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Abstract

Within the framework of Bayesian uncertainty quantification we
propose a non-intrusive reduced-order spectral approach (polynomial
chaos expansion) to the simulation of ion-solid interactions. The
method not only reduces the number of function evaluations but pro-
vides simultaneously a quantitative measure for which combinations
of inputs have the most important impact on the result. It is applied
to SDTRIM-simulations [1] with several uncertain and Gaussian dis-
tributed input parameters (i.e. angle, projectile energy, surface binding
energy, target composition) and the results are compared to full-grid
based approaches and sampling based methods with respect to relia-
bility, efficiency and scalability.
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1 Introduction

Almost all computer codes for the simulation of ion-solid interaction [2] rely
on a large number of input parameters, e.g. surface binding energies, com-
position, energy distribution etc. However, many of these parameters are
uncertain and a proper comparison with experimental data or other models
requires the quantification of the uncertainty of the result. Unfortunately,
the computational demand of single simulation runs often severely restricts
the quantification of output uncertainties by full-grid or simple sampling (e.g.



Monte Carlo sampling) based approaches due to the curse of dimensional-
ity for more than a very limited number of uncertain input parameters. To
reduce the computational effort we propose a non-intrusive reduced-order
model approach (polynomial chaos expansion), which not only reduces the
number of function evaluations but provides simultaneously a quantitative
measure of which combinations of inputs have the most important impact
on the result, i.e. it yields a sensitivity analysis and the associated Sobol
coefficients.

2 Bayesian uncertainty quantification

Based on the Bayesian framework we employ a spectral expansion to quan-
tify the propagation of uncertainty through the model. First introduced by
Wiener [3] in the context of Hermite basis functions it was termed ‘polyno-
mial chaos expansion’ at his time. Nowadays the notion of ‘chaos’ has shifted
and the use of the term ‘spectral expansion’ is more appropriate. Once suc-
cessfully achieved, the spectral representation is capable of quantifying the
uncertainty for any point in model space or to serve as a surrogate model.

Since we calculate the sought-for spectral coefficients from a discrete set
of collocation points in the space of the random variable, our approach is
non-intrusive, but approximate. The emerging integrals in the calculation
of the coefficients are evaluated by Gaussian quadrature which identifies the
collocation points with those of the quadrature. Moreover, we assume mutu-
ally independent normally distributed random variables. The adjunctive set
of orthonormal basis functions in such a case are Hermite polynomials.

To quantify the uncertainty of a result R we seek the appropriate function
g(&), such that R will have the required distribution of the model response,
R = g(§). As for all random variables with finite variance it is possible to
find an infinite expansion

9(&) =D artn() = D axti(§) (1)

which we limit to polynomial order P since the contributions of higher orders
become numerically insignificant. The coefficients are given by
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We assume Gaussian character for the random variable, so the density p(&)



is distributed according to the normal (probability) distribution

p(e) = jQ_Wexp {—%} . (3)

The adjunctive set of orthonormal basis functions is given by the so-called
probabilist Hermite functions, which read up to fourth order
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It turns out that for the model simulations under consideration this polyno-
mial order is sufficient since contributions from higher orders become numer-
ically insignificant for the result. With these definitions the normalization
constants in Eq. (2) are readily

(s ) = / SOV Ep(E)dE = K. (5)

Due to the Gaussian nature of the probability function omnipresent in the
integrals above, it is beneficial to use Gauss-Hermite quadrature for the eval-
uation

(9(€), (&) = g(@)w(&w (6)

where the weights w; and the abscissas & are for instance provided by Numer-
ical Recipes [4]. Eventually, by exploiting the properties of the orthogonal
Hermite polynomials the expectation value of the model outcome and its
variance can be assigned to the spectral coefficients in Eq. (2)

(R)y=a, , var(R) = (R*)—(R)® = > apk! . (7)

In order to provide a measure for the influence of the uncertainty of input

variables on the above variance we employ Sobol coefficients [5]. They are
defined by

Si = CSy= (8)



where the evaluation of the integrals
D; = /g§<€i)d§’i :
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results in combinations of the coefficients of Eq. (2) (the index of the func-
tion Ginges(-..) relates to the specific variable(s) &pnger Which are omitted in
the integral ginges = [ .- [ 9(£)d€findesy). The higher the value of a Sobol
coefficient with respect to the others is, the more it is advantageous to reduce
the uncertainty of its associated variable in order reduce the uncertainty of
the quantity of interest.

For further readings about our implementation of the uncertainty quan-
tification we refer to [6].

3 Results and discussion

The above analysis is applied to ion-solid interaction simulations with the
program SDTRIM.SP [1] for the case of incident deuterium ions with an
energy of Fy = 200 eV at a = 45 degrees to a surface consisting of iron
and tungsten with a surface binding energy of Egp = 4.28 eV. We assume
the parameters to be normally distributed within a standard deviation of
roughly 10%, i.e. og, = 20 eV, op,, = 0.4 and o, = 4 eV. Extending
the formulas of section 2 to three random variables & = (&1,&,&3) with
EO = Ey+ &iog,, ESB = Fgp + &0p,, and & = o + £30,, the summation
of the terms in Eq. (6) runs over three indices [j, 5 and I3 with an upper
boundary of P+ 1 =5 in the present setup of fourth order polynomials (for
numerical accuracy of the Gaussian quadrature it is expedient to be one order
higher than the polynomial order of the spectral expansion). This results in
a total of 216 terms (three nested summations, each running from /;=0 to 5
with i=1,2,3) over the collocation points composed of 6 Gaussian quadrature
abscissas assigned to &, and 6 weights w;, (the specific values are obtained
from numerical routines in [4]):
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while the W, (&) consist of all possible 35 combinations of the Hermite poly-
nomials of Eq. (4) up to fourth order (e.g. ¥g = 1,01 = §,, ¥y = &,, VU3 =

4



0.08
0.07
0.06
0.05 |
0.04

0.03 |
0.02

Sputter yield [at/ion]

280 260 240 220 200 180 ‘160

Energy [eV]

Figure 1: Sputter yield reproduced by the surrogate model from the uncer-
tainty quantification of SDTRIM calculations for Ey = 200 eV, Egg = 4.28
eV and an incident angle of 45 degrees, with contour lines in the base. The
line in the center shows a yield of 0.0497 for these settings with a standard
deviation of 0.0112 (dark line). For reason of portrayal the surrogate model
was varied only in two dimensions for Ey and «, while Esg was kept fixed at

4.28 eV.

&3, Va = &8, Us = &8, U6 = .60, U7 = & — 1,..., gy = & — 657, + 3).
The value for the function g(&;,, &, &) is obtained from a SDTRIM.SP run,
which takes roughly 3 minutes on a modern CPU. However, the complete run
for the 216 terms can be speeded up enormously since the calculations are
independent and can be done in parallel. Once calculated, the 35 coefficients
of Eq. (10) establish a fast surrogate model, which is simply the evaluation
of a polynomial. Without the need to do any further simulations, various
quantities may be inferred from the coefficients, e.g. the variance as in Eq.
(2), or the Sobol coefficients, which allow to investigate the sensitivity of
the result on the uncertainty of the input variables. For the above variables
Ey, a and Esp we get a relationship of 20:10:70 in the Sobol coefficients
(only first order is numerically significant) for {Ey, o, Esp}, indicating that
the improvement of the knowledge of Esp is most rewarding if one wants to
reduce the uncertainty of the sputter yield.
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