Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Film

How Does the Enzyme MOF Work as a Molecular Bridge between Epigenetics and Metabolism?

MPG-Autoren
/persons/resource/persons198888

Akhtar,  Asifa
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Akhtar, A. (2017). How Does the Enzyme MOF Work as a Molecular Bridge between Epigenetics and Metabolism? doi:10.21036/LTPUB10375.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-EFD4-B
Zusammenfassung
All cells in our bodies contain the same genetic information. Yet, these cells make up very different parts of the body like liver, heart, and eyes. This is achieved by expressing certain genes and inactivating others. The protein MOF is known to play an important role in this process: DNA does not flow freely in the cell nucleus but is packaged by histone proteins. There, MOF facilitates reading the genetic information encoded in the DNA by modifying the histones. ASIFA AKHTAR describes in this video how the researchers were surprised to find that, in mammals, MOF is not only present in the nucleus but also in the mitochondria, the powerhouse of the cell. To understand which role MOF plays in both locations, the team employed confocal microscopy, biochemistry and genetics to study the effect of removing the protein from the cell. Their findings indicate that MOF controls gene expression both in the nucleus and the mitochondria. This implicates a link between gene expression and metabolism control which might provide a new perspective on how changes in the environment that influence the metabolism can impinge on the expression of genes.