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Abstract

A typical viral marketing model identifies influential users in a social network to maxi-
mize a single product adoption assuming unlimited user attention, campaign budgets, and
time. In reality, multiple products need campaigns, users have limited attention, convinc-
ing users incurs costs, and advertisers have limited budgets and expect the adoptions to
be maximized soon. Facing these user, monetary, and timing constraints, we formulate the
problem as a submodular maximization task in a continuous-time diffusion model under the
intersection of one matroid and multiple knapsack constraints. We propose a randomized
algorithm estimating the user influence1 in a network (|V| nodes, |E| edges) to an accuracy
of ε with n = O(1/ε2) randomizations and Õ(n|E|+n|V|) computations. By exploiting the
influence estimation algorithm as a subroutine, we develop an adaptive threshold greedy
algorithm achieving an approximation factor ka/(2 + 2k) of the optimal when ka out of
the k knapsack constraints are active. Extensive experiments on networks of millions of
nodes demonstrate that the proposed algorithms achieve the state-of-the-art in terms of
effectiveness and scalability.

Keywords: Influence Maximization, Influence Estimation, Continuous-time Diffusion
Model, Matroid, Knapsack

1. Introduction

Online social networks play an important role in the promotion of new products, the spread
of news, the success of political campaigns, and the diffusion of technological innovations. In
these contexts, the influence maximization problem (or viral marketing problem) typically
has the following flavor: identify a set of influential users in a social network, who, when

1. Partial results in the paper on influence estimation have been published in a conference paper: Nan Du,
Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scalable influence estimation in continuous
time diffusion networks. In Advances in Neural Information Processing Systems 26, 2013.
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convinced to adopt a product, shall influence other users in the network and trigger a large
cascade of adoptions. This problem has been studied extensively in the literature from both
the modeling and the algorithmic aspects (Richardson and Domingos, 2002; Kempe et al.,
2003; Leskovec et al., 2007; Chen et al., 2009, 2010a,b, 2011, 2012; Ienco et al., 2010; Goyal
et al., 2011a,b; Gomez-Rodriguez and Schölkopf, 2012), where it has been typically assumed
that the host (e.g., the owner of an online social platform) faces a single product, endless
user attention, unlimited budgets and unbounded time. However, in reality, the host often
encounters a much more constrained scenario:

• Multiple-Item Constraints: multiple products can spread simultaneously among
the same set of social entities. These products may have different characteristics, such
as their revenues and speed of spread.

• Timing Constraints: the advertisers expect the influence to occur within a certain
time window, and different products may have different timing requirements.

• User Constraints: users of the social network, each of which can be a potential
source, would like to be exposed to only a small number of ads. Furthermore, users
may be grouped by their geographical locations, and advertisers may have a target
population they want to reach.

• Product Constraints: seeking initial adopters entails a cost to the advertiser, who
needs to pay to the host and often has a limited amount of money.

For example, Facebook (i.e., the host) needs to allocate ads for various products with
different characteristics, e.g., clothes, books, or cosmetics. While some products, such as
clothes, aim at influencing within a short time window, some others, such as books, may
allow for longer periods. Moreover, Facebook limits the number of ads in each user’s side-
bar (typically it shows less than five) and, as a consequence, it cannot assign all ads to a
few highly influential users. Finally, each advertiser has a limited budget to pay for ads on
Facebook and thus each ad can only be displayed to some subset of users. In our work,
we incorporate these myriads of practical and important requirements into consideration in
the influence maximization problem.

We account for the multi-product and timing constraints by applying product-specific
continuous-time diffusion models. Here, we opt for continuous-time diffusion models in-
stead of discrete-time models, which have been mostly used in previous work (Kempe et al.,
2003; Chen et al., 2009, 2010a,b, 2011, 2012; Borgs et al., 2012). This is because arti-
ficially discretizing the time axis into bins introduces additional errors. One can adjust
the additional tuning parameters, like the bin size, to balance the tradeoff between the
error and the computational cost, but the parameters are not easy to choose optimally.
Extensive experimental comparisons on both synthetic and real-world data have shown
that discrete-time models provide less accurate influence estimation than their continuous-
time counterparts (Gomez-Rodriguez et al., 2011; Gomez-Rodriguez and Schölkopf, 2012;
Gomez-Rodriguez et al., 2013; Du et al., 2013a,b).

However, maximizing influence based on continuous-time diffusion models also entails
additional challenges. First, evaluating the objective function of the influence maximization
problem (i.e., the influence estimation problem) in this setting is a difficult graphical model
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inference problem, i.e., computing the marginal density of continuous variables in loopy
graphical models. The exact answer can be computed only for very special cases. For ex-
ample, Gomez-Rodriguez and Schölkopf (2012) have shown that the problem can be solved
exactly when the transmission functions are exponential densities, by using continuous time
Markov processes theory. However, the computational complexity of such approach, in gen-
eral, scales exponentially with the size and density of the network. Moreover, extending the
approach to deal with arbitrary transmission functions would require additional nontrivial
approximations which would increase even more the computational complexity. Second,
it is unclear how to scale up influence estimation and maximization algorithms based on
continuous-time diffusion models to millions of nodes. Especially in the maximization case,
the influence estimation procedure needs to be called many times for different subsets of
selected nodes. Thus, our first goal is to design a scalable algorithm which can perform
influence estimation in the regime of networks with millions of nodes.

We account for the user and product constraints by restricting the feasible domain over
which the maximization is performed. We first show that the overall influence function of
multiple products is a submodular function and then realize that the user and product con-
straints correspond to constraints over the ground set of this submodular function. To the
best of our knowledge, previous work has not considered both user and product constraints
simultaneously over general unknown different diffusion networks with non-uniform costs.
In particular, (Datta et al., 2010) first tried to model both the product and user constraints
only with uniform costs and infinite time window, which essentially reduces to a special
case of our formulations. Similarly, (Lu et al., 2013) considered the allocation problem
of multiple products which may have competitions within the infinite time window. Be-
sides, they all assume that multiple products spread within the same network. In contrast,
our formulations generally allow products to have different diffusion networks, which can
be unknown in practice. Soma et al. (2014) studied the influence maximization problem
for one product subject to one knapsack constraint over a known bipartite graph between
marketing channels and potential customers; Ienco et al. (2010) and Sun et al. (2011) con-
sidered user constraints but disregarded product constraints during the initial assignment;
and, Narayanam and Nanavati (2012) studied the cross-sell phenomenon (the selling of the
first product raises the chance of selling the second) and included monetary constraints for
all the products. However, no user constraints were considered, and the cost of each user
was still uniform for each product. Thus, our second goal is to design an efficient submod-
ular maximization algorithm which can take into account both user and product constraints
simultaneously.

Overall, this article includes the following major contributions:

• Unlike prior work that considers an a priori described simplistic discrete-time diffu-
sion model, we first learn the diffusion networks from data by using continuous-time
diffusion models. This allows us to address the timing constraints in a principled way.

• We provide a novel formulation of the influence estimation problem in the continuous-
time diffusion model from the perspective of probabilistic graphical models, which
allows heterogeneous diffusion dynamics over the edges.
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• We propose an efficient randomized algorithm for continuous-time influence estima-
tion, which can scale up to millions of nodes and estimate the influence of each node
to an accuracy of ε using n = O(1/ε2) randomizations.

• We formulate the influence maximization problem with the aforementioned constraints
as a submodular maximization under the intersection of matroid constraints and knap-
sack constraints. The submodular function we use is based on the actual diffusion
model learned from the data for the time window constraint. This novel formula-
tion provides us a firm theoretical foundation for designing greedy algorithms with
theoretical guarantees.

• We develop an efficient adaptive-threshold greedy algorithm which is linear in the
number of products and proportional to Õ(|V| + |E∗|), where |V| is the number of
nodes (users) and |E∗| is the number of edges in the largest diffusion network. We then
prove that this algorithm is guaranteed to find a solution with an overall influence
of at least ka

2+2k of the optimal value, when ka out of the k knapsack constraints
are active. This improves over the best known approximation factor achieved by
polynomial time algorithms in the combinatorial optimization literature. Moreover,
whenever advertising each product to each user entails the same cost, the constraints
reduce to an intersection of matroids, and we obtain an approximation factor of 1/3,
which is optimal for such optimization.

• We evaluate our algorithms over large synthetic and real-world datasets and show that
our proposed methods significantly improve over previous state-of-the-arts in terms
of both the accuracy of the estimated influence and the quality of the selected nodes
in maximizing the influence over independently hold-out real testing data.

In the remainder of the paper, we will first tackle the influence estimation problem in
section 2. We then formulate different realistic constraints for the influence maximization
in section 3 and present the adaptive-thresholding greedy algorithm with its theoretical
analysis in section 4; we investigate the performance of the proposed algorithms in both
synthetic and real-world datasets in section 5; and finally we conclude in section 6.

2. Influence Estimation

We start by revisiting the continuous-time diffusion model by Gomez-Rodriguez et al. (2011)
and then explicitly formulate the influence estimation problem from the perspective of
probabilistic graphical models. Because the efficient inference of the influence value for
each node is highly non-trivial, we further develop a scalable influence estimation algorithm
which is able to handle networks of millions of nodes. The influence estimation procedure
will be a key building block for our later influence maximization algorithm.

2.1 Continuous-Time Diffusion Networks

The continuous-time diffusion model associates each edge with a transmission function, that
is, a density over the transmission time along the edge, in contrast to previous discrete-time
models which associate each edge with a fixed infection probability (Kempe et al., 2003).
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Moreover, it also differs from discrete-time models in the sense that events in a cascade
are not generated iteratively in rounds, but event timings are sampled directly from the
transmission function in the continuous-time model.

Continuous-Time Independent Cascade Model. Given a directed contact network,
G = (V, E), we use the independent cascade model for modeling a diffusion process (Kempe
et al., 2003; Gomez-Rodriguez et al., 2011). The process begins with a set of infected
source nodes, A, initially adopting certain contagion (idea, meme or product) at time zero.
The contagion is transmitted from the sources along their out-going edges to their direct
neighbors. Each transmission through an edge entails random waiting times, τ , drawn from
different independent pairwise waiting time distributions(one per edge). Then, the infected
neighbors transmit the contagion to their respective neighbors, and the process continues.
We assume that an infected node remains infected for the entire diffusion process. Thus, if
a node i is infected by multiple neighbors, only the neighbor that first infects node i will
be the true parent. As a result, although the contact network can be an arbitrary directed
network, each diffusion process induces a Directed Acyclic Graph (DAG).

Heterogeneous Transmission Functions. Formally, the pairwise transmission func-
tion fji(ti|tj) for a directed edge j → i is the conditional density of node i getting infected
at time ti given that node j was infected at time tj . We assume it is shift invariant:
fji(ti|tj) = fji(τji), where τji := ti− tj , and causal: fji(τji) = 0 if τji < 0. Both parametric
transmission functions, such as the exponential and Rayleigh function (Gomez-Rodriguez
et al., 2011), and nonparametric functions (Du et al., 2012) can be used and estimated from
cascade data.

Shortest-Path Property. The independent cascade model has a useful property we
will use later: given a sample of transmission times of all edges, the time ti taken to infect
a node i is the length of the shortest path in G from the sources to node i, where the edge
weights correspond to the associated transmission times.

2.2 Probabilistic Graphical Model for Continuous-Time Diffusion Networks

The continuous-time independent cascade model is essentially a directed graphical model for
a set of dependent random variables, that is, the infection times ti of the nodes, where the
conditional independence structure is supported on the contact network G. Although the
original contact graph G can contain directed loops, each diffusion process (or a cascade)
induces a directed acyclic graph (DAG). For those cascades consistent with a particular
DAG, we can model the joint density of ti using a directed graphical model:

p ({ti}i∈V) =
∏

i∈V
p (ti|{tj}j∈πi) , (1)

where each πi denotes the collection of parents of node i in the induced DAG, and each
term p(ti|{tj}j∈πi) corresponds to a conditional density of ti given the infection times of
the parents of node i. This is true because given the infection times of node i’s parents, ti
is independent of other infection times, satisfying the local Markov property of a directed
graphical model. We note that the independent cascade model only specifies explicitly
the pairwise transmission function of each directed edge, but does not directly define the
conditional density p(ti|{tj}j∈πi).
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However, these conditional densities can be derived from the pairwise transmission func-
tions based on the Independent-Infection property:

p (ti|{tj}j∈πi) =
∑

j∈πi
fji(ti|tj)

∏
l∈πi,l 6=j

S(ti|tl), (2)

which is the sum of the likelihoods that node i is infected by each parent node j. More
precisely, each term in the summation can be interpreted as the likelihood fji(ti|tj) of node
i being infected at ti by node j multiplied by the probability S(ti|tl) that it has survived
from the infection of each other parent node l 6= j until time ti.

Perhaps surprisingly, the factorization in Equation (1) is the same factorization that
can be used for an arbitrary induced DAG consistent with the contact network G. In this
case, we only need to replace the definition of πi (the parent of node i in the DAG) to the
set of neighbors of node i with an edge pointing to node i in G. This is not immediately
obvious from Equation (1), since the contact network G can contain directed loops which
seems to be in conflict with the conditional independence semantics of directed graphical
models. The reason why it is possible to do so is as follows: any fixed set of infection
times, t1, . . . , td, induces an ordering of the infection times. If ti ≤ tj for an edge j → i
in G, hji(ti|tj) = 0, and the corresponding term in Equation (2) is zeroed out, making the
conditional density consistent with the semantics of directed graphical models.

Instead of directly modeling the infection times ti, we can focus on the set of mutually
independent random transmission times τji = ti − tj . Interestingly, by switching from a
node-centric view to an edge-centric view, we obtain a fully factorized joint density of the
set of transmission times

p
(
{τji}(j,i)∈E

)
=
∏

(j,i)∈E
fji(τji), (3)

Based on the Shortest-Path property of the independent cascade model, each variable ti can
be viewed as a transformation from the collection of variables {τji}(j,i)∈E . More specifically,
let Qi be the collection of directed paths in G from the source nodes to node i, where each
path q ∈ Qi contains a sequence of directed edges (j, l). Assuming all source nodes are
infected at time zero, then we obtain variable ti via

ti = gi
(
{τji}(j,i)∈E |A

)
= min

q∈Qi

∑
(j,l)∈q

τjl, (4)

where the transformation gi(·|A) is the value of the shortest-path minimization. As a
special case, we can now compute the probability of node i infected before T using a set of
independent variables:

Pr {ti ≤ T |A} = Pr
{
gi
(
{τji}(j,i)∈E |A

)
≤ T

}
. (5)

The significance of the relation is that it allows us to transform a problem involving
a sequence of dependent variables {ti}i∈V to one with independent variables {τji}(j,i)∈E .
Furthermore, the two perspectives are connected via the shortest path algorithm in weighted
directed graph, a standard well-studied operation in graph analysis.
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2.3 Influence Estimation Problem in Continuous-Time Diffusion Networks

Intuitively, given a time window, the wider the spread of infection, the more influential the
set of sources. We adopt the definition of influence as the expected number of infected nodes
given a set of source nodes and a time window, as in previous work (Gomez-Rodriguez and
Schölkopf, 2012). More formally, consider a set of source nodes A ⊆ V, |A| ≤ C which get
infected at time zero. Then, given a time window T , a node i is infected within the time
window if ti ≤ T . The expected number of infected nodes (or the influence) given the set
of transmission functions {fji}(j,i)∈E can be computed as

σ(A, T ) = E
[∑

i∈V
I {ti ≤ T |A}

]
=
∑

i∈V
Pr {ti ≤ T |A} , (6)

where I {·} is the indicator function and the expectation is taken over the the set of dependent
variables {ti}i∈V . By construction, σ(A, T ) is a non-negative, monotonic nondecreasing
submodular function in the set of source nodes shown by Gomez-Rodriguez and Schölkopf
(2012).

Essentially, the influence estimation problem in Equation (6) is an inference problem for
graphical models, where the probability of event ti ≤ T given sources in A can be obtained
by summing out the possible configuration of other variables {tj}j 6=i. That is

Pr{ti ≤ T |A} =

∫ ∞
0
· · ·
∫ T

ti=0
· · ·
∫ ∞
0

(∏
j∈V

p
(
tj |{tl}l∈πj

))(∏
j∈V

dtj

)
, (7)

which is, in general, a very challenging problem. First, the corresponding directed graphical
models can contain nodes with high in-degree and high out-degree. For example, in Twitter,
a user can follow dozens of other users, and another user can have hundreds of “followers”.
The tree-width corresponding to this directed graphical model can be very high, and we
need to perform integration for functions involving many continuous variables. Second,
the integral in general can not be evaluated analytically for heterogeneous transmission
functions, which means that we need to resort to numerical integration by discretizing the
domain [0,∞). If we use N levels of discretization for each variable, we would need to
enumerate O(N |πi|) entries, exponential in the number of parents.

Only in very special cases, can one derive the closed-form equation for computing
Pr{ti ≤ T |A}. For instance, Gomez-Rodriguez and Schölkopf (2012) proposed an approach
for exponential transmission functions, where the special properties of exponential density
are used to map the problem into a continuous time Markov process problem, and the com-
putation can be carried out via a matrix exponential. However, without further heuristic
approximation, the computational complexity of the algorithm is exponential in the size
and density of the network. The intrinsic complexity of the problem entails the utilization
of approximation algorithms, such as mean field algorithms or message passing algorithms.
We will design an efficient randomized (or sampling) algorithm in the next section.

2.4 Efficient Influence Estimation in Continuous-Time Diffusion Networks

Our first key observation is that we can transform the influence estimation problem in
Equation (6) into a problem with independent variables. With the relation in Equation (5),
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we can derive the influence function as

σ(A, T ) =
∑

i∈V
Pr
{
gi
(
{τji}(j,i)∈E |A

)
≤ T

}
=E

[∑
i∈V

I
{
gi
(
{τji}(j,i)∈E |A

)
≤ T

}]
, (8)

where the expectation is with respect to the set of independent variables {τji}(j,i)∈E . This
equivalent formulation suggests a naive sampling (NS) algorithm for approximating σ(A, T ):
draw n samples of {τji}(j,i)∈E , run a shortest path algorithm for each sample, and finally
average the results (see Appendix A for more details). However, this naive sampling ap-
proach has a computational complexity of O(nC|V||E|+nC|V|2 log |V|) due to the repeated
calling of the shortest path algorithm. This is quadratic to the network size, and hence not
scalable to millions of nodes.

Our second key observation is that for each sample {τji}(j,i)∈E , we are only interested in
the neighborhood size of the source nodes, i.e., the summation

∑
i∈V I {·} in Equation (8),

rather than in the individual shortest paths. Fortunately, the neighborhood size estimation
problem has been studied in the theoretical computer science literature. Here, we adapt a
very efficient randomized algorithm by Cohen (1997) to our influence estimation problem.
This randomized algorithm has a computational complexity of O(|E| log |V| + |V| log2 |V|)
and it estimates the neighborhood sizes for all possible single source node locations. Since
it needs to run once for each sample of {τji}(j,i)∈E , we obtain an overall influence estimation

algorithm with O(n|E| log |V| + n|V| log2 |V|) computation, nearly linear in network size.
Next we will revisit Cohen’s algorithm for neighborhood estimation.

2.4.1 Randomized Algorithm for Single-Source Neighborhood-Size
Estimation

Given a fixed set of edge transmission times {τji}(j,i)∈E and a source node s, infected at
time zero, the neighborhood N (s, T ) of a source node s given a time window T is the set
of nodes within distance T from s, i.e.,

N (s, T ) =
{
i
∣∣ gi ({τji}(j,i)∈E) ≤ T, i ∈ V} . (9)

Instead of estimatingN (s, T ) directly, the algorithm will assign an exponentially distributed
random label ri to each network node i. Then, it makes use of the fact that the minimum of a
set of exponential random variables {ri}i∈N (s,T ) is still an exponential random variable, but
with its parameter being equal to the total number of variables, that is, if each ri ∼ exp(−ri),
then the smallest label within distance T from source s, r∗ := mini∈N (s,T ) ri, will distribute
as r∗ ∼ exp {−|N (s, T )|r∗}. Suppose we randomize over the labeling m times and obtain
m such least labels, {ru∗}mu=1. Then the neighborhood size can be estimated as

|N (s, T )| ≈ m− 1∑m
u=1 r

u
∗
. (10)

which is shown by Cohen (1997) to be an unbiased estimator of |N (s, T )|. This is an elegant
relation since it allows us to transform the counting problem in (9) to a problem of finding
the minimum random label r∗. The key question is whether we can compute the least label
r∗ efficiently, given random labels {ri}i∈V and any source node s.
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Cohen (1997) designed a modified Dijkstra’s algorithm (Algorithm 3) to construct a data
structure r∗(s), called least label list, for each node s to support such query. Essentially, the
algorithm starts with the node i with the smallest label ri, and then it traverses in breadth-
first search fashion along the reverse direction of the graph edges to find all reachable nodes.
For each reachable node s, the distance d∗ between i and s, and ri are added to the end
of r∗(s). Then the algorithm moves to the node i′ with the second smallest label ri′ , and
similarly find all reachable nodes. For each reachable node s, the algorithm will compare
the current distance d∗ between i′ and s with the last recorded distance in r∗(s). If the
current distance is smaller, then the current d∗ and ri′ are added to the end of r∗(s). Then
the algorithm move to the node with the third smallest label and so on. The algorithm is
summarized in Algorithm 3 in Appendix B.

Algorithm 3 returns a list r∗(s) per node s ∈ V, which contains information about
distance to the smallest reachable labels from s. In particular, each list contains pairs of
distance and random labels, (d, r), and these pairs are ordered as

∞ > d(1) > d(2) > . . . > d(|r∗(s)|) = 0 (11)

r(1) < r(2) < . . . < r(|r∗(s)|), (12)

where {·}(l) denotes the l-th element in the list. (see Appendix B for an example).
If we want to query the smallest reachable random label r∗ for a given source s and a

time T , we only need to perform a binary search on the list for node s:

r∗ = r(l), where d(l−1) > T ≥ d(l). (13)

Finally, to estimate |N (s, T )|, we generate m i.i.d. collections of random labels, run Algo-
rithm 3 on each collection, and obtain m values {ru∗}

m
u=1, which we use in Equation (10) to

estimate |N (i, T )|.
The computational complexity of Algorithm 3 is O(|E| log |V| + |V| log2 |V|), with ex-

pected size of each r∗(s) being O(log |V|). Then the expected time for querying r∗ is
O(log log |V|) using binary search. Since we need to generate m set of random labels and
run Algorithm 3 m times, the overall computational complexity for estimating the single-
source neighborhood size for all s ∈ V is O(m|E| log |V| + m|V| log2 |V| + m|V| log log |V|).
For large-scale network, and when m � min{|V|, |E|}, this randomized algorithm can be
much more efficient than approaches based on directly calculating the shortest paths.

2.4.2 Constructing Estimation for Multiple-Source Neighborhood Size

When we have a set of sources, A, its neighborhood is the union of the neighborhoods of
its constituent sources

N (A, T ) =
⋃

i∈A
N (i, T ). (14)

This is true because each source independently infects its downstream nodes. Furthermore,
to calculate the least label list r∗ corresponding to N (A, T ), we can simply reuse the least
label list r∗(i) of each individual source i ∈ A. More formally,

r∗ = mini∈A minj∈N (i,T ) rj , (15)
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where the inner minimization can be carried out by querying r∗(i). Similarly, after we
obtain m samples of r∗, we can estimate |N (A, T )| using Equation (10). Importantly, very
little additional work is needed when we want to calculate r∗ for a set of sources A, and
we can reuse work done for a single source. This is very different from a naive sampling
approach where the sampling process needs to be done completely anew if we increase the
source set. In contrast, using the randomized algorithm, only an additional constant-time
minimization over |A| numbers is needed.

2.4.3 Overall Algorithm

So far, we have achieved efficient neighborhood size estimation of |N (A, T )| with respect to a
given set of transmission times {τji}(j,i)∈E . Next, we will estimate the influence by averaging
over multiple sets of samples for {τji}(j,i)∈E . More specifically, the relation from (8)

σ(A, T ) = E{τji}(j,i)∈E [|N (A, T )|] = E{τji}E{r1,...,rm}|{τji}
[
m− 1∑m
u=1 r

u
∗

]
, (16)

suggests the following overall algorithm :

Continuous-Time Influence Estimation (ConTinEst):

1. Sample n sets of random transmission times {τ lij}(j,i)∈E ∼
∏

(j,i)∈E fji(τji).

2. Given a set of {τ lij}(j,i)∈E , sample m sets of random labels {rui }i∈V ∼
∏
i∈V exp(−ri).

3. Estimate σ(A, T ) by sample averages σ(A, T ) ≈ 1
n

∑n
l=1

(
(m− 1)/

∑m
ul=1 r

ul
∗

)
.

What is even more important is that the number of random labels, m, does not need
to be very large. Since the estimator for |N (A, T )| is unbiased (Cohen, 1997), essentially
the outer-loop of averaging over n samples of random transmission times further reduces
the variance of the estimator in a rate of O(1/n). In practice, we can use a very small m
(e.g., 5 or 10) and still achieve good results, which is also confirmed by our later experi-
ments. Compared to (Chen et al., 2009), the novel application of Cohen’s algorithm arises
for estimating influence for multiple sources, which drastically reduces the computation
by cleverly using the least-label list from single source. Moreover, we have the following
theoretical guarantee (see Appendix C for the proof).

Theorem 1 Draw the following number of samples for the set of random transmission
times

n ≥ CΛ

ε2
log

(
2|V|
α

)
(17)

where Λ := maxA:|A|≤C 2σ(A, T )2/(m− 2) + 2V ar(|N (A, T )|)(m− 1)/(m− 2) + 2aε/3 and
|N (A, T )| ≤ |V|, and for each set of random transmission times, draw m sets of random
labels. Then |σ̂(A, T )− σ(A, T )| ≤ ε uniformly for all A with |A| ≤ C, with probability at
least 1− α.

10
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The theorem indicates that the minimum number of samples, n, needed to achieve
certain accuracy is related to the actual size of the influence σ(A, T ), and the variance
of the neighborhood size |N (A, T )| over the random draw of samples. The number of
random labels, m, drawn in the inner loop of the algorithm will monotonically decrease the
dependency of n on σ(A, T ). It suffices to draw a small number of random labels, as long
as the value of σ(A, T )2/(m − 2) matches that of V ar(|N (A, T )|). Another implication is
that influence at larger time window T is harder to estimate, since σ(A, T ) will generally
be larger and hence require more random samples.

3. Constraints of Practical Importance

By treating our proposed influence estimation algorithm ConTinEst as a building block, we
can now tackle the influence maximization problem under various constraints of practical
importance. Here, since ConTinEst can estimate the influence value of any source set
with respect to any given time window T , the Timing Constraints can thus be naturally
satisfied. Therefore, in the following sections, we mainly focus on modeling the Multiple-
Item Constraints, the User Constraints and the Product Constraints.

3.1 Multiple-Item Constraints

Multiple products can spread simultaneously across the same set of social entities over
different diffusion channels. Since these products may have different characteristics, such
as the revenue and the speed of spread, and thus may follow different diffusion dynamics,
we will use multiple diffusion networks for different types of products.

Suppose we have a set of products L that propagate on the same set of nodes V. The
diffusion network for product i is denoted as Gi = (V, Ei). For each product i ∈ L, we search
for a set of source nodes Ri ⊆ V to which we can assign the product i to start its campaign.
We can represent the selection of Ri’s using an assignment matrix A ∈ {0, 1}|L|×|V| as
follows: Aij = 1 if j ∈ Ri and Aij = 0 otherwise. Based on this representation, we define
a new ground set Z = L × V of size N = |L| × |V|. Each element of Z corresponds to the
index (i, j) of an entry in the assignment matrix A, and selecting element z = (i, j) means
assigning product i to user j (see Figure 1 for an illustration). We also denote Z∗j = L×{j}
and Zi∗ = {i} × V as the j-th column and i-th row of matrix A, respectively. Then, under
the above mentioned additional requirements, we would like to find a set of assignments
S ⊆ Z so as to maximize the following overall influence

f(S) =
∑
i∈L

aiσi(Ri, Ti), (18)

where σi(Ri, Ti) denote the influence of product i for a given time Ti, {ai > 0} is a set of
weights reflecting the different benefits of the products and Ri = {j ∈ V : (i, j) ∈ S}. We
now show that the overall influence function f(S) in Equation (18) is submodular over the
ground set Z.

Lemma 2 Under the continuous-time independent cascade model, the overall influence
f(S) is a normalized monotone submodular function of S.

11
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i

j

Figure 1: Illustration of the assignment matrix A associated with partition matroid M1

and group knapsack constraints. If product i is assigned to user j, then Aij = 1 (colored
in red). The ground set Z is the set of indices of the entries in A, and selecting an element
(i, j) ∈ Z means assigning product i to user j. The user constraint means that there are at
most uj elements selected in the j-th column; the product constraint means that the total
cost of the elements selected in the i-th row is at most Bi.

Proof By definition, f(∅) = 0 and f(S) is monotone. By Theorem 4 in Gomez-Rodriguez
and Schölkopf (2012), the component influence function σi(Ri, Ti) for product i is submodu-
lar in Ri ⊆ V. Since non-negative linear combinations of submodular functions are still sub-
modular, fi(S) := aiσi(Ri, Ti) is also submodular in S ⊆ Z = L×V, and f(S) =

∑
i∈L fi(S)

is submodular.

3.2 User Constraints

Each social network user can be a potential source and would like to be exposed only to a
small number of ads. Furthermore, users may be grouped according to their geographical
locations, and advertisers may have a target population they want to reach. Here, we will
incorporate these constraints using the matroids which are combinatorial structures that
generalize the notion of linear independence in matrices (Schrijver, 2003; Fujishige, 2005).
Formulating our constrained influence maximization task with matroids allows us to design
a greedy algorithm with provable guarantees.

Formally, suppose that each user j can be assigned to at most uj products. A matroid
can be defined as follows:

Definition 3 A matroid is a pair, M = (Z, I), defined over a finite set (the ground set)
Z and a family of sets (the independent sets) I, that satisfies three axioms:

1. Non-emptiness: The empty set ∅ ∈ I.

2. Heredity: If Y ∈ I and X ⊆ Y , then X ∈ I.

3. Exchange: If X ∈ I, Y ∈ I and |Y | > |X|, then there exists z ∈ Y \ X such that
X ∪ {z} ∈ I.

12
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An important type of matroid is the partition matroid where the ground set Z is par-
titioned into disjoint subsets Z1,Z2, . . . ,Zt for some t and

I = {S | S ⊆ Z and |S ∩ Zi| ≤ ui, ∀i = 1, . . . , t}

for some given parameters u1, . . . , ut. The user constraints can then be formulated as

Partition matroid M1: partition the ground set Z into Z∗j = L × {j} each of
which corresponds to a column of A. Then M1 = {Z, I1} is

I1 = {S|S ⊆ Z and |S ∩ Z∗j | ≤ uj ,∀j} .

3.3 Product Constraints

Seeking initial adopters entails a cost to the advertiser, which needs to be paid to the
host, while the advertisers of each product have a limited amount of money. Here, we will
incorporate these requirements using knapsack constraints which we describe below.

Formally, suppose that each product i has a budget Bi, and assigning item i to user j
costs cij > 0. Next, we introduce the following notation to describe product constraints
over the ground set Z. For an element z = (i, j) ∈ Z, define its cost as c(z) := cij . Abusing
the notation slightly, we denote the cost of a subset S ⊆ Z as c(S) :=

∑
z∈S c(z). Then, in

a feasible solution S ⊆ Z, the cost of assigning product i, c(S ∩ Zi∗), should not be larger
than its budget Bi.

Now, without loss of generality, we can assume Bi = 1 (by normalizing cij with Bi),
and also cij ∈ (0, 1] (by throwing away any element (i, j) with cij > 1), and define

Group-knapsack: partition the ground set into Zi∗ = {i} × V each of which
corresponds to one row of A. Then a feasible solution S ⊆ Z satisfies

c(S ∩ Zi∗) ≤ 1,∀i.

Importantly, these knapsack constraints have very specific structure: they are on differ-
ent groups of a partition {Zi∗} of the ground set and the submodular function f(S) =∑

i aiσi(Ri, Ti) is defined over the partition. In consequence, such structures allow us to
design an efficient algorithm with improved guarantees over the known results.

3.4 Overall Problem Formulation

Based on the above discussion of various constraints in viral marketing and our design
choices for tackling them, we can think of the influence maximization problem as a special
case of the following constrained submodular maximization problem with P = 1 matroid
constraints and k = |L| knapsack constraints,

maxS⊆Z f(S) (19)

subject to c(S ∩ Zi∗) ≤ 1, 1 ≤ i ≤ k,

S ∈
P⋂
p=1

Ip,

where, for simplicity, we will denote all the feasible solutions S ⊆ Z as F . This formulation
in general includes the following cases of practical importance :

13
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Uniform User-Cost. An important case of influence maximization, which we denote as
the Uniform Cost, is that for each product i, all users have the same cost ci∗, i.e., cij = ci∗.
Equivalently, each product i can be assigned to at most bi := bBi/ci∗c users. Then the
product constraints are simplified to

Partition matroid M2: for the product constraints with uniform cost, define a
matroid M2 = {Z, I2} where

I2 = {S|S ⊆ Z and |S ∩ Zi∗| ≤ bi,∀i} .

In this case, the influence maximization problem defined by Equation (19) becomes the
problem with P = 2 matroid constraints and no knapsack constraints (k = 0). In addition,
if we assume only one product needs campaign, the formulation of Equation (19) further
reduces to the classic influence maximization problem with the simple cardinality constraint.

User Group Constraint. Our formulation in Equation (19) essentially allows for gen-
eral matroids which can model more sophisticated real-world constraints, and the proposed
formulation, algorithms, and analysis can still hold. For instance, suppose there is a hier-
archical community structure on the users, i.e., a tree T where leaves are the users and
the internal nodes are communities consisting of all users underneath, such as customers
in different countries around the world. In consequence of marketing strategies, on each
community C ∈ T , there are at most uC slots for assigning the products. Such constraints
are readily modeled by the Laminar Matroid, which generalizes the partition matroid by
allowing the set {Zi} to be a laminar family (i.e., for any Zi 6= Zj , either Zi ⊆ Zj , or
Zj ⊆ Zi, or Zi ∩Zj = ∅). It can be shown that the community constraints can be captured
by the matroid M = (Z, I) where I = {S ⊆ Z : |S ∩ C| ≤ uC ,∀C ∈ T }. In the next sec-
tion, we first present our algorithm, then provide the analysis for the uniform cost case and
finally leverage such analysis for the general case.

4. Influence Maximization

In this section, we first develop a simple, practical and intuitive adaptive-thresholding greedy
algorithm to solve the continuous-time influence maximization problem with the aforemen-
tioned constraints. Then, we provide a detailed theoretical analysis of its performance.

4.1 Overall Algorithm

There exist algorithms for submodular maximization under multiple knapsack constraints
achieving a 1 − 1

e approximation factor by (Sviridenko, 2004). Thus, one may be tempted
to convert the matroid constraint in the problem defined by Equation (19) to |V| knapsack
constraints, so that the problem becomes a submodular maximization problem under |L|+
|V| knapsack constraints. However, this naive approach is not practical for large-scale
scenarios because the running time of such algorithms is exponential in the number of
knapsack constraints. Instead, if we opt for algorithms for submodular maximization under
k knapsack constraints and P matroids constraints, the best approximation factor achieved
by polynomial time algorithms is 1

P+2k+1 (Badanidiyuru and Vondrák, 2014). However,
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Algorithm 1: Density Threshold Enumeration

Input: parameter δ; objective f or its approximation f̂ ; assignment cost c(z), z ∈ Z
1 Set d = max {f({z}) : z ∈ Z};
2 for ρ ∈

{
2d

P+2k+1 , (1 + δ) 2d
P+2k+1 , . . . ,

2|Z|d
P+2k+1

}
do

3 Call Algorithm 2 to get Sρ;

Output: argmaxSρ f(Sρ)

this is not good enough yet, since in our problem k = |L| can be large, though P = 1 is
small.

Here, we will design an algorithm that achieves a better approximation factor by ex-
ploiting the following key observation about the structure of the problem defined by Equa-
tion (19): the knapsack constraints are over different groups Zi∗ of the whole ground set,
and the objective function is a sum of submodular functions over these different groups.

The details of the algorithm, called BudgetMax, are described in Algorithm 1. Bud-
getMax enumerates different values of a so-called density threshold ρ, runs a subroutine
to find a solution for each ρ, which quantifies the cost-effectiveness of assigning a particu-
lar product to a specific user, and finally outputs the solution with the maximum objective
value. Intuitively, the algorithm restricts the search space to be the set of most cost-effective
allocations. The details of the subroutine to find a solution for a fixed density threshold
ρ are described in Algorithm 2. Inspired by the lazy evaluation heuristic (Leskovec et al.,
2007), the algorithm maintains a working set G and a marginal gain threshold wt, which
geometrically decreases by a factor of 1 + δ until it is sufficiently small to be set to zero. At
each wt, the subroutine selects each new element z that satisfies the following properties:

1. It is feasible and the density ratio (the ratio between the marginal gain and the cost)
is above the current density threshold;

2. Its marginal gain

f(z|G) := f(G ∪ {z})− f(G)

is above the current marginal gain threshold.

The term “density” comes from the knapsack problem, where the marginal gain is the mass
and the cost is the volume. A large density means gaining a lot without paying much. In
short, the algorithm considers only high-quality assignments and repeatedly selects feasible
ones with marginal gain ranging from large to small.

Remark 1. The traditional lazy evaluation heuristic also keeps a threshold, however, it
only uses the threshold to speed up selecting the element with maximum marginal gain.
Instead, Algorithm 2 can add multiple elements z from the ground set at each threshold, and
thus reduces the number of rounds from the size of the solution to the number of thresholds
O(1δ log N

δ ). This allows us to trade off between the runtime and the approximation ratio
(refer to our theoretical guarantees in section 4.2).
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Algorithm 2: Adaptive Threshold Greedy for Fixed Density

Input: parameters ρ, δ; objective f or its approximation f̂ ; assignment cost
c(z), z ∈ Z;set of feasible solutions F ; and d from Algorithm 1.

1 Set dρ = max {f({z}) : z ∈ Z, f({z}) ≥ c(z)ρ};
2 Set wt =

dρ
(1+δ)t for t = 0, . . . , L = argmini

[
wi ≤ δd

N

]
and wL+1 = 0;

3 Set G = ∅;
4 for t = 0, 1, . . . , L, L+ 1 do
5 for z 6∈ G with G ∪ {z} ∈ F and f(z|G) ≥ c(z)ρ do
6 if f(z|G) ≥ wt then
7 Set G← G ∪ {z};

Output: Sρ = G

Remark 2. Evaluating the influence of the assigned products f is expensive. Therefore,
we will use the randomized algorithm in Section 2.4.3 to compute an estimation f̂(·) of the
quantity f(·).

4.2 Theoretical Guarantees

Although our algorithm is quite intuitive, it is highly non-trivial to obtain the theoretical
guarantees. For clarity, we first analyze the simpler case with uniform cost, which then
provides the base for analyzing the general case.

4.2.1 Uniform Cost

As shown at the end of Section 3.4, the influence maximization, in this case, corresponds
to the problem defined by Equation (19) with P = 2 and no knapsack constraints. Thus,
we can simply run Algorithm 2 with ρ = 0 to obtain a solution G, which is roughly a
1

P+1 -approximation.

Intuition. The algorithm greedily selects feasible elements with sufficiently large marginal
gain. However, it is unclear whether our algorithm will find good solutions and whether it
will be robust to noise. Regarding the former, one might wonder whether the algorithm will
select just a few elements while many elements in the optimal solution O will become infea-
sible and will not be selected, in which case the greedy solution G is a poor approximation.
Regarding the latter, we only use the estimation f̂ of the influence f (i.e., |f̂(S)−f(S)| ≤ ε
for any S ⊆ Z), which introduces additional error to the function value. A crucial question,
which has not been addressed before (Badanidiyuru and Vondrák, 2014), is whether the
adaptive threshold greedy algorithm is robust to such perturbations.

Fortunately, it turns out that the algorithm will provably select sufficiently many ele-
ments of high quality. First, the elements selected in the optimal solution O but not selected
in G can be partitioned into |G| groups, each of which is associated with an element in G.
Thus, the number of elements in the groups associated with the first t elements in G, by
the property of the intersection of matroids, are bounded by Pt. See Figure 2 for an illus-
tration. Second, the marginal gain of each element in G is at least as large as that of any
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G

O \G

g1

C1

gt−1

Ct−1
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C|G|

· · · · · · · · · · · ·

g2

C2 ⋃t
i=1Ci
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Figure 2: Notation for analyzing Algorithm 2. The elements in the greedy solution G are
arranged according to the order in which Algorithm 2 selects them in Step 3. The elements
in the optimal solution O but not in the greedy solution G are partitioned into groups
{Ct}1≤t≤|G|, where Ct are those elements in O \G that are still feasible before selecting gt
but are infeasible after selecting gt.

element in the group associated with it (up to some small error). This means that even
if the submodular function evaluation is inexact, the quality of the elements in the greedy
solution is still good. The two claims together show that the marginal gain of O \G is not
much larger than the gain of G, and thus G is a good approximation for the problem.

Formally, suppose we use an inexact evaluation of the influence f such that |f̂(S) −
f(S)| ≤ ε for any S ⊆ Z, let product i ∈ L spread according to a diffusion network
Gi = (V, Ei), and i∗ = argmaxi∈L |Ei|. Then, we have:

Theorem 4 Suppose f̂ is evaluated up to error ε = δ/16 with ConTinEst. For influence
maximization with uniform cost, Algorithm 2 (with ρ = 0) outputs a solution G with f(G) ≥
1−2δ
3 f(O) in expected time Õ

(
|Ei∗ |+|V|

δ2
+ |L||V|

δ3

)
.

The parameter δ introduces a tradeoff between the approximation guarantee and the
runtime: larger δ decreases the approximation ratio but results in fewer influence evalua-
tions. Moreover, the runtime has a linear dependence on the network size and the number
of products to propagate (ignoring some small logarithmic terms) and, as a consequence,
the algorithm is scalable to large networks.

Analysis. Suppose G = {g1, . . . , g|G|} in the order of selection, and let Gt = {g1, . . . , gt}.
Let Ct denote all those elements in O \ G that satisfy the following: they are still feasible
before selecting the t-th element gt but are infeasible after selecting gt. Equivalently, Ct are
all those elements j ∈ O \G such that (1) j ∪Gt−1 does not violate the matroid constraints
but (2) j ∪ Gt violates the matroid constraints. In other words, we can think of Ct as the
optimal elements “blocked” by gt. Then, we proceed as follows.

By the property of the intersection of matroids, the size of the prefix
⋃t
i=1Ct is bounded

by Pt. As a consequence of this property, for any Q ⊆ Z, the sizes of any two maximal
independent subsets T1 and T2 of Q can only differ by a multiplicative factor at most P .
This can be realized with the following argument. First, note that any element z ∈ T1 \ T2,
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{z} ∪ T2 violates at least one of the matroid constraints since T2 is maximal. Then, let
{Vi}1≤i≤P denote all elements in T1 \T2 that violate the i-th matroid, and partition T1∩T2
arbitrarily among these Vi’s so that they cover T1. In this construction, the size of each Vi
must be at most |T2|, since otherwise by the Exchange axiom, there would exist z ∈ Vi \ T2
that can be added to T2, without violating the i-th matroid, leading to a contradiction.
Therefore, |T1| is at most P times |T2|.

Next, we apply the above property as follows. Let Q be the union of Gt and
⋃t
i=1Ct.

On one hand, Gt is a maximal independent subset of Q, since no element in
⋃t
i=1Ct can

be added to Gt without violating the matroid constraints. On the other hand,
⋃t
i=1Ct is

an independent subset of Q, since it is part of the optimal solution. Therefore,
⋃t
i=1Ct has

size at most P times |Gt|, which is Pt. Note that the properties of matroids are crucial for
this analysis, which justifies our formulation using matroids. In summary, we have

Claim 1
∑t

i=1 |Ci| ≤ Pt, for t = 1, . . . , |G|.

Now, we consider the marginal gain of each element in Ct associated with gt. First,
suppose gt is selected at the threshold τt > 0. Then, any j ∈ Ct has marginal gain bounded
by (1 + δ)τt + 2ε, since otherwise j would have been selected at a larger threshold before τt
by the greedy criterion. Second, suppose gt is selected at the threshold wL+1 = 0. Then,
any j ∈ Ct has marginal gain approximately bounded by δ

N d. Since the greedy algorithm

must pick g1 with f̂(g1) = d and d ≤ f(g1) + ε, any j ∈ Ct has marginal gain bounded by
δ
N f(G) +O(ε). Putting everything together we have:

Claim 2 Suppose gt is selected at the threshold τt. Then f(j|Gt−1) ≤ (1+δ)τt+4ε+ δ
N f(G)

for any j ∈ Ct.
Since the evaluation of the marginal gain of gt should be at least τt, this claims essentially
indicates that the marginal gain of j is approximately bounded by that of gt.

Since there are not many elements in Ct (Claim 1) and the marginal gain of each of its
elements is not much larger than that of gt (Claim 2), we can conclude that the marginal

gain of O \G =
⋃|G|
i=1Ct is not much larger than that of G, which is just f(G).

Claim 3 The marginal gain of O \G satisfies∑
j∈O\G

f(j|G) ≤ [(1 + δ)P + δ]f(G) + (6 + 2δ)εP |G|.

Finally, since by submodularity, f(O) ≤ f(O ∪ G) ≤ f(G) +
∑

j∈O\G f(j|G), Claim 3
shows that f(G) is close to f(O) up to a multiplicative factor roughly (1 +P ) and additive
factor O(εP |G|). Given that f(G) > |G|, it leads to roughly a 1/3-approximation for our
influence maximization problem by setting ε = δ/16 when evaluating f̂ with ConTinEst.
Combining the above analysis and the runtime of the influence estimation algorithm, we
have our final guarantee in Theorem 4. Appendix D.1 presents the complete proofs.

4.2.2 General Case

In this section, we consider the general case, in which users may have different associated
costs. Recall that this case corresponds to the problem defined by Equation (19) with P = 1
matroid constraints and k = |L| group-knapsack constraints. Here, we will show that there
is a step in Algorithm 1 which outputs a solution Sρ that is a good approximation.
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Intuition. The key idea behind Algorithm 1 and Algorithm 2 is simple: spend the budgets
efficiently and spend them as much as possible. By spending them efficiently, we mean to
only select those elements whose density ratio between the marginal gain and the cost is
above the threshold ρ. That is, we assign product i to user j only if the assignment leads
to large marginal gain without paying too much. By spending the budgets as much as
possible, we mean to stop assigning product i only if its budget is almost exhausted or no
more assignments are possible without violating the matroid constraints. Here we make use
of the special structure of the knapsack constraints on the budgets: each constraint is only
related to the assignment of the corresponding product and its budget, so that when the
budget of one product is exhausted, it does not affect the assignment of the other products.
In the language of submodular optimization, the knapsack constraints are on a partition
Zi∗ of the ground set and the objective function is a sum of submodular functions over the
partition.

However, there seems to be a hidden contradiction between spending the budgets effi-
ciently and spending them as much as possible. On one hand, efficiency means the density
ratio should be large, so the threshold ρ should be large; on the other hand, if ρ is large,
there are just a few elements that can be considered, and thus the budget might not be
exhausted. After all, if we set ρ to be even larger than the maximum possible value, then
no element is considered and no gain is achieved. In the other extreme, if we set ρ = 0 and
consider all the elements, then a few elements with large costs may be selected, exhausting
all the budgets and leading to a poor solution.

Fortunately, there exists a suitable threshold ρ that achieves a good tradeoff between
the two and leads to a good approximation. On one hand, the threshold is sufficiently small,
so that the optimal elements we abandon (i.e., those with low-density ratio) have a total
gain at most a fraction of the optimum; on the other hand, it is also sufficiently large, so
that the elements selected are of high quality (i.e., of high-density ratio), and we achieve
sufficient gain even if the budgets of some items are exhausted.

Theorem 5 Suppose f̂ is evaluated up to error ε = δ/16 with ConTinEst. In Algorithm 1,
there exists a ρ such that

f(Sρ) ≥
max {ka, 1}

(2|L|+ 2)(1 + 3δ)
f(O)

where ka is the number of active knapsack constraints:

ka = |{i : Sρ ∪ {z} 6∈ F ,∀z ∈ Zi∗}| .

The expected running time is Õ
(
|Ei∗ |+|V|

δ2
+ |L||V|

δ4

)
.

Importantly, the approximation factor improves over the best known guarantee 1
P+2k+1 =

1
2|L|+2 for efficiently maximizing submodular functions over P matroids and k general knap-
sack constraints. Moreover, since the runtime has a linear dependence on the network size,
the algorithm easily scales to large networks. As in the uniform cost case, the parameter δ
introduces a tradeoff between the approximation and the runtime.
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Analysis. The analysis follows the intuition. Pick ρ = 2f(O)
P+2k+1 , where O is the optimal

solution, and define

O− := {z ∈ O \ Sρ : f(z|Sρ) < c(z)ρ+ 2ε} ,
O+ := {z ∈ O \ Sρ : z 6∈ O−} .

Note that, by submodularity, O− is a superset of the elements in the optimal solution that
we abandon due to the density threshold and, by construction, its marginal gain is small:

f(O−|Sρ) ≤ ρc(O−) +O(ε|Sρ|) ≤ kρ+O(ε|Sρ|),

where the small additive term O(ε|Sρ|) is due to inexact function evaluations. Next, we
proceed as follows.

First, if no knapsack constraints are active, then the algorithm runs as if there were no
knapsack constraints (but only on elements with density ratio above ρ). Therefore, we can
apply the same argument as in the case of uniform cost (refer to the analysis up to Claim 3
in Section 4.2.1); the only caveat is that we apply the argument to O+ instead of O \ Sρ.
Formally, similar to Claim 3, the marginal gain of O+ satisfies

f(O+|Sρ) ≤ [(1 + δ)P + δ]f(Sρ) +O(εP |Sρ|),

where the small additive term O(εP |Sρ|) is due to inexact function evaluations. Using
that f(O) ≤ f(Sρ) + f(O−|Sρ) + f(O+|Sρ), we can conclude that Sρ is roughly a 1

P+2k+1 -
approximation.

Second, suppose ka > 0 knapsack constraints are active and the algorithm discovers that
the budget of product i is exhausted when trying to add element z to the set Gi = G∩Zi∗ of
selected elements at that time. Since c(Gi∪{z}) > 1 and each of these elements has density
above ρ, the gain of Gi ∪ {z} is above ρ. However, only Gi is included in our final solution,
so we need to show that the marginal gain of z is not large compared to that of Gi. To do
so, we first realize that the algorithm greedily selects elements with marginal gain above
a decreasing threshold wt. Then, since z is the last element selected and Gi is nonempty
(otherwise adding z will not exhaust the budget), the marginal gain of z must be bounded
by roughly that of Gi, which is at least roughly 1

2ρ. Since this holds for all active knapsack

constraints, then the solution has value at least ka
2 ρ, which is an ka

P+2k+1 -approximation.

Finally, combining both cases, and setting k = |L| and P = 1 as in our problem, we
have our final guarantee in Theorem 5. Appendix D.2 presents the complete proofs.

5. Experiments on Synthetic and Real Data

In this section, we first evaluate the accuracy of the estimated influence given by Con-
TinEst and then investigate the performance of influence maximization on synthetic and
real networks by incorporating ConTinEst into the framework of BudgetMax. We show
that our approach significantly outperforms the state-of-the-art methods in terms of both
speed and solution quality.
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Figure 3: Influence estimation for core-periphery, random, and hierarchical networks with
1,024 nodes and 2,048 edges. Column (a) shows estimated influence by NS (near ground
truth), and ConTinEst for increasing time window T ; Column (b) shows ConTinEst’s
relative error against number of samples with 5 random labels and T = 10; Column (c) re-
ports ConTinEst’s relative error against the number of random labels with 10,000 random
samples and T = 10.
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5.1 Experiments on Synthetic Data

We generate three types of Kronecker networks (Leskovec et al., 2010) which are synthetic
networks generated by a recursive Kronecker product of a base 2-by-2 parameter matrix
with itself to generate self-similar graphs. By tuning the base parameter matrix, we are
able to generate the Kronecker networks which can mimic different structural properties
of many real networks. In the following, we consider networks of three different types of
structures: (i) core-periphery networks (parameter matrix: [0.9 0.5; 0.5 0.3]), which mimic
the information diffusion traces in real-world networks (Gomez-Rodriguez et al., 2011), (ii)
random networks ([0.5 0.5; 0.5 0.5]), typically used in physics and graph theory (Easley
and Kleinberg, 2010) and (iii) hierarchical networks ([0.9 0.1; 0.1 0.9]) (Clauset et al.,
2008). Next, we assign a pairwise transmission function for every directed edge in each
type of network and set its parameters at random. In our experiments, we use the Weibull
distribution from (Aalen et al., 2008),

f(t;α, β) =
β

α

(
t

α

)β−1
e−(t/α)

β
, t ≥ 0, (20)

where α > 0 is a scale parameter and β > 0 is a shape parameter. The Weibull distribution
(Wbl) has often been used to model lifetime events in survival analysis, providing more
flexibility than an exponential distribution. We choose α and β from 0 to 10 uniformly at
random for each edge in order to have heterogeneous temporal dynamics. Finally, for each
type of Kronecker network, we generate 10 sample networks, each of which has different α
and β chosen for every edge.

5.1.1 Influence Estimation

To the best of our knowledge, there is no analytical solution to the influence estimation
given Weibull transmission function. Therefore, we compare ConTinEst with the Naive
Sampling (NS) approach by considering the highest degree node in a network as the source,
and draw 1,000,000 samples for NS to obtain near ground truth. In Figure 3, Column (a)
compares ConTinEst with the ground truth provided by NS at different time window
T , from 0.1 to 10 in networks of different structures. For ConTinEst, we generate up
to 10,000 random samples (or sets of random waiting times), and 5 random labels in the
inner loop. In all three networks, estimation provided by ConTinEst fits the ground truth
accurately, and the relative error decreases quickly as we increase the number of samples
and labels (Column (b) and Column (c)). For 10,000 random samples with 5 random labels,
the relative error is smaller than 0.01.

5.1.2 Influence Maximization with Uniform Cost

In this section, we first evaluate the effectiveness of ConTinEst to the classic influence
maximization problem where we have only one product to assign with the simple cardinality
constraint on the users. We compare to other influence maximization methods developed
based on discrete-time diffusion models: traditional greedy by (Kempe et al., 2003), with
discrete-time Linear Threshold Model (LT) and Independent Cascade Model (IC) diffusion
models, and the heuristic methods SP1M, PMIA and MIA-M by (Chen et al., 2009, 2010a,
2012). For Influmax, since it only supports exponential pairwise transmission functions,
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Figure 4: Influence σ(A, T ) achieved by varying number of sources |A| and observation
window T on the networks of different structures with 1,024 nodes, 2,048 edges and het-
erogeneous Weibull transmission functions. Top row: influence against #sources by T = 5;
Bottom row: influence against the time window T using 50 sources.
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Figure 5: Over the 64 product-specific diffusion networks, each of which has 1,048,576
nodes, the estimated influence (a) for increasing the number of products by fixing the
product-constraint at 8 and user-constraint at 2; (b) for increasing product-constraint by
user-constraint at 2; and (c) for increasing user-constraint by fixing product-constraint at
8. For all experiments, we have T = 5 time window.

we fit an exponential distribution per edge by NetRate (Gomez-Rodriguez et al., 2011).
Furthermore, Influmax is not scalable. When the average network density (defined as the
average degree per node) of the synthetic networks is ∼ 2.0, the run time for Influmax
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is more than 24 hours. In consequence, we present the results of ConTinEst using fitted
exponential distributions (Exp). For the discrete-time IC model, we learn the infection
probability within time window T using Netrapalli’s method (Netrapalli and Sanghavi,
2012). The learned pairwise infection probabilities are also served for SP1M and PMIA,
which approximately calculate the influence based on the IC model. For the discrete-
time LT model, we set the weight of each incoming edge to a node u to the inverse of
its in-degree, as in previous work (Kempe et al., 2003), and choose each node’s threshold
uniformly at random. The top row of Figure 4 compares the expected number of infected
nodes against the source set size for different methods. ConTinEst outperforms the rest,
and the competitive advantage becomes more dramatic the larger the source set grows.
The bottom row of Figure 4 shows the expected number of infected nodes against the time
window for 50 selected sources. Again, ConTinEst performs the best for all three types
of networks.

Next, using ConTinEst as a subroutine for influence estimation, we evaluate the perfor-
mance of BudgetMax with the uniform-cost constraints on the users. In our experiments
we consider up to 64 products, each of which diffuses over one of the above three different
types of Kronecker networks with ∼ one million nodes. Further, we randomly select a subset
of 512 nodes VS ⊆ V as our candidate target users, who will receive the given products,
and evaluate the potential influence of an allocation over the underlying one-million-node
networks. For BudgetMax, we set the adaptive threshold δ to 0.01 and the cost per user
and product to 1. For ConTinEst, we use 2,048 samples with 5 random labels on each
of the product-specific diffusion networks. We repeat our experiments 10 times and report
the average performance.

We compare BudgetMax with a nodes’ degree-based heuristic, which we refer to as
GreedyDegree, where the degree is treated as a natural measure of influence, and a baseline
method, which assigns the products to the target nodes randomly. We opt for the nodes’
degree-based heuristic since, in practice, large-degree nodes, such as users with millions of
followers in Twitter, are often the targeted users who will receive a considerable payment if
he (she) agrees to post the adoption of some products (or ads) from merchants. GreedyDe-
gree proceeds as follows. It first sorts the list of all pairs of products i and nodes j ∈ VS in
descending order of node-j’s degree in the diffusion network associated to product i. Then,
starting from the beginning of the list, it considers each pair one by one: if the addition of
the current pair to the existing solution does not violate the predefined matroid constraints,
it is added to the solution, and otherwise, it is skipped. This process continues until the end
of the list is reached. In other words, we greedily assign products to nodes with the largest
degree. Due to the large size of the underlying diffusion networks, we do not apply other
more expensive node centrality measures such as the clustering coefficient and betweenness.

Figure 5 summarizes the results. Panel (a) shows the achieved influence against number
of products, fixing the budget per product to 8 and the budget per user to 2. As the number
of products increases, on the one hand, more and more nodes become assigned, so the total
influence will increase. Yet, on the other hand, the competition among products for a
few existing influential nodes also increases. GreedyDegree achieves a modest performance,
since high degree nodes may have many overlapping children. In contrast, BudgetMax, by
taking the submodularity of the problem, the network structure and the diffusion dynamics
of the edges into consideration, achieves a superior performance, especially as the number
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of product (i.e., the competition) increases. Panel (b) shows the achieved influence against
the budget per product, considering 64 products and fixing the budget per user to 2. We
find that, as the budget per product increases, the performance of GreedyDegree tends to
flatten and the competitive advantage of BudgetMax becomes more dramatic. Finally,
Panel (c) shows the achieved influence against the budget per user, considering 64 products
and fixing the budget per product to 8. We find that, as the budget per user increases, the
influence only increases slowly. This is due to the fixed budget per product, which prevents
additional new nodes to be assigned. This meets our intuition: by making a fixed number
of people watching more ads per day, we can hardly boost the popularity of the product.
Additionally, even though the same node can be assigned to more products, there is hardly
ever a node that is the perfect source from which all products can efficiently spread.

5.1.3 Influence Maximization with Non-Uniform Cost

In this section, we evaluate the performance of BudgetMax under non-uniform cost con-
straints, using again ConTinEst as a subroutine for influence estimation. Our designing of
user-cost aim to mimic a real scenario, where advertisers pay much more money to celebri-
ties with millions of social network followers than to normal citizens. To do so, we let

ci ∝ d
1/n
i where ci is the cost, di is the degree, and n ≥ 1 controls the increasing speed of

cost with respect to the degree. In our experiments, we use n = 3 and normalize ci to be
within (0, 1]. Moreover, we set the product-budget to a base value from 1 to 10 and add a
random adjustment drawn from a uniform distribution U(0, 1).

We compare our method to two modified versions of the above mentioned nodes’ degree-
based heuristic GreedyDegree and to the same baseline method. In the first modified
version of the heuristic, which we still refer to as GreedyDegree, takes both the degree
and the corresponding cost into consideration. In particular, it sorts the list of all pairs of
products i and nodes j ∈ VS in descending order of degree-cost ratio dj/cj in the diffusion
network associated to product i, instead of simply the node-j’s degree, and then proceeds
similarly as before. In the second modified version of the heuristic, which we refer as
GreedyLocalDegree, we use the same degree-cost ratio but allow the target users to be
partitioned into distinct groups (or communities) and pick the most cost-effective pairs
within each group locally instead. Figure 6 compares the performance of our method with
the competing methods against four factors: (a) the number of products, (b) the budget
per product, (c) the budget per user and (d) the time window T , while fixing the other
factors. In all cases, BudgetMax significantly outperforms the other methods, and the
achieved influence increases monotonically with respect to the factor value, as one may have
expected. In addition, in Figure 6(e), we study the effect of the Laminar matroid combined
with group knapsack constraints, which is the most general type of constraint we handle in
this paper (refer to Section 3.4). The selected target users are further partitioned into K
groups randomly, each of which has, Qi, i = 1 . . .K, limit which constrains the maximum
allocations allowed in each group. In practical scenarios, each group might correspond to
a geographical community or organization. In our experiment, we divide the users into 8
equal-size groups and set Qi = 16, i = 1 . . .K to indicate that we want a balanced allocation
in each group. Figure 6(e) shows the achieved influence against the budget per user for
K = 8 equally-sized groups and Qi = 16, i = 1 . . .K. In contrast to Figure 6(b), the total
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Figure 6: Over the 64 product-specific diffusion networks, each of which has a total
1,048,576 nodes, the estimated influence (a) for increasing the number of products by fixing
the product-budget at 1.0 and user-constraint at 2; (b) for increasing product-budget by
fixing user-constraint at 2; (c) for increasing user-constraint by fixing product-budget at
1.0; (d) for different time window T; and (e) for increasing user-constraint with group-limit
16 by fixing product-budget at 1.0.
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Figure 7: The relative accuracy and the run-time for different threshold parameter δ.

estimated influence does not increase significantly with respect to the budget (i.e., number
of slots) per user. This is due to the fixed budget per group, which prevents additional new
nodes to be assigned, even though the number of available slots per user increases.

5.1.4 Effects of Adaptive Thresholding

In Figure 7, we investigate the impact that the threshold value δ has on the accuracy and
runtime of our adaptive thresholding algorithm and compare it with the lazy evaluation
method. Note that the performance and runtime of lazy evaluation do not change with
respect to δ because it does not depend on it. Panel (a) shows the achieved influence against
the threshold δ. As expected, the larger the δ value, the lower the accuracy. However, our
method is relatively robust to the particular choice of δ since its performance is always over
a 90-percent relative accuracy even for large δ. Panel (b) shows the runtime against the
threshold δ. In this case, the larger the δ value, the lower the runtime. In other words,
Figure 7 verifies the intuition that δ is able to trade off the solution quality of the allocation
with the runtime time.

5.1.5 Scalability

In this section, we start with evaluating the scalability of the proposed algorithms on the
classic influence maximization problem where we only have one product with the cardinality
constraint on the users.

We compare it to the state-of-the-art method Influmax (Gomez-Rodriguez and Schölkopf,
2012) and the Naive Sampling (NS) method in terms of runtime for the continuous-time
influence estimation and maximization. For ConTinEst, we draw 10,000 samples in the
outer loop, each having 5 random labels in the inner loop. We plug ConTinEst as a sub-
routine into the classic greedy algorithm by (Nemhauser et al., 1978). For NS, we also draw
10,000 samples. The first two experiments are carried out in a single 2.4GHz processor.
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Figure 8: Runtime of selecting increasing number of sources on Kronecker networks of 128
nodes and 320 edges with T = 10.
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Figure 9: Runtime of selecting 10 sources in networks of 128 nodes with increasing density
by T = 10.

Figure 8 compares the performance of increasingly selecting sources (from 1 to 10) on
small Kronecker networks. When the number of selected sources is 1, different algorithms
essentially spend time estimating the influence for each node. ConTinEst outperforms
other methods by order of magnitude and for the number of sources larger than 1, it can
efficiently reuse computations for estimating influence for individual nodes. Dashed lines
mean that a method did not finish in 24 hours, and the estimated run time is plotted.

Next, we compare the run time for selecting 10 sources with increasing densities (or the
number of edges) in Figure 9. Again, Influmax and NS are order of magnitude slower due
to their respective exponential and quadratic computational complexity in network density.
In contrast, the run time of ConTinEst only increases slightly with the increasing density
since its computational complexity is linear in the number of edges. We evaluate the speed
on large core-periphery networks, ranging from 100 to 1,000,000 nodes with density 1.5
in Figure 10. We report the parallel run time only for ConTinEst and NS (both are
implemented by MPI running on 192 cores of 2.4Ghz) since Influmax is not scalable. In
contrast to NS, the performance of ConTinEst increases linearly with the network size
and can easily scale up to one million nodes.
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Figure 10: For core-periphery networks by T = 10, runtime of selecting 10 sources with
increasing network size from 100 to 1,000,000 by fixing 1.5 network density.
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Figure 11: Over the 64 product-specific diffusion networks, each of which has 1,048,576
nodes, the runtime (a) of allocating increasing number of products and (b) of allocating 64
products to 512 users on networks of varying size. or all experiments, we have T = 5 time
window and fix product-constraint at 8 and user-constraint at 2.
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Figure 12: In MemeTracker dataset, comparison of the accuracy of the estimated influence
in terms of mean absolute error.

Finally, we investigate the performance of BudgetMax in terms of runtime when us-
ing ConTinEst as subroutine to estimate the influence. We can precompute the data
structures and store the samples needed to estimate the influence function in advance.
Therefore, we focus only on the runtime for the constrained influence maximization algo-
rithm. BudgetMax runs on 64 cores of 2.4Ghz by using OpenMP to accelerate the first
round of the optimization. We report the allocation time for increasing number of products
in Figure 11(a), which clearly shows a linear time complexity with respect to the size of
the ground set. Figure 11(b) evaluates the runtime of allocation by varying the size of the
network from 16,384 to 1,048,576 nodes.

5.2 Experiments on Real Data

In this section, we first quantify how well our proposed algorithm can estimate the true
influence in the real-world dataset. Then, we evaluate the solution quality of the selected
sources for influence maximization under different constraints. We have used the public
MemeTracker datasets (Leskovec et al., 2009), which contains more than 172 million news
articles and blog posts from 1 million mainstream media sites and blogs.

5.2.1 Influence Estimation

We first trace the flow of information from one site to another by using the hyperlinks among
articles and posts as in the work of Gomez-Rodriguez et al. (2011); Du et al. (2012). In
detail, we extracted 10,967 hyperlink cascades among top 600 media sites. We then evaluate
the accuracy of ConTinEst as follows. First, we repeatedly split all cascades into a 80%
training set and a 20% test set at random for five times. On each training set, we learn one
continuous-time model, which we use for ConTinEst, and a discrete-time model, which we
use for the competitive methods: IC, SP1M, PMIA and MIAM-M. For the continuous-time
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Figure 13: In MemeTracker dataset, (a) comparison of the influence of the selected nodes by
fixing the observation window T = 5 and varying the number sources, and (b) comparison
of the influence of the selected nodes by fixing the number of sources to 50 and varying the
time window.

model, we opt for NetRate (Gomez-Rodriguez et al., 2011) with exponential transmission
functions (fixing the shape parameter of the Weibull family to be one) to learn the diffusion
networks by maximizing the likelihood of the observed cascades. For the discrete-time
model, we learn the infection probabilities using the method by Netrapalli and Sanghavi
(2012).

Second, let C(u) be the set of all cascades where u was the source node. By count-
ing the total number of distinct nodes infected before T in C(u), we can quantify the real
influence of node u up to time T . Thus, we can evaluate the quality of the influence es-
timation by computing the average (across nodes) Mean Absolute Error (MAE) between
the real and the estimated influence on the test set, which we show in Figure 12. Clearly,
ConTinEst performs the best statistically. Since the length of real cascades empirically
conforms to a power-law distribution, where most cascades are very short (2-4 nodes), the
gap of the estimation error is not too large. However, we emphasize that such accuracy
improvement is critical for maximizing long-term influence since the estimation error for in-
dividuals will accumulate along the spreading paths. Hence, any consistent improvement in
influence estimation can lead to significant improvement to the overall influence estimation
and maximization task, which is further confirmed in the following sections.

5.2.2 Influence Maximization with Uniform Cost

We first apply ConTinEst to the continuous-time influence maximization task with the
simple cardinality constraint on the users. We evaluate the influence of the selected nodes in
the same spirit as influence estimation: the true influence is calculated as the total number
of distinct nodes infected before T based on C(u) of the selected nodes. Figure 13 shows
that the selected sources given by ConTinEst achieve the best performance as we vary the
number of selected sources and the observation time window.
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Next, we evaluate the performance of BudgetMax on cascades from Memetracker
traced from quotes which are short textual phrases spreading through the websites. Because
all published documents containing a particular quote are time-stamped, a cascade induced
by the same quote is a collection of times when the media site first mentioned it. In detail, we
use the public dataset released by Gomez-Rodriguez et al. (2013), which splits the original
Memetracker dataset into groups, each associated to a topic or real-world event. Each group
consists of cascades built from quotes which were mentioned in posts containing particular
keywords. We considered 64 groups, with at least 100,000 cascades, which play the role
of products. Therein, we distinguish well-known topics, such as “Apple” and “Occupy
Wall-Street”, or real-world events, such as the Fukushima nuclear disaster in 2013 and the
marriage between Kate Middleton and Prince William in 2011.

We then evaluate the accuracy of BudgetMax in the following way. First, we evenly
split each group into a training and a test set and then learn one continuous-time model and
a discrete-time model per group using the training sets. As previously, for the continuous-
time model, we opt for NetRate (Gomez-Rodriguez et al., 2011) with exponential trans-
mission functions, and for the discrete-time model, we learn the infection probabilities using
the method by Netrapalli and Sanghavi (2012), where the step-length is set to one. Second,
we run BudgetMax using both the continuous-time model and the discrete-time model.
We refer to BudgetMax with the discrete-time model as the Greedy(discrete) method.
Since we do have no ground-truth information about cost of each node, we focus our ex-
periments using a uniform cost. Third, once we have found an allocation over the learned
networks, we evaluate the performance of the two methods using the cascades in the test
set as follows: given a group-node pair (i, j), let C(j) denote the set of cascades induced by
group i that contains node j. Then, we take the average number of nodes coming after j
for all the cascades in C(j) as a proxy of the average influence induced by assigning group
i to node j. Finally, the influence of an allocation is just the sum of the average influence
of each group-node pair in the solution. In our experiments, we randomly select 128 nodes
as our target users.

Figure 14 summarizes the achieved influence against four factors: (a) the number of
products, (b) the budget per product, (c) the budget per user and (d) the time window T,
while fixing the other factors. In comparison with the Greedy(IC) and a random allocation,
BudgetMax finds an allocation that indeed induces the largest diffusion in the test data,
with an average 20-percent improvement overall.

In the end, Figure 15 investigates qualitatively the actual allocations of groups (top-
ics or real-world events; in red) and sites (in black). Here, we find examples that intu-
itively one could expect: “japantoday.com” is assigned to Fukushima Nuclear disaster or
“finance.yahoo.com” is assigned to “Occupy Wall-street”. Moreover, because we consider
several topics and real-world events with different underlying diffusion networks, the se-
lected nodes are not only very popular media sites such as nytimes.com or cnn.com but also
several modest sites (Bakshy et al., 2011), often specialized or local, such as freep.com or
localnews8.com.
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Figure 14: Over the inferred 64 product-specific diffusion networks, the true influence
estimated from separated testing data (a) for increasing the number of products by fixing
the product-constraint at 8 and user-constraint at 2; (b) for increasing product-constraint
by fixing user-constraint at 2; (c) for increasing user-constraint by fixing product-constraint
at 8; (d) for different time window T.

6. Conclusion

We have studied the influence estimation and maximization problems in the continuous-time
diffusion model. We first propose a randomized influence estimation algorithm ConTinEst,
which can scale up to networks of millions of nodes while significantly improves over pre-
vious state of the art methods in terms of the accuracy of the estimated influence. Once
we have a subroutine for efficient influence estimation in large networks, we then tackle
the problem of maximizing the influence of multiple types of products (or information) in
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Figure 15: The allocation of memes to media sites.

realistic continuous-time diffusion networks subject to various practical constraints: dif-
ferent products can have different diffusion structures; only influence within a given time
window is considered; each user can only be recommended a small number of products;
and each product has a limited campaign budget, and assigning it to users incurs costs.
We provide a novel formulation as a submodular maximization under an intersection of
matroid constraints and group-knapsack constraints, and then design an efficient adaptive
threshold greedy algorithm with provable approximation guarantees, which we call Bud-
getMax. Experimental results show that the proposed algorithm performs remarkably
better than other scalable alternatives in both synthetic and real-world datasets. There are
also a few interesting open problems. For example, when the influence is estimated using
ConTinEst, its error is a random variable. How does this affect the submodularity of the
influence function? Is there an influence maximization algorithm that has better tolerance
to the random error? These questions are left for future work.
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Appendix A. Naive Sampling Algorithm

The graphical model perspective described in Section 2.2 suggests a naive sampling (NS)
algorithm for approximating σ(A, T ):

1. Draw n samples,

{{
τ lji

}
(j,i)∈E

}n
l=1

, i.i.d. from the waiting time product distribution∏
(j,i)∈E fji(τji);

2. For each sample
{
τ lji

}
(j,i)∈E

and for each node i, find the shortest path from source

nodes to node i; count the number of nodes with gi

({
τ lji

}
(j,i)∈E

)
≤ T ;

3. Average the counts across n samples.

Although the naive sampling algorithm can handle arbitrary transmission function,
it is not scalable to networks with millions of nodes. We need to compute the short-
est path for each node and each sample, which results in a computational complexity of
O(n|E| + n|V| log |V|) for a single source node. The problem is even more pressing in the
influence maximization problem, where we need to estimate the influence of source nodes
at different location and with increasing number of source nodes. To do this, the algorithm
needs to be repeated, adding a multiplicative factor of C|V| to the computational complex-
ity (C is the number of nodes to select). Then, the algorithm becomes quadratic in the
network size. When the network size is in the order of thousands and millions, typical in
modern social network analysis, the naive sampling algorithm become prohibitively expen-
sive. Additionally, we may need to draw thousands of samples (n is large), further making
the algorithm impractical for large-scale problems.

Appendix B. Least Label List

The notation “argsort((r1, . . . , r|V|), ascend)” in line 2 of Algorithm 3 means that we sort
the collection of random labels in ascending order and return the argument of the sort as
an ordered list.
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• Node labeling :
e(0.2) < b(0.3) < d(0.4) < a(1.5) < c(1.8) < g(2.2) < f(3.7)

• Neighborhoods:
N (c, 2) = {a, b, c, e}; N (c, 3) = {a, b, c, d, e, f};

• Least-label list:
r∗(c) : (2, 0.2), (1, 0.3), (0.5, 1.5), (0, 1.8)

• Query: r∗(c, 0.8) = r(a) = 1.5

Figure 16: Graph G = (V, E), edge weights {τji}(j,i)∈E , and node labeling {ri}i∈V with the
associated output from Algorithm 3.
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Algorithm 3: Least Label List

Input: a reversed directed graph G = (V, E) with edge weights {τji}(j,i)∈E , a node
labeling {ri}i∈V

Output: A list r∗(s) for each s ∈ V
1 for each s ∈ V do ds ←∞, r∗(s)← ∅
2 for i in argsort((r1, . . . , r|V|), ascend) do

3 empty heap H← ∅;
4 set all nodes except i as unvisited;
5 push (0, i) into heap H;
6 while H 6= ∅ do
7 pop (d∗, s) with the minimum d∗ from H;
8 add (d∗, ri) to the end of list r∗(s);
9 ds ← d∗;

10 for each unvisited out-neighbor j of s do
11 set j as visited;
12 if (d, j) in heap H then
13 Pop (d, j) from heap H;
14 Push (min {d, d∗ + τjs} , j) into heap H;

15 else if d∗ + τjs < dj then
16 Push (d∗ + τjs, j) into heap H;

Figure 16 shows an example of the Least-Label-List. The nodes from a to g are assigned
to exponentially distributed labels with mean one shown in each parentheses. Given a query
distance 0.8 for node c, we can binary-search its Least-label-list r∗(c) to find that node a
belongs to this range with the smallest label r(a) = 1.5.

Appendix C. Theorem 1

Theorem 1 Sample the following number of sets of random transmission times

n >
CΛ

ε2
log

(
2|V|
α

)
where Λ := maxA:|A|≤C 2σ(A, T )2/(m − 2) + 2V ar(|N (A, T )|)(m − 1)/(m − 2) + 2aε/3,
|N (A, T )| 6 a, and for each set of random transmission times, sample m set of random
labels. Then we can guarantee that

|σ̂(A, T )− σ(A, T )| 6 ε

simultaneously for all A with |A| 6 C, with probability at least 1− α.

Proof Let Sτ := |N (A, T )| for a fixed set of {τji} and then σ(A, T ) = Eτ [Sτ ]. The

randomized algorithm with m randomizations produces an unbiased estimator Ŝτ = (m −
1)/(

∑m
u=1 r

u
∗ ) for Sτ , i.e., Er|τ [Ŝτ ] = Sτ , with variance Er|τ [(Ŝτ−Sτ )2] = S2

τ/(m−2) (Cohen,
1997).
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Then Ŝτ is also an unbiased estimator for σ(A, T ), since Eτ,r[Ŝτ ] = EτEr|τ [Ŝτ ] =
Eτ [Sτ ] = σ(A, T ). Its variance is

V ar(Ŝτ ) := Eτ,r[(Ŝτ − σ(A, T ))2] = Eτ,r[(Ŝτ − Sτ + Sτ − σ(A, T ))2]

= Eτ,r[(Ŝτ − Sτ )2] + 2Eτ,r[(Ŝτ − Sτ )(Sτ − σ(A, T ))] + Eτ,r[(Sτ − σ(A, T ))2]

= Eτ [S2
τ/(m− 2)] + 0 + V ar(Sτ )

= σ(A, T )2/(m− 2) + V ar(Sτ )(m− 1)/(m− 2)

Then using Bernstein’s inequality, we have, for our final estimator σ̂(A, T ) = 1
n

∑n
l=1 Ŝτ l ,

that

Pr {|σ̂(A, T )− σ(A, T )| > ε} 6 2 exp

(
− nε2

2V ar(Ŝτ ) + 2aε/3

)
(21)

where Ŝτ < a 6 |V|.
Setting the right hand side of relation (21) to α, we have that, with probability 1 − α,

sampling the following number sets of random transmission times

n >
2V ar(Ŝτ ) + 2aε/3

ε2
log

(
2

α

)
=

2σ(A, T )2/(m− 2) + 2V ar(Sτ )(m− 1)/(m− 2) + 2aε/3

ε2
log

(
2

α

)
we can guarantee that our estimator to have error |σ̂(A, T )− σ(A, T )| 6 ε.

If we want to insure that |σ̂(A, T )− σ(A, T )| 6 ε simultaneously hold for all A such
that |A| 6 C � |V|, we can first use union bound with relation (21). In this case, we have
that, with probability 1 − α, sampling the following number sets of random transmission
times

n >
CΛ

ε2
log

(
2|V|
α

)
we can guarantee that our estimator to have error |σ̂(A, T )− σ(A, T )| 6 ε for all A with
|A| 6 C. Note that we have define the constant Λ := maxA:|A|≤C 2σ(A, T )2/(m − 2) +
2V ar(Sτ )(m− 1)/(m− 2) + 2aε/3.

Appendix D. Complete Proofs for Section 4

D.1 Uniform Cost

In this section, we first prove a theorem for the general problem defined by Equation (19),
considering a normalized monotonic submodular function f(S) and general P (Theorem 7)
and k = 0, and then obtain the guarantee for our influence maximization problem (Theo-
rem 4).
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Suppose G =
{
g1, . . . , g|G|

}
in the order of selection, and let Gt = {g1, . . . , gt}. Let Ct

denote all those elements in O \ G that satisfy the following: they are still feasible before
selecting the t-th element gt but are infeasible after selecting gt. Formally,

Ct =
{
z ∈ O \G : {z} ∪Gt−1 ∈ F , {z} ∪Gt 6∈ F

}
.

In the following, we will prove three claims and then use them to prove the Theorems 7
and 4. Recall that for any i ∈ Z and S ⊆ Z, the marginal gain of z with respect to S is
denoted as

f(z|S) := f(S ∪ {z})− f(S)

and its approximation is denoted by

f̂(z|S) = f̂(S ∪ {z})− f̂(S).

Also, when |f(S)− f̂(S)| ≤ ε for any S ⊆ Z, we have

|f̂(z|S)− f(z|S)| ≤ 2ε

for any z ∈ Z and S ⊆ Z.

Claim 1.
∑t

i=1 |Ci| ≤ Pt, for t = 1, . . . , |G|.
Proof We first show the following property about matroids: for any Q ⊆ Z, the sizes of
any two maximal independent subsets T1 and T2 of Q can only differ by a multiplicative
factor at most P . Here, T is a maximal independent subset of Q if and only if:

• T ⊆ Q;

• T ∈ F =
⋂P
i=1 Ip;

• T ∪ {z} 6∈ F for any z ∈ Q \ T .

To prove the property, note that for any element z ∈ T1 \ T2, {z} ∪ T2 violates at least
one of the matroid constraints since T2 is maximal. Let {Vi}1≤i≤P denote all elements in
T1 \T2 that violate the i-th matroid, and then partition T1∩T2 using these Vi’s so that they
cover T1. Note that the size of each Vi must be at most that of T2, since otherwise by the
Exchange axiom, there would exist z ∈ Vi \ T2 that can be added to T2 without violating
the i-th matroid, leading to a contradiction. Therefore, |T1| is at most P times |T2|.

Now we apply the property to prove the claim. Let Q be the union of Gt and
⋃t
i=1Ct.

On one hand, Gt is a maximal independent subset of Q, since no element in
⋃t
i=1Ct can

be added to Gt without violating the matroid constraints. On the other hand,
⋃t
i=1Ct is

an independent subset of Q, since it is part of the optimal solution. Therefore,
⋃t
i=1Ct has

size at most P times |Gt|, which is Pt.

Claim 2. Suppose gt is selected at the threshold τt. Then, f(j|Gt−1) ≤ (1 + δ)τt + 4ε +
δ
N f(G),∀j ∈ Ct.
Proof First, consider τt > wL+1 = 0. Since gt is selected at the threshold τt, we have that
f̂(gt|Gt−1) ≥ τt and thus f(gt|Gt−1) ≥ τt − 2ε. Any j ∈ Ct could have been selected at an
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earlier stage, since adding j to Gt−1 would not have violated the constraint. However, since
j 6∈ Gt−1, that means that f̂(j|Gt−1) ≤ (1 + δ)τt. Then,

f(j|Gt−1) ≤ (1 + δ)τt + 2ε.

Second, consider τt = wL+1 = 0. For each j ∈ Ct, we have f̂(j|G) < δ
N d. Since the

greedy algorithm must pick g1 with f̂(g1) = d and d ≤ f(g1) + ε, then

f(j|G) <
δ

N
f(G) + 4ε.

The claim follows by combining the two cases.

Claim 3. The marginal gain of O \G satisfies∑
j∈O\G

f(j|G) ≤ [(1 + δ)P + δ]f(G) + (6 + 2δ)εP |G|.

Proof Combining Claim 1 and Claim 2, we have:∑
j∈O\G

f(j|G) =

|G|∑
t=1

∑
j∈Ct

f(j|G) ≤ (1 + δ)

|G|∑
t=1

|Ct|τt + δf(G) + 4ε

|G|∑
t=1

|Ct|

≤ (1 + δ)

|G|∑
t=1

|Ct|τt + δf(G) + 4εP |G|.

Further,
∑|G|

t=1 |Ct|τt ≤ P
∑|G|

t=1 τt by Claim 1 and a technical lemma (Lemma 6). Finally,
the claim follows from the fact that f(G) =

∑
t f(gt|Gt−1) ≥

∑
t(τt − 2ε).

Lemma 6 If
∑t

i=1 σi−1 ≤ t for t = 1, . . . ,K and ρi−1 ≥ ρi for i = 1, . . . ,K − 1 with

ρi, σi ≥ 0, then
∑K

i=1 ρiσi ≤
∑K

i=1 ρi−1.

Proof Consider the linear program

V = max
σ

K∑
i=1

ρiσi

s.t.
t∑
i=1

σi−1 ≤ t, t = 1, . . . ,K,

σi ≥ 0, i = 1, . . . ,K − 1

with dual

W = min
u

K∑
i=1

tut−1

s.t.
K−1∑
t=i

ut ≥ ρi, i = 0, . . . ,K − 1,

ut ≥ 0, t = 0, . . . ,K − 1.
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As ρi ≥ ρi+1, the solution ui = ρi − ρi+1, i = 0, . . . ,K − 1 (where ρK = 0) is dual fea-
sible with value

∑K
t=1 t(ρt−1 − ρt) =

∑K
i=1 ρi−1. By weak linear programming duality,∑K

i=1 ρiσi ≤ V ≤W ≤
∑K

i=1 ρi−1.

Theorem 7 Suppose we use Algorithm 2 to solve the problem defined by Equation (19)
with k = 0, using ρ = 0 and f̂ to estimate the function f , where |f̂(S) − f(S)| ≤ ε for all
S ⊆ Z. It holds that the algorithm returns a greedy solution G with

f(G) ≥ 1

(1 + 2δ)(P + 1)
f(O)− 4P |G|

P + cf
ε

where O is the optimal solution, using O(Nδ log N
δ ) evaluations of f̂ .

Proof By submodularity and Claim 3, we have:

f(O) ≤ f(O ∪G) ≤ f(G) +
∑

j∈O\G

f(j|G) ≤ (1 + δ)(P + 1)f(G) + (6 + 2δ)εP |G|,

which leads to the bound in the theorem.
Since there are O(1δ log N

δ ) thresholds, and there are O(N) evaluations at each thresh-
old, the number of evaluations is bounded by O(Nδ log N

δ ).

Theorem 7 essentially shows f(G) is close to f(O) up to a factor roughly (1 +P ), which
then leads to the following guarantee for our influence maximization problem. Suppose prod-
uct i ∈ L spreads according to diffusion network Gi = (V, Ei), and let i∗ = argmaxi∈L |Ei|.
Theorem 4. In the influence maximization problem with uniform cost, Algorithm 2 (with
ρ = 0) is able to output a solution G that satisfies f(G) ≥ 1−2δ

3 f(O) in expected time

Õ
(
|Ei∗ |+|V|

δ2
+ |L||V|

δ3

)
.

Proof In the influence maximization problem, the number of matroids is P = 2. Also note
that |G| ≤ f(G) ≤ f(O), which leads to 4|G|ε ≤ 4εf(O). The approximation guarantee
then follows from setting ε ≤ δ/16 when using ConTinEst (Du et al., 2013a) to estimate
the influence.

The runtime is bounded as follows. In Algorithm 2, we need to estimate the marginal
gain of adding one more product to the current solution. In ConTinEst (Du et al., 2013a),
building the initial data structure takes time

O
(

(|Ei∗ | log |V|+ |V| log2 |V|) 1

δ2
log
|V|
δ

)
and afterwards each function evaluation takes time

O
(

1

δ2
log
|V|
δ

log log |V|
)
.

As there are O
(
N
δ log N

δ

)
evaluations where N = |L||V|, the runtime of our algorithm fol-

lows.
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D.2 General case

As in the previous section, we first prove that a theorem for the problem defined by Equa-
tion (19) with general normalized monotonic submodular function f(S) and general P
(Theorem 8), and then obtain the guarantee for our influence maximization problem (The-
orem 5).

Theorem 8 Suppose Algorithm 1 uses f̂ to estimate the function f which satisfies |f̂(S)−
f(S)| ≤ ε for all S ⊆ Z. Then, there exists a ρ such that

f(Sρ) ≥
max {1, |Aρ|}

(P + 2k + 1)(1 + 2δ)
f(O)− 8ε|Sρ|

where Aρ is the set of active knapsack constraints:

Aρ = {i : Sρ ∪ {z} 6∈ F , ∀z ∈ Zi∗}.

Proof Consider the optimal solution O and set ρ∗ = 2
P+2k+1f(O). By submodularity, we

have d ≤ f(O) ≤ |Z|d, so ρ ∈
[

2d
P+2k+1 ,

2|Z|d
P+2k+1

]
, and there is a run of Algorithm 2 with ρ

such that ρ∗ ∈ [ρ, (1 + δ)ρ]. In the following we consider this run.

Case 1 Suppose |Aρ| = 0. The key observation in this case is that since no knapsack
constraints are active, the algorithm runs as if there were only matroid constraints. Then,
the argument for matroid constraints can be applied. More precisely, let

O+ := {z ∈ O \ Sρ : f(z|Sρ) ≥ c(z)ρ+ 2ε}

O− := {z ∈ O \ Sρ : z 6∈ O+} .

Note that all elements in O+ are feasible. Following the argument of Claim 3 in Theorem 7,
we have:

f(O+|Sρ) ≤ ((1 + δ)P + δ)f(Sρ) + (4 + 2δ)εP |Sρ|. (22)

Also, by definition, the marginal gain of O− is:

f(O−|Sρ) ≤ kρ+ 2ε|O−| ≤ kρ+ 2εP |Sρ|, (23)

where the last inequality follows from the fact that Sρ is a maximal independent subset, O−
is an independent subset of O ∪ Sρ, and the sizes of any two maximal independent subsets
in the intersection of P matroids can differ by a factor of at most P . Plugging (22)(23) into
f(O) ≤ f(O+|Sρ) + f(O−|Sρ) + f(Sρ), we obtain the bound

f(Sρ) ≥
f(O)

(P + 2k + 1)(1 + δ)
− (6 + 2δ)εP |Sρ|

(P + 1)(1 + δ)
.

Case 2 Suppose |Aρ| > 0. For any i ∈ Aρ (i.e., the i-th knapsack constraint is active),
consider the step when i is added to Aρ. Let Gi = G ∩ Zi∗, and we have c(Gi) + c(z) > 1.
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Since every element g we include in Gi satisfies f̂(g|G) ≥ c(g)ρ with respect to the solution
Gi when g is added. Then f(g|G) = fi(g|Gi) ≥ c(g)ρ− 2ε, and we have:

fi(Gi ∪ {z}) ≥ ρ[c(Gi) + c(z)]− 2ε(|Gi|+ 1) > ρ− 2ε(|Gi|+ 1). (24)

Note that Gi is non-empty since otherwise the knapsack constraint will not be active. Any
element in Gi is selected before or at wt, so fi(Gi) ≥ wt − 2ε. Also, note that z is not
selected in previous thresholds before wt, so fi({z} |Gi) ≤ (1 + δ)wt + 2ε and thus,

fi({z} |Gi) ≤ (1 + δ)fi(Gi) + 2ε(2 + δ). (25)

Combining Eqs. 24 and 25 into fi(Gi ∪ {z}) = fi(Gi) + fi({z} |Gi) leads to

fi(Gi) ≥
ρ

(2 + δ)
− 2ε(|Gi|+ 3 + δ)

(2 + δ)
≥ 1

2(1 + 2δ)
ρ∗ − 2ε(|Gi|+ 3 + δ)

(2 + δ)

≥ f(O)

(P + 2k + 1)(1 + 2δ)
− 5ε|Gi|.

Summing up over all i ∈ Aρ leads to the desired bound.

Suppose item i ∈ L spreads according to the diffusion network Gi = (V, Ei). Let i∗ =
argmaxi∈L |Ei|. By setting ε = δ/16 in Theorem 8, we have:

Theorem 5. In Algorithm 1, there exists a ρ such that

f(Sρ) ≥
max {ka, 1}

(2|L|+ 2)(1 + 3δ)
f(O)

where ka is the number of active knapsack constraints. The expected runtime to obtain the

solution is Õ
(
|Ei∗ |+|V|

δ2
+ |L||V|

δ4

)
.
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