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Abstract. Spherical tokamaks often have a considerable toroidal plasma rotation

of several tens of kHz. Compressional Alfvén eigenmodes (CAEs) in such devices

therefore experience a frequency shift, which if the plasma were rotating as a rigid body,

would be a simple Doppler shift. However, since the rotation frequency depends on

minor radius, the eigenmodes are affected in a more complicated way. The eigenmode

solver CAE3B [Smith et al. Plasma Phys. Control. Fusion 51, 075001 (2009)] has

been extended to account for toroidal plasma rotation. The results show that the

eigenfrequency shift due to rotation can be approximated by a rigid body rotation with

a frequency computed from a spatial average of the real rotation profile weighted with

the eigenmode amplitude. To investigate the effect of extending the computational

domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma

rotation, is solved by a modified version of the CAE code used in [Fredrickson et

al. Phys. Plasmas 20, 042112 (2013)]. In summary, both solving the full eigenmode

equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in

the CAE code, significantly influences the calculated eigenfrequencies.

PACS numbers: 52.35.Bj, 52.35.Hr, 52.55.Fa, 51.10.+y
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1. Introduction

Compressional Alfvén eigenmodes (CAEs) are found in the presence of fast ion

populations both in conventional tokamaks and in spherical tokamaks. In conventional

tokamaks, the fast ions can excite compressional waves close to harmonics of the ion

cyclotron frequency [1, 2], and the phenomenon is termed ion cyclotron emission (ICE)

[3, 4, 5, 6]. In spherical tokamaks [7, 8, 9, 10], and also in some conventional tokamak

experiments [11], the magnetic field is lower and the fast ion drive causes compressional

eigenmodes to appear at frequencies comparable to but below the on-axis ion cyclotron

frequency.

The eigenmode structure in large aspect ratio tokamaks is that of a poloidally

and toroidally traveling wave with the mode numbers m and n, respectively [12]. In

a tight-aspect-ratio tokamak, the typical sub-ion cyclotron frequency eigenmodes are

also traveling in the toroidal direction, but in the poloidal plane they are localized on

the outboard side and have a more standing-wave-like nature [13]. The reason for the

localization can be understood from the simple local approximation of the compressional

Alfvén wave dispersion relation for frequencies much smaller than the ion cyclotron

frequency, ω2 = −v2A∇
2. Upon splitting the Laplace operator in a toroidal part and

a part operating in the poloidal plane, we can write the equation for the perturbed

quantity X as
(

∇2
pol −

n2

R2
+
ω2

v2A

)

X = 0. (1)

The quantity V ≡ n2/R2−ω2/v2A can be seen as an effective potential for the eigenmode

problem expressed in the poloidal plane. The dependence of the Alfvén velocity,

v2A = B2/(µ0ρ), on mass density, ρ, makes the second term of the potential V zero

at the plasma edge, which confines the mode to within the plasma. Combined, the two

terms in V have a minimum near the outboard edge of the plasma, with a negative value,

and become positive moving inwards and outwards from that point. Consequently, the

eigenmodes tend to be localized on the outboard side of the torus.

The localization of CAEs in spherical tokamaks has been studied analytically in

[14, 15], but these models are by necessity simplified, and comparison with experiments

[10] has showed the need for more advanced models. Numerical studies have been able to

more accurately include the magnetic-field geometry of the spherical tokamak [16, 13].

However, these numerical studies also employ certain simplifying assumptions. The

simulations with the ideal MHD code NOVA [16] neglect the Hall term, which can be of

importance since the eigenmode frequency is of the order of the ion cyclotron frequency

ωci. The CAE3B code (which was presented in [13] but not given a name there), on

the other hand, includes the Hall term but excludes shear Alfvén waves by assuming

that v2A/(ω
2B2)(B ·∇)2 ≪ 1 when operating on components of the perturbed magnetic

field perpendicular to the background field. This restriction is lifted in the WHALES

code [17], which is based on finite elements instead of finite differences as in CAE3B.

Moreover, nonlinear effects due to the presence of the fast ion population can influence
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the eigenmode structure [18], but such effects are not considered here.

This paper will focus on the effects of plasma rotation on the eigenmodes, taking

the National Spherical Tokamak Experiment (NSTX) as an example. The plasmas in

NSTX typically revolve toroidally with a frequency of a few tens of kHz, and there

are CAEs propagating in the opposite direction to the beam ion injection which have

frequencies somewhat below 1 MHz [19]. As a simple approximation, the effect of

the rotation is to cause a Doppler shift of the CAE in the lab frame-of-reference with

respect to the plasma frame. The frequency shift is the rotation frequency times the

toroidal mode number n. However, it turns out that this is an oversimplification of the

effect that rotation has on CAEs. The plasma does not rotate as a rigid body, but the

rotation frequency is a function of plasma radius, and in the present paper it is therefore

investigated how this influences the eigenmode frequency and the eigenmode structure.

To this end, a new version of the CAE3B code is developed, which includes the effects of

the plasma rotation on the eigenmodes. In Section 2 the eigenmode equation derived in

[13] is extended to account for plasma rotation, and in Section 3 results from numerical

solutions of this equation with the new code are presented and discussed.

One simplification in CAE3B, as well as the other numerical codes mentioned above,

is the restriction of the computational domain to within the separatrix. This is a natural

limitation of the codes, since they work in magnetic flux coordinates. Solutions of the

simplified dispersion relation (1) for a larger region have shown that the eigenmode is

likely to extend beyond the separatrix, and that the vessel wall shape may influence

the mode structure [19]. To assess the effect of this, the CAE code used in [19] has

been modified to solve a simplified version of the CAE3B equations, similar to (1)

but including rotation effects. The extension of the computational domain results in a

frequency downshift, which is discussed in Section 4.

2. The eigenmode equation

Compressional Alfvén eigenmodes are governed by the momentum balance equation,

Ohm’s law including the Hall term, and Faraday’s law

ρ
∂

∂t
v + ρv · ∇v = J ×B −∇p, (2)

E =

(

J

n
e
e
− v

)

×B, (3)

∇×E = −
∂B

∂t
. (4)

These equations are linearized by setting ρ = ρ0 + ρ1, v = v0 + v1, B = B0 + B1,

J = J0 + J1, and assuming that perturbed quantities vary as exp(−iωt). Only waves

that propagate much faster than the ion thermal speed are to be modeled, so the cold

plasma approximation is used, i.e. the perturbed pressure is zero, p = p0. In [13] it was

assumed that v0 = 0, and the linearized equations thus became

−iωρ0v1 = J1 ×B0 + J0 ×B1 (5)
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E1 =

(

J1

n
e
e
− v1

)

×B0 +
J0

n
e
e
×B1. (6)

iωB1 = ∇×E1. (7)

One can take v1 from (5), insert it into (6) and then insert E1 into (7) to obtain the

eigenmode equation which is solved in [13],

ω2
B1 = ∇×

{

iF
[

J̃1 ×B0 + J̃0 ×B1

]

−G
[

J̃1 ×B0 + J̃0 ×B1

]

×B0

}

, (8)

where J̃0 ≡ µ0J0, J̃1 ≡ µ0J1 and

F ≡ −
ω

µ0ne
e
= −ωv2A/(ωciB0), (9)

G ≡
1

µ0ρ0
= v2A/B

2
0 . (10)

We now include plasma rotation v0 = Ω(r)Rϕ̂, where r is a flux surface label

with the dimensions of length, R is the major radius coordinate and ϕ̂ is a unit vector

in the toroidal direction. The coordinate system (r,θ,ϕ) is chosen to be right-handed

with a poloidal coordinate θ increasing upwards on the outboard side. The linearized

momentum balance and Ohm’s law become

ρ0 (−iωv1 + v0 · ∇v1 + v1 · ∇v0) + ρ1v0 · ∇v0 = J1 ×B0 + J0 ×B1 (11)

E1 =

(

J1

n
e
e
− v1

)

×B0 +

(

J0

n
e
e
− v0

)

×B1. (12)

An expansion is now made in the small parameter Ω/ω, which for CAEs in NSTX

is typically not larger than 0.05–0.1. Consequently, terms of the order Ω/ω are kept,

but terms of the order Ω2/ω2 will be neglected. In general, the spatial derivatives are

considered to be comparable in a spherical tokamak, ∇ ∼ a−1 ∼ R−1, where a is the

minor radius. Using these orderings in (11), one sees that the second and third terms

in the parenthesis on the left hand side are of order Ω/ω compared with the first term

and should be kept. In the term ρ1v0 · ∇v0, one must use the continuity equation to

estimate ρ1 ∼ ρ0R
−1v1/ω. The term ρ1v0 ·∇v0 can therefore be neglected in (11), since

it is of the order Ω2/ω2 compared with the first term.

Henceforth, it is assumed that perturbed quantities vary as exp(−inϕ − iωt),

following the convention in [13]. Thus, v0 · ∇v1 = −inΩv1 and the form of the rotation

velocity v0 = Ω(r)Rϕ̂ yields

∇v0 = Ω[(∇R)ϕ̂− ϕ̂∇R] + Ω′(∇r)Rϕ̂. (13)

The momentum balance equation becomes

− i (ω + nΩ) v1 + Ω′Rv1 · ∇rϕ̂+ Ωv1 · [(∇R)ϕ̂− ϕ̂∇R] =

= G[J̃1 ×B0 + J̃0 ×B1], (14)

where the prime denotes radial derivative. Solving this expression for v1 (neglecting

terms of order Ω2/ω2), we obtain v1 = v̄+ ṽ, where v̄ is the perturbed velocity obtained

without the v1 · ∇v0 term in (11),

v̄ =
G[J̃1 ×B0 + J̃0 ×B1]

−i(ω + nΩ)
(15)
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and

ṽ =
−ϕ̂(Ω′R∇r + Ω∇R) + Ω∇Rϕ̂

−i(ω + nΩ)
· v̄. (16)

When E1 from (12) is inserted into Faraday’s law to obtain the eigenmode equation,

there are two conceptually new terms compared with the derivation of (8), −∇× (v0 ×

B1) and −∇× (ṽ ×B0). The former is

−∇× (v0 ×B1) = −B1 · ∇v0 + v0 · ∇B1 =

= −B1 · (Ω
′R∇r + Ω∇R)ϕ̂+ ΩB1 · ϕ̂∇R − inΩB1, (17)

and it can be shown that for −∇× (ṽ ×B0) the following holds,

− i (ω + nΩ) (−∇× (ṽ ×B0)) =

∇r ×∇ [ψ′ (Ω′ + νΩ)∇r · v̄ + µΩB0 · v̄] +

+∇×
[

ΛΩB−2
0 v̄ · (IB0 − ψ′

Λ)
]

. (18)

In the above expression, the following notation was introduced for brevity

ν ≡ ∇r · ∇R/(R|∇r|2),

µ ≡ ∇r ×∇R · ϕ̂/|∇r|2,

Λ ≡ B0 ×∇r, (19)

and it was used that the equilibrium magnetic field has the form B0 = I(r)∇ϕ +

ψ′(r)∇ϕ×∇r, which leads to the expression for the toroidal unit vector ϕ̂ = (I(r)B0−

ψ′Λ)/(RB2
0).

Faraday’s law becomes

iωB1 =
1

−iω
∇×

{

iF
[

J̃1 ×B0 + J̃0 ×B1

]

−KG
[

J̃1 ×B0 + J̃0 ×B1

]

×B0

}

+

+
K

−iω
∇r ×∇ [ψ′ (Ω′ + νΩ)∇r · v̄ + µΩB0 · v̄] +

+
K

−iω
∇×

[

ΛΩB−2
0 v̄ · (IB0 − ψ′

Λ)
]

+

−B1 · (Ω
′R∇r + Ω∇R)ϕ̂+ ΩB1 · ϕ̂∇R − inΩB1, (20)

where K(ω) = ω/(ω + nΩ). To obtain a form where the eigenvalue ω2 appears on the

left hand side, the last term is moved to the left and the equation is multiplied by −iωK.

Finally, the eigenmode equation becomes

ω2
B1 = K∇×

{

iF
[

J̃1 ×B0 + J̃0 ×B1

]}

+

−K2∇×
{

G
[

J̃1 ×B0 + J̃0 ×B1

]

×B0

}

+

−K3nΩ
′

ω
B0G

[

J̃1 ×B0 + J̃0 ×B1

]

· ∇r +

+K2∇r ×∇ [ψ′ (Ω′ + νΩ)∇r · v̄ + µΩB0 · v̄] +

+K2∇×
[

ΛΩB−2
0 v̄ · (IB0 − ψ′

Λ)
]

+

+ iωKB1 · [(Ω
′R∇r + Ω∇R)ϕ̂− Ωϕ̂∇R] . (21)
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One recognizes that for rigid body rotation with a small rotation frequency Ω, only

the two first lines remain, and the solutions are the same as to (8), except that the

frequency is shifted by an amount −nΩ. The eigenmode equation (21) has been split

into its three vector components in Appendix A, and the resulting equations for the three

components of the perturbed magnetic field have been implemented in the CAE3B code.

These magnetic field components are represented by the quantities b
r
, b∧ and b‖, defined

by

B1 = b
r
∇r + b∧Λ+ b‖B0. (22)

However, for the presentation of the results in the next Section, the corresponding

quantities in physical units B
r
= b

r
|∇r|, B∧ = b∧|∇r|B0 and B‖ = b‖B0 will be used.

The boundary condition B‖ = 0, which was used in [13], is also employed in the following

calculations.

3. Results from CAE3B with rotation

To illustrate the effects of plasma rotation, an NSTX equilibrium from discharge 130335

at t = 480 ms is used, withB·ϕ̂ > 0, J ·ϕ̂ < 0 and frot = Ω/(2π) < 0. In the experiment,

there were CAEs with frequencies in the range 800 kHz to 1100 kHz and with toroidal

mode numbers n = −3 to −5 (following the definition that perturbed quantities vary as

exp(−inϕ− iωt) with ω > 0). Consequently, these eigenmodes travel in the direction of

increasing ϕ and are thus counter-beam-propagating. The plasma, on the other hand,

rotates in the direction of decreasing ϕ. The ion cyclotron frequency varies in this

equilibrium from 2.5 MHz on the outboard side to 9 MHz on the inboard side. The

experimental profiles of rotation frequency and density are presented in figure 1 as a

function of major radius on the mid-plane. Measurements of the rotation profile (dashed

in figure 1a) are only available in the outer midplane. The profile used in the CAE3B

calculations (solid) has therefore been extrapolated to the inboard side by requiring it to

be a flux function, and it was also adjusted to be zero at the boundary. In figure 1a, there

is also an alternative rotation profile (dash-dotted), which is used later for a comparison

in figure 5. The magnitude of the three vector components of B1 for a typical solution

for n = −4 is presented in figure 2. Note that the parallel field is much larger than the

perpendicular components.

A few examples of solutions for n = −4 are shown in figure 3, which displays the

magnitude of the parallel component of the perturbed magnetic field (the eigenmode in

figure 2 is seen again in figure 3c). According to the naming convention of [13], the five

eigenmodes have the mode numbers (s = 1/2, m = 0), (s = 1, m = 1), (s = 1, m = −1),

(s = 1, m = 2) and (s = 1, m = −2), respectively. However, we will for simplicity just

number the eigenmodes in ascending order according to their eigenfrequencies, with the

aid of the symbols seen in the figure. The five eigenmode types in figure 3 are indicated

with ◦, +, ⊲, ×, �.

Figure 4 illustrates how the different eigenmode frequencies are affected by the

magnitude of the rotation frequency. The calculations were performed for a range
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Figure 1. Radial profiles shown as a function of major radius on the mid-plane. (a)

Measured rotation frequency on the outboard side (dashed), the corresponding flux

function for the rotation frequency used in most CAE3B calculations (solid) and an

alternative rotation profile used only in the comparison in figure 5 (dash-dotted). (b)

Density profile.
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Figure 2. Magnitude of the three components of the perturbed magnetic field (a) |B‖|,

(b) |Br|, (c) |B∧| for an eigenmode solution for n = −4 with f = 1026 kHz, also shown

in figure 3(c). Note the different color scales.
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Figure 3. |B‖| for the eigenmode structures with the lowest frequencies for n = −4.

of rotation frequencies at the magnetic axis, from the experimental value frot,axis =

−25.4 kHz to the oppositely directed frot,axis = 25.4 kHz. The radial profile was linearly

scaled, i.e., the relative shape of the rotation profile stayed the same as in figure 1. The

eigenfrequencies corresponding to the five types of modes (indicated with the different

symbols from figure 3) are shown in figure 4 for n = −3 to −5. The different toroidal

mode numbers are represented with different line colors.
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Figure 4. Eigenmode frequencies versus the magnitude of the on-axis rotation

frequency for toroidal mode numbers: n = −3 (green), −4 (blue), −5 (cyan). The

five eigenmode types (columns) in figure 3 are indicated with ◦, +, ⊲, × and �,

respectively.

It is clear from figure 4 that the eigenfrequency is raised by an increased plasma

rotation in the same direction as the eigenmode rotation. The experimental rotation

is in the opposite direction to the eigenmode rotation and the eigenfrequencies are

therefore lower than they would be without plasma rotation. For n = −4, in figures 3a–
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e, the eigenfrequency is shifted by ∆f ≃ −40 to −55 kHz with respect to the non-

rotating case. We can define an effective rotation frequency that the mode experiences,

frot,eff = −∆f/n, which is the rigid body rotation that would yield the same frequency

shift ∆f . For the eigenmodes in figure 3 we obtain for the case of the experimental

rotation frequency frot,axis = −25.4 kHz a value frot,eff ≃ −10 to −14 kHz (yielding

frot,eff/frot,axis ≃ 0.4 − 0.5). One can obtain an approximation for the effective rotation

frequency by taking a spatial average of the rotation profile weighted with the |B‖|

amplitude of the eigenmode. Assuming that the plasma rotates with this approximate

effective frequency as a rigid body, one can then calculate the corresponding Doppler

shift away from the solution at zero rotation. This gives for n = −4 the dashed magenta

curve in figure 5. It agrees approximately with the blue markers without lines, which are

the CAE3B results calculated without the terms v1 · ∇v0 in (11) and B1 · ∇v0 in (17),

i.e. without effects such as rotation shear. The main difference between the solutions

to the eigenmode equation (8) without rotation and the version including rotation,

equation (21), originates from the first two lines of the latter equation. This seems to

be captured roughly by the above described weighted average rotation approximation.

But the remaining part of (21), related to the v1 · ∇v0 and B1 · ∇v0 contributions,

results in a correction to the eigenfrequency (the full CAE3B solution shown as blue

lines in figure 5). For the experimental rotation frequency frot,axis = −25.4 kHz, there

is a shift of ∼ 2 kHz in the effective rotation frequency when the smaller terms of the

equation are turned off.

Because of these small correction terms, we conclude that it is non-trivial to

determine the value of frot,eff without performing the full eigenmode calculation.

Nevertheless, a qualitative statement can be made that the modes which are more

centrally localized tend to have a larger frot,eff, i.e. a larger slope in figures 4 and 5.

In figure 4, compare the n = −4, ×-marked line (corresponding to figure 3d) and the

n = −4, �-marked line (corresponding to figure 3e).

To examine the dependence on the rotation profile further, an alternative profile

was introduced in figure 1, which has the rotation more concentrated to the central

plasma. A comparison with results for this profile is made for n = −4 in figure 5.

The eigenmode frequencies in figure 5 for the new rotation profile (red solid lines)

have a value of frot,eff/frot,axis which is around two thirds of the value for the solutions

for the experimental rotation profile (blue solid lines). This is to be expected since the

eigenmodes are localized towards the edge where the rotation is lower for the alternative

profile.

The frequency is expected to differ between eigenmodes with positive and negative

toroidal mode numbers because of the Hall term [13]. However, figure 5 shows that for

example for the eigenfrequencies for n = +4 (black) and for n = −4 (blue solid) this

difference is small compared to the effect of plasma rotation. For n = +4, the relative

sign of plasma rotation and eigenmode rotation is the opposite, and the slope is thus

the opposite compared with the n = −4 case. The effective rotation frequency for the

n > 0 eigenmodes is very similar to the one for the negative toroidal mode numbers.
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Figure 5. CAE3B eigenfrequencies for n = +4 (black) and for n = −4 (blue

solid). Solutions are also shown for n = −4 without the B1 · ∇v0 and v1 · ∇v0

terms in the eigenmode equation (blue markers, no line). Results obtained using the

weighted average rotation Doppler shift approximation described in the text are shown

as magenta dashed lines without marker symbols. Note the approximate agreement

between the magenta dashed lines and the blue markers without lines. Results for the

alternative rotation profile in figure 1 are shown as red lines. As before, the first four

eigenmode types in figure 3 are indicated with ◦, +, ⊲ and ×.

The effective rotation frequency is also not affected by turning on or off the Hall term (or

the terms related to J0) in the solver. This only gives an overall shift of the frequencies

on the order of ∼ 10− 20 kHz, which can be seen as the difference between the n = ±4

curves at zero rotation in figure 5.

That different eigenmode types with the same n can have different effective rotation

frequencies (see the different slopes in figure 4) implies that the eigenfrequencies of

different modes can approach each other at certain rotation frequencies. Figure 6 shows

an example for n = −4, where the × and � mode frequencies are close to each other at

rotation frequencies around −114 kHz (4.5 times the experimental one). In going from

left to right in figure 6 the corresponding mode structures, shown in figure 7, appear to

exchange identities.

One can understand it in the following way. Given the higher frot,eff/frot,axis slope

of the � mode at slow rotation, one would expect its f(frot,axis) curve to cross the

corresponding curve for the × mode at around −114 kHz. However, such a degeneracy

is not allowed, as figure 6 shows. Instead, the curves avoid crossing and the visual

appearance of |B‖| for the (×) mode continuously changes its character when going from

figure 7a (at frot,axis = −124 kHz) to the way it looks in figure 7e (at frot,axis = −104 kHz).

One can make an analogy here to the gaps opening up in the shear Alfvén continuum at
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Figure 6. Eigenmode frequencies versus the magnitude of the on-axis rotation

frequency for n = −4, showing that the eigenfrequencies for the × and � modes

do not cross.
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Figure 7. |B‖| for eigenmode structures (n = −4) which transition from one form to

another as the rotation frequency is varied. Rotation frequencies from left to right are

equally spaced from −124 kHz to −104 kHz, see also figure 6. The transition modes

resemble superpositions of the two simpler mode structures in figure 3d and e.

radii where the toroidicity couples different poloidal mode numbers. In a similar way for

the CAEs studied here, geometry effects resolve potential degeneracies between modes,

and in the transition region where the eigenfrequencies are close, the modes structures

appear to be superpositions of the two involved modes.

4. The boundary at the wall

The placement of the boundary within the last closed flux surface instead of at the

vessel wall does of course affect the eigenmode solutions. To investigate this, the code
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used in [19], called the CAE code, has been modified to solve a simplified version of the

CAE3B equations (21). It does not include the terms stemming from v1 · ∇v0 in (11)

and B1 · ∇v0 in (17), and the effective rotation frequency can thus be expected to be

higher (see figure 5). The Hall term and the terms related to J0 are also neglected, so

that the equation becomes

(ω + nΩ)2B1 = ∇× [G (∇×B1)⊥] . (23)

The three components of this equation are (c.f. equations (10)–(12) in [13])

(ω + nΩ)2 grrb
r
= (B0 · ∇)v2A∇r · ∇b‖ (24)

(ω + nΩ)2 grrb∧ = B−2
0 (B0 · ∇)v2A(B0 ×∇r) · ∇b‖ (25)

(ω + nΩ)2B2
0b‖ = ∇ ·

{

v2A
[

−B2
0∇⊥b‖ +∇r(B0 · ∇)b

r
+ (B0 ×∇r)(B0 · ∇)b∧

]}

, (26)

where grr ≡ |∇r|2. The CAE code in [19], which encompasses the space all the way out

to the wall, solves one equation for one unknown, so the above set of three equations

in three unknowns needs to be reduced. We have to estimate the influence of the

transversal magnetic field components b
r
and b∧ on the parallel component b‖ in (26)

to obtain one equation for b‖. As a crude approximation, one can treat the eigenmodes

as plane waves, but one must keep the spatial variation of v2AB
2
0 in (26), because it is

what shapes the potential well. We thus allow ourselves to replace (B0 · ∇) with ik‖B0

in order to rewrite (24) and (25) as

(ω + nΩ)2 grrb
r
= ik‖v

2
AB0∇r · ∇b‖ (27)

(ω + nΩ)2 grrb∧ = B−2
0 ik‖v

2
AB0(B0 ×∇r) · ∇b‖, (28)

and (26) consequently as

(ω + nΩ)2B2
0b‖ =

= ∇ ·
{

v2A
[

−B2
0∇⊥b‖+

−
v2AB

2
0k

2
‖

(ω + nΩ)2 grr

(

∇r∇r · ∇b‖ +B−2
0 (B0 ×∇r)(B0 ×∇r) · ∇b‖

)

]}

=

= −∇ ·

{

v2AB
2
0

(

1 +
v2Ak

2
‖

(ω + nΩ)2

)

∇⊥b‖

}

. (29)

One can estimate that if (ω + nΩ)2 ≈ k2⊥v
2
A then, roughly,

∇ ·

(

1 +
v2Ak

2
‖

(ω + nΩ)2

)

∇⊥ ≈ −k2 ≈ ∇2, (30)

and it can thus be expected that the inclusion of the perpendicular terms of the

perturbed magnetic field into the equation for b‖ approximately modifies it to become

(ω + nΩ)2B2
0b‖ = −∇ · v2AB

2
0∇b‖. (31)

The solutions to this equation with the CAE code are benchmarked in figure 8 against

a simplified version of CAE3B, which solves the same equation. The benchmark

calculations are performed with the boundary at the plasma edge. Because the
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Figure 8. Code and model comparisons with the boundary at the plasma edge. The

CAE3B solution to the model equations (24–25) (dashed), the CAE3B solution to the

simplified model equation (31) (no line), and a benchmark to the CAE code solution

to (31) (red solid). The line colors of the CAE3B solutions correspond to the different

toroidal mode numbers, as presented in figure 4. The agreement between the CAE

code solution and the CAE3B solution to the simplified model equation (31) is good

for all three toroidal mode numbers.

derivation of (31) is heuristic rather than rigorous, a comparison is also made in

figure 8 with the CAE3B solution to (24)–(25). One can conclude that the effective

rotation frequency and the frequency splitting between different mode structures from

the simplified model equation (31) agree rather well with the results of the more complete

model in (24)–(25), but the simplified model tends to overestimate the frequency

splitting between different n.

We are now in the position to compare eigenmode solutions to (31) with the

boundary at the wall and at the plasma edge using the CAE code. The quantity v2AB
2
0

in (31) is proportional to 1/ρ, and in the case when the boundary is at the wall, ρ is

taken to fall of on a 5 cm length scale outside the separatrix. At the wall, one would

ideally want to set the tangential electric field to zero. However, this is not possible

without retaining all three components of B1. For simplicity the boundary condition is

therefore taken to be B‖ = 0, as in the case with the boundary at the plasma edge.

Figure 9 compares the CAE code eigenmode frequencies (solutions of (31)) with

the boundary at the wall and at the plasma edge. Also shown are the full CAE3B

(with boundary at the plasma edge) solution from figure 4. Firstly, when comparing the

full and simplified model solutions, we see that the main difference lies in the effective

rotation frequency (the slope of the curves). To capture the effect of rotation one thus

needs to solve the full eigenmode equations, since the simplified model leads to an

overestimation of frot,eff. Secondly, comparing the two simplified approaches which have

different boundaries, we find that the extension of the domain to the wall lowers the

frequencies by ∼ 10 − 20 kHz. The effective rotation frequency, however, is not much

affected by the position of the boundary (the slopes of the solid and dashed lines are
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very similar in figure 9).
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Figure 9. Eigenmode frequencies versus the magnitude of the on-axis rotation

frequency. The full CAE3B solution (dotted) has the boundary at the plasma edge.

(The line colors of the CAE3B solutions correspond to the different toroidal mode

numbers, as presented in figure 4.) The solution to (31) with the CAE code from [19]

are shown for the boundary at the wall (dashed) and with the boundary at the plasma

edge (solid). The stars show experimental data.

The experimentally measured frequencies for the studied NSTX discharge are

presented in a spectrogram in figure 10. Mirnov coil data were analyzed as described in

[20] to obtain the toroidal mode numbers, which are indicated in the spectrogram with

different colors. For the studied time t = 0.48 s, the frequencies have been transferred

to figure 9 and marked as stars. There are fewer modes detected experimentally than

one can find with the eigenmode analysis, because the eigenmodes have to be excited to

be seen in the experiment, and whether this happens or not depends on details of the

fast particle distribution. For n = −4 and n = −5, the calculations seem to be in rough

agreement with the measurements, but for n = −3, neither the the eigenfrequencies

computed with the full CAE3B code (dotted lines) nor the CAE calculation with

the boundary at the wall (dashed lines) match the experimental frequencies. The

frequency splitting between the calculated eigenmodes is in this case larger than in

the measurements. More systematic comparisons between experiments and numerical

results are needed, but such a study is out of the scope of the present work.

Future modeling efforts will need to solve the full eigenmode equation including

plasma rotation, since this influences the effective rotation frequency, and such modeling

should also place the domain boundary at the wall, since this lowers the eigenmode

frequency. Neither of the codes used in this work is able to perform both these tasks at

the same time. Furthermore, it would be preferable if the v2A/(ω
2B2)(B · ∇)2 ≪ 1

approximation, which prevents shear waves, could be removed, as is done in the

WHALES code [17].
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Figure 10. Experimentally measured CAE spectrum, analyzed to display the toroidal

mode number, n = −3 (green), −4 (blue), −5 (cyan). These colors were used also in

previous figures for CAE3B solutions.

5. Conclusions

The eigenmodes calculated with CAE3B using the experimental plasma rotation profile

are structurally very similar to the ones obtained without taking plasma rotation

into account, but their eigenfrequencies differ. However, eigenmodes that are close

in frequency can interchange their structural appearance when the rotation frequency

is increased. This is for instance the case for the fourth and fifth eigenmode types

(denoted with × and � in the figures), which swap identities at around 4.5 times the

experimental rotation frequency. The two eigenmodes avoid being degenerate at the

rotation frequency where the eigenfrequencies could be expected to cross. Instead, at

that rotation frequency they go through a stage of what appears to be superpositions

of the two basic eigenmodes, and the eigenfrequencies stay separated.

As expected, the eigenfrequencies are higher if a plasma rotation exists in the same

direction as the mode rotation, and lower if the directions are opposite. Eigenmodes

with more central localization (where the rotation is fast) tend to respond more to a

change in the overall rotation frequency. An approximation to the eigenfrequency shift

due to rotation can be obtained by assuming that the plasma rotates as a rigid body

with a rotation frequency computed from a spatial average of the real rotation profile

weighted with the eigenmode amplitude. It is, however, non-trivial to more accurately

determine the magnitude of the frequency shift due to rotation without performing the

full eigenmode calculation.
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With the tools used in this work, extension of the computational domain to the wall

could only be made by greatly simplifying the eigenmode equation. The low effective

rotation frequency discussed above could therefore not be observed in the calculations

with the boundary at the wall. The extension of the domain to the wall did, however,

lower all eigenfrequencies by ∼ 10−20 kHz, irrespective of the rotation frequency. This

is of the same order as the frequency shifts seen from including the Hall term and the

J0 terms in CAE3B.
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Appendix A.

The two first lines of the eigenmode equation are given (without the factors K and K2)

in the appendix of [13]. For brevity, they are in the following expressions therefore only

marked as “known terms”. The component of the eigenmode equation along ∇r is

ω2grrb
r
= known terms +

− iK3G
Ω

ω
(B0 · ∇)

(

grrν

B2
0

[−Ip̃′grrb
r
− ψ′(−B2

0Λ · ∇b‖ +B2
0g

rr

B0 · ∇b∧ +B2
0g

rrαb
r
+ b∧B0 · ∇g

rr)]

)

+

+ iωKΩgrrν(b∧ψ
′grr − Ib‖), (A.1)

where grr ≡ |∇r|2 and where J̃0 ≡ αB0 + p̃′B−2
0 Λ defines α and p̃′. The component

along Λ is

ω2B2
0g

rrb∧ = known terms +

− grrK2Gψ′ [ΩB0 · ∇ν + (Ω′ + νΩ)B0 · ∇]
(

−B2
0∇r · ∇b‖ + 2b‖p̃

′grr + grr(B0 · ∇)b
r
− 2Λ ·Db∧

)

+

+K2ΩGp̃′grr
[

B0 · ∇(grrµ)− IB−2
0 ν(B2

0αg
rr − 2D ·Λ) + grrµB0 · ∇

]

b
r
+

−K2ΩGψ′ν(B2
0αg

rr − 2D ·Λ)
(

−Λ · ∇b‖ + grrB0 · ∇b∧ + grrαb
r
+ b∧B

−2
0 B0 · ∇g

rr

)

+

− iωKgrr
[

ψ′grr(Ω′ + νΩ)b
r
+ ΩµB2

0b‖
]

, (A.2)

where D ≡ (B0 · ∇)∇r. Finally, the component along B0 is

ω2B2
0b‖ = known terms +

GK3

[(

iψ′Ω

ω
Λ · ∇ν −

nΩ′

ω
B2

0

)

+ iψ′Ω
′ + νΩ

ω
Λ · ∇

]

(

−B2
0∇r · ∇b‖ + 2b‖p̃

′grr + grr(B0 · ∇)b
r
− 2Λ ·Db∧

)

+

− iK3G
Ω

ω
p̃′ [Λ · ∇(grrµ) + grrµΛ · ∇] b

r
+

− iK3

[(

H ·B0

Ω

ω
+ grrK

Ω′

ω

)

GνB−2
0 Ip̃′grr +B2

0

Ω

ω
∇r · ∇(GνB−2

0 Ip̃′grr)+
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Ω

ω
GνIp̃′grr∇r · ∇

]

b
r
+

− iK3

[(

H ·B0

Ω

ω
+ grrK

Ω′

ω

)

Gνψ′ +B2
0

Ω

ω
∇r · ∇(Gνψ′) +

Ω

ω
Gνψ′B2

0∇r · ∇

]

(

−Λ · ∇b‖ + grrB0 · ∇b∧ + grrαb
r
+ b∧B

−2
0 B0 · ∇g

rr

)

+

+ iωKgrr
[

Ib
r
(Ω′ + νΩ) + ΩB2

0µb∧
]

, (A.3)

where H ≡ ∇×Λ = −2D + αΛ+ (∇2r − p̃′grr/B2
0)B0.
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