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Abstract8

This work is concerned with the analytical solutions and moment analysis of a linear two-9

dimensional general rate model (2D-GRM) describing the transport of a solute through a10

chromatographic column of cylindrical geometry. Analytical solutions are derived through11

successive implementation of finite Hankel and Laplace transformations for two different12

sets of boundary conditions. The process is further analyzed by deriving analytical tempo-13

ral moments from the Laplace domain solutions. Radial gradients are typically neglected14

in liquid chromatography studies which are particularly important in the case of non-15

perfect injections. Several test problems of single-solute transport are considered. The16

derived analytical results are validated against the numerical solutions of a high resolution17

finite volume scheme. The derived analytical results can play an important role in further18

development of liquid chromatography.19
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solutions, moment analysis, mass transfer.21

1. introduction22

Mathematical modeling of liquid chromatography has been an attractive field of research23

since the 1960s, leading to a more efficient use of chromatographic columns. The approach24

provides important information about physical and thermodynamical kinetics as well as25
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flow phenomena through packed-beds. Understanding of the effects of operating variables26

and parameters characterizing the column is needed for an accurate theoretical analysis of27

the elution profiles and to optimize the operating conditions [1–3]. Different mathematical28

models exist in the literature describing the chromatographic process. The most notable29

amongst them are the general rate model (GRM), the equilibrium dispersive model (EDM),30

and the lumped kinetic model (LKM) [1–9]. All these models need important input in-31

formation regarding the thermodynamic equilibrium of the distribution of the components32

between the mobile and stationary phases. They differ essentially regarding the consid-33

eration of unavoidable mass transfer processes, which cause undesired band broadening34

[1, 2].35

In the literature, analytical solutions for one-, two- and three-dimensional advection-36

dispersion equations (ADEs) have been developed for predicting the transport of various37

contaminants in the soil. The analytical solutions of the one-dimensional ADE subject to38

various initial and boundary conditions were derived in [10]. The analytical solutions of the39

two-dimensional ADE with various source boundary conditions were presented in [11, 12].40

The analytical solutions for three-dimensional ADE were derived in [13, 14]. However, these41

models were mostly limited to ADE in Cartesian coordinates describing steady uniform42

flow [14]. The analytical solutions of the two-dimensional ADE in cylindrical coordinates43

are particularly useful for analyzing problems of the two-dimensional solute transport in a44

porous medium system with steady uniform flow [14–19].45

In the liquid chromatography, the analytical solutions and moment analysis of the one-46

dimensional EDM, LKM and GRM have been derived for linear isotherms using the Laplace47

transformation [4–9, 20, 21]. Very recently, we have derived analytical solutions and tem-48

poral moments of linear 2D-EDM and 2D-LKM for simulating liquid chromatography in49

cylindrical columns [22–24]. This article extends those analysis to linear 2D-GRM.50

Moment analysis is useful and effective technique for deducing important information about51

the retention equilibrium and mass transfer kinetics in a fixed-bed column. The moment52

generating property of the Laplace domain solutions can be used to derive analytical tem-53

poral moments. These moments can be used to get important information about the54
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retention times, band broadenings, and front asymmetries. Several authors have derived55

moments for various boundary conditions (BCs) [2, 5–8, 20, 21, 25–37].56

In this article, the above analysis is further extended by analytically solving a 2D-GRM57

through simultaneous implementation of Hankel and Laplace transformations. In the cur-58

rent scenario, no analytical Laplace inversion is possible. Therefore, numerical Laplace59

inversion is applied to get back semi-analytical solutions in the actual time domain [38].60

To analyze the effects of different kinetic parameters, statistical temporal moments are61

derived from the Hankel and Laplace transformed solutions. A high resolution upwind62

finite-volume scheme (HR-FVS) is extended to numerically approximate the current model63

equations [39, 40]. To illustrate the potential of current analysis, several case studies are64

carried out considering a wide range of mass transfer kinetics. Moreover, relations are de-65

rived for matching the first two moments of 2D-GRM and simplified 2D-LKM. The derived66

semi-analytical results are critically checked against the numerical solutions of suggested67

HR-FVS.68

The novelty of this article specifically include: (a) the derivation of analytical solutions69

of linear 2D-GRM for two different sets of boundary conditions, (b) injection of specific70

profiles to amplify the effect of possible rate limitations of the mass transfer in the radial71

direction, (c) derivation of useful moment expressions, (d) implement of a numerical scheme72

to the model equations, and (e) derivation of relations among the kinetic parameters of73

2D-GRM and 2D-LKM through comparison of their respective moments. The derived74

analytical and numerical solutions are useful tools for further developments in the liquid75

chromatography. For instance, this analysis can be used for studying the effects of mass76

transfer kinetics on the elution profiles, for sensitivity analysis, for validating numerical77

solutions, and for determining longitudinal and radial dispersion coefficients from experi-78

mentally determined elution profiles, among others. The studied 2D-model is more general79

and flexible than the classical 1D-models [7].80

The current 2D-model can be useful if (i) the injection at the column inlet is not perfect (i.e.81

a radial profile is introduced at the column inlet), (ii) the column is not homogeneously82

packed (which is more probable for larger columns), (iii) there are radial temperature83
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gradients, which are connected also with radial concentration gradients. All such scenario84

can happen in reality. In many chromatography processes deviations from predictions85

using a simpler 1D model might be small. However the differences are difficult to evaluate86

and it is desirable to have quantitative tools and criteria to rationally select the right87

model. With our current 2D-GRM model, we can study the situation (i) by assuming88

injections in inner cylindrical core or outer annular region. Situations (ii) and (iii) are89

more complicated and require further model extensions, for example we have to consider90

variable column porosities and to include energy balance equation in the current model91

equations. Such extensions require more detailed treatment which is outside the scope of92

this paper.93

The remaining parts of this article are organized as follows. In Section 2, the linear 2D-94

GRM model is introduced. In Section 3, the analytical solution of 2D-GRM for considered95

two types of boundary conditions are derived. In Section 4, analytical temporal moments96

are derived. In Section 5, the numerical test problems are presented. Lastly, concluding97

remarks are given in Section 6.98

2. The mathematical model of 2D-GRM99

In liquid chromatography, the 2D-GRM considers several contributions of the mass transfer100

processes that lead to band broadening. Let t denotes the time coordinate, z represents the101

axial coordinate along the column length and ρ is the radial coordinate along the column102

radius. The solute travel along the column axis in the z-direction by advection and axial103

dispersion and spreads along the column radius in the ρ-direction by radial dispersion.104

The following particular injection conditions are assumed to amplify the effects of mass105

transfer in the radial direction. The inlet cross section of the column is divided into an inner106

cylindrical core and an outer annular ring (see Figure 1) by introducing a new parameter107

ρ̄. The injection can be done either through an inner core, an outer ring or through the108

whole cross section. The latter case results if ρ̄ is set equal to the radius of the column109

denoted by R. Since in the latter case no initial radial gradients are provided, the solutions110

should converge into the solution of the simpler one-dimensional model [7]. It is, however,111
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important to mention that probably the practical relevance of such kind of injections is of112

minor importance.113

The mass balance equation for a single-solute percolating through a cylindrical column of114

radius R filled with spherical particles of radius Rp is given as115

∂c

∂t
+ u

∂c

∂z
= Dz

∂2c

∂z2
+Dρ

(

∂2c

∂ρ2
+

1

ρ

∂c

∂ρ

)

− 3

Rp

Fkext (c− cp(rp = Rp)) . (1)

In the above equation, c is the concentration of a solute in the bulk phase of the fluid, cp116

is the concentration of the solute in the pores of the particles, u is the interstitial velocity,117

Dz is the axial dispersion coefficient, and F is the phase ratio which is defined in term of118

the external porosity ǫb as F = (1− ǫb)/ǫb. Moreover, Dρ represents the radial dispersion119

coefficient, kext is the external mass transfer coefficient and rp is the radial coordinate of120

spherical particles.121

The mass balance equation in the pores of the particles, considering two mechanisms of122

intraparticle transport, can be expressed as123

ǫp
∂cp
∂t

+ (1− ǫp)
∂q∗p
∂t

=
1

r2p

∂

∂r

[

r2p

(

ǫpDp

∂cp
∂rp

+ (1− ǫp)Ds

∂q∗p
∂rp

)]

, (2)

where, q∗p is local equilibrium concentration of the solute in the stationary phase, Dp is the124

pore diffusivity, ǫp is the internal porosity, and Ds is the surface diffusivity. In the current125

case of diluted systems, the following linear isotherm is used:126

q∗p = acp . (3)

In the above equation, a denotes the Henry’s coefficient. In order to simplify the notations127

and reduce the number of variables, the following dimensionless variables are introduced:128

C =
c

cinj
, Cp =

cp
cinj

, τ =
ut

L
, x =

z

L
, ψ =

ρ

R
, r =

rp
RP

,

P ez =
Lu

Dz

, P eρ =
R2u

DρL
, Bi =

kextRp

Deff
, η =

DeffL

uR2
p

, ξ = 3BiηF =
3LFkext
uRp

. (4)
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Here, Deff = ǫpDp + a(1 − ǫp)Ds. After using the above dimensionless variables, Eqs. (1)129

and (2) take the forms130

∂C

∂τ
+
∂C

∂x
=

1

Pez

∂2C

∂x2
+

1

Peρ

(

∂2C

∂ψ2
+

1

ψ

∂C

∂ψ

)

− ξ (C − Cp(r = 1)) , (5)

a∗
∂Cp
∂τ

=
η

r2
∂

∂r

(

r2
∂Cp
∂r

)

, (6)

where131

a∗ = ǫp + a(1− ǫp) . (7)

The initial condition for Eq. (5), considering an initially regenerated column, is given as132

C(ψ, x, τ = 0) = 0, 0 < x < 1, 0 ≤ ψ ≤ 1 . (8)

The initial condition corresponding to Eq. (6) is given as133

Cp(r, ψ, x, τ = 0) = 0, 0 < x < 1, 0 ≤ r ≤ 1, 0 ≤ ψ ≤ 1 . (9)

The Eq. (5) is subjected to the following boundary conditions (BCs) along the radial134

coordinate of the column:135

∂C(ψ = 0, x, τ)

∂ψ
= 0 ,

∂C(ψ = 1, x, τ)

∂ψ
= 0 . (10)

These BCs describe the symmetry of the radial profile and the impermeability of the column136

wall, respectively. Moreover, Eq. (6) is subjected to the following BCs:137

∂Cp(r = 0, ψ, x, τ)

∂r
= 0 ,

∂Cp(r = 1, ψ, x, τ)

∂r
= Bi (C − Cp|r=1) . (11)
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The second BC in Eq. (11) at r = 1 quantifies the temporal change of the average loading138

of the particles and describes a connection between Eqs. (5) and (6).139

Two different types of boundary conditions (BCs) are considered for Eq. (5) at the column140

inlet and outlet. Moreover, the sample injection is either considered through an inner141

cylindrical core or an outer annular ring.142

Case 1: Rectangular concentration pulse injected as Dirichlet inlet BC:143

The left BC for sample injection through inner cylindrical region is given as144

C(ψ, x = 0, τ) =







1 , if 0 ≤ ψ ≤ ψ̄ and 0 ≤ τ ≤ τinj ,

0 , if ψ̄ < ψ ≤ 1 or τ > τinj ,
(12)

while, the left BC for outer annular ring injection is described as145

C(ψ, x = 0, τ) =







1 , if ψ̄ < ψ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , if 0 ≤ ψ ≤ ψ̄ or τ > τinj .
(13)

Here,146

ψ̄ = ρ̄/R. (14)

For injecting over the entire inlet cross-section of the column, either ψ̄ = 1 in Eq. (12) or147

ψ̄ = 0 in Eq. (13).148

At the right end of hypothetically infinite length column (x = ∞), the following outflow149

Neumann BC is considered:150

∂C

∂x

∣

∣

∣

∣

x=∞

= 0 . (15)

Case 2: Rectangular concentration pulse injected as Danckwerts inlet BC:151

For the inner cylindrical zone injection the corresponding left BC is given as152

C(ψ, x = 0, τ)− 1

Pez

∂C(ψ, x = 0, τ)

∂x
=







1 , if 0 ≤ ψ ≤ ψ̄ and 0 ≤ τ ≤ τinj ,

0 , ψ̄ < ψ ≤ 1 or τ > τinj ,
(16)
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while, for injection at outer annular ring, it is expressed as153

C(ψ, x = 0, τ)− 1

Pez

∂C(ψ, x = 0, τ)

∂x
=







1 , if ψ̃ < ψ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , 0 ≤ ψ ≤ ψ̃ or τ > τinj.
(17)

The following zero Neumann BC is applied at the right end of a finite length column:154

∂C

∂x

∣

∣

∣

∣

x=1

= 0. (18)

3. Derivation of analytical solutions155

The Eqs. (5) and (6) of the model together with the associated initial and boundary156

conditions are solved analytically by first applying the finite Hankel transform and then157

the Laplace transform.158

The Hankel-transform is an integral transform, also known as the Fourier-Bessel transform,159

that expresses a given function as the weighted sum of an infinite number of Bessel functions160

of the first kind. The Hankel-transforms for annularly symmetric functions are the Fourier-161

transforms in two dimensions. They are used to determine the solutions of boundary value162

problems in cylindrical coordinates by eliminating the radial coordinate. The zeroth-order163

finite Hankel-transform CH(λn, x, τ) of C(ψ, x, τ) is defined as [15, 16, 41–43]164

CH(λn, x, τ) = H [C(ψ, x, τ)] =

1
∫

0

C(ψ, x, t)J0 (λnψ) ρdψ , (19)

where, λn is the finite Hankel-transform parameter which is given in term of the transcen-165

dental equation as dJ0(λn)
dψ

= −J1(λn) = 0. Here, J0(.) and J1(.) are the zeroth and first166

order Bessel functions of first kind, respectively. The inverse Hankel-transform is expressed167

as168

C(ψ, z, τ) = 2cH(λn = 0, x, τ) + 2
∞
∑

n=1

CH(λn, x, τ)
J0(λnψ)

|J0(λn)|2
. (20)
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The Hankel transformation of Eq. (5) with respect to coordinate ψ gives169

∂CH
∂τ

+
∂CH
∂x

=
1

Pez

∂2CH
∂x2

− λ2n
Peρ

CH − ξ (CH − CpH |r=1) . (21)

Here, CH(λn, x, τ) and CpH(λn, x, τ) are the zeroth-order finite Hankel transforms of C(ψ, x, τ)170

and Cp(r, ψ, x, τ), respectively.171

The Laplace-transform is a widely used integral transform in mathematics and engineering.172

It is used to transform a function of time into a function of complex frequency. The173

inverse Laplace-transform on the other hand takes a function from the complex frequency174

domain into a function defined in the time domain. The Laplace-transform generally gives175

a function as a superposition of moments which is one of the key reasons for using this176

technique in the present work. The Laplace transformation of Hankel transformed function177

CH is defined as [43]178

C̄H(λn, x, s) =

∞
∫

0

e−stCH(λn, x, τ)dt, t ≥ 0. (22)

After applying the Laplace transformation on Eq. (21) with respect to τ and assuming179

that the initial concentration is zero, we get180

1

Pez

∂2C̄H
∂x2

− ∂C̄H
∂x

−
(

s+
λ2n
Peρ

)

C̄H − ξ
(

C̄H − C̄pH|r=1

)

= 0 . (23)

Here, C̄H denotes the Hankel and Laplace transformed concentration. After rephrasing181

Eq. (6), we obtain182

a∗
∂

∂τ
(rCp)− η

∂2

∂r2
(rCp) = 0. (24)

After applying the Hankel and Laplace transformations on Eq. (24), we get183

d2

dr2
(rC̄pH)− α(s)rC̄pH = 0 . (25)
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The general solution of the above equation is given as184

C̄pH =
1

R

(

Ae
√
α(s)R +Be−

√
α(s)R

)

, (26)

where, α(s) = a∗s
η
. Here, A and B are constants of integration which are determined185

through boundary conditions in Eq. (11). Thus, we obtain186

A =
BiC̄H/2 sinh(

√

α(s))

(Bi− 1) +
√

α(s) coth(
√

α(s))
, B = − BiC̄H/2 sinh(

√

α(s))

(Bi− 1) +
√

α(s) coth(
√

α(s))
. (27)

Therefore, the solution in Eq. (26) at r = 1, takes the form187

C̄pH|r=1 = C̄Hf(s) , f(s) =
Bi

(Bi− 1) +
√

α(s) coth(
√

α(s))
. (28)

After introducing Eq. (28) in Eq. (23), we get the following ordinary differential equation:188

d2C̄H
dx2

− Pez
dC̄H
dx

− Pezφ (s, λn) C̄H = 0 , (29)

where189

φ (s, λn) = s+
λ2n
Peρ

+ ξ (1− f(s)) . (30)

The solution of Eq. (29) is given as190

C̄pH (λn, x, τ) = A0e
m1x +B0e

m2x , (31)

where191

m1,2 =
Pez
2



1±
√

1 +
4φ(s, λn)

Pez



 . (32)
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The positive sign (upper case) in Eq. (32) is selected for calculating m1 and the negative192

sign is used for calculating m2. The integration constants A0 and B0 have to be determined193

from the given axial BCs as given below.194

Case 1: Rectangular concentration pulse injection as Dirichlet inlet BC:195

The Hankel-transform of Eqs. (12) (or (13)) and (15) are196

CH(λn, x = 0, τ) =







F (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,
(33)

197

∂CH(λn, x, τ)

∂x

∣

∣

∣

∣

x=∞

= 0 . (34)

For inner cylindrical core injection, F (λn) is198

F (λn) =







ψ̃2

2
, if λn = 0 ,

ψ̃

λn
J1

(

λnψ̃
)

, if λn 6= 0 ,
(35)

and for outer annular ring injection, it is given as199

F (λn) =







(

1
2
− ψ̃2

2

)

, if λn = 0 ,

− ψ̃

λn
J1

(

λnψ̃
)

, if λn 6= 0 .
(36)

Using the Laplace-transform on BCs in Eqs. (33) and (34), we obtain200

C̄H(λn, x = 0, s) =
F (λn)

s

(

1− e−sτinj
)

,
∂C̄H
∂x

∣

∣

∣

∣

x=∞

= 0 . (37)

On using Eq. (37) in Eq. (31), we get201

A0 = 0 , B0 =
(1− e−sτinj)

s
F (λn) . (38)

Therefore, the solution in Eq. (31) becomes:202

C̄H(λn, x, s) =
(1− e−sτinj)

s
F (λn)e

m2x , (39)
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where, m2 is given by Eq. (32) for the lower minus sign. In the current scenario, no analyt-203

ical Laplace inversion is possible. For that reason, the numerical Laplace inversion will be204

applied to get semi-analytical solutions in the actual time domain [38]. In this article the205

well established numerical inversion method for Laplace transforms, based on a Fourier206

series expansion developed by Durbin [44], is applied. Generally, the discretization and207

truncation errors of this method depend on the free parameters involved in the technique.208

However, there are several procedures available which can be used in the method to reduce209

the discretization error, to accelerate the convergence of the Fourier series and to compute210

good choice of the free parameters [45]. Suitable for a given problem, the inversion method211

allows the adequate application of these procedures. Therefore, in a wide range of appli-212

cations a high accuracy can be achieved rapidly evaluating only a few function evaluations213

of the Laplace transform. In this manuscript, the required results were obtained in a less214

than a minute time on a PC.215

Case 2: Rectangular concentration pulse injection as Danckwerts inlet BC:216

The Hankel-transform of Eqs. (16) (or (17)) and (18) are217

CH(λn, x = 0, τ)− 1

Pez

∂CH(λn, x = 0, τ)

∂x
=







F (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,
(40)

and218

∂CH(λn, x, τ)

∂x

∣

∣

∣

∣

x=1

= 0 . (41)

Here, F (λn) is given by Eq. (35) for inner cylindrical core injection and by Eq. (36) for219

outer annular region injection.220

Application of Laplace-transform on the above BCs gives221

C̄H(λn, x = 0, s)− 1

Pez

∂C̄H(λn, x = 0, s)

∂x
=
F (λn)

s

(

1− e−sτinj
)

, (42)

and222

∂C̄H
∂x

∣

∣

∣

∣

x=1

= 0 . (43)
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By using Eqs. (42) and (43) in Eq. (31), we get the values of A0 and B0 as223

A0 =
m2e

m2

(

F (λn)
s

(1− e−sτinj)
)

m2em2

(

1− m1

Pez

)

−m1em1

(

1− m2

Pez

) , (44)

and224

B0 = −
m2e

m2

(

F (λn)
s

(1− e−sτinj)
)

m2em2

(

1− m1

Pez

)

−m1em1

(

1− m2

Pez

) . (45)

Thus, the solution in Eq. (31) becomes225

C̄H(λn, x, s) =
[m2e

m2+m1x −m1e
m1+m2x]

[

F (λn)
s

(1− e−sτinj)
]

m2em2

(

1− m1

Pez

)

−m1em1

(

1− m2

Pez

) . (46)

Here, the value ofm1 andm2 are given by Eq. (32). Once again analytical Laplace inversion226

is not possible. Thus, the numerical Laplace inversion will be applied to get semi-analytical227

solutions in the actual time domain [38, 44].228

4. Moment Analysis229

Moment analysis is a well known useful technique for collecting relevant information about230

the retention equilibrium and mass transfer kinetics in a column. A set of statistical231

temporal moments can be used to describe the appearance of elution profile. For instance,232

the appropriate forms of first, second, third and fourth moments can describe the mean,233

spread, skewness, and kurtosis of the elution profiles, respectively. The experimental values234

measured for these moments can be compared with their theoretical expressions to estimate235

mass transfer coefficients.236

The normalized i-th moment averaged over the radial coordinate (ψ) of the band profile237

at any position in the column can be obtained through the following expression238

µ0,av =

∫

∞

0

Cav(x, τ)dτ , µi,av =

∫

∞

0
Cav(x, τ) τ

idτ

µ0,av

, i = 1, 2, 3, · · · , (47)
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where239

Cav(x, τ) = 2

1
∫

0

C(ψ, x, τ)ψdψ. (48)

Due to its moment generating property, the Laplace transformation can be used to obtain240

analytical expressions for the moments. Temporal moments are derived analytically as241

functions of radial coordinate ψ at the outlet of the column (x = 1). The following relation242

is utilized to obtain analytical temporal moments from the Hankel and Laplace transformed243

concentration C̄H in Eq. (39) or (46)244

µi,H = (−1)i lim
s→0

di(C̄H(λn, x, s))

dsi
, i = 0, 1, 2, · · · . (49)

The true moments µi(ψ) are obtained from Eq. (20) by taking the i-th moment of con-245

centration on the both sides of that equation. Thus, on multiplying both sides of Eq. (20)246

with τ i and integrating over τ from 0 to ∞, we get247

µi(ψ) = 2µi,H(λn = 0) + 2
∞
∑

n=1

µi,H(λn)
J0(λnψ)

|J0(λn)|2
. (50)

Further, the averaged non-normalized temporal moments Mi,av are determined as248

Mi,av = 2

1
∫

0

µi(ψ)ψdψ , i = 0, 1, 2, · · · . (51)

Lastly, the normalized averaged temporal moments, defined in Eq. (47) and frequently249

used in chemical engineering [2], are given as250

µi,av =
Mi,av

µ0,av

, µ0,av =M0,av, i = 1, 2, 3, · · · . (52)
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The above temporal moments µi,av up to fourth order are obtained to interpret the behavior251

of a solute moving through the column. The first three central moments can be obtained252

as [2]253

µ′

2,av = µ2,av − µ2
1,av , (53)

µ′

3,av = µ3,av − 3µ1,avµ2,av + 2µ3
1,av , (54)

µ′

4,av = µ4,av − 4µ1,avµ3,av + 6µ2
1,avµ2,av − 3µ4

1,av . (55)

The corresponding numerical i-th moment of the band profile at the outlet of the column254

of length x = 1 is obtained as255

µi,av =

∫

∞

0
Cav(x = 1, τ) τ idτ

µ0,av

, i = 2, 3, 4, · · · , (56)

where, µ0,av for x = 1 is given by Eq. (47). The trapezoidal rule is utilized to approximate256

the integrals appearing in Eqs. (47) and (56).257

The analytical moments of 2D-GRM for the considered two sets of boundary conditions258

are presented in Appendix A.259

5. Numerical test problems260

The analytical solutions and moments derived in the previous sections are validated by261

considering several test problems. The high resolution finite volume scheme (HR-FVS) of262

Koren is applied to numerically approximate the model equations for verifying the correct-263

ness of analytical results [39, 40]. In these test problems, the effects of model parameters264

Pez, Peρ, Bi and η characterizing the axial dispersion, radial dispersion, film mass transfer265

resistance, and intraparticle diffusion resistance, are analyzed on the elution profiles and266

moments. The parameters used in the test problems are given in Table 1. These param-267

eters are taken from the ranges typically encountered in HPLC applications. Hereby the268

considered axial Peclet number of 600 is connected by a factor of 2 with the traditional269
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number of theoretical plates. Thus, a low efficient HPLC column is described in our cal-270

culations. More difficult is indeed the quantification of the radial Peclet number. For the271

relative small particles used in chromatographic columns there are no reliable measure-272

ments or correlations for these numbers available. To capture the order of magnitude, we273

evaluated the following ratio of the two Peclet numbers based on their definitions in Eq.274

(4)275

Pez
Peρ

=
L2

R2

Dρ

Dz

. (57)

Two trends that can be used to estimate this ratio: (a) columns have typically much larger276

L (length) values than R (radius) values, (b) due to the missing radial convection, Dρ is277

smaller than Dz. Hereby, the first contribution is more pronounced, leading to the larger278

axial Peclet number than the corresponding radial Peclet number. Based on this argument,279

we considered the value of 15 for the radial Peclet number, which was mostly applied in280

our calculations, as reasonable.281

5.1. Effect of boundary conditions282

Figures 2 and 3 show the 3D and 1D plots of the concentration profiles for Danckwerts283

BCs using the solution Eq. (46). In these case studies, the sample was either injected in284

the inner cylindrical region or outer annular region at x = 0. The radius of the inner285

cylindrical core ρ̄ is chosen such that the areas of both inner and outer regions are the286

same. Thus, for the considered column of radius R = 0.2, the inside annular region radius287

comes out to be ρ̄ = 0.1414. The parameters used in the test problems are given in Table288

1.289

Figure 2 shows the plots of concentration profiles for inner zone injection. For the con-290

sidered radial Peclet number of 15, the transport rate along the radial coordinate is quite291

small. Thus, a variation in the contraction profile is still visible at the column outlet in292

Figure 2(a) along the radial coordinate. The plots of the concentration profiles in the293

center of the column in Figure 2(b) shows a good agreement between the analytical and294

numerical results.295
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Figure 3 shows the result for injection through outer zone. The same parameters are used as296

in Figure 2. Now, still at the column outlet a higher concentration can be seen in the outer297

region as compared to the inner cylindrical region due to slow radial dispersion. Once298

again, a good agreement can be observed between the analytical and numerical results.299

Figures 2c and 3c further show the outlet concentration profiles averaged over the whole300

radius. These plots show a strong similarity for the considered two types of injections.301

This indicates that for the parameters considered there is no clear preference for one or302

the other injection type. In predicting the radially averaged elution profiles the 1D and 2D303

models provide very similar results. The 1D solutions in Figures 2c and 3c were available304

from our previous article [46] by considering cinj = 0.5, as the inlet cross-sectional area of305

the column has been divided into equal areas of inner and outer injection zones. As stated306

above, our goal here is essentially to provide challenging test scenarios for the mathematical307

solution of the 2D model capable to predict the dynamics of radial gradients.308

Figures 4a and 4b display the 3D plots of outlet concentration profiles for injection through309

outer zone using smaller and larger radial Peclet numbers, i.e. Peρ = 1.5 and Peρ = 150.310

Once again the solution in Eq. (46) for Danckwerts BCs is used. The other parameters are311

exactly the same as given in Table 1 and used in Figures 2 and 3. These plots describe312

chromatograms for columns of smaller and larger diameters expressed by smaller and larger313

radial Peclet numbers, respectively (c.f. Eq. (4)). It can be seen from Figure 4b that value314

of the liquid concentration reduces at the center of the column for large radial Peclet315

number (here 150). Slow radial dispersion (large radial Peclet number) clearly reduces316

the rate of eliminating gradients caused by the injection. Figure 4c shows for the outlet317

concentrations in the column center that the difference between the solutions of 1D and 2D318

models is more pronounced in the case of larger radial Peclet numbers (i.e. larger diameter319

column) as compared to the case of smaller radial Peclet numbers (i.e. smaller diameter320

column). Moreover, the plots in Figure 4d show that radial profiles at the mean retention321

time are quite different in the two cases. Only for sufficiently small radial Peclet numbers322

the 1D model is sufficient. These results illustrate that the considered 2D model correctly323

describe the evolution of radial mass transfer and can provide more detailed insight into324
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the column dynamics.325

Figure 5 gives a comparison of analytical solutions for the Dirichlet and Danckwerts BCs.326

The results of both boundary conditions are the same for large Pez. However, differences327

in the solutions can be observed for small values of Pez. Thus, for small Pez (or large Dz)328

the more realistic Danckwerts BCs should be used. The Danckwerts boundary conditions329

have capability to quantify the unavoidable back mixing at the column inlet and predict330

broader profiles.331

5.2. Effects of Kinetic Parameters332

Figure 6 shows the effects of Pez, Peρ, Bi and η on the concentration profiles. It is evident333

from the Figure 6(a) that if the axial dispersion is more rate limiting, the peak becomes334

wider and its height decreases. In other words, the column efficiency reduces on decreasing335

the value of Pez.336

Figure 6(b) displays the plots of radial concentration profiles at the middle of the column337

(x = 0.5) using different values of Peρ and keeping Pez = 600 fixed. It can be observed338

that the imposed step profiles deteriorate faster for small Peρ (or larger radial dispersion339

coefficient Dρ). The limiting case Peρ = 15 corresponds to the elimination of injection340

profiles.341

The effect of the model parameters Bi and η, which contain the mass transfer coefficient342

Kext and intraparticle diffusivity Deff , are shown in Figures 6(c) and (d). For small values343

of Bi and η, the mass transfer and diffusion rates are relatively slow. Thus, the peak are344

tailed and broadened.345

5.3. Discussion on analytical moments346

The plots of dimensionless moments show the effects of the radial and axial dispersion347

coefficients on the concentration profile using inner zone injection. The Dirichlet boundary348

conditions were considered, as Danckwerts boundary conditions give the same results.349

Figure 7 gives the plots of averaged moments. These moments have good agreement with350

the results for concentration profiles. There are no effects of the radial dispersion coefficient351
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on the averaged moments but its effects can be seen in the local moments displayed in352

Figure 8. Figure 7(a) shows that there is no effect of axial dispersion coefficient on the353

first moment as expected. The effect of Pez is clearly seen in the second, third and354

fourth moments. The plots in Figure 7 also show a comparison between analytically and355

numerically determined moments which are in good agreement with each other. Figure 8356

displays the local moments plotted against radial coordinate ψ. Different values of Peρ357

were assumed. Variations in the local moments can be seen for large Peρ (or small radial358

dispersion coefficient Dρ). The behaviors of these results are in good agreement with those359

presented in Figure 6(b).360

5.4. Matching of 2D-LKM and 2D-GRM kinetic parameters361

Figure 9 compares the results of 2D-GRM with those of simplified two-dimensional lumped362

kinetic model (2D-LKM). The results of 2D-LKM were obtained by choosing the values363

of its parameters according to the relations given in Eqs. (58) and (59) [23, 46]. Figure364

9(a) shows the plots of zeroth moments with respect to Pez. It can be observed that both365

models have the same zeroth moments for the same inlet conditions. The first moments of366

2D-GRM and 2D-LKM were matched through the following relation (c.f. [46])367

a = a∗, (58)

where, a denotes the Henry’s constant in LKM model [23]. To match second moments,368

the following relations between the parameters of 2D-GRM and 2D-LKM were used (c.f.369

[23, 46])370

a = a∗, κ =

[

a∗

1− ǫe

(

1

15η
+
F

ξ

)]

−1

, (59)

where, κ denotes the dimensionless overall mass transfer coefficient in 2D-LKM [23]. Fig-371

ures 9(b) and 9(c) verify that for these values of parameters, the first and second moments372

of 2D-GRM and 2D-LKM are identical. However, these relations do not guarantee the373
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matching of high order moments. For these values of a and κ in 2D-LKM, the retention374

times times (first moments) and the variances (second moments) of the concentration pro-375

files are the same as depicted in Figure 9b and 9c. The almost perfect matching of both376

bands is due to their almost perfect approximate Gaussian profiles, i.e. skewness is almost377

zero. Thus, even third and fourth moments of both models were found being very close to378

each others. However, for skewed profiles the third and high order moment of both models379

will not match perfectly with each other, as the matching of only first two moments is380

guaranteed through above relations. To match high order moments, we have to derive381

new relations for κ by comparing the corresponding moments of both models. However,382

a particular value of κ obtained by matching the corresponding high order moments (for383

example third moments) of both model will only guarantee the equivalence of those specific384

moments (i.e. third moments) and the remaining moments of second and high order will385

be different.386

The results discussed here reveal that for linear isotherms there is significant potential to387

use simplified models with less parameters. If the parameters applied guarantee a matching388

of the first two moments, predicted elution profiles will be very similar for both types of389

models.390

6. Conclusion391

Analytical solutions and moments of a two-dimensional linear general rate model were de-392

rived to simulate a single-solute transport in the chromatographic columns of cylindrical393

geometry. The analytical solutions were derived by successively applying the finite Hankel394

and Laplace transformations. The solutions were derived for two sets of boundary condi-395

tions and considering injections through inner and outer zones of the column inlet cross396

section. The developed analytical solutions extend our previous analysis by incorporating397

the influences of mass transfer coefficient, intraparticle diffusion, and longitudinal and ra-398

dial dispersion coefficients. The derived analytical solutions were compared for verification399

with the numerical solutions of a high resolution flux limiting finite volume scheme. More-400

over, relations were derived among the kinetic parameters of 2D-LKM and 2D-GRM to401
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match their moments and concentration profiles. Typical case studies were considered and402

analyzed. Such analytical solutions are useful to perform initial or approximated analysis403

of the field scale scenarios, to analyze the underlying transport process, to do sensitivity404

analysis, and to validate numerical solutions, and to determine longitudinal and radial405

dispersion coefficients from experimental moments. With the derived solutions for the 2D406

model a tool is available to treat cases in which radial disturbances can occur and their re-407

moval is slow due to limited radial mass transfer (expressed by large radial Peclet numbers,408

caused e.g. by large column diameters). Radial disturbances can occur due to non-ideal409

injections, wall effects, large diameter columns, and packing heterogeneities.410

Appendix A411

Here, Eq. (49) is used to derive analytical moments of the 2D-GRM for the considered412

two-sets sets of boundary conditions.413

Case 1: Rectangular concentration pulse injection as Dirichlet BC:414

The first four temporal moments of C̄H in Eq. (39) are derived through Eq. (49) as sum-415

marized below.416

Zeroth moment: It is defined as417

µ0,H = τinjF (λn)e
−Pez(w−1

2 ), w =

√

1 +
4λ2n

PezPeρ
. (A-1)

Here, F (λn) is expressed by Eq. (35) for the inner zone injection and by Eq. (36) for the418

outer cylindrical zone injection.419

First moment: The first moment is expressed as420

µ1,H =

[

τinj
2

+
1 + a∗F

w

]

µ0,H . (A-2)

Second moment: The second temporal moment is given as421

µ2,H =

[

τ 2inj
3

+
(1 + a∗F )

w
τinj +

(1 + a∗F )2

w2
+

2 (1 + a∗F )2

Pezw3
+

2a∗
2
F (Bi+ 5)

15wηBi

]

µ0,H . (A-3)
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Third moment: The third temporal moment is obtained as422

µ3,H =

[

τ 3inj
4

+
(1 + a∗F )

w
τ 2inj +

(

3 (1 + a∗F )2

2w2
+
a∗2F (Bi+ 5)

5wBiη
+

3 (1 + a∗F )2

Pezw3

)

τinj

+
4a∗F

(

35
2
+ 7Bi+Bi2

)

105wBi2η2
+

12 (1 + a∗F )3

Pe2zw
5

+
4a∗2F (1 + a∗F ) (Bi+ 5)

5Pezw3Biη

+
6 (1 + a∗F )3

Pezw4
+

2a∗2F (1 + a∗F ) (Bi+ 5)

5w2Biη
+

(1 + a∗F )3

w3

]

µ0,H. (A-4)

Fourth moment: The fourth temporal moment is given as423

µ4,H =

[

τ4inj

5
+

(1 + a∗F ) τ3inj
w

+

(

4 (1 + a∗F )2

Pezw3
+

4a∗2F (Bi+ 5)

15wBiη
+

2 (1 + a∗F )2

w2

)

τ2inj

+

(

2 (1 + a∗F )3

w3
+

8a∗2F (1 + a∗F ) (Bi+ 5)

5Pezw3Biη
+

8a∗3F
(

35
2 + 7Bi+Bi2

)

105wBi2η2

+
24 (1 + a∗F )3

Pe2zw
5

+
12 (1 + a∗F )3

Pezw4
+

4a∗2F (1 + a∗F ) (Bi+ 5)

5w2Biη

)

τinj

+
32a∗3F (1 + a∗F )

(

35
2 + 7Bi+Bi2

)

105Pezw3Bi2η2
+

48a∗2F (1 + a∗F )2 (Bi+ 5)

5Pe2zw
5Biη

+
(1 + a∗F )4

w4

+
8a∗4F 2 (Bi+ 5)2

75Pezw3Bi2η2
+

24a∗2F (1 + a∗F )2 (Bi+ 5)

5Pezw4Biη
+

4a∗4F 2 (Bi+ 5)2

75w2Bi2η2

+
120 (1 + a∗F )4

Pezw7
+

8a∗3F (1 + a∗F )
(

35
2 + 7Bi+Bi2

)

105w2Bi2η2
+

60 (1 + a∗F )4

Pe2zw
6

+
12 (1 + a∗F )4

Pezw5
+

4a∗2F (1 + a∗F )2 (Bi+ 5)

5w3Biη
+

8a∗4F
(

175 + 105Bi+ 27Bi2
)

1575wBi3η3

]

µ0,H .

(A-5)

424

Case 2: Rectangular concentration pulse injection as Danckwert BC:425

In this case, the first four temporal moments are obtained from the Hankel and Laplace426

domains solutions in Eq. (46) using the moments generating relation in Eq. (49).427

Zeroth moment: The zeroth moment is given as428

µ0,H =
4τinjF (λn)e

Pezw

(w + 1)2 e
Pez(w+1)

2 − (w − 1)2 e−
Pez (w−1)

2

, (A-6)
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where, w ia given by Eq. (55). Let us define429

β1 =e
Pez(w+1)

2 , β2 = e
−Pez(w−1)

2 , β3 = 4(w + 1) + Pez(w + 1)2,

β4 =4(w − 1)− Pez(w − 1)2 , β5 = w + 1 , β6 = w − 1,

β7 =(w + 1)2e
Pez (w+1)

2 − (w − 1)2e
−Pez(w−1)

2 . (A-7)

First Moment: The first moment for i = 1 is given as430

µ1,H =

[

τinj
2

+
(1 + a∗F )

Pezw

(

β3β1 − β4β2
β7

− 2

w

)]

µ0,H. (A-8)

Second Moment: The Second moment is expressed as431

µ2,H =

[

τ2inj

3
+

[

(1 + a∗F )

Pezw

(

β3β1 − β4β2

β7
− 2

w

)]

τinj +
2(1 + a∗F )2

Pe2zw
2

(

β3β1 − β4β2

β7

)2

− 4 (1 + a∗F )2

Pe2zw
3

(

β3β1 − β4β2

β7

)

+
2(1 + a∗F )(β2

5β1 + β2
6β2)

Pezw3β7
+

8(1 + a∗F )2(β1 − β2)

Pe2zw
2β7

+
2

15

(

(β3β1 − β4β2)− (β2
5β1 + β2

6β2)

PezwBiηβ7

)

a∗2F (Bi+ 5) +
(1 + a∗F )2

w2

− 8(1 + a∗F )2(β6β2 + β5β1)

Pezw2β7
+

8(1 + a∗F )2(β6β2 − β5β1)

Pe2zw
3β7

+
4

Pezw2

(

a∗2F (Bi+ 5)

15Biη
− (1 + a∗F )2

Pezw2

)

+
8a∗2F (Bi+ 5)(β5β1 − β6β2)

15PezwBiηβ7

]

µ0,H . (A-9)

Let us define432

β8 =
β3β1 − β4β2

Pezwβ7
(1 + a∗F ), β9 =

a∗2F (Bi+ 5)

5Pezw2Biη
− 3(1 + a∗F )2

Pe2zw
4

, β10 =
β2
5β1 + β2

6β2

Pezw3β7
,

β11 =
β6β2 + β5β1

Pezw2β7
, β12 =

β1 − β2

Pe2zw
2β7

, β13 =
β6β2 − β5β1

Pezw2β7
,

β14 =

[

(β3β1 − β4β2)− (β2
5β1 − β2

6β2)

5PezwBiηβ7

]

a∗2F, β15 =
a∗2F (β5β1 − β6β2)

5PezwBiηβ7
,

β16 =
(1 + a ∗ F )(β1 + β2)

Pe2zw
2β7

. (A-10)

Third Moment: The third moment is given as433
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µ3,H =

[

τ3inj

4
−
(

β8 −
2

Pezw2

)

τ2inj −
(

6(1 + a∗F )

Pezw
β8 + 3(1 + a∗F )β10 + (Bi+ 5)β14

+ 4(Bi+ 5)β15 + 4β9 + 3β2
8 − (1 + a∗F )2

(

12β11 − 12β12 −
3

2w2
− 12β13

Pez

))

τinj

+

(

6β8 −
6(1 + a∗F )

Pezw2

)(

2(1 + a∗F )β10 − (1 + a∗F )2
(

8β11 − 8β12 −
1

w2
− 8β13

Pezw

)

− 2a∗2FPezw
2(Bi+ 5)β10

15Biη
+

8

3
(Bi+ 5)β15

)

+ (1 + a∗F )

(

16(Bi+ 5)β15
Pezw2

− 4a∗2Fβ10

5Biη

+
24β16
w

+
2a∗2F (Bi+ 5)Pezβ13

5Biη
+

16a∗2F (Bi+ 5)Pezβ11

5Biη
− 8a∗2F (Bi+ 5)

Pe2zw
4

+
12β2

8

Pezw2

)

+ (1 + a∗F )3
(

12β13 + Pezβ10 +
12β10
Pezw2

+
48β13
Pe2zw

3
+

6

Pezw4
− 48β11

Pezw2

+
48β12
Pezw2

+
24

Pe3zw
6

)

+

(

35

2
+ 7Bi+Bi2

)(

16a∗Fβ15

21Biη
+

4a∗3Fβ10w
2

105Bi2η2
+

8a∗3F

105Pezw2Bi2η2

)

− 2(Bi+ 5)

5

(

8a∗2Fβ12

Biη
+

a∗2FPezwβ11

3Biη

)

− 6β3
8 + 4β9β8

]

µ0,H . (A-11)

Let us define434

β17 =2(1 + a∗F )β10 − (1 + a∗F )2
(

8β11 − 8β12 −
1

w2
− 8β13

Pezw

)

− 2a∗2FPezw
2(Bi+ 5)β10

15Biη
+

8

3
(Bi+ 5)β15, (A-12)

β18 =(1 + a∗F )3
(

12β13 + Pezβ10 +
12β10
Pezw2

+
48β13
Pe2zw

3
+

6

Pezw4
− 48β11

Pezw2

48β12
Pezw2

)

, (A-13)

β19 =(1 + a∗F )

(

16(Bi+ 5)β15
Pezw2

− 4a∗2Fβ10

5Biη
+

24β16
w

+
2a∗2F (Bi+ 5)Pezβ13

5Biη

+
16a∗2F (Bi+ 5)Pezβ11

5Biη

)

, (A-14)

β20 =

(

35

2
+ 7Bi+Bi2

)(

16a∗Fβ15

21Biη
+

4a∗3Fβ10w
2

105Bi2η2

)

+
16a∗2F (Bi+ 5)β12

5Biη
(A-15)

β21 =
(1 + a∗F )(Bi+ 5)a∗2F

5Pe2zw
4Biη

− 3(1 + a∗F )3

Pe3zw
6

+
8a∗3F (352 + 7Bi+Bi2)

315Pezw2Biη
, (A-16)

β22 =
15(1 + a∗F )4

Pe4zw
8

− 2a∗2F (1 + a∗F )2(Bi+ 5)

5Pe3zw
6Biη

+
a∗4F 2(Bi+ 5)2

675Pe2zw
4Bi2η2

− 4a∗3F (1 + a∗F )(352 + 7Bi+Bi2)

315Pe2zw
4Bi2η2

+
16a∗4F (175 + 105Bi + 27Bi2)

4725Pezw2Bi3η3
, (A-17)

β23 =
β2
6β2 − β1β

2
5

Pezw2β7
. (A-18)
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Fourth Moment: The fourth moment is expressed as435

µ4,H =

[

τ4inj

5
+

(

β8 +
2

Pezw2

)

τ3inj +

(

2β17 −
8(1 + a∗F )2β13

Pezw2
+ 4β2

8 − 8β9

)

τ2inj

+

(

12β17

(

1 + a∗F

Pezw2
− β8

)

+ 16β21 + 12β3
8 − 8β9β8 + 2(β18 + β19 + β20)

− 24(1 + a∗F )β2
8

Pezw2

)

τinj + 8β9β17 + 32β8β21 + 6β2
17 + 16β9β

2
8 + 24β4

8 − 16β22
Pezw

+
8(1 + a∗F )

Pezw2
(6β8β17 − 6β3

8 − β18) + 8β8β18 − 36β2
8β17 + 4(1 + a∗F )2(Bi+ 5)

(

12a∗2F

5Pezw2Biη
(β10 − 4β11 − 4β12) +

12β15
w2

+
Pezβ10

5βη
+

6a∗2F

5wBiη
(β21 + 4β12) +

4β15
Pe2zw

4

)

+ 4(1 + a∗F )4
(

36

Pezw3
(β13 − β16) +

Pezβ10

4w
+

4β10
w

+
3

w2
(4β12 − β10)−

30β10
Pe2zw

4

+
120

Pe2zw
4
(β11 − β10) +

120β13
Pe3zw

5
+

15β21
w4

)

+ 4(1 + a∗F )(
35

2
+ 7Bi+Bi2)

(

4a∗3F

105Bi2η2
(Pezβ21 + 2β10 − 8β11 − 8β12) +

32a∗Fβ15

21Pezw2Bi2η2

)

+
4a∗4F 2(Bi+ 5)

75Bi2η2
(

2(Bi+ 5)(4β11 − β10) + 8β12 + Pezβ21 +
8(Bi+ 5)β13

Pezw

)

+
8(175 + 105Bi+ 27Bi2)

Bi2η2

(

a∗4F 2Pezw
2β10

1575Biη
+

4β15
315a∗F

)]

µ0,H . (A-19)
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[18] Massabó, M., Cianci, R., Paladino, O., 2006. Some analytical solutions for two-484

dimensional convectiondispersion equation in cylindrical geometry. Environ. Modell.485

Softw. 21, 6818.486
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Table 1: Standard parameters used in the test problems.

Parameter Symbol Value

External porosity ǫb 0.4

Internal porosity ǫp 0.333

Axial Peclet number Pez 600

Radial Peclet number Peρ 15

Henry’s constant a 4

Intraparticle diffusion resistance η 2

Biot number Bi 50

Injected concentration C0 1

Time of injection τinj 1.0
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Figure 1: Schematic diagram of a cylindrical chromatographic column packed with unform spherical

particles.
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Figure 2: Inner zone injection: Concentration profiles for Danckwerts BCs at Pez = 600, Peρ = 15,

Bi = 50 and η = 2. Plots in (b) show concentration profiles at the column center and plots in (c) give

radially averaged concentrations.

31



0
5

10
15

0

0.5

1
0

0.1

0.2

0.3

0.4

τψ

C
(ψ

,x
=

1,
τ)

(a)

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

τ
C

(ψ
=

0,
x=

1,
τ)

 

 

Analytical
HR−FVS(b)

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

τ

C
av

(x
=

1,
τ)

 

 

1D
2D

(c)

Figure 3: Outer zone injection: Concentration profiles for Danckwerts BCs at at Pez = 600, Peρ = 15,

Bi = 50 and η = 2. Plots in (b) show concentration profiles at the column center and plots in (c) give

radially averaged concentrations.
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Figure 4: Outer zone injection: oulet concentration profiles for different values of Peρ using Danckwerts

BCs. Here, we have chosen again Pez = 600, Bi = 50 and η = 2. Plot (a): 3D plot for Peρ = 1.5, plot (b):

3D plot for Peρ = 150, plot (c): a comparison of 1D and 2D models solutions in the center of the column,

plot (d) a comparison of 1D model solution (circles) with 2D model solutions (lines) for two different Peρ

at the mean retention time.
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Figure 5: Effects of boundary conditions on the analytical solutions.
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Figure 6: Effects of mass transfer coefficients Bi and η on the analytical concentration profiles.
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Figure 7: Inner zone injection: Effects of Pez on the averaged moments.
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Figure 8: Inner zone injection: Local moments showing the effects of Peρ.
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Figure 9: Moments and concentration profiles of 2D-GRM and 2D-LKM when parameters of both models

were matched through Eqs. (58) and (59).
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