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STRUCTURAL BIOLOGY

Structures of ribosome-bound initiation factor 2
reveal the mechanism of subunit association
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Throughout the four phases of protein biosynthesis—initiation, elongation, termination, and recycling—the ribo-
some is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Al-
though the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of
translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the
ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine tri-
phosphate analog and initiator fMet-tRNA;'* in the context of the Escherichia coli ribosome to 3.7-A resolution
using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes
of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribso-
some and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.

INTRODUCTION

Initiation of translation is an intensively regulated multistep reaction
(1). In bacteria, binding of initiator fMet-tRNA;M* to the AUG start
codon at the P-site of the 30S subunit defines the correct reading
frame of the mRNA. Formation of the 308 initiation complex (30S-IC)
is aided by three universal initiation factors (IFs): IF1, IF2 and IF3.
The translational guanosine triphosphatase (GTPase) IF2, a key player
of the late steps of the initiation reaction (2), facilitates the association
of the 30S-IC with the large 50S ribosomal subunit to form the 70S-IC.
IF2 is composed of five domains, including a less conserved N-terminal
domain followed by the C-terminal domains I to IV (3). Domain I
confers GTPase activity and, together with domains II and III, the
ability to bind directly to the 30S subunit (4), whereas the C-terminal
domain IV promotes interaction with the initiator fMet-tRNA;™*"
(5, 6). A recent x-ray study of IF2 revealed the structure of all the do-
mains except domain IV (4, 7), and low-resolution cryo-electron mi-
croscopy (cryo-EM) maps depict the overall location of IF2 between
the ribosomal subunits (8-11). However, high-resolution structural
information on ribosome-bound IF2 and its interactions with ribo-
some and initiator transfer RNA (tRNA) remain elusive, precluding
a mechanistic understanding of the functional role of IF2.

RESULTS

To solve the structure of ribosome-bound IF2, the factor was stalled on
programmed 70S ribosomes by the nonhydrolyzable GTP analog gua-
nylylimidodiphosphate (GDPNP) in the presence of fMet-tRNA;"'.,
Although previous cryo-EM analysis depicted only one major state
(4, 8), multiparticle refinement (12) of our cryo-EM data resulted in two
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cryo-EM maps for subpopulations of the 70S-fMet-tRNA;M*'~IF2-
GDPNP complex (Fig. 1 and fig. S1). These differ significantly in the
rotational state of the ribosomal subunits, the position of the L1 stalk,
and the binding mode of the fMet-tRNA;", The smaller subpopulation
(708-IC T; 14,874 particle images, 4.6-A resolution) is in a fully rotated
ribosome state, with the 308 rotated by 8.4° and the 30S head mildly
swiveled by 2.4° compared to the classical 70S ribosome conformation (13)
(Fig. 1C). The larger subpopulation (70S-IC II; 54,585 particle images,
3.7-A resolution) is in a semirotated state and undergoes only a mod-
erate intersubunit rotation of 3.7° (Fig. 1F). The near-atomic resolution
of major parts of the reconstruction of the 70S-IC1I (Fig. 1, G to I, and fig.
S2) facilitated atomic model building, aided by existing crystal structures.
Although the overall structure is in general agreement with previous
cryo-EM analysis (4, 8), there are several pronounced differences.
For example, the C-terminal domain IV of IF2 is rotated by ~180°, com-
pared to previous cryo-EM models (4, 8) in our present structure (fig. S3).
Ribosomal intersubunit rotation affects the binding states of initi-
ator fMet-tRNAM (Fig. 2). Although in both substates the AUG start
codon and fMet-tRNA;"" anticodon stem loop stay bound in the P-site
of the 30S subunit (Fig. 2A), the tRNAs are differentially positioned
relative to the 508 subunit (Fig. 2B). The codon-anticodon duplex with-
in the 70S-IC I is similar in position to a canonical P/E tRNA (13), and
the elbow of the fMet-tRNA;M*" also interacts with the L1 stalk (fig. $4).
At first glance, this position of the fMet-tRNA;M®" elbow is surprising
because the 508 E-site is specific for deacylated tRNA (14, 15). How-
ever, the tRNA adopts a unique conformation and binding mode be-
cause the acceptor stem is bent toward the P-site and the 3’-CCA-fMet
end is displaced by more than 20 A to interact with IF2 domain IV (Fig.
2B). We term this novel chimeric tRNA state of the 70S-IC I complex
the P/ei state (30S P-site, 50S E-site, and IF2). In the 70S-IC II complex,
the initator tRNA is located closer to the P-site (Fig. 2B), and the tRNA
elbow interacts with the central protuberance (CP) of the 50S subunit.
Accordingly, we term this the P/pi state. Overall, the position of the P/pi-
tRNA is similar but not identical to the P/I-tRNA previously delineated
at lower resolution (8). Because the interaction with the L1 stalk, which
has been previously reported for the P/I-tRNA, is only observed for the
P/ei-tRNA but not for the P/pi-tRNA, we may have disentangled a
previously inseparable P/I-tRNA into P/pi and P/ei-states (fig. S4).
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Fig. 1. Overview of the cryo-EM reconstruction of the two distinct 70S initiation complexes. (A to F) Overview of the cryo-EM reconstruction of
the 705-IC | complex (A to C) and of the 70S-IC Il complex (D to F). The cryo-EM maps (blue, 23S and 55 rRNA; orange, L proteins; yellow, 16S rRNA; gray, S
proteins; green, fMet-tRNAM®'; red, IF2) (A and D) and mesh representation of the cryo-EM maps separated into ribosomal subunits with docked models
(blue, 23S and 55 rRNA; orange, L proteins; yellow, 165 rRNA; gray, S proteins; green, fMet-tRNAM; red, IF2; purple, mRNA) (B and E) are shown. (C and F)
View from the intersubunit space onto the models of 30S subunit depicted as ribbons. Elements are colored according to their structural displacement
compared to the classical (73) conformation upon 50S alignment. The directions and magnitudes of the intersubunit rotation and head swivel for the 705-IC |
complex (C) and the 70S-IC Il complex (F) are indicated. (G to I) Enlarged regions of the cryo-EM map of the 705-IC Il at 3.7-A resolution, showing bL34 (G),

bS16 (H), and IF2 (I) (gray, cryo-EM density; orange, bL34; gray, bS16; red, IF2).

Relative to the 308, the fMet-tRNA;M®" appears to follow the 308
head swivel, resulting in a small tilting toward the E-site for the P/
ei-tRNA compared to the P/pi-tRNA (Fig. 2A). A similar observation
has been made by Julidn and colleagues (11) based on a lower-resolution
cryo-EM map of a 30S-IC containing fMet-tRNA;"* and all three
initiation factors. The striking resemblance between the 30S-IC and
the equivalent parts of the fully rotated 70S-IC I substate suggests
that this state is close to the state immediately after subunit joining.
The semirotated 70S-IC II substate in turn resembles an intermediate
state on the way to the nonrotated classical elongation state. This as-
signment is in overall agreement with single-molecule fluorescence
resonance energy transfer data reporting an early 70S-IC in the rotated
state that is converted into an elongation-competent 70S complex by
back rotation of the 308 subunit (16, 17). The fact that we have not
detected a nonrotated ribosome state can be explained by the fact that
the full back rotation requires GTP hydrolysis by IF2.

Going from the 70S-IC I to the 70S-IC II, both the body of the
fMet-tRNA;"*" and the core domains of IF2 essentially follow the par-
tial back rotation of the 30S subunit (Fig. 3A). In contrast, domain IV
of IF2 is hardly moving, keeping its location in the neighborhood of
the 50S peptidyl transferase center and interactions with ribosomal
protein uL16 and 23S rRNA helices H89 and H71. Domain IV of IF2 in
turn retains the 3’-A-fMet of the initiator tRNA, which is cradled by
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the two apical B1-B2 and B4-B5 loops (Fig. 3B). The IF2 domain IV/
A76-fMet module is linked by flexible regions to the core of IF2 and the
body of the tRNA, respectively, to uncouple the motion and to buffer
the rotational movement of the 30S subunit. On the IF2 side, a flexible
loop connects domain IV that extends from helix 12 of domain III. This
is different to the homologous eukaryotic eIF5B, where a more rigid a
helix links domain IV to the core of eIF5B, and where both elements
together follow the 40S subunit rolling (18) (fig. S5). On the tRNA
side, the 3'-CCA end is differently kinked in both states and appears
to be dynamic. A defining feature of initiator tRNA is the absence of
the first base pair in the acceptor stem. This may support the structural
dynamics within the 70S-IC by increasing the length of the single-
stranded 3’ end. Thus, the present finding suggests a role for the tRNA;"**"
C1:A72 mismatch besides its functional role during formylation (19, 20).

Although there may be still some ambiguity in the exact details, the
single-residue resolution of the 70S-IC II cryo-EM map provides
insight into the contact between the IF2 domain IV and the CCA-fMet
end of the tRNA (fig. S6). The terminal fMet-A76 is bound in a pocket
formed by Ser®**, Arg®*, Arg®”’, Phe®*®, and Lys** from the B4-B5
loop; Phe®®, Phe®™, Tle®'?, and Cys®'® from the B1-B2 loop; and
Glu®®, Cys*!, and Gly*** from B5 (Fig. 3B). The interaction of A76
with IF2 domain IV seems to resemble closely the interaction of the
homologous elongation factor Tu (EF-Tu) domain II with elongator
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Fig. 2. Binding state of the fMet-tRNA™<t, (A and B) Comparison of the position of P/pi-tRNA (green) and P/ei-tRNA (orange) with classical P-site and
hybrid P/E-site (gray) (13) [Protein Data Bank (PDB) ID 4Vv9D] tRNAs upon 30S (A) and 50S alignment (B). Compared to the P/P tRNA, the elbow of the P/pi
tRNA is shifted by 22 A toward the E-site, and the codon-anticodon duplex of the P/ei-tRNA is shifted by 4 A toward the E-site. Compared to the P/pi tRNA,
the elbow of the P/ei-tRNA is displaced by additional 16 A toward the E-site to allow interaction with the oncoming L1 stalk. (C) Conformation of the P/pi
tRNA (green) compared to the P/E and P/P (gray) conformations upon anticodon stem loop (ASL) alignment; highlighted is the hinge region of the tRNAs.
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Fig. 3. IF2 on the ribosome. (A) Superposition of IF2 and initiator tRNA in 70S-IC | (gray) and 70S-IC Il complexes upon 50S alignment. The
distances between both substates are color-coded (capped at 5 A). (B) Model for the interaction of the 3'-CCA of the fMet-tRNAM®® (green) with
domain IV of IF2 (red). Important residues for the binding interaction are indicated. (C) Comparison of the switch regions in Thermus thermophilus

apo IF2 (7) (PDB ID 4KJZ, chain B) (gray) and Escherichia coli IF2-GDPNP (red) upon G-domain alignment.

tRNAs; the fMet is cradled by Arg®”” and Phe**® and seems to be po-
sitioned by backbone interactions between the formyl group and the
No of Phe®*®. These binding site interactions are in agreement with
biochemical and nuclear magnetic resonance spectroscopic data (21I)
and rationalize why the introduction of a partially negative charge from
the formyl group leads to a 170-fold increased rate of initiation (22).
Our model also explains the role of Cys**' and Cys®"” that presumably
stabilize the backbone geometry of the binding pocket through a di-
sulfide bond (23), and further rationalizes that mutations of Gly862 to
larger amino acids substantially reduce the binding affinity of IF2 to
fMet-tRNA™et (21) because this would lead to a clash with the ligand
(fig. S6).

In both 70S-IC complexes, the IF2 core domains I to III are bound in
the classical factor binding site (Fig. 1) in an overall similar config-
uration to EF-G and EF-Tu (24). Switch I (sw I) and sw II are well de-
fined and found in a different configuration compared to recent x-ray
structures of the isolated IF2 (7) (Fig. 3C). The sarcin-ricin loop [SRL;
helix 95 of 23S rRNA] of the 508 subunit is bound at the interface be-
tween domains I and III. The universally conserved Tyr’”* within IF2
helix 12 of domain III is in close proximity to the SRL, similar to the
eukaryotic system (18, 25). Remarkably, the partial back rotation of the
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30S subunit brings the G-domain of IF2, in particular His**® of the sw II
loop, closer to the SRL when transitioning from the 70S-ICI to the 70S-IC
IL A contact between His**® (His®* in EF-Tu) of the sw II loop and the
SRL has been deemed important for GTP hydrolysis of EF-G (26-28) (fig.
S7). Therefore, GTP hydrolysis may be regulated by the back rotation of
the 30S subunit.

Our results indicate how IF2, by modulating the state of fMet-
tRNAM® and by exploiting spontaneous intersubunit rotation of the
ribosome, facilitates joining of the large subunit and the subsequent
transition into an elongation-competent 70S complex (Fig. 4). As pro-
posed (10), fMet-tRNA;M" and IF2 aid subunit joining by creating a
large scaffold at the subunit interface and providing contact regions
with the 508 subunit. However, similar to the eukaryotic system
(18), a major problem during initiation is not subunit joining per se
but subunit joining with the 30S-IC, where initiator tRNA is already
bound to the P-site of the small ribosomal subunit. The space between
helix 69 of the 23S TRNA and uL5 of the CP of the 50S subunit is too
narrow for the tRNA to pass through in its canonical conformation
(fig. S8). Our results suggest how this problem is solved during bacte-
rial initiation. Aided by IF2, the initiator tRNA is first bound to the
508 E-site region in the fully rotated 70S-IC I. Back rotation of the 30S
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Fig. 4. Scheme of the late steps of initiation. IF2 (red)-induced subunit joining of the 30S IC (yellow) with the 50S (blue) subunit occurs in a rotated
conformation and leads to the formation of the 705-IC |. The initiator tRNA (green) is positioned in the P/ei state through interactions with the L1 stalk
and domain IV of IF2. Partial back rotation and unswiveling facilitate the P/pi state of initiator tRNA and reorient the G-domain of IF2 to trigger GTP
hydrolysis. To reach the elongation-competent 70S complex, the 30S subunit completes back rotation, IF2-GDP dissociates, and the initiator tRNA
completes the partial reverse translocation on the 50S subunit to reach the P/P-site state. Movements of elbow and acceptor stem are indicated.

subunit then facilitates a partial reverse translocation of initiator tRNA
relative to the 50S subunit (Fig. 4). A comparison to our mammalian
initiation complex (18) shows that the late steps of initiation uses
large-scale conformational changes of the ribosome in both domains
of life. Nevertheless, there are striking differences in the molecular
strategy to load initiator tRNA. Whereas the eukaryotic initiation uses
eukaryotic-specific subunit rolling (18, 29), the bacterial IF2-dependent
initiation uses subunit rotation. The unique P/ei and P/pi states of the
tRNA require the tRNA to adopt a specific conformation to simulta-
neously undergo codon-anticodon interaction and interactions with
domain IV of IF2. Specific features of the initiator tRNA appear to
facilitate these particular intermediate states. Thus, the P/ei and P/pi
states presumably resemble checkpoints to ensure binding of the correct
tRNA. In this sense, the complex pathway of IF2-promoted subunit
joining may not only ensure efficient loading of the fMet-tRNA™ into
the 508 P-site but may also be used to provide discriminative power
for accurate selection of initiator over elongator tRNAs.

MATERIALS AND METHODS

Methods

Formation of the 70S-fMet-tRNA;“'*'-IF2-GDPNP complex.
His-tagged IF2 from E. coli was produced using the T5 expression
system. Recombinant IF2 was isolated by affinity chromatography
and ion-exchange chromatography. The mRNA with the sequence 5'-
GGGCAAAACAAAAGGAGGCUAAAUAUGUUCUAGCAAAACA-
AAACAAAAGAAUU-3' was transcribed using the T7-MEGAshortscript
(Ambion). The mRNA contains a strong Shine-Dalgarno sequence (un-
derlined) and the initiator AUG start codon (bold). The fMet-tRNA;M
was made from tRNAM¢t (Sigma). The tRNA was aminoacylated and
N-formylated as described previously (30) and purified via Nucleosil
C, column (Macherey-Nagel). Tightly coupled 70S ribosomes from
the E. coli CAN20 strain were purified as described (31). The fMet-
tRNAM'-TF2-GDPNP complex was formed by incubating 24-pmol
ribosomes with 400-pmol mRNA, 100-pmol tRNA, and 115-pmol IF2 in
the presence of 50 nmol of the nonhydrolyzable GTP analog GDPNP at
37°C for 15 min in Buffer B15 [20 mM Hepes-KOH (pH 7.5), 15 mM mag-
nesium acetate, 150 mM potassium acetate, 4 mM B-mercapthoethanol,
2 mM spermidine, and 0.05 mM spermine]. The occupancy of IF2 in
the complex was about 40 to 50%, as determined by Western blotting
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against the 6xHis-tag of IF2 and the uLl protein following a sucrose
density centrifugation.

Cryo-EM and image processing. Ribosomal complexes were
diluted to a concentration of 30 nM and flash-frozen in liquid ethane
on glow-discharged carbon-coated grids (Quantifoil Micro Tools GmbH)
using a Vitrobot device (FEI). In total, two sets of images were
collected under low-dose conditions (20 e A7) on a Tecnai G Polara
Microscope (FEI) operating at 300 kV and equipped with a K2 Summit
detector (Gatan) at x31,000 nominal magnification in SuperResolution
mode resulting in a pixel size of 0.615 A per pixel. Data were collected
automatically using Leginon (32) at a defocus range of 0.5 to 5 pm.

The initial contrast transfer function defocus values for the micro-
graphs were estimated from the contrast transfer function using CTFfind4
(33). Ribosomal projection images were (semi)automatically identified
with SIGNATURE (34) and e2boxer from the EMAN?2 software pack-
age (35). In total, 232,659 particle images were selected from 3715
micrographs. The data set was individually aligned by using a low-
resolution 70S from E. coli as reference using the multiparticle refine-
ment (12) in SPIDER (36). After initial refinement, bad particle images
were removed. During unsupervised classification, the data set split
into structures showing IF2 bound to ribosomes in two different con-
formations. These two conformations were isolated from each other and
refined separately. Particle images that did not contain the two large
ligands IF2 and fMet-tRNA;™* were selected out and not considered
for further analysis. After interpolation to a pixel size of 1.23 A per pixel,
a total number of 14,874 particle images corresponding to the fully ro-
tated conformation were refined using SPIDER (36) and SPARX (37). A
total number of 54,585 particle images corresponding to an intermediate
rotated conformation were interpolated to a pixel size of 1.025 A per
pixel and refined using SPIDER (36) and SPARX (37).

Structural models. Existing atomic models of the E.coli ribosome
were adjusted to the derived densities. Initial rigid body docking of
x-ray structures of the ribosomal 508 subunit [PDB ID 4V90 for
subpopulation II and 3R8S for subpopulation I (13)], 30S head, and
30S body [4GD1 for subpopulation I, 4GD2 for subpopulation II (13)]
was performed using UCSF Chimera (38). Flexible elements of the
docked models were subsequently adjusted to the derived densities in
COOT (39). The near-atomic resolution of substate II enabled us to
build a model for IF2 in COOT (39) based on a homology model com-
posed of the core region of the solution structure of T. thermophilus IF2
(7) and the C-terminal domain IV from Bacillus stearothermophilus
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(40). Subsequently, the model was globally idealized using REFMAC
(41) and validated with MolProbity (42). For the AUG start codon
and fMet-tRNA™*" (PDB 5AFI), two rigid units comprising either
the ASL and AUG start codon or the acceptor arm, together with
the tRNA elbow (T'¥- and D-loop), were combined by allowing flex-
ibility around ASL-tRNA elbow junction, a flexible hinge region that
was already observed when tRNAs adopt hybrid A/T or P/E tRNA
binding states (13, 43-45). The single-stranded CCA end was built man-
ually into the derived density in COOT (39), and the initial fitting was
globally idealized using ERRASER (46). The structure of poorly resolved,
flexible loops in IF2 was predicted by FragFit, a fragment-based tool for
modeling of missing protein segments into cryo-EM density maps (see
section below). These initial models were then refined by real-space
refinement in Phenix 1.10. To prevent overfitting of the weight of the
map versus model, geometry was estimated using cryo-EM maps from
half-sets as introduced for reciprocal space refinement (47, 48) (fig. S2B).
The derived models of IF2 and the mRNA tRNA module from sub-
population II were subsequently docked as rigid bodies into the map
of subpopulation I.

Validation with FragFit. The FragFit database (http://proteinformatics.
charite.de/fragfit) is constructed from about 90,000 protein structures,
deposited in PDB (as of June 2013). Extraction of all overlapping pep-
tide fragments with lengths between 3 and 35 amino acids yielded
more than 700 million fragments. For each fragment, the sequence,
PDB identifier, and a geometrical fingerprint of the stem atoms are
stored in the database. This fingerprint is composed of the distance
between the stem atoms and three angles depicting the relative orien-
tation of the stem amino acids to each other. The program searches
for matches between a missing fragment in the protein structure and
fragments of the same length, with similar sequence and similar geo-
metrical fingerprint stored in the database.

The search process follows a stepwise approach to minimize the
search time. (i) In the first step, fragments of a specified length with
a root mean square deviation of the terminal atoms to the stem atoms
of the gap of less than 0.75 A are selected. (ii) In the second step, the
500 candidates with best fit are selected. These 500 candidates are re-
ranked on the basis of their sequence similarity to the missing frag-
ment and the geometrical fingerprint. (iii) In a third step, FragFit uses
cryo-EM density maps to calculate a cross-correlation to the artificial
density derived from the identified fragments. The cross-correlation,
which is used to rescore the fragments obtained during steps (i) and
(ii), is calculated with the SPIDER software package (36). To minimize
the computational load and to speed up the cross-correlation search,
the box size is reduced to the definite section of the cryo-EM map. For
that purpose, a box is estimated from the length of the missing frag-
ment and the distance between the stem atoms and the cut from the
cryo-EM map. To exclude false positives, densities already occupied by
atoms are deleted from the map. The fragments with the highest
Pearson cross-correlation coefficient between artificial and experimen-
tally determined density map are selected for visual inspection.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/3/e1501502/DC1

Materials and Methods

Fig. S1. Overview of three-dimensional classification.

Fig. S2. Resolution estimations of the 70S-IC complexes.

Sprink et al. Sci. Adv. 2016;2:e1501502 4 March 2016

Fig. S3. Comparison of the present E. coli IF2 with previous models.

Fig. S4. Comparison of the tRNA positions.

Fig. S5. Comparison of the present ribosome-bound IF2 with ribosome-bound EF-Tu,
ribosome-bound elF5b, and the x-ray structure of IF2.

Fig. S6. Comparison of the tRNA binding domains Il of EF-Tu and IV of IF2.

Fig. S7. Back rotation of the 30S subunits positions the G-domain of IF2 onto the SRL.

Fig. S8. Subunit joining requires repositioning of the initiator tRNA.

Table S1. Model statistics.
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