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We have examined and confirmed the previously unexplored concept of using measured projected 

ranges of ions implanted in solids to derive a quantitative description of nuclear interaction and 

electronic stopping. The idea was to perform Monte Carlo calculations of range distributions and to 

search for those input parameters that generate, over a wide band of energies, the best possible 

agreement with accurate experimental range data. The projectile-target combination studied was 11B 

in Si, in which case 98 data contained in 12 sets reported by 10 different groups were compiled 

between 1 keV and 8 MeV. Detailed examination revealed set-wise systematic errors up to ± 8%. 

Their removal resulted in a refined data base with 93 ranges featuring only statistical uncertainties 

(mean standard deviation 1.8%; five outliers not considered any further). Ultimately, the Monte Carlo 

calculations reproduced the 93 refined ranges very well, with a mean ratio of 1.002 ± 1.7%. The input 

parameters required to achieve this very high level of agreement were identified to be as follows. 

Nuclear interaction is best described by the Kr-C potential, but only when used in obligatory 

combination with the Lindhard-Scharff (LS) screening length. Up to 300 keV the electronic stopping 

cross section is proportional to the projectile velocity, i.e., LS-type, Se = kSe,LS, with k = 1.46 ± 0.01. 

At higher energies Se falls progressively short of kSe,LS. Around the Bragg peak, i.e., between 0.8 and 

10 MeV, Se is described by an adjustable function with fit parameters selected to tailor the peak shape 

properly (flat-topped region between 1.5 and 5 MeV). The reliability of our results is confirmed by 

showing that calculated and measured isotope effects for ranges of 10B and 11B in Si agree within 

experimental uncertainty (± 0.25%). Furthermore, the range-based Se,R(E) reported here predicts the 

scarce experimental data derived from energy loss in projectile transmission through thin Si foils to 

within 2% or better. By contrast, Se(E) data available from different types of stopping power tables 

must be rated inaccurate, the deviations from Se,R(E) ranging between – 40% and + 14%.    
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I. INTRODUCTION 

Recent studies on the slowing-down of energetic ions in matter have addressed a wide variety of 

topics. Arranged roughly in the order of increasing projectile energy or velocity, noteworthy 

examples include the following: the correlation between electronic stopping and ion induced electron 

emission [1,2,3], the role of s and d electrons in electronic stopping of slow protons and deuterons 

[1,4,5,6,7], systematic differences in electronic stopping of low-energy H+ and He+ ions [6,8], the 

importance of exact knowledge of nuclear stopping (screening length) in low-energy ion scattering 

[9], the applicability of the reciprocity approach [10] for predicting ranges of slow heavy ions in 

compounds [11,12,13], modelling of range distributions in crystalline silicon [14], and measurements 

and interpretation of electronic stopping of low- and medium-mass ions in solids at energies around 

the Bragg peak and below [15,16,17]. However, reasonably accurate knowledge of electronic 

stopping cross sections Se is still available merely for a very limited number of projectile-target 

combinations, often within narrow ranges of energy.  

The standard approach to determining Se is to measure the amount of energy lost by energetic 

ions on passage through thin foils [18,19] or gas cells [20]. Issues in such studies are the adequate 

extraction of the relevant quantity from the measured loss spectrum (mean versus most probable 

loss), the homogeneity in composition and the uniformity in thickness of the foil, and proper 

consideration of contributions due to nuclear stopping [21]. Quite generally, the method is reasonably 

accurate only at energies well above the maximum of the nuclear stopping cross section Sn. This is 

the main reason for the scarcity of data on electronic stopping of heavy ions in medium-mass and 

heavy-atom targets at energies below the Bragg peak. The stopping and range tables contained in the 

popular library ‘The Stopping and Range of Ions in Matter’ (SRIM) [22] constitute an attempt to 

construct the desired information from data available for low-mass projectiles and targets [23]. 

Regrettably, the stopping data delivered by SRIM are derived on the basis of the incorrect assumption 

that theoretical concepts valid for describing electronic stopping at energies above the Bragg peak can 

be extrapolated down to the lowest energies of interest. The predicted data are often in error by as 

much as a factor of two, if not more [23].  

Given this situation one may wonder whether there are alternative ways to determine stopping 

cross sections, preferably with free choice of projectile and (solid) target material and basically with 

no restrictions in terms of energy. The purpose of this study was to examine a universally applicable 

approach that has not been considered in any detail before. The idea is to first collect measured range 

data for the chosen projectile-target combination, covering as many orders of magnitude in energy as 
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possible. This set of data then serves as the basis for adjusting and refining the input parameters of 

Monte Carlo calculations performed to calculate range distributions. The approach described here 

differs completely from the commonly applied method of comparing measured range data with the 

predictions of SRIM. The intention is not to evaluate the level of agreement or disagreement with 

calculations involving questionable or poorly defined input parameters but rather to determine the 

contributions of nuclear interaction and electronic stopping to the observed ranges with an accuracy 

of 3% or better.  

 

II. BASIC ASPECTS 

Given the ambitious goal of this study it is very important to understand how the ranges of 

implanted ions respond to changes in nuclear and electronic stopping. Quite generally one must take 

into account that ranges contain integral information on stopping, as opposed to differential energy 

losses determined by beam transmission through a foil. To derive reasonably accurate knowledge on 

nuclear stopping it is necessary to have access to data on mean ranges down to few nanometers. The 

projectile-target combination discussed in this work is B implanted in Si, the main reason being that 

useful range data are available for wide region of energies, from 1 keV to 8 MeV. Furthermore, 

several sets of results have been reported for both 10B and 11B in Si, so that the presence or absence of 

isotope effects in ranges can be used to check the validity of results obtained with the major isotope 

alone.  

For an overview on the energy dependence of nuclear and electronic stopping Fig. 1 shows Sn 

(open circles), Se (solid triangles) and the sum Sn+Se  (gray line) according to the data tables of SRIM.  

Even though the accuracy is not satisfactory [23], the data serve well to discuss general trends. Sn is 

proportional to the mean energy ‹ΔE› lost by the projectile (energy E, mass M1, atomic number Z1) in 

elastic collisions with target atoms (M2, Z2). Normalized to passage through one nominal monolayer 

we have Sn = ‹ΔE›/n2/3, where n is the number density of target atoms. According to theoretical 

predictions of Lindhard and Scharff (LS) [24], Se is commonly assumed to be proportional to the 

projectile velocity υ, as long as 3/2
10Zυυ <  (Bohr velocity υ0), or 34

11 25ZME < keV/u. Absolute 

differences between experiment and theory are accounted for by a correction factor k, i.e., Se = kSe,LS. 

SRIM basically proceeds along this line, but frequently with unexplained, rather strange 

modifications of kSe,LS [23]. An example of moderate magnitude is the hump seen in Fig. 1 at 

energies around 50 keV.  
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For H+, D+, and He+ incident on metals, velocity-proportional electronic stopping has been 

observed down to velocities as low as 0.1υ0, often with a change in gradient at about 0.2υ0 (E/M1 = 1 

keV/u), attributed to the onset of stopping due to d electrons [1,4-7]. For B in Si similar threshold 

effects have not (yet) been reported. Nevertheless, the consequences of such a ‘break’ in Se(υ) deserve 

attention. A conceivable velocity dependent form of Se, with a change in slope at 0.2υ0 (11 keV 11B), 

is shown in Fig. 1 as a dashed line, labeled Se,k.  

 
FIG. 1. Energy dependent nuclear and electronic stopping of 11B in Si (SRIM, version 2006.02). 

The short-dashed line represents the hypothetical case of two-step velocity-proportional stopping 
with a kink at 11 keV.  
 

Going up in energy, towards and beyond the upper limit of velocity-proportional electronic 

stopping, we are dealing with partially stripped ions. Optimum theoretical treatment of the relevant 

phenomena is an ongoing challenge [25]. Turning to the low-energy end of the data in Fig. 1, i.e. 

below 1 keV, Sn exceeds Se by up to a factor of about five. Interestingly, the ratio Sn/Se becomes 

roughly constant at very low energies, E < 0.1 keV. Hence, even when measured at very low 

energies, ranges must be expected to contain a sizable contribution due to electronic stopping.    

With stopping cross sections at hand, one may estimate ranges using simplified theoretical 

concepts. According to the continuous slowing-down approximation [25,26], the total range R may be 

written  

 ( )∫
+

=
0

en )'()'(
'd

E ESESn
ER . (1) 

Ranges thus obtained numerically with the stopping data of Fig. 1 are presented in Fig. 2. The 

simplest case is the range Re = R(Se) calculated in the absence of nuclear stopping, open triangles in 

Fig. 2. Such data are of relevance in studies on ranges in single crystals under channeling conditions 



5 

 

[14]. Taking Sn into account, the total range Rn,e = R(Sn+Se) in amorphous material drops by a factor 

of about six at the lowest energies (gray line). With increasing energy Rn,e approaches Re, but even at 

about 600 - 700  keV, where Sn amounts to only 1% of Sn+Se, the total range is 15% lower then Re. 

Hence it is not at all justified to ignore the contribution of nuclear stopping to the range at ‘high’ 

energies at which electronic stopping strongly dominates [25]. As to the ability of detecting deviations 

of Se from an initially assumed energy (velocity) dependence, the 45% difference between Se and the 

hypothetical case Se,k (Fig. 1) gives rise to a detectable 8%-difference in range below the kink at 11 

keV, dashed line in Fig. 2. The difference increases to as much as 27% between 40 and 60 keV, easy 

to identify in range data of proper quality.  

 
FIG. 2. Total and projected ranges of 11B in Si estimated using a simple analytical approach in 

combination with the stopping cross sections of Fig. 1. For details see text.  
   

Up to now the discussion has been of limited relevance because only total ranges were 

considered. To estimate measured projected ranges, the assumption was made that the effect of 

scattering in elastic collisions can be simulated by enlarging Sn to become Sn/rp,t, where rp,t = Rp/R is 

the projection factor. For 11B in Si this M2/M1 dependent factor is rp,t = 0.4 ± 0.02 according to range 

studies [27], in good agreement with theoretical predictions [28]. The projected ranges thus obtained 

are shown in Fig. 2 as small solid circles. They agree remarkably well with the open squares which 

represent the mean projected ranges derived from range distributions calculated using the Monte 

Carlo code TRIM (TRansport of Ions in Matter) contained in SRIM as a separate package (here 

referred to as TRIMsrim). This good agreement suggests that one can identify changes in projected 

range that may arise in case that the true nuclear stopping cross section Sn differs from the initially 

assumed value Sn,i by a small factor b, Sn = bSn,i. A reasonable example is b = 1.20. The ratio 

Rp(Sn,i)/Rp(Sn) turned out to be 1.185 at the lowest energies, decreasing slowly to 1.10 at 60 keV, still 
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amounting to 1.03 at 600 - 700 keV. The dash-dotted line in Fig. 2 shows the difference δRp = Rp(Sn,i) 

- Rp(Sn). We conclude that up to energies at which Se exceeds Sn by two orders of magnitude the total 

as well as the projected ranges respond to the finer details of Sn in a detectable manner.  

Inspecting Eq. (1) again one will note that, in principle, the total stopping cross may be 

determined as the inverse derivative 1/n(dR/dE), an approach briefly discussed before [25], with 

proper caution concerning nuclear scattering and stopping. As an example, the crosses in Fig. 1 show 

results obtained by applying this method to the Rp-data of Fig. 2. As it should be, the calculated data 

agree with the sum Se + Sn/rp,t = Se + 2.5Sn that was used to determine Rp (thin black line). At first 

sight this result may be viewed merely a test of internal consistency. The important point, however, is 

that even if the number and spacing of the range data would allow the derivative to be obtained with 

adequate accuracy, it is impossible without further information to separate the sum into the two 

contributions of interest, Se and Sn. To achieve the goal one needs to use the procedure discussed 

below.   

 

III. DETAILED CONSIDERATIONS  

A. Nuclear stopping 

Even though Fig. 2 is very useful in that the results provide means to estimate the effect of 

changes in Se and Sn on ranges, the relevant formula, Eq. (1), does not properly reflect the actual 

procedure used in range calculations. Whereas projectile interaction with target electrons is usually 

considered to give rise to a uniform, non-local force that causes continuous slowing down, so that Se 

is a suitable input parameter, an equivalent nuclear stopping cross section is not applicable. The 

relevant quantity for calculating the elastic (nuclear) energy transfer and scattering in collisions 

between two atoms (interatomic spacing r, elementary charge e) is the projectile-target interaction 

potential. Screened Coulomb potentials ( ) ( ) ( )arrZZarV φ2
21 e, =  commonly serve the purpose. 

Much effort has been devoted to finding appropriate screening functions ( )arφ . Most frequently used 

are Molière’s analytical description φM [29] of the Thomas-Fermi function, the Kr-C function φKrC 

[26], and the screening function φuniv of the universal potential [30]. The dependence of ( )arφ  on the 

atomic numbers Z1 and Z2 is buried in the screening length a which is of the general form  

  ∗
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with a* = 0.4685×10-8 cm. Depending on the choice of *
2,1Z , three variants of the parameter a must be 

distinguished [25], ( ) 2132
2

32
1LS ZZaa += ∗ [24], ( ) 3221

2
21

1Fir ZZaa += ∗  [31], and 

( )23.0
2

23.0
1ZB ZZaa += ∗  [30]. Inspection of the literature leads to the conclusion that ( )arφ and a may 

be combined deliberately. Examples can be found in the work of Kalbitzer and Oetzmann [32] and 

Wilson et al. [26] who examined ( )arMφ  [29] in combination with aLS and aFir, respectively, even 

though Molière used the definition 31
2TF Zaaa ∗== , the Thomas-Fermi length unit. The association 

of aLS with aTF was mentioned by Lindhard and Scharff [24].  

 
FIG. 3. (a) Mean energy loss per collision (left-hand scale) and nuclear stopping cross section 

(right-hand scale) for impact of 11B on Si versus the projectile energy. Data are shown for three 
different screening functions and three different screening lengths. (b) Ratios of the stopping cross 
sections in panel (a).  

 
We have determined mean energy losses ‹ΔE› in elastic binary collisions of 11B with Si for four 

combinations of ( )arφ with a, see Fig. 3(a). The calculations were performed using the Monte Carlo 

code SDTrimSP [33], version 5.08, the current multi-purpose version of the program TRIM originally 

developed by Biersack and Haggmark [34]. SDTrimSP can handle both ‘static’ targets (S), renewed 

after every impact, or ‘dynamically’ altered targets (D) with a composition changing due to retained 

projectiles or bombardment induced mixing. Various aspects of sputtering (SP) may also be studied 

[35]. Here only the static code is of interest, but improvements in numerical procedures implemented 

in course of time were taken advantage of [35].  
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The results shown in Fig. 3(a) have in common that ‹ΔE› and Sn = ‹ΔE›/n2/3 (Si: n2/3 = 1.353×1015 

cm-2) increase with increasing projectile energy (initially roughly as E0.75), pass through a maximum 

located between 2 and 4 keV and then decrease, finally as E-0.8. At very low energies, ‹ΔE› 

approaches the maximum energy transfer ΔEmax achievable in head-on collisions (dash-dotted line). 

Of key importance here are the differences in ‹ΔE› observed with the different combinations of 

( )arφ and a. To a limited extent their effect may be separated by considering ratios of ‹ΔE› or Sn, see 

Fig. 3(b). As a first example we keep φ fixed, φ = φKrC, to vary a. The Sn-ratio for φKrC(r/aLS) versus 

φKrC(r/aFir), thick black line labeled Sn(1)/Sn(2), exhibits a maximum of 1.15 at ~140 eV compared to 

aFir/aLS = 1.115. Hence, apart from the fact that all Sn-ratios are energy dependent, even the maximum 

value is not directly related to the a-ratio. Next, for two different screening functions, φKrC and φM, 

with the same a = aFir, the Sn-ratio exhibits an oscillatory character with a maximum of 1.17 and a 

minimum of 0.93, thin line through open circles in Fig. 3(b), Sn(3)/Sn(2). The consequences of this 

behavior for the ratio of the respective ranges are impossible to predict. The situation appears to be 

much simpler in the third case studied, φKrC(r/aLS) versus φuniv(r/aZB), line through asterisks, 

Sn(1)/Sn(4), with a maximum Sn-ratio as large as 1.35. In view of this result we expect the range 

calculated with φuniv(r/aZ) to be much larger than for φKrC(r/aLS), notably below 10 keV.  

 
FIG. 4. Range distribution of 3 keV B in Si calculated with various combinations of the 

screening function and the screening length.   
 
Examples of range distribution calculated with SDTrimSP for 3 keV 11B (LS electronic stopping, 

k = 1) are presented in Fig. 4. Quite generally, the data confirm expectation in that the choice of 

( )arφ and a affects shape, height and position of the distributions quite strongly. As specified in Fig. 

4, the mean projected ranges Rp extend from a minimum of 12.76 nm for φKrC(r/aLS) to a maximum of 
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15.60 nm for φuniv(r/aZB), a difference by 22.3%. On the other hand, the range distributions derived 

with φKrC(r/aLS) and φM(r/aLS) are seen to be very similar, solid circles vs straight line. This is a 

consequence of the fact that, between 1 and 3 keV, the mean energy loss per collision is essentially 

the same for theses two screening functions, see Fig. 3(a), provided one uses the same screening 

length. Summing up, the data in Figs. 3 and 4 suggest that, with an accurate set of experimental data 

at hand, it should not be too difficult to identify the combination of screening function and screening 

length that is best suited to describe nuclear interaction in slowing-down of 11B implanted in Si.  

A brief remark is in place concerning the large amount of range data reported in the literature on 

the basis of TRIMsrim calculations. An important question is how well results agree when obtained 

by TRIMsrim or SDTrimSP. To our knowledge this issue has not been addressed before. For a 

meaningful comparison the fixed input parameters of TRIMsrim (φ = φuniv, a = aZB) had to be adopted 

in the SDTrimSP calculations. At reduced energies E/M1 < 2 keV/u, SRIM always assumes LS 

electronic stopping [23], with k = 1.4 for B in Si. Range distributions calculated for 5 and 20 keV 11B 

in Si are compared in Fig. 5. It is evident at first glance that, at the same implantation energy, the 

distributions are essentially indistinguishable. This agreement is confirmed examining the three most  

 
FIG. 5. Range distributions of B in Si calculated with two versions of the Monte Carlo code 

TRIM, using the same input parameters for nuclear interaction and electronic stopping. To improve 
readability, every second data point of SDTrimSP was skipped at 5 keV.  

  
important integral quantities derived from the distributions, the retained fraction (TRIMsrim vs 

SDTrimSP; 5 keV: 0.955 vs 0.951 ● 20 keV: 0.981 vs 0.981), the mean projected range Rp [nm] (22.9 

vs 22.8 ● 79.3 vs 79.7) and the range straggling ΔRp [nm] (11.4 vs 11.4 ● 31.5 vs 31.7). On average, 

the numbers denoting the same quantity differ by less than ± 0.5% (for N = 1×105). We conclude that 
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any difference in range data that may have been observed using either TRIMsrim or SDTrimSP must 

be attributed to differences in the chosen stopping parameters. 

 

B. Electronic stopping 

As pointed out before, range distributions contain integral information on nuclear and electronic 

energy losses. Hence, at energies at which electronic stopping dominates the distributions should 

somehow mirror details of the velocity dependence Se(υ). This supposition was examined by using 

SDTrimSP to calculate range distributions for 300 keV 11B in Si, assuming Se(υ) ∝ Eq, the exponent q 

being varied between 0.4 and 0.6. Results for the two extreme cases are presented in Fig. 6. The 

effect of increasing q is to cause a distinct broadening of the range distribution and a corresponding 

reduction in peak height (difference 23%). The observations imply that a single range distribution, 

measured in the region of dominant Se, will suffice to determine the exponent q with an estimated 

uncertainty of ± 0.05 or better. Likewise, if calculations are performed with a fixed value of q, like q 

= 0.5, i.e., Se(υ) ∝ υ, the results should agree with measured data not only in terms of the mean range 

but also with respect to the finer details of the range distribution.  

 
FIG. 6. Comparison of range distributions on 300 keV B in Si calculated for two assumptions 

concerning the energy dependence of electronic losses. Note the expanded depth scale.  
 
In the region of the Bragg peak, compact analytical formulas for the electronic stopping cross 

section are not available but they are indispensible here because the procedures used to optimize Se 

should be transparent at all energies considered. We have adapted an interpolation formula used by 

Varelas and Biersack [36] to bridge the gap between the upper limit of velocity-proportional 

electronic stopping (realistic limit 34
11 10ZME ≈↓  keV/u) and the lower limit of validity of Bethe-
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Bloch theory ( 34
11 400ZME ≈↑  keV/u), i.e., the gap amounts to a factor of about 40 in energy. In 

essence, the interpolated (fitted) electronic stopping cross section Se,fit is derived as [34,36] 

 
hie,loe,

hie,loe,

1
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fite,

11
SS
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⎞
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⎝

⎛
+=

−

. (3) 

To serve the purpose, Se,lo must increase in the gap region with increasing energy, Se,hi must 

increase with decreasing energy. This is easy to accomplish for Se,lo by simply allowing the velocity 

dependence that applies below ↓E  to remain valid above ↓E . The tricky part is Se,hi because, 

formally, the Bethe-Bloch prediction Se,BB passes through a maximum in the gap region (where the 

prediction for fully stripped projectiles is not valid anyhow [23]). The pre-factor of Se,BB and the main 

component CIβ2 of the stopping number L in Se,BB [23] are retained (CI = 2mec2/ 〉〈I , with 〉〈I  

denoting the mean ionization potential of target atoms; β = υ/c; c is the velocity of light). Going 

beyond the original interpolation scheme [34,36], CIβ2 is allowed to be modified by a factor A1. The 

required shape of Se,hi is achieved primarily by adding a term A3/CIβ2, deliberately chosen to be 

inversely proportional to energy. Another additive term A2, independent of energy, provides 

flexibility for fine adjustment of Se,hi. Thus 

 ( )2
I32

2
I12

2
1

2
01hie, ln βββ CAACAZZSBS ++= − , (4) 

with 2
e

2
00 cmr4π=S = 5.099×10-4  eV/1015 cm-2 (r0 classical electron radius, me electron mass, B1 

adjustment factor). The original default values for proton stopping were B1 = A1 = A2 =1, A3 = 5 [36]. 

With 〉〈I  = 169.5 eV for Si [25], Z1 = 5, Z2 = 14, and converting β2 to reduced energies EvM = E/M1 

(keV/u), we have  

•  ( ) ( ) -215
vM32vM1

2
1

4
hie, cm10eV24.7710295.1ln1031.8SiB, EAAEABS ++××= −

. (4a) 

To illustrate the fitting procedure we consider the SRIM data for 11B-Si again (see Fig. 1). 

Ignoring the ‘undulations’ superimposed on the data below ~ 600 keV, Se,lo may be written 

 ( ) 2155.0
vMLSe,loe, cm10/eV64.13SiB, −== kEkSS . (5) 

Inserting Eqs. (4a) and (5) in Eq. (3) the factors B1 and Ai (i = 1, 2, 3) were varied until best 

possible agreement of Se,fit with Se,SRIM was obtained. The results achieved with k = 1.40, B1 = 1.03, 

A1 = 0.95, A2 = - 1.8, and A3 = 12 are shown in Fig. 7 as a thick gray line. The fit function agrees 

quite well with the reference SRIM data (open circles). Note that it was possible to reproduce the 

non-symmetrical shape of the Bragg peak in the SRIM data which exhibits a steep front end and a 
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FIG. 7. Illustration of the procedure used to determine an analytical expression for the electronic 

stopping cross section of B in Si at energies between 600 keV and 10 MeV. The thick gray line was 
derived as the inverse sum of the functions Se,lo and Se,hi with the purpose of reproducing the SRIM 
data shown as open circles. For details of evaluation see text.  

 
comparatively slow fall-off. The steep front end imposed the need for a high value of A3. To get the 

peak position and the fall-off right, A2 had to be made negative. For comparison the short-dashed line 

in Fig. 7, the ‘inverse sum with BB1’, shows the result of fitting according to Eq. (3) if only the first 

term of the stopping number is used, i.e., B1 = 1 and A2 = A3 = 0 (dash-dotted line). Even though a 

reasonable fit is obtained for E > 4 MeV, the results for 300 keV < E < 4 MeV are useless. Hence, 

Eq. (4) is required for proper fitting.   

 

IV. RESULTS AND DISCUSSION 

A. Refined data basis 

To determine the basic parameters of nuclear and electronic stopping with high accuracy it was 

necessary to establish the best possible collection of ranges for B in Si. The data actually used were 

measured primarily by sputter depth profiling in combination with secondary ion mass spectrometry, 

SIMS [37,38,39,40,41,42,43,44,45]; results obtained by capacitance-voltage (CV) profilometry 

[40,43] and nuclear reaction analysis (NRA) [46] were added. Experimental details of the work by 

the ten different groups are summarized in Table I. In total 98 mean projected ranges Rp reported for 
11B in Si are compiled in Fig. 9 as solid circles. Distributed over almost four orders of magnitude in 

energy, the data are seen to agree quite well in general. A closer look at the results, however, reveals 

many significant differences. For example, the SIMS-based ranges of Thevenin et al. [43] reported 

for 1, 1.5, 2, and 2.5 MeV are, on average, 15.5 ± 2.3% larger than their counterpart according to 
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Svensson et al. [45]. The rather small statistical uncertainty of the mean ratio implies that we are 

dealing mostly with a systematic difference of unknown origin. One can only speculate that the 

difference is due to improper calibration of the surface profilometers used to determine the depth of 

sputtered craters which served to calculate the mean erosion rate (depth calibration).  

   
Table I. Experimental conditions used by the different groups to determine range distributions of B in 
Si. The impact angle is defined with respect to the surface normal. a-Si: crystalline Si, pre-
amorphized by inert gas or Si bombardment, px-Si: polycrystalline Si, x-Si: crystalline Si with non-
specified orientation.  

Authors Target Mass of  B 
isotopes 

Implantation energy, 
impact angle 

Method of 
analysis 

SIMS sputter conditions: 
O2 energy, impact angle 

Hofker et al. a-Si, px-Si  11 30-800 keV, 0° SIMS 5.5 keV, 45° 

Wach & W. a-Si 10 & 11 1-40 keV, 0° SIMS  1.5, 2, 3 & 5 keV, 0° 

Wong et al. Si(100) 11 1-4 MeV, 7° SIMS 8 keV, 37° 

Oosterhoff Si(100) 11 0.1-1MeV, 7° SIMS, CV ?, paid SIMS analysis 

Svensson et al. 90 Si(111) 10 & 11 50-250 keV, 7° SIMS 8 keV, 37° 

Zalm et al.  x-Si, a-Si 10 & 11 25-400 keV, 7° SIMS 3-10.5 keV,  ≥ 37° 

Thevenin et al. Si(100) 11 0.5-3 MeV, 7° SIMS, CV 10 keV O2 

Frey et al.  Si(100) 11 0.2-7.1 MeV, 7° SIMS ?, (IMS-4f) 

Svensson et al. 93 a-Si 10 & 11 0.44-5 MeV, 0° SIMS 10-12 keV, 60-70° 

Behar et al.  a-Si 10 & 11 0.05-1 MeV, 0° NRA n.a.  

 
Being unable, in retrospective, to make corrections to the depth calibration of the different sets of 

range we had to look for ways to minimize the problem. In a first step we have established a fit  

function Rf(E) representing the raw ranges in Fig. 9 as accurately as possible, over the whole range of 

energies. Polynomial fit functions to order s serve the purpose but the unequal data density needs to 

be accounted for. We chose to use the published results for determining mean values of ranges at all 

energies at which two or more data are available. Selected results (N = 24) featuring roughly equal 

density per logE interval are shown in Fig. 8 as solid triangles, for ease of identification multiplied by 

a factor 0.5. The resulting polynomial fit function Rf to order s = 6 is shown as a solid line through the 

raw data (R-square = 0.99995, standard deviation 0.0084; a fit to order s = 7 was not used because the 

energy dependence exhibited unrealistic gradients below 1 keV and above 8 MeV).  

Deviations of the raw Rp data from the fit function are documented as the ratio r = Rp/Rf, see Fig. 

9(a). The mean is 〈r〉 = 0.998 ± 4.7%. The relatively large uncertainty of 4.7% is attributed to 

systematic differences between different sets of data, the problem already noted above. To quantify 

the systematic errors δsys, the mean ratio ρ ≡ 〈r〉set = 1 ± δsyst was determined separately for each set of 
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measurements (owing to SIMS analysis at four different probe energies, see Table I, the data of Wach 

and Wittmaack [38] represent four sets). Note that, with all data included, 〈ρNset〉 = 〈r〉 (Nset denotes 

the number of data per set). The results in Fig. 9(b) may grossly be divided into two groups: 68 data 

feature small systematic errors, δsyst < 3.5%, the remaining 30 data exhibit large deviations between 

4.5 and 8.3%. The important point is that even the large systematic errors are almost symmetrically 

 
FIG. 8. Compilation of raw and selected mean projected ranges of 11B in Si [37-46]. The solid 

line is a polynomial fit through the selected data. For assignment of the ranges to the various sources 
see Fig. 9.  
 
distributed around unity, 〈ρNset〉large = 0.993 ± 5.0%. One should also note the important finding of 

Fig. 9(b) that the three sets of data by Hofker et al. [37], Wach and Wittmaack [38], and Frey et al. 

[44] exhibit essentially not systematic error at all (< 0.3%). Given the fact that, taken together, these 

three independently derived sets of results cover the whole range of energies, there is good reason to 

assume that Rf(E) represents the true energy dependence Rp(E) with an uncertainty merely determined 

by statistical errors of the individual measurements.  

Combining the results of Figs. 9(a) and (b), systematic errors in Rp can be removed by 

determining, separately for each set of data, refined ranges Rp,r = Rp/ρ and refined ratios rr = r/ρ. The 

latter should deviate from the mean 〈rr〉 only by statistical errors δstatis and, presumably, a few outliers. 

All results combined are presented in Fig. 9 (c). Statistical analysis showed that 93 data out of a total 

of 98 can be described quite well by a normal distribution with a standard deviation of only 1.8% 

(details not shown). Five data points deviating from 〈rr〉 = 0.999 by |δstatis| > 5.5% are encircled in Fig. 

9(c). Being located well outside the normal distribution, they are considered outliers. Note that the 

status ‘outlier’ is not associated with the magnitude of δsyst in the respective study, as one can tell 
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from the fact that the SIMS data of Svensson (93) et al. [45], for example, exhibit quite a sizable 

systematic deviation (δsyst = - 5.4%) but a rather small statistical uncertainty (〈δstatis〉 = ± 1.8%). 

Disregarding the results of Zalm et al. [41] (δsyst = + 8.3%, 〈δstatis〉 = ± 6.5%, two outliers) and 

removing the other three outliers, 〈δstatis〉 ranges from ± 1.2 to 2.5% for the different sets of data. 

Particularly important is the finding that, for each set, δstatis does not vary significantly or  

 
Fig. 9. Ratios Rp/Rf calculated to distinguish between systematic and statistical errors in 

measured ranges Rp. (a) Total scatter of data, (b) systematic errors, and (c) statistical deviations and 
outliers. For details see text.   

 
systematically with energy, see Fig. 9(c). The absence of a detectable energy dependence of δstatis 

supports the idea that Rf(E) is highly reliable. Quite generally, the results of Fig. 9 confirm the 

supposition that, with access to a sufficient number of data sets, it is possible to separate statistical 

uncertainties from systematic errors. A similar, less detailed identification of systematic errors was 

described very recently by one of us [47] for low-energy, heavy-ion range data based on depth 

analysis using Rutherford backscattering spectrometry.  
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B. Optimum parameters for nuclear interaction and electronic stopping 

To find the input parameters of the Monte Carlo calculations that serve best to accurately 

reproduce the refined experimental range data of 11B in Si one needs to proceed in several steps. 

Moving from the lowest to the highest energies covered by the data, the first step is to identify the 

most suitable screening function for the nuclear interaction potential together with an appropriate 

screening length. The results of such an exercise are presented in Fig. 10. For ease of comparison all 

data are normalized to the fit function Rf. The refined experimental data Rp,r (open circles) scatter 

around the line of reference Rp/Rf = 1. The pronounced dependence of calculated ranges on the chosen 

screening parameters, already discussed briefly with reference to Fig. 4, is now evident in great 

detail. The other issue of concern is the dependence of the ranges on Se through the scaling parameter 

k of LS electronic stopping. Furthermore, the aim was to confirm (or invalidate) that electronic 

stopping is proportional to projectile velocity.  

 
FIG.10. Normalized projected ranges of B in Si calculated with different combinations of 

screening function and screening length, for Se(LS) with two different scaling factors k. Refined 
measured ranges Rp,r (open circles) are shown for comparison. All data are normalized to the fit 
function Rf.  

 
The results of Fig. 10 may be summarized as follows. (i) The ranges of B in Si calculated with 

φuniv(r/aZB) are much too large for k = 1.0 and significantly too large for k = 1.46. This implies that 

ranges derived with TRIMsrim (φuniv(r/aZB), k = 1.4) are also too large, exceeding the true value by 

about 30% at 1 keV and still by more than 10% at 20 keV. The reason is that the universal potential is 

too soft, see Fig. 3(a). (ii) Depending on energy, i.e., on the relative contribution of Se to stopping, the 

ranges calculated with φKrC(r/aFir) are between 5 and 15% larger than with φKrC(r/aLS). This is due to 
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the fact that the screening lengths for B on Si differ significantly, aLS = 0.159 Å, aFir = 0.142 Å, and 

aZB = 0.143 Å. Thus, at the same interatomic distance r, the absolute value of a selected screening 

function φ(r/a) is higher the higher a because the reduced distance is r/a shorter. The important lesson 

is that the screening length is an input parameter that cannot be chosen deliberately. (iii) The best 

agreement between experimental and calculated data is obtained with the combination φKrC(r/aLS) and 

k = 1.46. Admittedly, the uncertainty in determining k is significant at the energies covered in Fig. 10, 

the estimate being ± 0.06 at 20 keV. However, there is no evidence for a stepwise change in Se at 11 

keV (0.2υ0), the issue discussed with reference to Fig. 1. (iv) The ranges calculated with φM(r/aLS) & k 

= 1.46 come close to those for φKrC(r/aLS) but there is a distinct difference in the energy dependence. 

The favorable conclusion to be drawn from this finding is that accurate low-energy range data can 

serve to select the ‘right’ screening function and screening length for the projectile-target 

combination under study. (v) For completeness we note that the absolute differences in range for k = 

1.0 and 1.46 are very similar in the different screening scenarios, ranging from 0.22 ± 0.05 nm at 1 

keV to 10.5 ± 0.9 nm at 20 keV.  

 
FIG. 11. Comparison of measured and calculated range distributions of 300 keV B in 

polycrystalline Si. Background subtraction was applied only at depths exceeding 0.8 μm.  
 
In order to determine the factor k of LS stopping accurately we compare the shape and position 

of measured and calculated range distributions, the concept illustrated in Fig. 6. A particularly well 

suited example is the profile reported by Hofker et al. [37] for impact of 300 keV 11B on 

polycrystalline Si: according to Fig. 9 the ratio Rp/Rf is unity and both, the systematic and the 

statistical error are undetectably small. Hence, the comparison shown in Fig. 11 did not require any 

adjustment of the depth calibration. Except for the data in the vicinity of the surface and at the end of 
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range the agreement is perfect. This implies that electronic stopping is proportional to the projectile 

velocity, i.e., LS-type, Se = kSe,LS, with a narrowly defined proportionality factor k = 1.46 ± 0.01.   

The enhanced boron signals observed experimentally near the surface can be attributed to 

contamination from a variety of sources, an effect studied in some detail [38] after the work of 

Hofker et al. [37]. The background signal recorded beyond the end of range is most likely due to 

incomplete suppression of B+ ions originating from the walls of the sputtered crater. At the time of 

the study [37] the concept of electronic gating [48] had not yet been developed so that the authors 

[37] used less efficient ion optical gating. To derive the ‘true’ profile we subtracted the background 

signal, an approach frequently applied to lower the concentration level down to which useful 

information may be extracted. Compared to the calculated distribution, the background corrected 

profile exhibits a distinct tail, a well-known feature of sputter depth profiling. With shallow doping 

profiles, tails are mostly due to bombardment induced mixing [49]. In the case of deep craters 

exceeding 1 μm, as in Fig. 11, and notably when produced by oblique ion bombardment (see Table I), 

one must also consider the likely formation of macroscopically uneven or microscopically rough 

crater bottoms.  

In the context of this study, profile tailing is only of concern with respect to the possible effect on 

mean projected ranges. Hofker et al. [37] fitted Pearson distributions to their profiles, including the 

tails. The fitted distributions are very similar to the background corrected profile in Fig. 11 (open 

circles). Even though the tail looks sizable on a logarithmic scale, the effect on Rp is small, < 0.3%. 

However, the tails cause errors of increasing magnitude when using Pearson distributions to derive 

higher moments (straggling, skewness, and kurotosis). In fact, deviations from theory turned out to be 

progressively larger the higher the moments [37]. On the positive side we note that, in measurements 

involving crystalline Si targets, Pearson distribution have served well to separate the random 

component from the channeling tail [39,40,43], see Fig. 2 of ref. 43 for an example.  

Whereas the parameters characterizing nuclear interaction and low-velocity electronic stopping 

were comparatively easy to determine because theoretical concepts are available in analytical form, 

optimization of Se in the region of the Bragg peak was more time consuming. Based on the fitting 

concept described in Sect. IIIB, five variants were tested, two of them only very briefly. The three 

thoroughly examined versions are presented in Fig. 12. Ratios r#j ≡ Rp,r/Rp,#j served to quantify the 

level of agreement between the 93 refined experimental ranges Rp,r and the calculated data Rp,#j. Best 

agreement was obtained with Se version #5, as shown by the solid circles in Fig. 13(a). The fit 

parameters of Eq. (4a) are: k = B1 = 1.19, A1 = 0.58, A2 = 0, and A3 = 2.85. Averaged over all data  
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FIG. 12. Versions # 2, 4, and 5 of the electronic stopping cross section for B in Si, used to 

calculate ranges for comparison with experimental data. Also shown are the results of a few available 
experimental studies.  
 

 
FIG. 13. Ratios of ranges and electronic stopping cross sections. (a) Comparison of experimental 

and calculated ranges for two versions of Se, #4 and #5. (b) Comparison of calculated ranges, #5 vs 
#2 & 4, and the corresponding Se, #2 & 4 vs #5. (c) Comparison of Se data from empirical libraries 
(SRIM, Paul and Schinner [50]) or tables of calculated results [25] using PASS [51]) with Se,#5, the 
best-fit version of this study. Note that the vertical scale in panel (c) was compressed by a factor four 
compared to (a) and (b).  
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the mean ratio is 〈r#5〉 = 1.002 ± 1.7% (as in the case of rc, Fig. 9(c), the deviations from the mean of 

r#5 exhibit a normal distribution). Considering the fact that the ratio comprises data covering almost 

four orders of magnitude in energy, the agreement may safely be rated excellent.  

The sensitivity of calculated ranges to variations of Se is illustrated in two ways. The open circles 

in Fig. 13(a) represent r#4 (open circles that seem to be missing are buried under solid circles located 

at the same or almost the same position). Evidently r#4 exhibits a minimum, centered at about 2 MeV. 

Even though the differences between Se,#4 and Se,#5 are quite small, see Fig. 12, the resulting 

differences between Rp,#4 and Rp,#5 are clearly evident in Fig. 13(a), but only because we managed to 

assemble a set of range data with small statistical fluctuation. Details of the changes in Rp,#5/Rp,#j 

associated with variations of the (inverted) ratios Se,#j/Se,#5 are shown in Fig. 13(b). Owing to 

integration, marked differences in Se become visible in Rp only at about two times higher energies and 

the changes in Rp are larger the wider the energy interval over which the changes in Se extend.  

The final version Se,#5 may be compared with scarce experimental data from the literature. Of 

particular interest are the results of Zhang et al. [52] obtained by the standard approach of measuring 

energy loss in transmission through Si foils, but with up-to-date time of flight spectrometry 

(uncertainties: energy loss measurements < 1%, foil thickness ~ 3.5% [52]). The data (crosses in Fig. 

12) fall into the region of the flat-topped Bragg peak and cover a factor 2.8 in energy. The agreement 

with the present results must be called ‘miraculously perfect’ (deviations < 1%). The same kind of 

transmission experiment, but with conventional energy loss spectrometry, was used by Hoffmann et 

al. [53] to determine Se for 44.2 keV 11B impact on Si foils. The result, solid circle with 8% error bar 

in Fig. 12, is also in very good agreement with Se,#5 (difference < 2%). We have simulated the 

experiment with SDTrimSP, assuming a typical 20 nm-foil and a circular acceptance cone of the 

spectrometer of 0.8°, as specified. The contribution of nuclear stopping to the total energy loss turned 

out to amount to only 1.2 or 3.7%, depending on whether the most probable or the mean loss is taken 

into account. These numbers are well below the quoted experimental uncertainty of 8% [53]. The 

other literature data in Fig. 12 are also in fair agreement with Se,#5. The open circles represent results 

which, according to ref. 52, are contained in H. Paul’s data base [54]. The results reported by dos 

Santos et al. [55] were derived by backscattering of 10B from an implanted Bi marker. Considering 

the various sources of error associated with that concept, the mean deviations of the data (plus signs) 

from Se,#5 are small.  

Turning to data tables, Fig. 12(c) shows a comparison with Se,#5 in the form of ratios. The 

predictions of SRIM [22], Se,SRIM (open circles), oscillate around a ratio of unity with maximum 
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deviations around ± 10%. The empirical data contained in the tables of Paul and Schinner [50], Se,P&S  

(open triangles), exhibit very pronounced deviations at low energies, as large as – 40%, already 

identified in a recent evaluation [23], but above 500 keV the agreement with Se,#5 is generally better 

than for SRIM. Unexpectedly, the binary-collision code PASS developed by Sigmund and Schinner 

[51] predicts electronic stopping cross sections Se,PASS (solid triangles) [25] that are up to 14% larger 

Se,#5. Rather surprising are the similarities in the energy dependence of Se,P&S and Se,PASS. The 

impression is that the author (AS) who contributed to both studies was inspired by ref. 51 when 

working on ref. 50.  

 
FIG. 14. Isotope effect for ranges of 10B and 11B in Si. Results obtained with SDTrimSP using 

two versions of Se are compared with experimental data [41,42,45].  
   
To complete comparison of our results with experimental data, Fig. 14 shows measured and 

calculated isotope effects for 10B and 11B in amorphized Si, quantified as Rp(11)/Rp(10) – 1. The only 

statistically meaningful set of data is due to Svensson (93) et al. [45]. Systematic errors in range 

calibration, as documented in Fig. 9(b), cancel out because the profiles of both isotopes were 

recorded quasi-simultaneously in the same SIMS measurement. The isotope effect calculated using 

Se,#5 agrees with the experimental data (solid triangles) within the uncertainty of ± 0.25% quoted in 

ref. 45. By contrast, the isotope effect predicted with Se,#2 is too high at energies where Se,#2 exceeds 

Se,#5 significantly, i.e., between 1 and 10 MeV. To summarize, no example was found questioning the 

reliability of Se,#5. 

 

V. CONCLUSIONS AND PERSPECTIVES 

Two remarkable results evolved from this study. First, we have shown that it is possible to 

determine the parameters quantifying nuclear interaction and electronic stopping by searching for 
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best agreement between projected ranges derived from Monte Carlo calculations and data determined 

experimentally. Second, in order to achieve the highest possible accuracy, it was necessary to remove 

systematic errors of sizable magnitude that are sometimes buried in measured data reported by 

different groups. Fortunately, the number of data sets available for this study was large enough so that 

the systematic errors could be quantified rather safely. The success in search for systematic errors 

documented here and in a related study [47] should encourage other researchers not to limit 

discussion of experimental results from different sources to a mere comparison of raw data. 

Identification of systematic errors is a challenging and somewhat time consuming task. But it is quite 

satisfying to end up with the finding that data originally showing deviations by 10 or even 20% may 

be converted to a refined set with differences less than 2%.  

The high accuracy achieved here is rather unique because, for reason of technological interest, 

ranges of B in Si have been studied by many groups. However, the main goal of this exercise was to 

show that the concept works well quite generally. Given the fact that the interpolated stopping powers 

delivered by SRIM [22] at reduced energies E/M1 < 1 MeV/u are often inaccurate or questionable 

[23], it is highly desirable to establish a significantly improved data basis. The concept outlined 

above could serve the purpose very well. The aim must be to determine ranges for at least 10-15 

projectiles distributed over the whole periodic table, implanted at reduced energies between 0.05 and 

200 keV/u so that the ranges very roughly extend from 10 nm to 10 μm. The method of choice for 

measuring ranges is SIMS. Suitable targets are Si and Ge because, under well chosen sputter 

conditions, they retain a reasonably smooth surface during analysis. For good accuracy it is advisable 

to select projectiles exhibiting appropriate yields, either as positive or as negative ions. Elements 

known to exhibit redistribution artifacts in SIMS should be excluded as projectiles. Shallow range 

distributions must be measured at low probe energies.  

With range data thus obtained one should be able to clarify several issues of concern. In the 

region of dominant nuclear stopping, for example, the question is whether a preferable screening 

function will emerge, valid across the periodic table and including the definition of a reliable Z1,2 

dependence of the screening length. As to electronic stopping, it will be of interest to see which 

similarities and differences exist in the energy (velocity) and Z1 dependence of Se. Depending on the 

results it may be possible to establish much improved interpolation schemes for nuclear and 

electronic stopping cross sections.      
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