a largeMM-relaxed super-
structure and select one or more atoms of interest, called ‘‘seed”
atoms, which we would like to place in the very center of region I.
Using a cut-off distance, dcut, we then search the superstructure for
all other atoms within dcut of the seed atoms. The atoms found form
the first ‘‘shell” of region I core. This process is repeated until a
desired number of shells for the core and buffer zones have been
found. We have used dcut ¼ 3:0 Å, which is slightly larger than the
first nearest neighbor (1NN) distance of 2:81 Å. We found that the
resulting region I structures were insensitive to the choice of dcut

in most of the range between the 1NN distance and the lattice con-
stant—even in themore complex GB case. Geometries with two core
and two buffer shells for bulk and GB structures are shown in the
body of the text in Fig. 2.

While it is possible to construct filler material in many ways, we
chose to use the initial positions of atoms in region II. This was
done by calculating a bounding box around region I, padding it
with 3:0 Å, and choosing as filler all the atoms inside the box that
are not already region I atoms. After calculating a new bounding
box for the region I + filler atoms, we add 2:7 Å (1:4 Å) between
the outer filler atoms and the next periodic cell for the bulk (GB)
structure. This introduces six filler-filler interfaces, one on each
side of the rectangular prism making up the region I + filler simu-
lation domain. With this choice, there is initially no interface
between the filler and buffer atoms.

In principle, this method works with any alloy composition in
region II for which a suitable classical potential exists, but in prac-
tice our implementation uses a pure host material. To perform cal-
culations with solute atoms, the chemistry of region I + filler is
changed only in the QM representation. Provided that the size of
the core of region I is comparable to or greater than the cut-off
radius of the classical potential being used, the forces and energies
from the MM components of the QM/MM calculation are still valid
since their energetic contributions from the atom(s) which we
have replaced with a host atom(s) will cancel out and the buffer
atoms will be too far away to feel any erroneous forces.

As the coupled system relaxes and buffer atom positions are
updated using MM forces from the entire superstructure, an inter-
face develops between the buffer and filler atoms. Since filler
atoms do not exist in the calculation of the superstructure, it is
possible for region I to drift relative to the fixed filler as it relaxes.
To prevent such drift from causing excessively large buffer–filler
interfacial energies, the atoms of region I are re-centered in their
filler atom cage at each coupled step.

The detailed steps of our algorithm are as follows:

1. Choose (and rescale if necessary) a classical potential to
match the QM lattice structure and elastic properties as well
as possible.

2. Relax a superstructure using this potential.
3. Choose a small number of (adjacent) atoms to form the seed

of region I.
4. Build atomic shells around these seeds until the desired

number of core and buffer shells is reached. These atoms
are region I, all other atoms are region II.

5. Build a bounding box around region I atoms, pad it, and
search for filler atoms among the initial positions of the
atoms in region II.

6. Write the necessary input for your component QM and MM
simulations, e.g. structure files, potentials, etc. Any vacancies
should be deleted from both QM and MM structure files, but
solute atoms will have their true species only in the QM
simulation.

7. Perform a static MM calculation of region I + filler and store
FMMðR 2 IbuffÞ for later use in Fcorr

Ibuff
.

8. Relax region II and region I buffer using a MM calculation of
the entire system with atoms in the region I core held fixed.
Store the initial values of FMM

I ðR 2 IcoreÞ for later use in Fcorr
Icore .

In the first coupled step, the relaxation here is skipped since
the structure is already MM relaxed.
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9. Using the updated buffer atom positions, relax the region I
core using a QM calculation of region I + filler with the buffer
and filler atoms held fixed. Store the initial values of
FQM
I ðR 2 IcoreÞ and FQM

I ðR 2 IbuffÞ for use in Fcorr
Icore and Fcorr

Ibuff
,

respectively. Store the largest force in the core.
10. With updated core positions, perform static MM calculations

of region I + II and region I + filler.
11. Using the final energy from the QM calculation, the two MM

energies from step (10), and approximating the work terms
using the stored forces and core and buffer atom displace-
ments, calculate the total energy.

12. Using the largest force from region II or buffer from the static
MM evaluation of region I + II, check for force convergence.
(The QM forces in the core are converged already, since we
have run a relaxation there. MM forces in region II and buffer
were converged, but the updated core atom positions will
change forces, particularly on the buffer atoms.)

13. If not converged, return to step (7) and repeat.
14. Take the energy difference of two or more QM/MM calcula-

tions to find a desired physical energy.

The computational overhead for the coupling is typically small
and calculation cost is dominated by the cost of the QM region I
+ filler calculation.
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