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Abstract

Learning from the crowd has become increasingly popular in the Web and social media. There
is a wide variety of crowdlearning sites in which, on the one hand, users learn from the knowledge
that other users contribute to the site, and, on the other hand, knowledge is reviewed and curated
by the same users using assessment measures such as upvotes or likes. In this paper, we present
a probabilistic modeling framework of crowdlearning, which uncovers the evolution of a user’s
expertise over time by leveraging other users’ assessments of her contributions. The model allows for
both off-site and on-site learning and captures forgetting of knowledge. We then develop a scalable
estimation method to fit the model parameters from millions of recorded learning and contributing
events. We show the effectiveness of our model by tracing activity of ∼25 thousand users in Stack
Overflow over a 4.5 year period. We find that answers with high knowledge value are rare. Newbies
and experts tend to acquire less knowledge than users in the middle range. Prolific learners tend to
be also proficient contributors that post answers with high knowledge value.

Keywords: User modelling; Education; Markets and crowds; Social and information networks.

1 Introduction

“By learning you will teach; by teaching you will learn.”
—Latin proverb

Question answering (Q&A) sites, online communities, wikis and microblogs offer unprecedented
opportunities for people to learn about a wide variety of topics, acquire specialized knowledge or be
up to date with latest breaking news. A common feature shared by most of these platforms is that
knowledge is contributed by the crowd – it is crowdsourced – and it is also the crowd who reviews
and curates the contributed knowledge. For example, in Q&A sites, users can learn by reading answers
others post to their own or similar questions; in wikis, a set of editors write and review the content of
pages in a collaborative fashion, and this content is then publicly accessible to others; in microblogs,
users post small pieces of information, which can then be assessed by other users by means of likes,
shares or replies. All of the above are examples of crowdlearning, in which users can play the role of
a learner, a contributor, or switch between both. There have been many recent works on identifying
experts (or potential experts) in Q&A websites [15, 36] and microblogs [13, 25], as well as modeling
learning in controlled settings [6, 12]. However, general models of crowdlearning are largely inexistent
to date. Such models are of outstanding interest since they would allow us:

(i) to better understand how people learn over time and become experts;
(ii) to identify questions with high knowledge value, which systematically help users increase their

expertise;
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(iii) to investigate the interplay between learners and contributors.
In this paper, we propose a probabilistic generative model of crowdlearning, especially designed to
fit fine-grained crowdlearning event data [1]. The key idea behind our modeling framework is simple:
every time a user learns from a knowledge item contributed by other users, she may increase her expertise
and, as a consequence, her subsequent contributions be more knowledgeable and assessed more highly
by others in terms of, e.g., upvotes, likes or shares. Thus, by jointly modeling learning events, in
which users acquire effective knowledge, and contributing events (in short, contributions), in which
users contribute with their expertise to a knowledge item, our framework will reach the above mentioned
goals. In this work, we aim to measure those aspects of the learning process for which we have evidence
in the observed data, i.e., a measure of effective knowledge that leads to measurable increase in users’
effective learning. A general model of abstract knowledge and learning remains a challenging endeavor.

In more detail, we model each user’s expertise as a latent stochastic process that evolves over time
and think of the other users’ assessment of her contributions as noisy samples from this stochastic
process localized in time. Moreover, this stochastic process is driven by two types of learning: off-
site learning and on-site learning. The proposed formulation also captures characteristic properties of
the learning process, previously studied in the literature, such as forgetting [21] and initial expertise [30].
We then develop an efficient parameter estimation method that finds the model parameters that maximize
the likelihood of an observed set of learning and contributing events via convex optimization. Finally,
we show the effectiveness of our model by tracing learning and contributing events in data gathered from
Stack Overflow over a 4.5 year period. Our experiments reveal several interesting insights:

I. The knowledge value of items follow a log-normal distribution.
II. Users with very low or very high initial expertise, i.e., newbies and experts, tend to increase their

knowledge the least and, in contrast, users in the middle range tend to increase it the most. This
suggests that the learning curve may be sigmoidal, in agreement with existing literature [20].

III. Although there are fewer contributors than learners in absolute numbers, the distribution of knowl-
edge in the contributions is fat tailed while the distribution of knowledge learned is heavy tailed.

IV. Users who learn from high knowledge items are also more proficient at providing answers with
high knowledge value.

Related work. Our work lies in the intersection between expert identification, learning and knowledge
tracing and student modeling.

Identifying topical authorities or experts, i.e., users who provide high quality contributions, on
Q&A [15, 17, 26, 36] and microblogging sites [13, 25], has received a lot of attention recently. The prob-
lem of expert finding in Q&A sites was first studied by Zhang et al. [36], who formulated it as a ranking
problem and developed several PageRank based methods. Shortly after, Jurczyk and Agichtein [17]
tackled the problem using link analysis techniques. More recently, Pal and Konstan [26] approached the
problem from the perspective of supervised learning and developed Gaussian classification models to
distinguish between ordinary and (potential) experts users, and Hanrahan et al. [15] described a method
to find experts given a specific target question. In the context of microblogging, the problem of expert
finding was first studied by Pal and Counts [25], who proposed a set of features for characterizing con-
tributors and then formulated the problem using unsupervised learning in this feature space. Since then,
Ghosh et al. [13] mined Twitter users’ lists to find topical authorities and Kao et al. [19] and Paulina et
al. [27] leveraged temporal statistics on the users’ activity to identify experts. Finally, in the context of
web search, White et al. [34] studied how expertise influence search and Eickhoff et al. [9] investigated
how a user can increase her expertise as she looks for procedural and declarative knowledge using a
search engine. However, in contrast to our work, previous work on expert identification did not capture
the evolution of users’ expertise over extended periods of time nor accounted for the knowledge value
of their contributions.
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The interest in the field of modeling and measuring learning is very old and several paradigms have
been developed over the last century in the experimental psychology literature [10, 22, 24]. Most of the
research has, however, either happened in strictly controlled environments (i.e., schools or study groups)
or used centralized assessments (e.g., SAT or local testing). The work most closely related to ours is
knowledge tracing and student modeling, which has been carried on by researchers from the learning
analytics, educational data mining and intelligent tutoring communities. In this line of work, several
probabilistic models have been proposed: Bayesian knowledge tracing [8, 14, 31, 35], performance
factor analysis [28] and ensembles [5]. However, previous work typically relies on controlled assessment
and manually annotated knowledge items, even if allowing for different knowledge values per item [6].
Only very recently, Piech et al. [29] solved this limitation by resorting to recurrent neural networks to
model the learning of students, unfortunately, they use metrics that are not suitable for crowdlearning.

In summary, our goal here is a general understanding of crowdlearning dynamics, from uncover-
ing the evolution of users’ expertise over time and understanding the interplay between learning and
contributing, to identifying questions with a high knowledge value, which systematically help users to
increase their expertise. In contrast, previous work has focused either on identifying experts, not their
expertise evolution, or modeling learning of students in controlled environment with manually annotated
knowledge items.

2 A Crowdlearning Model

In a crowdlearning site, users often play two different functional roles: contributors and learners. In the
former role, they share their knowledge on a topic (or topics) with other users within the site; and, in
the latter role, they acquire knowledge by reading what other users contributed to the site. Then, we can
think of users’ expertise as latent stochastic processes that evolve over time, and think of the assessments
of their contributions to the site as noisy samples from these stochastic processes localized in time. Here,
we propose a modeling framework that uncovers the evolution of these processes by modeling two types
of learning:

I. Off-site learning, which accounts for the knowledge that the user accumulates outside the site;
and,

II. On-site learning, which accounts for the knowledge that the user gains by reading other users’
contributions within the site.

Next, we formulate our generative model, starting from the data it is design for.

Crowdlearning data. Given a crowdlearning site with a set of users U and a set of learning areas
(or topics) A, we first define a knowledge item q as the smallest quantum of knowledge a user can
learn from within the site. For example, in a Q&A site, a knowledge item corresponds to a question
and its answer(s); in Twitter, it corresponds to a tweet; and in a wiki site, it corresponds to a wiki
page. Intuitively, each knowledge item q provides certain (latent) knowledge value, kq ∈ R+, and
contains knowledge about a subset of topics Aq ∈ A. Here, we assume that knowledge is additive, i.e.,
kq =

∑
a∈Aq

kqa = wT
a kq, where kqa ∈ R+ is the knowledge value contained in item q about topic

a, kq = [kqa]a∈A, and wqa = 1 if a ∈ Aq and wqa = 0, otherwise. The model can be extended to
non-binary weights to represent fractional presence of topics in a knowledge item [7].

Then, we define two types of events: learning events, in which users acquire knowledge by reading
contributions by other users, and contributing events (or contributions), in which users contribute to the
crowd by sharing their knowledge. Formally, we represent each learning event as a triplet

l := ( u
↑

user

, t
↑

time

,

knowledge item
↓
q ), (1)
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which means that a user u ∈ U learned from knowledge item q at time t. Here, a knowledge item
q may contain one or more contributions by other users. For example, in a Q&A site, a knowledge
item corresponds to a question and its answers, typically contributed by different users. In a learning
event, we do not distinguish the knowledge provided by individual contributions, but instead, consider
the knowledge of the item as a whole. Moreover, note that, if the knowledge value of an item is zero,
the learning event will not increase the expertise of the learner. Then, we denote the history of learning
events associated to user u up to time t by Hlu(t) =

⋃
i:ti<t

{li | ui = u}, and the history of learning
events in the whole crowdlearning site up to time t byHl(t) =

⋃
i:ti<t

{li}.
Similarly, we represent each contribution as a quadruplet

c := ( u
↑

user

, t
↑

time

,

knowledge item
↓
q, s

↑
score

), (2)

which means that a user u ∈ U contributed to a knowledge item q at time t, and other users assigned a
score s to her contribution. For example, in a Q&A site, this may be the number of upvotes an answer
receives. We gather the history of contributions in the whole crowdlearning site up to time t byHc(t) =⋃
i:ti<t

{ci}, and the history of contributions and learning events up to time t byH(t) = Hc(t)
⋃
Hl(t).

Crowdlearning generative process. We represent each user’s expertise as a multidimensional (latent)
stochastic process e∗u(t), in which the a-th entry, e∗ua(t) ∈ R+, represents the user u’s expertise on topic
a at time t. Here, the sign ∗ means that the expertise e∗ua(t) depends on her learning historyHlu(t). Then,
every time a user u contributes to a knowledge item q at time t, we draw the contribution’s score from
a distribution p(s|Aq, e∗u(t)). Further, we represent the times of the learning and contributing events
within the site by two sets of counting processes, denoted by two vectors N l(t) and N c(t), in which
the u-th entries, N l

u(t) and N c
u(t), count the number of times user u learned from and contributed to

the crowdlearning site up to time t. Then, we can characterize these counting processes using their
corresponding intensities as

E[dN l(t) |H(t)] = λl(t) dt and E[dN c(t) |H(t)] = λc(t) dt
where dN l(t) := [dN l

u(t)]u∈U and dN c(t) := [dN c
u(t)]u∈U denote the number of learning and con-

tributing events in the window [t, t + dt) and λl(t) := [λlu(t)]u∈U and λc(t) := [λcu(t)]u∈U denote the
vector of intensities associated to all the users. Here, there is a wide variety of intensity functions one
can choose from [1]. However, modeling the times of learning and contributing events is not the main
focus of this work – we refer the reader to the growing literature on social activity modeling using point
processes [11, 33, 37]. Next, we specify the functional form of each user’s expertise e∗u(t) and the score
distribution p(s|Aq, e∗u(t)).
Stochastic process for expertise. The expertise e∗ua(t) of a user u on a topic a at time t takes the
following form:

e∗ua(t) :=

initial expertise︷︸︸︷
αua + µua · t︸ ︷︷ ︸

off-site learning

+

on-site learning︷ ︸︸ ︷∑
i:qi∈Hl

u(t)

kqia · κω (t− ti)

where the first term, αua ∈ R+, models the initial expertise of user u on a topic a when she joined the
crowdlearning site; the second term, µua ∈ R+, assumes a linear trend for the off-site learning process
as a first order approximation1; and, the third term models the knowledge a user acquires by means of
learning events within the crowdlearning site. Here, κω(t) is a nonnegative kernel function that models
the rate at which users forget the knowledge they learn from knowledge items. Following previous work
on the psychology literature [4, 21], which argues that people forget at an exponential rate, we opt for

1Several other shapes for the learning curve have been proposed in Heathcote, et al. [16]. However, we chose the linear form for its
simplicity and ease in model estimation, as suggested by Skinner [32].
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Figure 1: Statistics of learning events (LE), tags of learning events (LET) and tags of contributing events
(CET) in the Stack Overflow dataset. In Panels (c) and (d), the x-axis denotes the tag index in order of
popularity for each user.

an exponential kernel κω(t) := exp(−ωt)I(t ≥ 0). However, our model estimation method does not
depend on this particular choice.

For compactness, we write each user’s expertise as a row vector of length |A|, i.e.,

e∗u(t) = αu + µu · t+
∑

i:qi∈Hl
u(t)

kqi · κω(t− ti) (3)

where αu = [αua]a∈A, µu = [µua]a∈A and kqi = [kqia]a∈A. Here, by definition, kqia = 0 if a /∈ Aqi .
Then, we can gather the model parameters for all users in three matricesα, µ and k with sizes |U|×|A|,
|U| × |A| and |Q| × |A|.
Score distribution. Given a contribution c = (u, t, q, s), the particular choice of score distribution
p(s|Aq, e∗u(t)) depends on the observed data. In this work, we consider discrete non-negative scores, s ∈
N, which fit well several scenarios of interest. For example, in Stack Overflow, scores may correspond
to the number of upvotes that answers receive; in Twitter, to the number of likes or retweets that tweets
receive; and, in Pinterest, to the repins that a pin receives. A natural choice in such cases is the Poisson
distribution:

p(s|Aq, e∗u(t)) ∼ Poisson

(
wT
q e
∗
u(t)

wT
q 1

)
, (4)

Here, 1 is a column vector of ones with length |A|. With this choice, the average of the score distri-
bution is simply the average expertise of user u at time t across the topics Aq the knowledge item q is
about. Moreover, the greater the expertise of a user, the greater the scores given by other users to her
contributions, as one may expect in real-world data.

Note that depending on the recorded data, we could choose a different score distribution, e.g., for
continuous assessments like time elapsed between the question and the answer, one may choose a con-
tinuous distribution. Our model estimation method in Section 2 can be easily adapted to any distribution
that is jointly log-concave with respect to the model parameters α, µ and k.

Efficient Parameter Estimation. Given a collection of learning and contributing events, Hl(T ) and
Hc(T ), recorded during a time period [0, T ), we find the optimal model parameters α, µ and k by
solving the following maximum likelihood estimation problem:

maximize
α≥0,µ≥0,k≥0

L(α,µ,k), (5)

where we compute the log-likelihood L(α,µ,k) using Eq. 3 and Eq. 4, i.e.,

L(α,µ,k) =
∑

(u,t,q,s)
∈Hc(T )

s · log

(
wT
q e
∗
u(t)

wT
q 1

)
−
wT
q e
∗
u(t)

wT
q 1

. (6)
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Figure 2: In (a), estimated and true expertise evolution for a user, picked at random, in the 1-tag syn-
thetic dataset. In (b) & (c), estimated (y-axis) against true (x-axis) knowledge item values. Each point
corresponds to a knowledge item variable, and the line defined by x = y corresponds to zero estimation
error. Our estimation method achieves Spearman’s correlations ρ1-tag = 0.74 and ρ10-tag = 0.64.
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Figure 3: Estimated (y-axis) against true (x-axis) model parameters for the 1-tag synthetic datasets.
Each point corresponds to a user’s (a) trend µu or (b) baseline αu variable, and the line defined by
x = y corresponds to zero estimation error. Our estimation method achieves a Spearman’s correlation
ρµ = 0.82 and ρα = 0.89. The results for 10-tag synthetic datasets are qualitatively similar.

Since e∗u(t) is linear in the model parameters α,µ and k, the function log x − x is concave, and
a composition of a linear function with a linear combination of concave functions is concave, the opti-
mization problem above is jointly convex in α, µ, and k. As a consequence, the global optimum can
be efficiently found by many algorithms. In practice, the limited memory BFGS with bounded variables
(L-BFGS-B) algorithm [38] worked best for our problem.

Remarks. In this work, we are measuring effective learning, which accounts for the ability of a user to
get better assessment of her posts, and effective knowledge, which accounts for the gain in this ability
that learning from a knowledge item causes. Making these quantities correspond to real-life expertise
and knowledge value on a crowdlearning website requires careful mapping from the features on that
website to learning events and scores.

Moreover, using our model, one can only measure learning and knowledge if there is overlap be-
tween the topics of a user’s learning and contributing events. Therefore, there is a trade-off between the
granularity of the topics chosen and the amount of data available for inference: increasing the granular-
ity ensures accurate mappings between learning and contributing events, but reduces the amount of data
available to learn the model parameters. We discuss this further in Section 5.
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Figure 4: Estimated against true model parameters for the 1-tag synthetic dataset. Panels (a) and (b)
show the correlation (CR) between the estimated and true model parameters against number of learning
events and median number of contributions per knowledge item, respectively. Panel (c) shows the RMSE
for the estimated trends, µ, against number of contributed events per user. In Panel (a), the number of
contributing events is 255,000 and the red dotted line shows the threshold (10) we chose for the learning
events per knowledge item in our dataset (see Section 4). In Panels (b) and (c), the number of learning
events is always 13,000 and the red dotted lines show the median number of contributions per knowledge
item and the minimum number of contributions per user in the experiments on our dataset, respectively
(see Section 4).

3 Experiments on synthetic data

In this section, we first show that our model estimation method can accurately recover the true model
parameters from learning and contributing events generated under realistic conditions. We then show
that, as long as there are a sufficient number of contributions per learning event, the estimation becomes
more accurate as we feed more events into the estimation procedure. Finally, we show that our estimation
method can easily scale up to millions of users, knowledge items, and learning and contributing events.

Experimental setup. We carefully craft an experimental setup to closely mimic some of the empirical
patterns observed in real crowdlearning data, as given by Figure 1. Here, for simplicity, we assume the
topics associated to each knowledge item are specified by means of tags.

Given a set of users and knowledge items, we draw the users’ offsite learning rates {µua} and initial
expertise {αua} from U(0, 5) and U(0, 1), and the knowledge value of the items from the rescaled
log-normal distribution 0.05 × lnN (0, 1). These choices ensure that the distribution of scores which
users receive resembles the distribution in real data. We set the users’ forgetting decay rate to ω =
(11.6 days)−1, such that 50% of the knowledge is forgotten roughly after the first week, and assume that
the intensities of both users’ learning and contributing events are (homogeneous) Poisson processes.
We denote the total simulation time by T . We set each user’s learning event rate to T/n, where n
is drawn from a log-normal distribution, so that the number of events per user fits well the empirical
distribution (see Figure 1b), and each user’s contributing rate to T/m, where m is drawn from an
uniform distribution for easy control. Finally, for each user, we shuffle the tag labels and set her tag
learning propensity, defined as the probability that she up-votes a knowledge item with a given tag, and
her tag contributing propensity, defined as the probability that she contributes to a knowledge item with
a given tag, using the empirical distributions (see Figures 1c and 1d).

Then, we generate learning and contributing events as follows. First, we generate the timings of
each user’s learning events by drawing samples from the corresponding Poisson process, and assign
each learning event to a knowledge item such that the user’s tag learning propensity is satisfied. Then,
we generate the timings of each user’s contributions by drawing samples from the corresponding Pois-
son process, assign each contributing event to a knowledge item such that the user’s tag contributing
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Figure 5: Running time (RT) of our model estimation method. In Panel (a), we consider ∼2 million
contributing events while varying number of learning events (and knowledge items); in Panel (b), we
consider ∼1.8 million learning events while varying the number of contributions (per learner). For
pre-processing, we used ten machines with 48 cores and, for the optimization itself, we used a single
machine with 48 cores. The memory requirements were below 16 GB at all points of the pre-processing
and optimization.

propensity is satisfied, and draw the quality score from a Poisson distribution that depends on the user’s
expertise on the item tags at the time of the event, as given by Eq. (4). Unless explicitly stated, we only
consider knowledge items with at least 10 associated learning events. Given this data, our goal is to
find the knowledge value of the items users learned from, as well as the users’ offsite learning rates and
initial expertise by solving the maximum likelihood estimation problem defined in Eq. (5).

Parameter estimation accuracy. We evaluate the accuracy of our model estimation procedure across
all users and knowledge items for a 1- and 10-tag dataset with ∼800 knowledge items. Figure 2 sum-
marizes the results for the estimation of the knowledge item values by means of two scatter plots. In
all cases, we find that points lie close to the line x = y, i.e., their estimation error is close to zero. We
also observe that the estimation of knowledge items in the 10-tag dataset is more challenging than in the
1-tag dataset. Additionally, Figure 3 summarizes the results for the estimation of the user’s expertise
baseline and trend variable for the 1-tag dataset using scatter plots. Results for the 10-tag dataset are
qualitatively similar although the estimation is more challenging. In particular, if we look at the estima-
tion of the knowledge values, trends and baseline for the 1-tag dataset, our estimation method achieves
a Spearman’s correlations ρk = 0.74, ρµ = 0.82 and ρα = 0.89 while, for the 10-tag dataset, it achieves
ρk = 0.64, ρµ = 0.76 and ρα = 0.81. This is most likely due to the mixing of tag knowledge variables
within the same knowledge item, i.e., the linear combination of knowledge variables in Eq. (6).

Parameter estimation accuracy vs. number of learning events. In our model, we can think of learn-
ing events as measurements of the amount of knowledge in a knowledge item, which are accumulated
over time in the users’ expertise, and of contributing events as noisy samples of the users’ expertise at
particular points in time. Therefore, intuitively, the more users learn from a knowledge item the easier it
should become to accurately estimate their associated knowledge value, as long as these users also con-
tribute to other knowledge items with overlapping topics. Figure 4a confirms this intuition by showing
the Spearman’s correlation against minimum number of learning events per knowledge item in a 1-tag
dataset with 255,000 contributions.

Parameter estimation accuracy vs. number of contributing events. As pointed out above, we can
think of the score of contributing events as noisy samples of users’ expertise at particular points in
time. Therefore, one may expect the accuracy of our model parameter estimation to improve as the
number of contributions increases, due to a more fine-grained sampling of each user’s expertise. Fig-
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ure 4b gives empirical evidence that this indeed happens, by showing the Spearman’s correlation against
average number of answers per learning event in a 1-tag dataset with 13,000 learning events. Figure 4c
shows how the RMSE of the estimation of µ decreases as the number of contributions made by the user
increases.

Scalability of parameter estimation. Crowd-learning sites such as Stack Overflow or AskReddit are
rapidly increasing their number of active users, questions and answers. For example, Stack Overflow
recently crossed the ∼10 million questions mark2. The pre-computation of all coefficients in Eq. (6),
which is the running time bottleneck, can be readily parallelized. Figure 5 shows that our model estima-
tion method easily handles up to millions of learning events and contributing events, and scales almost
linearly with the number of learning events and contributions.

Thus, it should be possible to scale up our estimation method even further.

4 Experiments on Real data

In this section, we apply our model estimation method to a large-scale crowdlearning dataset from Stack
Overflow. First, we evaluate our model quantitatively by means of a prediction task: given two different
answers to a question, predict which one will receive a higher score. Then, we discuss the distribution
of the knowledge values and the effect of the kernel parameter on the estimation, identify different types
of learners and derive insights into their main characteristics. Finally, we study the interplay between
learners and contributors in crowdlearning sites and investigate to which extent users switch between
learning and contributing over time.

Data description. Our Stack Overflow dataset comprises∼8 million questions,∼13.7 million answers,
and ∼47.2 million upvotes. These questions and answers were posted by ∼1.9 million users during a
six year period, from the site’s inception on July 31, 2008 to September 14, 2014. Importantly, for each
upvote, our dataset contains its associated user identity, question or answer identity and timestamp3.
We discard the events which happened before 2010-01-01 (before the site had fully matured) and after
2014-06-01 (the extent of the data-dump we had access to). Whenever in the data a user upvotes (writes)
an answer, we record it as a learning (contributing) event involving the user and the knowledge item
containing the answer. Moreover, we select the number of upvotes a user’s answer received in the first
week after posting it as the score of the contribution; downvotes were discarded because they constitute
less than 3% of total votes cast. Here, we consider only the first week of voting to prevent old contribu-
tions from gaining an unfair advantage as they have more time to accumulate upvotes. Figure 1 provides
general statistics on learning and contributing events and tags usage. We find that the learning events
per user (per question) follow a log-normal (power-law) distribution. As shown, the tag usage is highly
skewed towards few tags; most users contribute and learn only from their favorite tags.

Data preprocessing. In Section 3, we have shown that the accuracy of our estimation method depends
dramatically on the number of learning and contributing events per question and user (refer to Figure 4).
As a consequence, we can only expect our model estimation method to provide reliable and accurate
results in real data if the data we start with contains enough learning and contributing events per question
and user. To this aim, we carefully pre-process our large-scale dataset of learning and contributing
events. We only consider:

(i) Knowledge items with more than 10 associated learning events, which corresponds to a correlation
value ≥ 0.8 between true and estimated knowledge parameters in synthetic data, as shown in
Figure 4a.

2http://meta.stackoverflow.com/questions/303045/10-million-questions
3Stack Overflow generously gave us access to these additional metadata, which allows us to readily fit our model.
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Score difference # of pairs Off-site only Our model

≥ 1.0 31,639 52.5% 61.9%
≥ 2.0 19,253 52.9% 64.8%
≥ 3.0 10,804 53.2% 67.0%
≥ 4.0 5,910 53.7% 70.7%
≥ 5.0 3,250 55.0% 71.6%
≥ 6.0 1,935 56.0% 73.3%
≥ 7.0 1,159 56.8% 73.8%

Table 1: Performance of our model against a linear baseline model at predicting which one of two
answers to a question will receive a higher score. As the difference in score between the answers
(and, hence, the users’ expertise) increases, the competitive advantage of our model becomes more
pronounced.

(ii) Users that contribute (answer) more than 20 times in at least 10 unique months, which corresponds
to a RMSE value ≤ 2 for the estimated users’ baseline and trend parameters in synthetic data, as
shown in Figure 4c; and,

(iii) Top 10 tags in terms of number of learning events in the recorded data (i.e., java, c#, javascript,
php, android, jquery, python, html, c++, and mysql).

After these preprocessing steps, our dataset consists of ∼25 thousand users who learn from ∼66 thou-
sand knowledge items by means of ∼1.4 million learning events, and contribute to ∼2.5 million knowl-
edge items, by means of ∼3.8 million contributing events. Then, we correct for the overall decreasing
trend on number of upvotes per answer over time4 and since, for each knowledge item, most learn-
ing events occur after all the contributions (answers) to the knowledge item took place, we assume its
knowledge value to be constant. We use the first event of each user in our dataset as as an estimate of
her joining time.

Finally, we would like to highlight that the preprocessing steps above do not aim to reduce the size of
the original dataset but to increase the accuracy of our estimated model parameters and the reliability of
our derived qualitative insights — our model estimation method does easily scale to millions of learning
and contributing events. In this case, the pre-processing of the raw data using five machines with 48
cores each took ∼30 minutes and our estimation method, implemented using the Intel MKL libraries,
took ∼11.5 hours on a single machine with 48 cores. The memory requirements were below 16 GB at
all points of the pre-processing and optimization.

Quantitative evaluation. We evaluate our model quantitatively by means of the following prediction
task: given two different answers to a question, predict which one will receive a higher score, i.e., more
number of upvotes in the week after posting it.

— Experimental setup: We train our model using the first 80% of the answers provided by each
learner, as well as the learning events which occurred before them. Then, we match pairs of answers to
the same questions from the remaining 20% and predict which one will receive a higher score. Here, we
only consider questions with pairs of answers provided by users from our dataset such that their scores
differ by at least one upvote. There are ∼32 thousand such pairs in our dataset. Finally, we compare our
model against a baseline linear model which only accounts for off-site learning to show the benefits of
including knowledge item variables.

— Results: Table 1 compares the performance of our model against the baseline model as the differ-
ence in score between the answers (and, hence, the users’ expertise) increases. Our model consistently

4The number of upvotes per answer decreases over time because the number of answers grows at a faster rate than the number of learners.
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Figure 6: Estimated knowledge values for knowledge items and useful upvotes for two different kernel
parameters, with half-life 0.5 days (12 hours) and 90 days. Panel (a) shows the distribution of knowledge
value per knowledge item follows a log-normal distribution with longer half-life leading to smaller
knowledge values and higher sparsity. Panel (b) shows what fraction of upvotes were useful (i.e., led to
learning) per learner: higher half-life leads to higher sparsity, which leads to fewer fraction of upvotes
causing effective learning.
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Figure 7: Negative log-likelihood plotted for different values of kernel parameter (expressed as half-life
in days). The y-axis shows the relative difference with respect to the minimum value. The likelihood
nearly plateaus (∼1%) for half-life between 0.5 and 90 days. The results we present are robust to
parameter changing within the range and we chose 7 days as a representative value.

outperforms the baseline for any score difference and the competitive advantage becomes more pro-
nounced as the score difference increases, reaching >73% accuracy when the score difference is ≥6.

Knowledge value and forgetting rate. In this section, we leverage our model to give insights on the
knowledge values across items in Stack Overflow for different forgetting rates, i.e., the kernel decay
parameter ω. We express the kernel decay parameter ω in units of half-life in days, i.e., the time to
forget 50% of the knowledge in an item. Figure 6a shows the distribution of estimated knowledge
value across knowledge items for two kernel parameters with half-life 0.5 days and 90 days. We find
several interesting patterns. Knowledge values in both settings follow a log-normal distribution, in which
∼10% of the items account for ∼75% of the overall knowledge. However, while for a half-life of 0.5
days, ∼53% of the knowledge items do not contribute knowledge, this fraction increases to ∼70% for
90 days. A potential explanation for this difference is that, by increasing the half-life, a knowledge item
must show evidence of effective learning over longer stretches of time to contribute knowledge and this
happens more rarely. As a consequence, a smaller fraction of upvotes lead to effective learning (i.e.,
being useful) when the half-life is high, as shown in Figure 6b – when the half-life is 0.5 days (90 days),
42% (24%) of upvotes lead to learning.

In the remaining sections, for ease of exposition, we set the kernel parameter such that the half-life
of knowledge is 7 days (refer Figure 7), however, the insights obtained in the following sections are
robust to changes in the kernel parameter.

Types of learners. Here, our goal is to better understand the type of learners that use crowd-learning
sites as well as their characteristic properties. To this aim, we start by visualizing the estimated learning
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(b) Expert: (Avg. knowledge / contribution: 0.034)
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(c) On-site learner (on-site learning: 55%)
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(d) Off-site learner (on-site learning: 0.4%)

Figure 8: Estimated learning trajectory for four characteristic Stack Overflow users. The (average)
learner (a) contributes answers with much less knowledge value than the expert (b), i.e., 0.005 vs 0.034.
The on-site learner (c) acquires 55% of her knowledge by learning from items in Stack Overflow in
contrast with the off-site learner (d), who only learns 0.4% of her knowledge by those means. Day 0 in
the plots is the date 2010-01-01.

trajectory for four different users — an average learner, an on-site learner, an off-site learner and an
expert — in Figure 8. Each of the users exhibits different characteristic properties. For example, the
average learner contributes answers with much less knowledge value (0.005) than the expert (0.034),
and the on-site learner acquires 55% of the knowledge by learning from items in Stack Overflow in
contrast with the off-site learner, who only learns 0.4% of the knowledge by those means.

Next, we investigate the interplay between on-site and off-site learning across all users. Here,
given user u, we define on-site learning as the total expertise gathered by reading the knowledge
items,

∑
a∈A

∑
q∈Hl

u(T )

∫
kqaκω(t) dt, off-site learning as the expertise gathered outside Stack Over-

flow,
∑

a∈A
∫
µuat dt, and overall learning as the sum of both. One can think of these quantities as the

aggregate number of upvotes (i.e., score) users would have received on the site through either their on or
off-site learning if they were posting answers at the same rate. Note that unlike the reputation on Stack
Overflow, which is a measure of how much a user has effected others on the site, the on-site and off-site
learning reflects how much a user has learned. Figure 9a compares users’ on-site and off-site learning by
means of a box plot. For x ≤ 2000, users achieving higher on-site learning also achieve higher off-site
learning, but over x > 2000, off-site learning becomes more dominant. Our results seem to indicate that
quick learners rely less on on-site learning, in relative terms.

Finally, we investigate the role that a user’s starting expertise plays on her overall learning over time
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Figure 9: Behavior of learners in for tag c#. Panel (a) compares users’ on-site and off-site learning in
a box plot. For x ≤ 2000, users achieving higher on-site learning also achieve higher off-site learning,
however, over x > 2000, users off-site learning becomes more dominant. Panel (b) shows users’ overall
learning against starting expertise in a box plot. Users with very low or very high initial expertise, i.e.,
newbies and experts, tend to increase their knowledge the least, in contrast, users in the middle of the
range tend to increase it the most. In both panels, the limits of the boxes are the 25%–75% percentiles
and the red dashed lines shows the median value.

by means of a box plot, shown in Figure 9b. Here, the x-axis corresponds to a user’s starting expertise,
αu, and the y-axis to her overall learning. Interestingly, we find that users with very low or very high
initial expertise, i.e., newbies and experts, tend to increase their knowledge the least, in contrast, users in
the middle of the range tend to increase it the most. This is in agreement with previous research, which
indicated that in presence of only positive reinforcement, the gain in expertise has a sigmoidal shape for
learners, i.e., the newbies and experts increase their expertise at lower rates than learners with medium
levels of expertise [20].

Learners vs contributors. A crowd-learning site is only useful if it has both learners and contributors.
Here, we investigate two natural questions that emerge in such context:

I. Are learners and contributors equally common?

II. Are more prolific learners better contributors?

To answer the first question, we compute the distribution of learned and contributed knowledge per
user. Here, we estimate the knowledge value of each contribution (i.e., answer) in a knowledge item
by dividing the total knowledge item value across contributions proportionally to their quality scores
(upvotes). Figures 10a and 10b summarize the results. Although, in absolute numbers, there are more
learners than contributors in our dataset, the amount of knowledge fed into the site by the contributors
shows higher variability than the knowledge learned by users – the distribution of contributed knowledge
is fat tailed (α ≈ 2.26).

Next, we investigate the second question and assess whether more prolific learners are better contrib-
utors. To do so, we calculate the average knowledge value per contribution across users that have learned
similar amount of knowledge over time, i.e., sum of the knowledge value of all the knowledge items the
user learned from,

∑
a∈A

∑
q∈Hl

u(T )
kqa. Figure 10c shows that the users that learn more knowledge are

also more proficient at producing high knowledge contributions. In other words, our results suggest that
“by learning you will teach; by teaching you will learn.”
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Figure 10: Learners vs contributors in Stack Overflow. Panels (a) and (b) show the distribution of
overall learned and contributed knowledge per user. The former follows a log-normal distribution (µ ≈
1.39, σ ≈ 1.09), while the latter follows a power-law (α ≈ 2.26, xmin ≈ 1.84). This shows that through
the contributors are fewer in number than learners in absolute terms, they show much higher variability.
Panel (c) shows a user’s average knowledge value per contribution against overall learned knowledge in
a box plot. The red dotted line shows the median values and the box limits are the 25%–75% percentiles.
Interestingly, the users that learn more knowledge are also more proficient at producing high knowledge
contributions.

5 Discussion

In this section, we take a step back and discuss the limitations of our model. First, we remark that, due
to the large number of parameters in the model, it is necessary to have access to large amount of data for
our model estimation method to be accurate. However, this limitation can be overcome, to some extent,
by linking expertise of a user across different platforms or sites (e.g., MOOCs), i.e., our model can easily
assimilate traces available for the same user from those sites.

In our model, it is also crucial that the score reflects the true assessment of the knowledge content
of the item and not of, say, the popularity of the contributor. In the case of Stack Overflow, which is
a strict and self-regulated community, upvotes are seldom granted to answers which do not address the
question — cases of serial upvoting are caught and remedied quickly which (mostly) prevents users from
voting as a thank you gesture. As a consequence, on Stack Overflow, upvotes on answers are a good
assessment of the quality of the posts. However, a sensible choice for scores in platforms or sites with
milder self-regulation may be challenging.

Finally, the learning events also need to be chosen such that they are not conflated with other objec-
tives the user may have on the website. On Stack Overflow, if a user only upvotes a question, it indicates
that she relates with the problem but none of the answers (if any) provide a solution. However, upvoting
an answer is evidence that the Q&A pair taught the user something.

These unique features and mechanisms afforded by Stack Overflow allow us to easily identify learn-
ing events and assessments. Finding similar features in a different social network would require careful
reasoning and justification.

6 Conclusions

In this paper, we proposed a probabilistic model of crowdlearning, naturally designed to fit fine-grained
learning and contributing event data. The key innovation of our model is modeling the evolution of users’
expertise over time as a latent stochastic process, driven by both off-site and on-site learning. Then, we
developed a scalable estimation method to fit the model parameters from millions of recorded learning
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events and contributions. Finally, we applied our model to a large set of learning and contributing events
from Stack Overflow and found several interesting insights. For example, items with high knowledge
value are rare. Newbies and experts acquire less knowledge than users in the middle range. Prolific
learners tend to be also proficient contributors that share knowledge with high knowledge value.

Our work also opens many interesting venues for future work. For example, natural follow-ups to
potentially improve the expressiveness of our modeling framework include:

1. Consider more complex off-site learning trends, e.g., isotonic regression [18] or exponential/power-
law [16].

2. Allow for a knowledge item to have different knowledge values per user by considering a knowl-
edge distribution per item, and use Bayesian inference [23] to learn the model parameters.

3. Perform a non-parametric estimation of the kernels that model the users’ forgetting process. We
expect this to allow clustering of knowledge items which provide short-lived and long-lasting
knowledge.

4. Incorporate incentives mechanisms such as badges, which are often used in crowdlearning sites [2]
and MOOCs [3].

One of the key modeling ideas behind our framework is realizing that users’ contributions can be viewed
as noisy discrete samples of the users’ expertise at points localized (non uniformly) in time. We could
generalize this idea to any type of event data and derive sampling theorems and conditions under which
an underlying general continuous signal of interest (be it user’s expertise, opinion, or wealth) can be
recovered from event data with provable guarantees. Finally, we experimented with data gathered ex-
clusively from Stack Overflow. It would be interesting to apply our model to Stack Exchange at large, to
other questions and answers websites (e.g., AskReddit), microblogging platforms (e.g., Twitter), social
networking sites (e.g., Pinterest), or even offline crowdlearning networks (e.g., citation network).

Acknowledgements. The authors would like to thank Sam Brand from Stack Overflow for providing
data to make this work possible.
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