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In traditional electron/ion laboratory plasmas, the system size L is much larger than
both the plasma skin depth ls and the Debye length λD. In current and planned efforts
to create electron/positron plasmas in the laboratory, this is not necessarily the case. A
low-temperature, low-density system may have λD < L < ls; a high-density, thermally
relativistic system may have ls < L < λD. Here we consider the question of what
plasma physics phenomena are accessible (and/or diagnostically exploitable) in these
different regimes and how this depends on magnetization. While particularly relevant to
ongoing pair plasma creation experiments, the transition from single-particle behavior
to collective, “plasma” effects — and how the criterion for that threshold is different for
different phenomena — is an important but often neglected topic in electron/ion systems
as well.

1. Introduction

The large mass imbalance between ions and electrons — and the resulting separation
of the two types’ of particles length and time scales — is a cornerstone of the physics
of traditional plasmas (e.g., Chen 1984; Bellan 2006). There are “fast” phenomena
that involve electron oscillation (with the ions stationary) and “slow” phenomena that
involve ion oscillation (with the electrons reaching equilibrium “instantly” — i.e., on
much faster timescales than the motion being considered). In the governing equations,
terms with the ratio me/mi (electron mass divided by the ion mass) are frequently
discarded. Plasma mass density and center-of-mass velocity are approximated by the
ion mass density and center-of-mass velocity. Intra-species temperature equilibration is
impeded, because, unlike a collision between two equal-mass particles (which may transfer
up to 100 percent of one particle’s energy to the other), a collision between particles with
a large mass difference transfers comparatively little energy. These are just a few basic
examples. More complex plasma phenomena are in turn built on the foundations of mass
asymmetry.

Therefore, the concept of a “pair plasma”, comprising particles with opposite charge
but equal mass, requires all of plasma physics to be revisited from the ground up.
Sometimes the end result of the rederivation is no more than an extra factor of 2, as
a term that was once negligible compared to its neighbor is now equally important. If,
on the other hand, those two terms have opposite signs, they now cancel, fundamentally
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changing the result. Behavior can go from linear to non-linear, be dominated by a different
aspect of the physics, or disappear entirely. Hundreds of papers have been written on
the topic, employing a variety of different theoretical treatments — relativistic and non-
relativistic; kinetic and multi-fluid; linear and non-linear. (See, for example, Tsytovich
& Wharton 1978; Stewart & Laing 1992; Iwamoto 1993; Berezhiani & Mahajan 1994;
Blackman & Field 1994; Zank & Greaves 1995; Verheest & Lakhina 1996; Mahmood
et al. 2003; Bessho & Bhattacharjee 2005; Gary & Karimabadi 2009; Lopez et al. 2012;
Helander 2014; Liu et al. 2015; Edwards et al. 2016, just to name a small but diverse
selection.)

Naturally, interest in creating a pair plasma in the laboratory goes as far back as the
first theoretical conceptions of such a thing (Tsytovich & Wharton 1978). However, this
is a significant experimental challenge. It is also one that different researchers around
the world approach in a variety of different ways. Progress to date can be summarized
as follows:

Pure positron plasma + electron beam: Two-stream instability seen in a charge-
neutral system. Electron Debye length exceeded the electron beam diameter (λDe > de).
(Greaves & Surko 1995)

Laser-driven, relativistic positron/electron beams: Charge neutrality
approached asymptotically, but effectively achieved. Plasma skin depth on the order of
or slightly smaller than the beam diameter (ls < d); simulations predict such a system
will exhibit some collective behavior. (Wilks et al. 2005; Sarri et al. 2015; Chen et al.
2015; Liang et al. 2015)

Carbon fullerene pair plasmas: Many Debye lengths achieved. Electrostatic modes
investigated. Gyroradius ≈ plasma radius. (Oohara & Hatakeyama 2003; Oohara et al.
2005; Kono et al. 2014)

Low-temperature electrons/positrons in a dipole magnetic field: Only single-
species experiments to date (i.e., highly non-neutral). Many Debye lengths achieved with
electrons but not yet with positrons. Target is ten Debye lengths for both species in the
same system. (Saitoh et al. 2010, 2015; Pedersen et al. 2012; Stenson et al. 2015)

As may be gathered from the above overview, different experimental groups have
tended to focus on one of two different parameters as their figure of merit (typically
preferring the smaller of the two): plasma skin depth ls or Debye length λD. While
Debye length is often used in textbooks as part of the definition of a plasma, it is also
true that traditional laboratory plasmas have very small plasma skin depths, a feature
that cannot be taken for granted in very low-density systems.

In this paper, we review the physical relevance of each parameter. We discuss how
small Debye length does not guarantee small plasma skin depth for plasmas that are
thermally non-relativistic, while Debye length can equal or modestly exceed plasma
skin depth for plasmas that are thermally relativistic. We note that certain collective
interactions can occur before either multiple plasma skin depths or multiple Debye lengths
are reached, and we consider the topic of experimental observables for different regimes.
While particularly relevant to ongoing pair plasma creation experiments, the transition
from single-particle behavior to collective, “plasma” effects — and how that threshold
depends on the phenomena of interest — applies to electron/ion systems as well, but it
is often given only a cursory treatment in plasma physics texts and courses. Therefore we
will keep the discussion as general as possible, addressing plasmas both with and without
a large mass asymmetry and noting differences between the two as they come up.
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ne (m−3) ls λcutoff comments

1012 5.3 m 33 m between AM & FM radio
1012 (e+/e- plasma) 3.8 m 24 m
1020 0.53 mm 3.3 mm microwaves
1021–1022 (e+/e- plasma) 0.1–0.4 mm 0.6–2.6 mm with relativistic correction*
1022 53 µm 334 µm
1025 1.7 µm 10.6 µm CO2 laser

* as given by Sarri et al. (2015) and Liang et al. (2015)

Table 1. Plasma skin depths (ls) for a range of electron densities (ne), as well as the cutoff
wavelength for transmission of incident EM waves (λcutoff = 2π ls), adapted from Attwood
(2009). Except where noted, a non-relativistic electron/ion plasma is assumed.

2. Plasma skin depth and plasma frequency

The plasma skin depth is the depth in a collisionless plasma to which low-frequency
electromagnetic radiation can penetrate (as defined by attenuation of the wave amplitude
by a factor of 1/e). † Some representative values are listed in table 1. In a traditional
plasma, the expression for plasma skin depth is given by ls = c/ωpe, where c is the speed
of light in vacuum. The electron plasma frequency ωpe is the characteristic frequency for
oscillations of the electron density in the “cold electron” limit (i.e., neglecting the effects
of thermal motion); it is given by ωpe =

√
nee2/(ϵ0me), where ne is the number density

of the electrons, e is the elementary charge, ϵ0 is the permittivity of free space, and me

is the electron mass.
For electron/positron pair plasmas, a factor of

√
2 appears, because positrons respond

as quickly to density perturbations as electrons do; the picture of a displaced populations
of electrons sloshing back and forth past approximately stationary ions does not apply.
One option is to redefine ωpe, replacing me by me/2; another is to leave the definition
the same and modify the dispersion relations accordingly (keeping in mind that the
definition no longer has the same physical meaning). A hybrid approach is often used
in the literature: the definition of ωpe is unchanged, but the term “plasma frequency” is
used for

√
2ωpe. We will use this approach as well, making a point to distinguish between

the “electron plasma frequency” ωpe and the “plasma frequency” ωp that represents a
fundamental frequency of the system and is given by

ωp =

√
2nee2

ϵ0me
=

√
2ωpe. (2.1)

† A note on the “plasma skin depth” versus the “skin depth” associated with the “skin effect”
in ohmic conductors: Metals and semiconductors also have a plasma skin depth corresponding to
the natural oscillation frequency of density perturbations to the free electron gas; it has the same
form as Eq. 2.2, except with me replaced by the electrons’ effective mass m* to take into account
the effect of the ions’ periodic potential. (The quantum of these oscillations, the plasmon, is a big
deal in condensed matter physics.) The cut-off frequency is typically in the UV (since n ∼ 1029

m−3), which explains why metals reflect light in the visible range. At low frequencies, on the
other hand (ω ≪ ν, where ν is the interspecies collision frequency), the attenuation of vacuum
EM waves is dominated not by collective oscillations of the free electron gas but rather by ohmic
dissipation, which produces the frequency-dependent skin depth familiar to those who work with
AC electrical currents. A (collisional) plasma will behave similarly in that limit. For a rigorous
examination, see Fitzpatrick (2008).
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This yields the expression for pair plasma skin depth

ls =
c

ωp
=

c√
2ωpe

. (2.2)

In traditional, electron/ion plasmas, the plasma frequency appears in the dispersion
relation for all elementary plasma waves in which electrons are oscillating, and it is a
cut-off for Langmuir waves, which have the dispersion relation ω2 = ω2

pe+3v2Tek
2, as well

as for transverse electromagnetic waves (in unmagnetized plasma) and O-mode waves (in
magnetized plasma), both of which have the dispersion relation ω2 = ω2

pe + c2k2. (The
frequency and wave number for an oscillating mode of the plasma are ω and k, and
vTe =

√
κTe/me is the electron thermal velocity, where κ is Boltzmann’s constant and

Te is the electron temperature.) For example, light with ω < ωpe will be fully reflected
while light with ω > ωpe will be transmitted.

In electron/positron pair plasmas, for the reasons outlined previously, the cut-off for
Langmuir and light waves is

√
2ωpe. The equations are given by

ω2 = 2ω2
pe + 3v2Tek

2 = ω2
p + 3v2Tek

2 (2.3)

and

ω2 = 2ω2
pe + c2k2 = ω2

p + c2k2, (2.4)

respectively. (Additional differences include there being no distinction between L and R
waves, acoustic waves being heavily Landau damped, the absence of whistler waves, and
much more (Tsytovich & Wharton 1978; Stewart & Laing 1992; Iwamoto 1993; Zank &
Greaves 1995).)

Frequency cut-offs are a valuable diagnostic tool in plasma physics, due to their
dependence on conditions that one wants to measure (e.g., plasma density). The most
basic version of this measurement is to ramp up the frequency of the transmitter until
one detects a transmitted wave at the receiver on the far side of the plasma; Eq. 2.1 is
used to calculate the peak electron density. A more sophisticated system involves sending
in a wave with a frequency below the cutoff; looking at when and where it reflects back;
calculating where in the plasma the reflection occurred; and repeating this for different
frequencies to get a density profile. These techniques fail, however, if the length scale
over which reflection occurs (e.g., the skin depth, in the case of light waves) is larger
than the system size.

Finally, the plasma skin depth is also the characteristic length scale for the Weibel
instability, in which an anisotropic velocity distribution results in current filamentation,
leading to magnetic field generation and shock formation. Observation of the Weibel
instability is a goal for laser-generated electron/positron experiments (e.g., Chen et al.
2015).

3. Debye length and quasi-neutrality

The plasma Debye length λD is the characteristic distance over which electrostatic
potentials are “screened out” or attenuated by a redistribution of the charged particles.
Some representative values are listed in table 2. In vacuum, the electrostatic potential
of a particle with charge Q (i.e., the Coulomb potential) falls off gradually, inversely
proportional to the distance r from the particle:

Φ(r) =
Q

4πϵ0

1

r
. (3.1)
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ne (m−3) T λD (mm) system

1011 0.1 eV 10 ionosphere
1012 1 eV 5 low-temperature electron/positron plasma
1022 50 MeV 0.4 laser-produced electron/positron plasma
1020 10 keV 0.1 MCF plasma
1031 10 keV 10−7 ICF plasma (imploded)

Table 2. Debye lengths for a diverse selection of plasma systems, adapted from Bellan (2006).
MCF and ICF stand for magnetic and inertial confinement fusion, respectively. Debye lengths
for electron/ion plasmas assume that screening is dominated by electrons.

By contrast, the potential due to a charged particle in a plasma falls off faster, as

Φ(r) =
Q

4πϵ0

e−r/λD

r
, (3.2)

where the Debye length is defined as

1

λ2
D

≡
∑
σ

1

λ2
Dσ

(3.3)

where the sum is over those charge species participating in the screening, and

λ2
Dσ ≡ ϵ0κTσ

nσq2σ
(3.4)

where σ identifies the charge species, and Tσ, nσ, and qσ are the species temperature,
equilibrium density (in the absence of the test charge Q), and charge, respectively.
In traditional, electron/ion plasmas, it is often only electrons that participate in the
screening (because ions move too slowly), so the ion term in Eq. 3.3 is dropped, and
the Debye length is given by the electron term only: λD =

√
ϵ0κTe/(nee2). In an

electron/positron pair plasma, both species participate in the screening, so the Debye
length is smaller by a factor of

√
2 (just like the plasma skin depth).

λD =

√
ϵ0κTe

2nee2
. (3.5)

If the linear dimensions of a plasma are significantly larger than the Debye length, the
system is quasi-neutral; non-neutral regions are at most a few times the size of the Debye
length. This holds true regardless of whether the source of the potential perturbation is
externally generated (like a probe inserted into the plasma, around which a sheath forms),
forms spontaneously between regions of plasma with different characteristics (as is the
case for double layers), or arises from random thermal fluctuations.

This last case can be shown by considering the (statistically highly unlikely) situation
in which thermal fluctuations result in all the electrons in a spherical region of radius rmax

simultaneously moving outward with the precise distribution of velocities that results in
them coming to rest (due to the electric field generated by the ions left behind) at the
surface of that sphere. Thus, all of the initial electron kinetic energy Wkinetic due to
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random thermal motions is converted into electrostatic potential energy WE :

Wkinetic = WE

(
3

2
nκTe)(

4

3
πr3max) =

∫ rmax

0

ϵ0E
2
r

2
4πr2 dr (3.6)

where Er(r) is the electric field at radius r from the center of the spherical region.
Equation 3.6 gives rmax ≃ 7λDe (Bellan 2006).

Another way to understand this equating of the kinetic energy in a region of plasma
to the energy in the electric field generated by a single-species plasma of the same size
and density is as follows: Self-generated, collective dynamics require that the plasma can
create electric fields that compete with — and dominate over — kinetic dynamics (i.e.,
single particle motion). If, in the upper limit of the hypothetical scenario described above,
the potential energy that is generated is less than the kinetic energy of the particles, then
this cloud cannot generate collective potentials that single particles care about.

In single-component plasmas (which cannot screen potentials with the same sign as that
of the particles, since all the particles will move away from the source of the perturbation,
leaving only vacuum behind), this relationship between plasma potential and kinetic
energy provides the definition for the Debye length (Knoop et al. 2016).

Beyond being part of the overall criteria for which ionized gas qualifies as a plasma
and which does not, quasi-neutrality (and/or a small Debye length) is incorporated into
many (but by no means all) of the equations that describe plasma physics phenomena,
as it is a common starting point or simplifying assumption. This is particularly true
of low-frequency phenomena; no less than the equation of motion that governs magne-
tohydrodynamics (MHD), for example, includes the assumption of quasi-neutrality. It
also shows up in such places as the Fokker-Planck treatment of plasma collisions, the
derivations of ion acoustic waves and their soliton counterparts, and the theory of drift
waves (Bellan 2006).

One example of particular interest for the magnetic fusion community is the physics of
interchange modes, which play a major role in the dynamics of plasmas confined in inho-
mogeneous magnetic fields, especially in toroidal configurations such as magnetospheres
or in magnetic confinement fusion devices. In many cases, interchange dynamics can be
understood from the single-particle picture as arising from the fact that the magnetic
drifts (∇B and curvature drift) are opposite in direction for the positive and negative
species, as a result of which a polarization of the plasma appears. This creates an electric
field that can overwhelm the magnetic drifts and leads to the plasma E × B drifting
as a whole. However, since this electric field cannot be larger than what is produced by
having the two species drift apart entirely (akin to the hypothetical scenario described
previously), this large-scale motion can only occur in systems with a small Debye length
compared to the plasma size and radius of curvature (Goldston & Rutherford 1995).

While all of the above phenomena have been mentioned in the context of their deriva-
tions for traditional, electron-ion plasmas, they typically also apply to the corresponding
theory of pair plasmas, albeit often with different results. As mentioned previously,
interspecies collisions in pair plasmas transfer momentum at the same rate as intraspecies
collisions, and there is no low frequency regime in which the heavier species’ behavior
determines the interesting physics while the lighter species is just “along for the ride”.
Recent papers investigating the nature of the acoustic mode (Edwards et al. 2016) and
magnetic confinement stability (Helander 2014; Helander & Connor 2016) have pointed
out dramatic differences.
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Figure 1. The ratio ls/λD of the plasma skin depth to the Debye length depends on the plasma
temperature. (a.) Skin depth and Debye length both scale in inverse proportion to the square
root of density. Examples are shown for three plasmas with different electron temperatures
(Te1 < Te2 < Te3). Plasmas 1 and 2 are thermally non-relativistic. Plasma 3 is thermally
relativistic and has a non-Maxwellian velocity distribution function, resulting in λD > ls. (b.)
Debye length versus skin depth, both normalized to the system size, for plasmas of various
temperatures (dotted lines). Changing the system size while keeping the density and temperature
constant or changing the density while keeping the system size and temperature constant
corresponds to moving along the appropriate isotherm (blue arrow). Increasing the temperature
while keeping the density and system size constant increases only the Debye length for
non-relativistic plasmas; for relativistic plasmas, the skin depth becomes temperature-dependent
via the Lorentz factor (red arrows, with light red indicating an ultra-relativistic Maxwellian and
dark red indicating a non-Maxwellian distribution). The standard textbook definition of a plasma
is “many Debye lengths” — e.g., 10 (green line).

4. Relationships between ls and λD

Both plasma skin depth and Debye length scale with 1/
√
ne, but whereas skin depth

depends only on density, Debye length depends on both density and temperature (figure
1). Combining Eq. 2.2 and 2.1 yields an expression for skin depth very similar to Eq. 3.5
for the Debye length, except the expression for ls has

√
mec2 in the numerator instead

of
√
κTe. Thus, which of the two length scales is smaller depends on the relationship

between κTe and mec
2:

ls
λD

=

√
mec2

κTe
. (4.1)

For plasmas that are thermally non-relativistic (κTe ≪ mec
2 = 0.5 MeV) and have a

Maxwellian temperature distribution, as has been assumed up to this point, this ratio
simplifies to c/vTe, and the Debye length is smaller than the skin depth. For example,
the ratio ls/λD is 23 for a 1-keV plasma and 715 for a 1-eV plasma.

For plasmas that are thermally relativistic (κTe ≳ mec
2), the skin depth is subject to

a relativistic correction, with me → ⟨γ⟩me where ⟨γ⟩ is the average Lorentz factor, while
the Debye length is not (Melrose 2008). For an ultra-relativistic Maxwellian velocity
distribution, ⟨γ⟩ = 3κTe/(mec

2) (Wei-Ke et al. 2005), so Eq. 4.1 simplifies to ls/λD =√
3. If a distribution is not Maxwellian, the expression for the Debye length (Eq. 3.5)

is modified; whether it is shorter or longer than the Maxwellian case depends on the
distribution (Bryant 1996; Hansen et al. 1996; Rubab & Murtaza 2006). In the relativistic
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limit, where the two length scales are comparable, this can lead to the Debye length
equaling or modestly exceeding the skin depth.

One can also rearrange Eq. 4.1 to emphasize that the inverse plasma frequency is the
inertial time scale for the electrons:

λD

vTe
=

ls
c
=

1

ωp
. (4.2)

Phenomena with timescales faster than the inverse of the plasma frequency will not
necessarily maintain quasi-neutrality, because the electrons are far from force balance.
Nevertheless, large areas of non-neutrality are not possible, since the plasma itself does
not have sufficient energy to do this, as described in the previous section.

5. Magnetization

Magnetization of a plasma introduces additional length and time scales (corresponding
to the period and radius of a charged particle’s cyclotron orbit in the magnetic field),
in addition to introducing significant anisotropy (parallel versus perpendicular to the
magnetic field). Waves in magnetized plasma are significantly different than those in
unmagnetized plasma, with the exception of compressional (electrostatic) waves propa-
gating parallel to the magnetic field. Many of the differences between pair plasmas and
normal plasmas involve magnetized waves, including one that doesn’t have an electron-
ion plasma equivalent (Zank & Greaves 1995). In the high-frequency limit, this new wave
propagates non-dispersively at the acoustic velocity, which in pair plasmas differs from
the thermal velocity only by a factor of the adiabatic index γ, where γ =1–3, depending
on how far a process is from meeting the adiabatic criterion (Edwards et al. 2016).

Nor are all magnetized plasmas alike. Strongly magnetized plasmas exhibit behavior
distinct from weakly magnetized plasmas. This is particularly well illustrated by the CMA
(Clemmow-Mullaly-Allis) diagram (figure 2), which depicts the qualitatively different
“cold” plasma modes (i.e., those for which the dispersion relation is not temperature-
dependent) for different plasma densities (horizontal axis) and magnetic fields (vertical
axis). A “frequency scan” in a uniform plasma (i.e., with density and magnetic field fixed)
corresponds to moving along a diagonal line; not all lines can access all types of plasma
waves. Examining the CMA diagram also highlights the interesting physics available at
higher frequencies, such as the cyclotron and hybrid frequencies.

In terms of diagnostic accessibility, high frequency waves “fit” into low-density plasmas
if the system size is significantly larger than the Larmour radius rL, which depends on
temperature and magnetic field B as

rL =

√
κT/m

ωc
=

√
mκT

eB
(5.1)

where ωc = eB/m is the cyclotron frequency. Cyclotron resonances are a valuable tool
for controlling and diagnosing magnetized plasmas. In addition to the wave physics that
can be identified from the CMA diagram, extending one’s sights to “warm” plasma
modes (e.g., Bernstein waves, which occur at multiples of the cyclotron frequency) further
extends the options.

Finally, a magnetically confined pair plasma is an ideal environment for testing theories
about turbulence, micro-instabilities, and anomalous transport (all of which are also
“warm” plasma effects). In traditional plasmas, these issues are very active areas of
research, due to their importance for the ultimate success of fusion energy as well as
for the understanding of space and astrophysical plasmas. Turbulence occurs on both
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(a) (b)

Figure 2. CMA diagrams illustrate cutoffs, principle resonances, wave normal surfaces, and
other properties of the cold plasma dispersion relation for a.) electron-ion plasmas (from Bellan
(2006)) and b.) pair plasmas. As per the standard analysis (e.g., Stix 1992), modes are plane
waves in an infinite, homogeneous plasma; S, P , and D (not shown) are elements of the dielectric
tensor, R = S + D, and L = S − D. Note that for pair plasmas, it is always the case that
R = L = S, so there is at most one mode for waves propagating parallel to the magnetic field;
i.e., the two wave normal surfaces always coincide at θ = 0.

ion and electron scales, and coupling between the two types of turbulence is essential
for the understanding of magnetic fusion reactor heat loss (Howard et al. 2016). In pair
plasmas, not only is this large difference in length scales absent (unless there is a large
difference in temperatures between the two species), but gyrokinetic theory predicts
that pair plasmas will be stable to the modes that dominate in electron-ion plasmas
(Helander 2014; Helander & Connor 2016). Being able to verify this prediction and, more
generally, to study microstability in pair plasmas would provide an invaluable comparison
for traditional plasmas and the tools used to describe/simulate them.

6. Threshold for collective interactions

The presence of collective phenomena doesn’t necessarily mean that one has a plasma
in the usual, textbook sense. As a trivial example, the electron gas in a solid experiences
plasma oscillations; the plasma state is not required. Additionally, certain collective
phenomena can also be observed in a group of charged particles before either multiple
Debye lengths or multiple skin depths are achieved in one’s system.

This has long been observed by those who study non-neutral plasmas, which are
typically very diffuse (i.e., have very long skin depths) and which not infrequently come
into existence via a transition from “trapped charge particles” to “plasma”. In pure
electron experiments in the levitated dipole Ring-Trap 1, for example, a diocotron-like
mode (a collective effect in non-neutral plasmas) was observed even when the Debye
length was on the order of the system size or larger (Saitoh et al. 2010). Interestingly,
the “rotating wall” in a Penning trap works both for clouds of “trapped charged particles”
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and for “plasmas”, but via different physical mechanisms (Anderegg et al. 1998; Greaves
& Surko 2000; Danielson & Surko 2005).

A prominent example from quasi-neutral plasmas is the two-stream instability. Ev-
idence for this instability, which grows much more quickly for pair plasmas than for
electron-ion plasmas, was already seen in the electron beam/positron plasma system
investigated by Greaves & Surko (1995). Because the instability criterion is given by
0 < ku0/ωpe <

√
2, where u0 is the relative velocity between two oppositely directed

streams, smaller ωpe (associated with a lower density and a longer skin depth) means
that unstable modes simply occur at smaller u0, rather than requiring small k, large-
wavelength behavior that doesn’t “fit” in the system. Interestingly, the derivation for the
instability criterion assumes quasi-neutrality, which, as described in the previous section,
is not a given for small Debye-length systems; in the case of these experiments, the Debye
length for the positron plasma was smaller than the radius of the electron beam, but the
Debye length for the electrons was not.

Since the two-stream instability is related to the Weibel instability, in that the initial
velocity space anisotropy can be thought of as multiple counter-streaming beams (Fried
1959), this raises the question of whether it might also be possible to observe evidence
of the Weibel instability in pair plasmas at lower densities than are required to fit many
skin depths into the system size.

Similarly, recent work has suggested that stimulated Brillouin scattering (a type of
three-wave coupling) could be used to diagnose pair plasmas (Edwards et al. 2016).
The waves in question are “low frequency” waves, but the coupling happens in the high
frequency, large wave number limit, and it occurs at phase-matching conditions for the
pump, seed, and plasma waves, such as ωpump = ωseed + ωplasma. Using higher pump
and seed frequencies could potentially allow observation/exploitation of this phenomenon
even in systems with large skin depths.

Also related to the density threshold for collective effects is the question of to what
degree quasi-neutrality is a necessary condition, either on smaller scales or in the plasma
as a whole. Experimental investigations of low-density, magnetically confined plasmas in
a continuum ranging from pure electron plasmas to quasi-neutral electron-ion plasmas
found that fluctuations are very different for different degrees of non-neutrality (Sarasola
& Pedersen 2012). Given that predictions for the microstability of electron-positron
plasmas are very different from those for electron-ion plasmas, however, it would not be
surprising if the relative importance of quasi-neutrality is also different in these systems.

For pair plasmas, simulations predict similar behavior in electron/positron clouds that
are non-neutral with a ratio of 55%/45% to clouds that are quasi-neutral (Sarri et al.
2015). Magnetization is also a factor; theoretical investigations of different degrees of
neutrality in pair plasmas indicate that even a small fraction of positrons in an electron-
rich plasma can cause substantial modification to the properties of waves near the electron
cyclotron resonance (Melrose 1997). To summarize, the importance of quasi-neutrality
might well be different for pair plasma than it is for electron-ion plasmas, as well as being
different for magnetized plasmas than it is for non-magnetized plasmas.

7. Summary

Motivated by the observation that different approaches to electron/positron pair
plasma creation may result in a system with linear dimensions smaller than the plasma
skin depth or the Debye length (or both), we have reviewed the physics associated with
these two parameters. The Debye length being larger than the system implies that quasi-
neutrality cannot be assumed (at least, not for anything smaller than the system in its
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entirety) and that the system cannot generate electrostatic potentials that can compete
with thermal effects. The skin depth being larger than the system implies that some of
the wave physics that would otherwise be interesting/useful (e.g., for reflectometry) are
not accessible, and that any wave that fits in the system involves faster timescales than
that involved in Debye shielding.

Neither multiple skin depths nor multiple Debye lengths, however, is strictly necessary
for the observation of collective phenomena, as evidenced for example by experiments
involving two-stream instabilities. The transition from “single particle” behavior to
“collective behavior”, like the transition from “non-neutral” to “quasi-neutral” plasma,
is far from being fully understood. What these transitions look like — whether they are
gradual or sharp with respect to different parameters, to what extent different plasma
parameters are more or less influential, and so on — is a compelling topic of ongoing
research.
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