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1 Introduction 

In the continuing debate on climate change, the carbon cycle plays a major role as additional 

input of carbon gases into the atmosphere is seen among the main drivers for global warming 

(IPCC, 2014; Riebeek, 2011). Since the carbon reservoirs atmosphere, biosphere, soil and ocean 

are strongly interconnected, better comprehension on how these interactions affect and respond 

to global change is necessary (Harding et al., 2011; Hari et al., 2016; Tallaksen et al., 2015). In 

this context, research at the Max Planck Institute for Biogeochemistry, Jena (MPI-BGC) aims 

to develop and investigate methods and models to describe the dynamics of the terrestrial 

biosphere within the Earth system, focusing on states and fluxes related to the carbon cycle 

(MPI-BGC, 2016). However, the global carbon cycle is closely linked to the hydrological cycle 

(Battin et al., 2009; Döll et al., 2015; Falkowski et al., 2000), and thus integration of both into 

global simulation models is required (Gerten et al., 2004; Sood and Smakhtin, 2015). While the 

coupled terrestrial carbon and water cycle is simulated by dynamic global vegetation models 

(DGVMs), these models focus on climate-vegetation interactions and their hydrological 

performance often remains unverified (Gerten et al., 2004). On the other hand, hydrological 

models (HMs) usually serve for water management and flood forecasting (Gupta, 2011) and 

lack sufficient representation of vegetation and biosphere-hydrosphere interactions (Gerten et 

al., 2004). Additionally, the complexity of existing models, both DGVMs and HMs, increased 

continually over time (Döll et al., 2015) by implementing processes thought to be relevant, 

leading to the pitfall of possible model overparametrization (Jakeman and Hornberger, 1993). 

Thus, in general the ‘best’ model is still the one which gives results close to reality with the use 

of least parameters and model complexity (Sorooshian et al., 1993). 

With this background, and to complement existing models by a preferably simple one, the 

Model-Data-Integration and Global Diagnostic Modelling groups at the MPI-BGC are currently 

developing a global model-data fusion framework for the coupled carbon and water cycle on 

land. Under the working title ‘SINDBAD’ different methods to combine heterogeneous, up-to-

date earth observation data streams and biogeochemical models with low complexity are 

investigated. On the one hand, the models shall reproduce observed hydrological and 

biogeochemical patterns reasonable, and on the other hand serve to understand the influence 

and interactions between the different data streams. Therefor the models shall only consider 

components of the Earth’s system that are essential for consistency with observational data. 

Besides, applying the simplest model structure feasible is desirable in order to reduce problems 

of overparametrization and parameter equifinality, as well as to keep the model’s runtime as 

short as possible. 
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Combining diverse, spatially and temporally resolved data in models has proven to be an 

essential tool to estimate biogeochemical and hydrological processes, storages and associated 

changes (Döll et al., 2015). Among such data, terrestrial water storage anomalies obtained by 

the twin-satellites of the Gravity Recovery and Climate Experiment (GRACE) mission recently 

showed high potential for application in hydrological modelling (Döll et al., 2015; Güntner, 

2008; Werth et al., 2009). GRACE provides continually measurements of the Earth’s 

gravitational field, and after correction for atmospheric and oceanic effects, variations in this 

signal mainly represent changes in the terrestrial water storage (TWS) (Xie et al., 2012). As 

TWS integrates water storages in the form of snow, ice, surface, soil and ground water, it 

potentially allows inferences about spatial and temporal variations of its components. This is 

especially interesting in terms of a coupled carbon hydrologic model, since water availability, 

in particular in the soil, determines the distribution and productivity of plants, and thus 

represents one of the main links between both cycles (Gerten et al., 2004). Due to its global 

coverage and since in contrast to other satellite-based products it does not rely on surface 

conditions, GRACE TWS is a unique data source to quantify spatio-temporal variations of the 

Earth’s water storages (Güntner, 2008). Thus, GRACE estimates are recommended to be used 

as model constraints, and in particular may be efficient in high latitudes where in situ 

hydrological measurements are sparse (Alkama et al., 2010; Werth et al., 2009). High latitudes 

additionally are in focus of research, as they are a potential carbon sinks and impacted by 

climate change more rapidly and significantly than other regions (Tallaksen et al., 2015). 

Accordingly, GRACE TWS observations seem promising to combine in the SINDBAD 

framework and constrain its hydrological compartments. 

In this context, this master thesis focuses on modelling large-scale hydrologic dynamics by 

developing a simple model that is consistent with spatial and temporal GRACE TWS patterns 

and allows to draw inferences about variations in soil moisture resp. plant available water in 

high latitudes. 

1.1 State of the Art 

At the present moment, a variety of models exist that are capable to simulate hydrological 

processes from regional to global scales. Thereby the objectives, applied input data, model 

structures as well as methodologies to quantify water fluxes and storages differ largely (Döll et 

al., 2015; Haddeland et al., 2011; Müller-Schmied et al., 2014; Sood and Smakhtin, 2015; 

Teuling et al., 2010). To evaluate the models’ hydrological performance and if required to 

estimate their parameter values by calibration, simulations are commonly compared to observed 

discharge of large river basins. These point-measurements are most suitable as they integrate 

over processes in the whole upstream basin and for long time represented the only measurement 
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of a hydrological variable with acceptable accuracy and coverage (Döll et al., 2015; Güntner, 

2008). However, reasonable conformity in terms of discharge does not guarantee proper 

representation of all hydrological processes within the basin (Güntner, 2008). To review and 

improve the credibility of simulations, additional information on other hydrological variables 

and fluxes should be considered by performing multi-criteria calibration and validation (Sood 

and Smakhtin, 2015). 

While in-situ measurements are sparse and do not capture spatial heterogeneity, increasing time 

series and enhancement in the quality of remote sensing products with global coverage facilitate 

a new source of observational data streams (Döll et al., 2015; Sood and Smakhtin, 2015). The 

benefits of such satellite-based products have already been demonstrated by various studies 

applying large-scale calibration and validation (Immerzeel and Droogers, 2008; Livneh and 

Lettenmaier, 2012; Parajka and Blöschl, 2008). 

Since the start of the GRACE mission in 2002, research has especially focused on variations of 

terrestrial water storage and its incorporation into hydrologic modeling (Döll et al., 2015). 

GRACE TWS estimates have been analyzed using hydrologic models to estimate solid 

precipitation (Seo et al., 2010), snow mass (Niu et al., 2007), evapotranspiration (Ramillien et 

al., 2006; Rodell et al., 2004), discharge (Syed et al., 2005) and to gain insights in regional 

groundwater variations (Feng et al., 2013; Rodell et al., 2009). 

Besides, simulated TWS has been validated against GRACE TWS data for large river basins in 

several studies (Alkama et al., 2010; Döll et al., 2014; Kim et al., 2009; Ngo‐Duc et al., 2007; 

Schmidt et al., 2008; Swenson and Milly, 2006; Syed et al., 2009). In general, those studies 

revealed a qualitatively good agreement in the seasonal dynamics and continental-scale patterns 

of simulated and observed TWS. However, for some regions they found discrepancies in the 

phase and amplitudes of TWS variations, which besides to shortcomings in the meteorological 

forcing are commonly attributed to model structure and process representation. Thus, 

integration of GRACE in multi-criteria calibration could considerably improve large-scale 

hydrological modelling (Güntner, 2008; Ngo‐Duc et al., 2007; Syed et al., 2009). This has been 

proven by Werth et al. (2009), who calibrated a global hydrological model against river 

discharge and GRACE TWS variations and by doing so improved the simulations regarding 

both constraints. Similarly, Xie et al. (2012) calibrated a semi-distributive model for basins in 

Sub-Saharan Africa and found that the model performs well in semi-arid and sub-humid areas. 

Further, they unveiled that model-based partitioning of TWS in its components may highly be 

uncertain and thus requires future efforts. This demand is also highlighted by Güntner (2008), 

who sees the separation of GRACE’s integral mass variations into its components as 

“fundamental for hydrological applications”. Therefore, they suggest to apply auxiliary in-situ 

and remote sensing based data to include information on individual storages. 
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Among the components of TWS, soil moisture plays a major role in terrestrial hydrology, yet 

modelling its dynamics remains a major challenge due to the strongly non-linear behavior and 

related feedbacks of these processes (Hagemann and Gates, 2003; Todini, 1996). Improvement 

and confidence of its spatial and temporal estimates thus is highly desirable. Milzow et al. 

(2011) achieved good results when combining satellite based surface soil moisture, altimetry 

and GRACE TWS data to calibrate a hydrologic model for the Okavango catchment in Southern 

Africa. Similar, large scale measurements achieved from the European Space Agencies’ (ESA) 

Soil Moisture and Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP) 

missions may be useful to constrain simulated soil moisture. However, they still have limited 

value as the microwave signals can only capture the upper 5 cm of soil (Döll et al., 2015; 

Lettenmaier et al., 2015).  

In high latitudes, snow mass is found to be the primary component of TWS (Niu et al., 2007; 

Rangelova et al., 2007). The benefits of integrating satellite-based snow estimates as a 

modelling constraint have been shown for instance by Parajka and Blöschl (2008). They 

performed multi-criteria calibration using MODIS snow cover data for catchments in Austria. 

While runoff performance did not change significantly, the simulated snow dynamics improved 

as evaluation against ground-based measurements showed. However, MODIS as a 

multispectral sensor suffers from cloud coverage and provides information on snow extent 

instead of the amount of water contained within the snow pack. Passive microwave sensors in 

contrast allow the estimation of the snow water equivalent (SWE) while being unaffected by 

cloud coverage. On the downside, passive microwave estimates of SWE are known to have 

large errors for either wet, deep, or ice and hoar containing snow packs (Lettenmaier et al., 

2015). However, recently assimilation products of passive microwave satellite data and ground 

observations as for instance provided by the ESA’s GlobSnow project improved these 

inaccuracies and seem a promising constraint for modelling snow dynamics (Hancock et al., 

2013; Liu et al., 2014). 

1.2 Objective and Research Questions 

In the context of current efforts at the MPI-BGC to establish the SINDBAD model-data fusion 

framework, this master thesis aims is to develop a simple, globally applicable model that 

simulates hydrological fluxes and pools. Therefor advantage shall be taken of pertinent, state-

of-the-art earth observation based data to force and constrain the model. Among such data, 

TWS anomalies obtained by the GRACE mission recently showed high potential for application 

in hydrological modelling. As TWS comprises all water stored near the land surface, it 

especially seems promising to assess soil moisture dynamics more accurately, which are 



Introduction Objective and Research Questions 

 

 

5 

difficult to model, yet represent the main link between the hydrological and carbon cycle. In 

these terms, it is especially interesting how the TWS is composed spatially and temporally, 

meaning what the relative contributions of its components to changes in the combined signal 

are. In high latitudes of the Northern Hemisphere, the TWS variations are assumed to be mainly 

influenced by snow accumulation and ablation. As the Northern Hemisphere due to its greater 

land area and amount of biosphere additionally plays a major role in the carbon cycle, yet in 

situ hydrological measurements are sparse, this thesis focuses on the dynamics of TWS 

variations in snow affected regions on the Northern Hemisphere. 

 

The intention is to develop a model that simulates the water pools  

a) snow pack (snow water equivalent),  

b) soil moisture, and eventually 

c) groundwater  

as well as the water fluxes 

a) snow accumulation 

b) snow melt 

c) sublimation, and  

d) runoff 

by forcing the model with observation based products of precipitation, radiation, air 

temperature, and evapotranspiration. As numerous approaches for modelling the hydrological 

cycle and its components exist, this study will implement and examine different of these model 

formulations to identify the most appropriate, with a minimum of effective parameters and the 

maximum consistency with observational data.  

 

In contrast to the common aim of hydrologic models to simulate average (annual) water flow 

accurately, the primary interest of this thesis lies in a sufficient representation of available 

water. Thus, the latest GRACE TWS estimates will be used for calibration of the model’s 

parameters rather than runoff data. Following Güntner (2008), additional information shall be 

included to gain confidence when separating TWS in its individual storage components. As 

TWS dynamics in high latitudes are mainly influenced by snow accumulation and melt, 

satellite-based observations of snow water equivalent (SWE) obtained by the GlobSnow project 

will be used. Thus, this thesis will follow the recommendation of Döll et al. (2015) and Sood 

and Smakhtin (2015) and apply multi-criteria calibration. Since satellite-based SWE estimates 

are known to be subject to high uncertainties for deep snow conditions (Lettenmaier et al., 

2015), one major question is how to combine the distinct data streams in the calibration process 

to take advantage of their informative content, yet consider these known issues. 
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Summarized, the objectives of this master thesis are threefold. The first two are methodological 

issues, concerning 1) which model formulation is ‘best’ and 2) which optimization method is 

most suitable. Finally, the resulting ‘best’ optimized model shall be used to address the 

scientific questions 3) whether variations in TWS can be reproduced and how the TWS signal 

is composed. 

In detail, this thesis aims to answer the following questions: 

 

1) Which model formulation for soil moisture dynamics and runoff generation is most 

appropriate and consistent with earth observation data, in particular with GRACE TWS 

and GlobSnow SWE estimates? How well does the model reproduce observations? 

Does spatial varying of model parameters improve the performance considerably? 

 

2) Which optimization method is most suitable for multi-criteria model calibration? What 

search algorithm provides the best results yet is the less time-consuming? How should 

the cost function by formulated to consider known data issues? 

 

3) What are the relative contributions of snow pack, soil moisture, and groundwater 

dynamics on terrestrial water storage variations? How do they vary spatially and 

temporally? Can trends of the GRACE TWS signal be reproduced by the model? 

 

Subsequent to this introduction, the master thesis is subdivided into six chapters. Chapter 2 

provides an overview on relevant theory, including a short description of the hydrological cycle, 

a review on (global) hydrological modelling and common process representations, as well as 

model calibration and evaluation methods. Chapter 3 explains in detail the developed model 

variants, the used data products and the experimental design. Following to a brief 

characterization of the study area based on the applied data in chapter 4, chapter 5 presents the 

obtained results. They are discussed regarding the research questions in chapter 6 and chapter 

7 finally summarizes the findings of this thesis. 
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2 Theory 

The following chapter provides an overview on macro-scale hydrological modeling. After a 

brief description of the hydrological cycle, types of hydrological models and features of existing 

global hydrological models are expounded. Subsequently, common methods for model 

optimization and evaluation are presented.  

2.1 The Hydrological Cycle 

The hydrological cycle is a complex and dynamic system that is strongly interconnected with 

the energy and biogeochemical cycles (Hagemann, 2011; Pagano and Sorooshian, 2006). It 

describes the continuous movement and retention of water through and in the Earth’s spheres, 

driven by solar energy and gravitation (Brooks et al., 2012). A general scheme of the 

hydrological cycle, its components and fluxes is depicted in Fig. 1. As it illustrates, major 

reservoirs as ice and snow, surface water, soil, groundwater, ocean and atmosphere are 

interconnected by physical processes such as precipitation, evaporation and runoff. These 

processes cover various spatial scales and are highly variable in time and space (Hagemann, 

2011).  

 

 

Fig. 1: Diagram of the natural water cycle (without human alterations) (Evans and Perlman, 2015). 

 

In general, atmospheric water vapor precipitates on the Earth’s surface, eventually flows as 

runoff to the ocean or inland water sinks while being transferred through the soil, the ground 

and/or surface water bodies, and finally evaporates again. Thereby, water fluxes and storage 
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conditions are strongly interconnected and influenced by various climatic and physio-

geographic factors. For instance, dependent on temperature, precipitation most commonly 

occurs as rain or snow, but also includes drizzle, sleet, hail, and in a broader sense fog, dew and 

frost. Besides temperature, also wind, topography, vegetation and physical obstructions 

determine the deposition and accumulation of snow and ice. Whether snowmelt and liquid 

precipitation infiltrate depends on various factors such as the moisture status of the soil, its 

maximum water-holding capacity, the network and size of pores within the soil matrix, the 

condition of the soil surface including the vegetation cover, as well as rainfall and snow melt 

rate (Blume et al., 2010). Additionally, human activities influence the hydrological cycle among 

others by building reservoirs, withdrawal from water storages, or land-use activities that modify 

vegetation and water bodies, which in turn influences for instance evapotranspiration and the 

distribution of snow (Brooks et al., 2012). 

While its allocation in storage or circulation varies in time, the mass of water remains constant 

on the global scale. Thus, the components of the hydrological cycle can be estimated for a 

distinct area by the water balance (Fig. 1). Accordingly, input by precipitation P equals the 

output represented by evapotranspiration ET (comprising transpiration, evaporation from 

interception, bare soil and open water surfaces) and streamflow Q (including surface runoff, 

interflow and base flow) and the change of storages ΔTWS such as ice, snow, soil moisture, 

ground water and surface water bodies (Schmidt et al., 2008). 

 

𝑃 = 𝐸𝑇 + 𝑄 ± 𝛥𝑇𝑊𝑆 (1) 

 

2.2 Hydrological Models 

To gain a better understanding of hydrologic phenomena and how these are affected by changes 

in climate and land use, the complex hydrological cycle can be represented in simplified terms 

by mathematical models. The following section provides an overview on different types of these 

hydrological models as well as their features regarding macro-scale application. 

2.2.1 Types of Hydrological Models 

Local to regional modeling of the hydrological cycle and its components has a long tradition in 

hydrological science and a variety of hydrological models (HM) have been developed. 

Numerous attempts to classify these HMs exist, where the most often used classification 

methods depend on the physical process description and the spatial discretization (Refsgaard, 

1996; Xu, 2002).   
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According to their process representation, HMs are classified as empirical, physically based or 

conceptual. Empirical models use observation oriented, data driven methods and do not 

consider features and processes of the hydrological system. They apply statistical methods as 

regression and correlation or machine learning techniques to reveal the functional relationship 

between concurrent input and output data streams. Although they have high predictive power, 

these ‘black box’ models strongly depend on the used training data sets and allow little process-

related conclusions (Devia et al., 2015). In comparison, physically-based models rely on 

fundamental physical laws. They use measurable state variables and their parameters have a 

physical interpretation. However, physical-based models as SWAT (Soil and Water 

Assessment Tool) (Neitsch et al., 2002), SHE (Systéme Hydrologique Européen) (Abbott et al., 

1986) and tRIB (TIN-based Real-Time Basin Simulator) (Ivanov et al., 2004) need a large 

number of parameters to describe the physical characteristics of the catchment and suffer from 

scale related problems (Devia et al., 2015; Refsgaard, 1996). 

Conceptual models as the HBV model (Hydrologiska Byråns Vattenbalansavdelning) 

(Bergström, 1976; Bergström, 1995; Lindström et al., 1997), TOPMODEL (Topographic 

Model) (Beven and Kirkby, 1979; Beven et al., 1995) and SAC-SMA (Sacramento Soil 

Moisture Accounting Model) (Burnash and Singh, 1995) are intermediate between empirical 

and physical-based models. Similar to the latter, they consider physical laws, but in highly 

simplified form. Using semi empirical equations, they describe processes that link a number of 

reservoirs, each representing a component of the hydrological cycle. Because of the simplified 

form, model parameters still have some physical meaning, yet cannot be assessed from field 

data alone but usually need calibration (Refsgaard, 1996; Xu, 2002). 

In terms of spatial discretization, lumped models with no or only coarse spatial partitioning can 

be distinguished from semi-distributed and fully distributed models, that incorporate variability 

of the hydrological parameters, processes and inputs. Therefore, the latter divide the area of 

interest in elementary units and compute hydrological processes for each unit separately while 

allowing interaction between them. Frequent concepts for spatial distribution are raster grids 

(e.g. TOPMODEL), triangulated irregular networks (TINs, e.g. tRIBS) and areas of common 

characteristics and process dynamics as hydrologic response units (HRUs) (Flügel, 1995) 

delimited by polygons (e.g. J2000). Semi-distributed models partition the catchment into 

separate areas as sub-basins that are treated as homogenous within themselves and may not be 

explicitly spatially located (e.g. SWAT), whereas lumped models treat the catchment as a 

homogenous whole, with all parameters and variables representing average values of the total 

area (e.g. SAC-SMA). 

In general, most conceptual models are lumped, whereas most physically-based can be 

considered distributed (Xu, 2002).  
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Traditionally, those stand-alone HMs are designed for and applied at the catchment- or basin-

scale. They require measurements of precipitation, air temperature, global radiation or sunshine 

duration, relative humidity and wind for meteorological forcing and are usually calibrated 

against observed discharge at the respective gauge. To account for characteristics of the local 

environment, they need physio-geographic information as elevation, land cover/land use, soil 

porosity, field capacity and root depth and include a number of parameters that have to be 

estimated regionally (Sood and Smakhtin, 2015).  

On the catchment-scale those HMs have been proven as essential tools in flood forecasting and 

regional water resource management (Gupta, 2011; Xu, 2002). However, since the late 1980s, 

issues of global climate change arouse the need for large-scale and global estimations of 

hydrological fluxes and storages (Xu, 2002). Initially, this has been impeded due to data scarcity 

at the global scale, as the number of ground based observations is limited, not all input 

information needed is available globally and if, it is associated with high uncertainty. 

Nevertheless, with significant progress in satellite-based data acquisition and enhanced 

computational resources, uninterrupted, large-scale and global information became available. 

As a result, a number of macro-scale hydrological models evolved, that are capable to simulate 

spatio-temporal patterns of global hydrological fluxes and storages.  

In principle, macro-scale HMs are similar to traditional HMs, but are adapted to global process 

knowledge and available data streams. Thus, they differ in time scales and spatial resolution, 

the detail of process description, and parameter estimation approaches. The majority of macro-

scale HMs can be categorized as conceptual models, as they are more frugal in data 

requirements than physically-based, but still capable to translate the effects of global change in 

the hydrological cycle appropriately. However, continuous development by adding more 

functionality (e.g. in terms of process description) and by the availability of finer global data 

sets led to a significant increase not only in the number, but also in the capabilities of macro-

scale models. Hence, current models are more complex than earlier attempts and the conceptual 

process description became more physically based over time (Döll et al., 2015).  

Among macro-scale models, literature often distinguishes between global hydrological models 

(GHM) and land surface models resp. land surface schemes (LSM) (Döll et al., 2015). While 

the latter evolved as land components of global circulation models (GCM), GHMs as 

WaterGAP (Döll et al., 2003) and WASMOD-M (Widén-Nilsson et al., 2007) are explicitly 

designed to assess the state of water resources by modelling the water balance and often take 

into account human water use.  

In comparison, LSMs as BATS (Biosphere-Atmosphere Transfer Scheme of the U.S.’s 

National Center for Atmospheric Research’s Whole Atmosphere Community Climate Model) 

(Dickinson, 1986) or H-TESSEL (land surface scheme of the European Centre for Medium-

Range Weather Forecasts’ operational weather forecast system) (Balsamo et al., 2009) 
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additionally solve the energy balance at high temporal resolution (hours), simulate 

evapotranspiration and snow melt in a less conceptual manner and represent soil with a higher 

vertical resolution (Haddeland et al., 2011). On the other hand, LSMs often lack representation 

of groundwater, surface water bodies, lateral flow routing and human alterations of the water 

cycle (Sood and Smakhtin, 2015). 

In addition to GHMs and LSMs, dynamic global vegetation models (DGVM) as LPJ (Lund-

Potsdam-Jena Model) (Gerten et al., 2004) incorporate hydrological processes to simulate the 

dynamics of ecosystem processes. Despite, as they focus on climate-vegetation interactions, 

they similar to LSMs usually do not represent lateral water movement and surface water bodies 

but include dynamic representation of the energy budget (Döll et al., 2015; Scheiter et al., 2013).  

However, due to similarities in particular areas between individual GHMs, LSMs and DGVMs, 

existing models can hardly be strictly classified and the grouping depends on considered aspects 

(Döll et al., 2015; Haddeland et al., 2011). Hence, in the following, the term ‘GHM’ will refer 

to macro-scale models in general. 

2.2.2 Features of Global Hydrological Models 

In general, GHMs adopt process formulations from catchment-scale HMs to estimate water 

flows on the Earth’s land areas as evapotranspiration, river discharge and groundwater recharge, 

as well as water storage (variations) in different compartments (snow, soil, groundwater, 

surface water bodies) based on precipitation and other global meteorological data. GHMs 

partition precipitation into evapotranspiration, soil moisture and runoff while tracking the 

transfer of water through the different storage compartments. The main output for each model 

unit is streamflow, which is aggregated through the river network by routing methods to 

generate basin scale discharge (Döll et al., 2015; Sood and Smakhtin, 2015).  

While this general scheme coincides, existing GHMs differ in their objectives, input data, 

spatio-temporal resolution, complexity and structural issues as the representation of 

anthropogenic influence, snow, vegetation, evapotranspiration, soil, groundwater and runoff 

processes as well as whether they account for sub-grid heterogeneity or not (Haddeland et al., 

2011). 

Tab. 1 summarizes a recent overview on existing GHMs and some of their features. In the 

following, the differences between the models will be addressed, with a special focus on 

divergent approaches of representing hydrological processes.  
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Tab. 1: Overview on existing global hydrological models,including their spatio-temporal resolution and structural characteristics (altered according to Haddeland et al. (2011) 

and Sood and Smakhtin (2015)).  

Model  Resolution Snow 

(Melt) 

Potential Evapo-

transpiration 

Soil 

Layers / 

GW 

Vegetation  Runoff Human 

Altera-

tion 

References 

 Spatial Temporal/ 

Time Step 

WBM-

WTM 

Water Balance Model 

– Water Transport 

Model 

0.5° monthly / 

month 

Eq. on T, 

P 

Korzoun et al. 

(1978) 

1 / 

- 

3 types (forest, 

shrubland, 

grassland) 

bucket/ 

linear  

- Vörösmarty et al. 

(1998) 

WBMplus Water Balance Model 

plus Irrigation 

0.5° monthly / 

day 

Eq. on T, 

P 

Hamon (1963) 1 / 

yes 

3 types (forest, 

shrubland, 

grassland) + 

crop types 

bucket yes Wisser et al. 

(2010) 

HDTM 1.0  Hydro Dynamic 

Model 

0.5° monthly / 

month 

Eq. on T, 

P 

Korzoun et al. 

(1978) 

1 / 

yes 

3 types (forest, 

shrubland, 

grassland) 

bucket/ 

linear 

yes Wisser et al. 

(2010), 

Marchenko et al. 

(2008) 

Macro-PDM Macro Probability 

Model 

0.5° daily / 

day 

dd Penman, Penman-

Monteith, 

Priestley-Taylor 

1 / 

yes 

2 types (forest, 

grassland) 

beta - Arnell (1999) 

Gosling &Arnell 

2010 

MPI-HM MPI Hydrology 

Model 

0.5° daily / 

day 

dd Thronthwaite, 

Input 

1 / 

yes 

- bucket/ 

beta 

- Hagemann & 

Gates 2003, 

Hagemann & 

Dümenil 1998 

GWAVA Global Water 

Availability 

Assessment model 

0.5° / 

0.1° 

monthly / 

day 

dd Penman-Monteith 1 / 

yes 

4 types (trees, 

bushes, grass, 

bare soil) 

bucket/ 

beta 

yes Meigh et al. 

(1999) 

VIC Variable Infiltration 

Capacity model 

2° daily / 

day 

EB Penman-Monteith arbitrary, 

mostly 2-3 

13 LC types + 

water 

beta - Nijssen et al. 

(2001) 

Gao et al. (2010) 

LaD Land Dynamic model 1° daily / 

hour 

EB EB 1 / 

yes 

10 types bucket/ 

linear 

- Milly and 

Shmakin (2002) 

 

dd: day-degree approach; EB: equation based on energy balance; WB: equation based on water balance; LC: land cover; bucket: saturation excess runoff; beta: direct runoff as 

a nonlinear function of soil moisture; linear: temporal delay of runoff assuming a linear reservoir 
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Continutation of Tab. 1. 

Model  Resolution Snow 

(Melt) 

Potential Evapo-

transpiration 

Soil 

Layers / 

GW 

Vegetation  Runoff Human 

Altera-

tion 

References 

 Spatial Temporal/ 

Time Step 

WaterGAP Water – Global 

Analysis and 

Prognosis model 

0.5° monthly / 

day 

dd Priestley-Taylor 1 / 

yes 

16 LC types beta yes Döll et al. (2003), 

Müller-Schmied 

et al. (2014) 

PCR-

GLOBWB 

PCRaster Global 

Water Balance model 

0.5° daily / 

day 

dd Penman-Monteith 2 / 

yes 

3 categories 

(natural, rainfed, 

irrigated), 

tall/short 

beta - van Beek and 

Bierkens (2008) 

LPJ/ LPJmL Lund-Potsdam-Jena/ 

managed Land model 

0.5° daily / 

day 

dd Priestley-Taylor 2 / 

- 

7 natural 

functional types, 

12 crop 

functional types 

bucket yes Bondeau et al. 

(2007), Gerten et 

al. (2004) 

WASMOD-

M 

Water and Snow 

balance Modeling 

system 

0.5° monthly / 

month 

Eq. on T Eq. on T, relHum, 

Input 

1 / 

- 

- linear  - Widén-Nilsson et 

al. (2007) 

H-08  1° / 

0.5° 

daily / 

3 h 

EB EB 1 / 

- 

crop growth 

model 

bucket/ 

beta 

yes Hanasaki et al. 

(2008) 

ISBA-TRIP Interactions between 

Soil, Biosphere, and 

Atmosphere – Total 

Runoff Integrating 

Pathways 

1° daily / 

20 min, 1 h 

EB WB of soil layer 3 / 

- 

CORINE LC beta - Alkama et al. 

(2010) 

 

dd: day-degree approach; EB: equation based on energy balance; WB: equation based on water balance; LC: land cover; bucket: saturation excess runoff; beta: direct runoff as 

a nonlinear function of soil moisture; linear: temporal delay of runoff assuming a linear reservoir 
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Input Data and spatio-temporal Resolution 

For model forcing, usually meteorological data derived from satellite products, provided by the 

Climate Research Unit (CRU) or daily reanalysis data as the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA datasets are used. 

Due to the availability of these global datasets, most GHMs have a spatial resolution of 0.5° or 

1° and equivalent to their input, are based on the grid format (Sood and Smakhtin, 2015). 

Recently, data with finer resolution along with faster computational devices have facilitated the 

development of GHM versions with higher resolution (e.g. a 5’ version of WaterGAP) (Döll et 

al., 2015). Although this trend is promoted by projects as the HyperHydro initiative, which aims 

to perform global-scale hydrological modelling on grid cells of 100 – 1000 m (Wood et al., 

2011), hyperresolution GHMs are not yet common.  

The modelled time steps range from one month to less than one day, with the majority of GHMs 

simulating in one-day resolution. If nevertheless monthly input data is used, statistical 

downscaling methods are applied (Sood and Smakhtin, 2015). 

Structural differences of GHMs 

Snow 

Some GHMs explicitly account for snow accumulation and melt. They partition precipitation 

into rainfall and snowfall either using a threshold temperature, which usually is 0 °C or 1 °C, 

or into a combination of rain and snow between an upper and a lower threshold temperature 

(Haddeland et al., 2011). For instance, in WaterGAP all precipitation falls as snow if the 

temperature is below 0 °C, whereas the MPI-HM simulates a combination of rain and snow 

between threshold temperatures of -1.1 °C and 3.3 °C (Hagemann and Gates, 2003). Apart from 

these traditional approaches, rainfall and snowfall can be distinguished based on satellite 

observations of snow depth. This method is applied in the Global Land Evaporation Amsterdam 

Model (GLEAM), that considers precipitation as snowfall when snow depth is more than 

10 mm (Miralles et al., 2011).  

Snow melt can be simulated based on energy balance or, in a more conceptual manner, with the 

degree-day approach. The latter is a temperature-index approach, which assumes a relationship 

between ablation and air temperature and calculates snow melt by multiplying the difference 

between daily temperature and a melt threshold temperature with the degree-day factor (He et 

al., 2014). A common used threshold temperature is 0 °C (Müller-Schmied et al., 2014). MPI-

HM and PCR-GLOBWB use the day-degree formula according to the HBV model, applying a 

degree-day factor of 3.22 mm °C-1 (Stacke et al., 2011). In WaterGAP 2.0 the degree-day factor 

is land cover specific, with 2 mm °C-1 for forest and 4 mm °C-1 for other land areas (Müller-

Schmied et al., 2014). Other GHMs such as WBM and WBMplus additional include the effects 
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of rain by calculating snowmelt using an empirical function of T and P if temperature exceeds 

the melt threshold of 1 °C (Vörösmarty et al., 1989; Wisser et al., 2010). Kustas et al. (1994) as 

well as Rango and Martinec (1995) suggest to include a radiation component into the degree-

day approach in order to improve simulated melt rates (restricted day-degree approach). 

Besides differences in the threshold temperatures and degree-day factors, another structural 

difference among GHMs is whether melted snow percolates through the snow directly into the 

soil or can be retained in the snow pack (Haddeland et al., 2011). For example, the MPI-HM 

and PCR-GLOBWB allow 6% of snow water equivalent to be retained as liquid water in the 

snowpack (Hagemann and Gates, 2003). 

In addition to snow melt, sublimation decreases the snow pack potentially. This process can be 

estimated by adapting potential evaporation equations for ice. For instance, GLEAM and 

WaterGAP 2.0 both obtain sublimation over ice and snow covered areas by applying an adapted 

latent heat in the Priestley and Taylor evaporation equation (Miralles et al., 2011; Müller-

Schmied et al., 2014).  

Sub-grid variability is incorporated by some GHMs by delineating the snow covered fraction 

of the grid cell. One possibility to implement this, is to assume snow cover fraction to be linearly 

increasing between zero snow water equivalent and a threshold, above which the whole grid 

cell is assumed to be snow covered. For example, H-TESSEL defines this threshold at 15 mm 

snow water equivalent (Balsamo et al., 2009; ECMWF, 2014). In WaterGAP snow 

accumulation and melt is modeled for a 3’’ sub-grid, with grid temperature being modified to 

the sub-grids based on elevation information and an adiabatic lapse rate of 0.6 °C per 100 m 

(Müller-Schmied et al., 2014). 

Vegetation 

GHMs largely differ in the level of detail given to vegetation description and processes. While 

some, as H-08 (Hanasaki et al., 2008) and LPJmL (Bondeau et al., 2007), include an explicit 

crop growth model that can deal with the impact of CO2 and temperature changes on plant 

physiology, others apply a land cover/land use classification of varying detail and define 

vegetation specific parameters as root depth and albedo (Sood and Smakhtin, 2015).  

Evapotranspiration 

Regarding evapotranspiration, GHMs use different methods for calculation and vary in the 

components they consider. Common methods to derive evapotranspiration are the Thornthwaite 

(1948), Penman (1948), Penman-Monteith (Monteith, 1965) and Priestley-Taylor (Priestley and 

Taylor, 1972) formula. While the Thronthwaite formula is based on the empirical relation 

between potential evapotranspiration and daily mean temperature scaled by the relative day 

length, the Penman approach is semi-empirical. It applies a number of meteorological 

observations as radiation, vapor deficit and ventilation (wind) and thus can be adapted to local 
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site conditions. Both, Priestley-Taylor and Penman-Monteith represent modifications of the 

Penman formula. The latter additionally includes two vegetation specific evaporation 

resistances, whereas Priestley-Taylor is based on less extensive measurements (Climate Service 

Center Germany, 2012). Besides, evapotranspiration can be calculated based on the energy 

balance within the model (H-08) or imported from an external data set (MPI-HM, WASMOD-

M). 

For instance, MPI-HM either calculates potential evaporation according to Thornthwaite or 

applies a concurrent input data set. The model considers interception evaporation from a canopy 

storage with a distinct capacity and directly distinguishes evaporation from bare soil from 

vegetation transpiration. Evaporation from bare soil is calculated as a linear function of the ratio 

of potential evapotranspiration and available soil moisture, while transpiration is set to 

maximum for soil moistures above a critical threshold and linearly decreases towards the 

wilting point. To account for sub-grid heterogeneity, evaporation and transpiration are further 

scaled to the vegetation fraction of the grid, which has to be provided as an input (Stacke et al., 

2011). 

In WaterGAP potential evapotranspiration is derived according to Priestley-Taylor. The model 

also includes interception evaporation, which is calculated following Deardorff (1978) as 

function of potential evapotranspiration and maximum canopy capacity depending on the 

seasonal-varying leaf area index (LAI) of the corresponding land cover. Actual 

evapotranspiration from soil is derived from the remaining potential evapotranspiration and the 

available water content in the land cover specific effective root zone compared to the maximum 

water capacity of this zone. For open inland waters the actual evapotranspiration is assumed to 

be equal to potential evapotranspiration (Döll et al., 2003; Müller-Schmied et al., 2014). 

Soil 

In general, some GHMs consider a single soil storage, others multiple soil layers (Sood and 

Smakhtin, 2015), between which capillary rise may be reproduced (PCR-GLOBWB). Further, 

the soil layer may have a fixed depth or depend on a vegetation specific root depth zone 

(WaterGAP, Zhang et al. (2008)). Some GHMs, as the HDTM 1.0 are capable to simulate 

permafrost dynamics and take into account frozen soil properties (Marchenko et al., 2008; 

Wisser et al., 2010).  

For separation of liquid precipitation resp. throughfall from the canopy layer and snow melt 

into infiltrating water and surface runoff GHMs apply different conceptual methods. 

An often applied approach is the bucket-type scheme first introduced by Manabe (1969). It 

assumes each grid cell to be a single soil water reservoir, which represents field capacity and 

thus water storage capacity of the soil. After a precipitation event, (direct) runoff will only occur 

if the reservoir is fully saturated (Hagemann and Gates, 2003). 
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Common modifications of the bucket scheme have been developed in the HBV model and the 

Arno model (Dümenil and Todini, 1992) to allow runoff generation even if the grid cell is not 

completely saturated. Thereto, the HBV approach according to Bergström (1995) describes 

runoff as a non-linear function of effective precipitation (sum of rainfall and snowmelt), soil 

moisture, maximum storage capacity, and a runoff coefficient, which determines the amount of 

effective precipitation converted into runoff (Alcamo et al., 2003). As this method is simple 

and independent of scale, it is widely applied, for instance in WaterGAP and simple water 

balance model (KM12) by Koster and P. Mahanama (2012). 

The effect of increasing surface runoff resp. decreasing infiltration with increasing soil moisture 

is also achieved by representing the sub-grid variability in soil water capacity as it is done in 

the Arno scheme. This method assumes a statistical distribution of storage capacities within the 

model entity. The parabolic distribution function, whose form is defined by a parameter similar 

to the Bergström approach, describes the fractional area that is saturated and thus contributes 

to runoff generation. Many GCMs as well as the GHM VIC, Macro-PDM and PCR-GLOBWB 

apply this approach to determine infiltration and surface runoff. Other GHMs as the MPI-HM 

use an improved Arno scheme, which derives fractional saturation curves for each grid cell 

from land surface parameters instead of assuming a statistical distribution (Hagemann and 

Gates, 2003). 

Another approach to estimate the partitioning of precipitation into soil moisture and runoff is 

shown by Zhang et al. (2008), who created a lumped conceptual model based on the Budyko 

demand-supply framework for modelling mean annual evapotranspiration (Budyko, 1961). 

Assuming rainfall to be the supply limit and available storage capacity in the root zone to be 

the demand limit, they delineate runoff from the demand/supply index and a retention 

efficiency.   

Other, simple GHMs as WASMOD-M and WBM do not distinguish between different water 

storage compartments and derive the amount of total moisture per grid cell by calculating the 

water balance using estimated evapotranspiration and runoff (Widén-Nilsson et al., 2007).  

Another very simplified approach originating from recession analysis assumes discharge to be 

proportional to a power of the catchments’ total water storage (Brutsaert and Nieber, 1977). 

While this method is widely used in studying groundwater systems, Kirchner (2009) applied it 

in a simple dynamical system approach, which yields good results for catchments under humid 

conditions (Kirchner, 2009; Melsen et al., 2014; Teuling et al., 2010). 

Runoff Generation and Groundwater 

GHMs distinguish between different runoff components and incorporate water retention in 

differing ways. Further, they may include routing of the grid’s total runoff through the stream 

network in order to compare modelled stream flow with discharge measurements.  
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While simple modeling approaches as the KM12 neglect water retardation, most GHMs 

incorporate a delayed runoff component by explicitly simulating a groundwater storage. Water 

is allocated to this storage through percolation either from the soil storage or as a fraction of 

surface runoff. LaD and MPI-HM for example model percolation from soil water storage 

depending on soil moisture (Stacke et al., 2011). Similar, VIC simulates drainage between soil 

layers as a function of the degree of saturation (Nijssen et al., 2001).   

Other models, such as WBMplus and WaterGAP, don’t consider drainage from soil water storage 

and reduce soil moisture solely by evapotranspiration. Instead, WBMplus allocates a predefined 

fraction of surface runoff to groundwater (50 %), while WaterGAP applies a heuristic approach 

based on slope characteristics and other physio-geographic data to partition surface runoff into 

direct runoff and groundwater recharge, depending on a soil texture specific maximum recharge 

rate (Müller-Schmied et al., 2014).  

The groundwater itself is mostly represented as a linear storage compartment that releases base 

flow into surface water bodies or total runoff. Thereby, the outflow usually is proportional to 

the storage content and calculated by dividing the reservoir content by the retention time of the 

reservoir, which is defined as average residence time of water within the reservoir (Hagemann 

and Dümenil, 1997). Those retention parameters are for example 0.01 d-1 (WaterGAP) and 

0.0167 d-1 (WBMplus).  

In WaterGAP the sum of base flow and direct runoff equate to total runoff of each cell, which 

is further led through a series of storages representing wetlands, lakes and reservoirs until 

reaching the river segment. Subsequently, streamflow is routed through the stream network 

(Müller-Schmied et al., 2014). Similar to WaterGAP, VIC distinguish between direct runoff 

without delay and base flow, which originates from the deepest soil layer (Nijssen et al., 2001). 

Although it does not incorporate a distinct groundwater storage, H-08 distinguishes between 

direct runoff occurring when soil water storage is saturated, and a constant runoff component 

as exponential function of soil water storage (Hanasaki et al., 2008). 

Similar to H-08, WASMOD-M includes no groundwater storage, yet describes a fast and slow 

runoff component, but uses linear reservoirs with two different retardation parameters. Thereby 

slow runoff solely originates from the water storage, while fast runoff emerges additionally 

from rainfall and snow melt. Both sum up to total runoff, which is then routed through the 

stream network without any delay (Widén-Nilsson et al., 2007).  

In MPI-HM, both direct runoff and base flow are modelled as reservoirs with specific retention 

times, too, but retention is based on the slope of the grid cell. It further represents river flow 

within the grid cell as a linear flow cascade with five reservoirs (Hagemann and Gates, 2003). 

As KM12 considers only one runoff component, Orth et al. (2013) found it necessary to impose 

a delay parameter that accounts for retardation of water transport in the catchment in order to 

make modeled runoff comparable to streamflow measured at a stream gauge site. 
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However, gradient based groundwater flow between grid cells usually is not represented in 

GHMs due to the extreme lack of information on groundwater distribution and table on global-

scale (Döll et al., 2015).  

Anthropogenic Influence 

Human alterations of the hydrological system are incorporated in GHMs as WaterGAP, and H-

08. For instance, WaterGAP includes a separate sub-model, the Global Water Use Model, that 

takes into account basic socio-economic factors that lead to domestic, industrial and agricultural 

water use, which then is subtracted from the water availability simulated by the Global 

Hydrology Model (Müller-Schmied et al., 2014). 

2.3 Model Calibration and Evaluation Methods 

In HMs, especially conceptual ones, parameters do not always correspond to physically 

measureable properties and thus cannot be determined directly. Therefore, they have to be 

estimated indirectly, by searching a parameter combination that leads to an optimal match 

between modelled variables and concurrent observations. This process of calibration can either 

be conducted manual, by ‘trial and error’, or by using automatic optimization techniques 

(Fischer, 2013). While manual parameter adjustment is time- and cost-consuming and involves 

subjective judgement, automatic techniques based on mathematical algorithms are capable to 

solve complex problems fast and objectively (Xu, 2002). Often, calibration is impeded by 

parameter interactions and multiple parameter sets gain equal acceptable model performance 

(Beven, 2006). Due to this problem of equifinality, automatic techniques may generate 

unrealistic solutions and thus still require user expertise to verify the optimized parameter 

values. Additionally, parameters are usually adjusted within a range of possible values, that is 

based on knowledge of the hydrology in the respective area, literature values or measurements 

(Fischer, 2013; Xu, 2002). 

Basin-scale HMs are traditionally calibrated against observed river discharge, as these point-

measurements integrate over processes in the whole upstream basin (Döll et al., 2015). In 

contrast, GHMs have rarely been calibrated, with a few exceptions such as WaterGAP and 

WASMOD-M. For them, one or two parameters are adjusted by evaluation of simulated against 

observed river discharge. Calibration in a broader sense also includes tuning of adjustment 

factors in order to reduce the bias between model output and observations, which for example 

is performed for WaterGAP and WBM (Döll et al., 2015; Sood and Smakhtin, 2015).  

The calibrated model’s performance and suitability is evaluated in a validation process, by 

comparing the model’s output with independent information, either from data of the same 

catchment not utilized for calibration (split sample test) or data from another basin (proxy basin 

test) (Klemeš, 1986). While simple split sample testing examines the transferability of the 
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model under stationary conditions, differential split sample testing checks for the model’s 

validity under transient conditions by dividing the time series e.g. in a wet and dry period. 

Similar, the proxy basin test, which verifies spatial transferability, can be combined with 

differential split sample testing (proxy basin differential split sample test) (Xu, 2002). 

To assess model performance objectively during both, calibration and validation, statistics that 

estimate the error between simulated and observed variables are used (Legates and McCabe, 

1999). In the course of this, errors of the observational data are usually neglected and 

measurements are assumed to represent the ground-truth (Döll et al., 2015; Moriasi et al., 2007). 

In general, GHMs are calibrated and evaluated either on the ecoregion, climate or continental 

scale, or, similar to traditional HMs, against discharge observations from large river basins, 

whereby the number of considered basins varies depending on the study (Sood and Smakhtin, 

2015). Although most GHMs run on daily time steps, calibration and evaluation is conducted 

on monthly or long-term annual scales.  

The following sections introduce some frequently used efficiency criteria and explain automatic 

optimization techniques more in detail. 

2.3.1 Model Efficiency Criteria  

Model calibration and evaluation utilizes efficiency criteria as a quantitative measure of the 

conformability between simulated and observed variables. According to Moriasi et al. (2007) 

at least one absolute error index, one dimensionless statistic and one graphical technique, such 

as visual comparison for a first overview on model performance, should be evaluated. 

Mean Square Error MSE 

The Mean Square Error (MSE) is a commonly used error index that describes the mean 

difference between observations and model simulations (Eq.(2)). It indicates the error in 

squared units of the constituent of interest and ranges from 0 to ∞. As a value of zero indicates 

perfect fit, modelling aims to generate the least mean square error possible (Moriasi et al., 

2007).  

 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑥𝑖𝑜𝑏𝑠 − 𝑥𝑖𝑚𝑜𝑑

)
2

𝑁

𝑖=1

 (2) 

 

where xobs = observed variable 

xmod = modeled variable 

N = number of data points 
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Since, unlike the theoretical assumption, observation streams are subject to errors, this 

uncertainty should be considered in evaluation statistics (Döll et al., 2015; Moriasi et al., 2007).  

Thereto, the residuals xobs – xmod are weighted with the uncertainty σ of the observations (Foglia 

et al., 2009). Accordingly, the weighted mean square error (wMSE) is calculated as: 

 

𝑤𝑀𝑆𝐸 =
1

𝑁
 ∑

(𝑥𝑖𝑜𝑏𝑠
− 𝑥𝑖𝑚𝑜𝑑

)
2

𝜎𝑖
2

𝑁

𝑖=1

 (3) 

 

where σ = uncertainty of xobs  

 

Root Mean Square Error RMSE 

The Root Mean Square Error (RMSE) is the root of the MSE and similarly expresses the error 

between modelled and observed data, yet in the units of the constituent of interest. A value of 

zero indicates perfect fit regarding the modelled volume, while a RMSE less than half the 

standard deviation of the observed data may be considered low. As MSE, the criterion ranges 

from 0 to ∞ (Moriasi et al., 2007).  

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 (4) 

 

Percentage Bias PBIAS 

The percentage bias (PBIAS) measures the average tendency of the modeled data to be larger 

or smaller than the observation. Similar to RMSE, the optimal value is zero. However, as 

PBIAS is expressed in percentage rather than the units of the constituent of interest, it allows 

to compare areas and seasons with widely differing values. It ranges from -100 to 100 [%], with 

positive values indicating model underestimation whereas negative values imply model 

overestimation bias (Moriasi et al., 2007).  

 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑥𝑖𝑜𝑏𝑠

− 𝑥𝑖𝑚𝑜𝑑
)𝑁

𝑖=1  100

∑ 𝑥𝑖𝑜𝑏𝑠
𝑁
𝑖=1

 (5) 

 

Pearson’s correlation coefficient r and coefficient of determination R² 

The coefficient of determination R² is the square of the Pearson’s product-moment correlation 

coefficient and describes the proportion of total variance in the observed data that can be 

explained by the model. As r, it is an index of the linear relationship between the data streams 

and is insensitive to additive and proportional differences. Further, both statistics are 
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oversensitive to outliers. The value range of r is -1 to 1, with high negative resp. positive values 

indicating a strong negative resp. positive relation (Legates and McCabe, 1999). R² accordingly 

ranges from 0 to 1, and in general values > 0.5 are considered acceptable (Moriasi et al., 2007). 

 

𝑅² = {
∑ (𝑥𝑖𝑜𝑏𝑠

−  𝜇𝑜𝑏𝑠)(𝑥𝑖𝑚𝑜𝑑
− 𝜇𝑚𝑜𝑑)𝑁

𝑖=1

[∑ (𝑥𝑖𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠) 2𝑁
𝑖=1 ]

0.5
 [∑ (𝑥𝑖𝑚𝑜𝑑 − 𝜇𝑚𝑜𝑑) 2𝑁

𝑖=1 ]
0.5}

2

 (6) 

 

where μmod = mean modeled variable 

μobs = mean of observed variable 

 

Spearman’s rho ρ 

Spearman’s ρ is defined as the Pearson correlation coefficient r between the ranked variables 

and, similar to r, it is insensitive to additive and proportional differences. In comparison to r, it 

has the advantage of not requiring a linear relationship between the data and is less sensitive to 

outliers. Thus, on the one hand, this statistic provides a more robust characterization of the 

correlation. On the other hand, it is associated with loss of information due to the data 

conversion into ordinal form. Spearman’s ρ ranges from -1 to 1, with -1 and 1 indicating a 

monotone negative resp. positive relation between the variables, while a value of 0 implies no 

relation at all (Legates and McCabe, 1999).  

Nash-Sutcliff Model Efficiency MEF 

The Nash-Sutcliff Model Efficiency (MEF) (Nash and Sutcliffe, 1970) represents the criteria 

most widely used to evaluate the performance of hydrological models, as it is one of the best 

objective functions for reflecting the overall fit of a hydrograph (Moriasi et al., 2007). MEF 

determines the relative magnitude of the residual variance compared to the variance in the 

observed data. In comparison to r, it designates a good model fit only if the long-term average 

of the observational data stream is captured well (Döll et al., 2003). Its values range from -∞ to 

1, with higher values indicating better agreement. Generally, values between 0 to 1 are 

acceptable, whereas values < 0 suggest that the mean of the observed data is a better predictor 

than the simulated value. However, due to applying the squared differences, MEF is 

oversensitive to extreme values (Legates and McCabe, 1999).  

 

𝑀𝐸𝐹 = 1 −
∑ (𝑥𝑖 𝑜𝑏𝑠

− 𝑥𝑖 𝑚𝑜𝑑
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2𝑁
𝑖=1

∑ (𝑥𝑖𝑜𝑏𝑠 − 𝜇𝑚𝑜𝑑)
2𝑁

𝑖=1

 (7) 
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Similar to wMSE, the Nash-Sutcliffe Model Efficiency can be weighted to account for the 

uncertainty of the observed variable: 

 

𝑤𝑀𝐸𝐹 = 1 −

∑
(𝑥𝑖𝑜𝑏𝑠

− 𝑥𝑖𝑚𝑜𝑑
)

2

𝜎𝑖
2

𝑁
𝑖=1

∑
(𝑥𝑖𝑜𝑏𝑠

− 𝜇𝑚𝑜𝑑)
2

𝜎𝑖
2

𝑁
𝑖=1

  (8) 

 

Kling Gupta Efficiency KGE 

The Kling Gupta Efficiency (KGE) (Gupta et al., 2009) is a criterion inferred from the 

decomposed MEF. According to previous studies MEF consists of three distinct components 

representing the correlation, the bias and a measure of relative variability in the simulated and 

observed values (Gupta et al., 2009; Murphy, 1988; Wȩglarczyk, 1998). Because of inherent 

systematic problems as the interplay of these components when optimizing MEF, Gupta et al. 

(2009) suggest calibration from the multi-objective view by focusing on the components as 

separate criteria. They propose KGE as the difference between unity and the Euclidian distance 

(ED) from the ideal point in the three-dimensional criteria space:  

 

𝐾𝐺𝐸 = 1 − 𝐸𝐷 (9) 

 

𝐸𝐷 = √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (10) 

 

with r being Pearson’s correlation coefficient, α being the variability error (11), and β 

representing the bias error (12).  

 

𝛼 =
𝜎𝑚𝑜𝑑

𝜎𝑜𝑏𝑠
 (11) 

 

𝛽 =
𝜇𝑚𝑜𝑑

𝜇𝑜𝑏𝑠
 (12) 

 

where σmod = standard deviation of modeled variables 

σobs = standard deviation of observed variables 

 

All three components are dimensionless and have their ideal value at unity. Hence, similar to 

MEF, KGE ranges from -∞ to 1, with unity being the optimal value. KGE also has a tendency 

to underestimate high observed values, but not as severe as MEF (Gupta et al., 2009). 
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Modification of Efficiency Criteria 

By inspecting squared residuals, most efficiency criteria put emphasis on large errors (MSE, 

wMSE, RMSE, r, R2, MEF, wMEF). Since errors of extremes tend to be larger than those 

associated with low values, they are oversensitive to high values and thus calibration often leads 

to fitting of extreme events (Krause et al., 2005). To overcome this oversensitivity, several 

approaches exist, including modifications of efficiency criteria and trimming of the data 

streams. The latter simply removes for example the 5 % of data points with the highest error 

(Trishchenko, 2002). 

One often applied modification of MEF is the calculation with logarithmic values of xobs and 

xmod. Since logarithmic transformation flattens extreme values, the influence of low values is 

increased in comparison to MEF and thus the modified form is more sensitive to systematic 

model over- or underestimation (Krause et al., 2005). Instead of logarithmic transformation, 

Krause et al. (2005) suggest as another modification to consider in general the modulus of 

residuals |𝑥𝑜𝑏𝑠 − 𝑥𝑚𝑜𝑑| rather than the squared form (𝑥𝑜𝑏𝑠 − 𝑥𝑚𝑜𝑑)2. This reduces 

significantly the overestimation of extremes and thus results in a better overall estimation. 

2.3.2 Automatic Optimization 

Automatic calibration involves the computation of the prediction error using an equation (cost 

function/objective function), which is usually based on one or more efficiency criteria, and an 

automatic optimization procedure (search algorithm) to search for parameter values that 

minimize the value of the cost function (Moriasi et al., 2007; Xu, 2002).  

In general, automatic optimization procedures are mathematical search algorithms, that attempt 

to find the minima (or maxima) of a function f(x1… xn) by iteratively modifying the vector 

X = [x1 … xn] within preset constraints, that define the subset of natural numbers in which X is 

permitted to take values (Soliman and Mantawy, 2011). In the terms of model calibration, 

f(x1… xn) conforms to the cost function and X to the parameter set, which may be constrained 

by an upper and lower bound of reasonable parameter values or parameter interdependencies. 

Starting from an initial point defined by the parameter set X0, the algorithm performs 

intermediate calculations that lead to a new point X1 associated with a lower cost function value. 

By repeating, successive approximation of the minimum is obtained. Finally, the parameter set 

associated with the least cost function value is regarded as the optimal parameter set (Soliman 

and Mantawy, 2011). 

 

Overview on Optimization Methods 

For hydrological models, f(x1… xn) usually is a non-linear function of the parameter values. 

Such non-linear problems can be solved either classical by iterative methods that converge to a 
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solution, or by heuristic approaches that attempt to find an approximate solution based on 

concepts found in nature (Winker and Gilli, 2004). 

 

In classical methods, the intermediate calculations involve evaluation of the cost function and 

possible constraints as well as estimations of the step size and direction in the function response 

surface in which to move. This estimation can be achieved by line search techniques and trust 

region methods. Further, one can distinguish between direct search methods, solely based on 

the differences in cost function values between the current point and adjacent points, and 

gradient-based methods that use the derivatives of the cost function. Among gradient-based 

approaches, methods as the Steepest Descent solely consider the gradient (first order partial 

derivatives), while others as the Newton method additional use the Hessian matrix (matrix of 

second order partial derivatives) or as Quasi-Newton methods an approximation of the Hessian. 

Regarding direct search, the minimum is characterized by negative differences to all adjacent 

points. For gradient-based methods the minimum is defined by a gradient of zero and a positive 

(semi-) definite (approximation of the) Hessian  (Xu, 2002).  

As it is virtually impossible to know when this point is reached, some termination criteria are 

required to determine when to stop the search. Those criteria refer to function convergence, 

when the value of the cost function over one or more iterations is not improved, parameter 

convergence, when the algorithm is not able to appreciably change parameter values and 

simultaneously improve the cost function, or, if no convergence criteria is met first, a maximum 

number of iterations (Xu, 2002).  

A considerably disadvantage of this classical methods is, that they always converge in a local 

minimum, meaning a point where the cost function value is smaller than at nearby points, but 

not necessarily smaller than at all other feasible points as it is at a global minimum. As 

illustrated in Fig. 2, whether a local or the global minimum is obtained depends on the 

complexity of the response surface and the starting point. The set of starting points that will 

lead to the same local minima often is referred to as basin of attraction (MathWorks, 2015b).  

 

Non-linear hydrological models usually have multi-modal response surfaces where several 

parameter combinations result in local minima of the cost function (Xu, 2002). To overcome 

this, global optimization techniques consider the entire parameter space during the search 

process. Thus, they need in general more function evaluations and more computational time 

compared to local methods (Fischer, 2013). 
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Fig. 2: Response surface of a one-dimensional cost function f(x) showing a local and a global minimum. 

Following the direction of the steepest gradient, starting point 1, as all other possible starting points of the grey 

line basin of attraction, will lead to the black local minimum, whereas starting point 2 and points of the basin of 

attraction depicted in green will result in the red global minimum (modified according to MathWorks (2015b)).   

 

On the one hand, global techniques apply random search methods to define multiple starting 

points for local optimization and compare the local solutions to derive the global minima 

(MathWorks, 2015a). On the other hand, heuristic approaches as methods of particle swarm, 

simulated annealing, evolution strategy and genetic algorithms can be considered as global 

techniques (Fischer, 2013). Similar to classical optimization algorithm, heuristic approaches 

iteratively evaluate the cost function, but assess the new point in the parameter space by some 

generation rule. For example, evolutionary algorithms mimick processes of natural variation 

and selection. As these approaches don’t make any assumptions of the response surface (e.g. 

don’t require the cost function to be continuously differentiable), they are less likely to stop at 

local minima. Heuristic approaches don’t guarantee to give the optimal solution, but 

significantly reduce high computation times needed by classical methods to converge if the 

resolve surface is highly complex (Winker and Gilli, 2004). 

Lsqnonlin 

The majority of calibration schemes in hydrology are related to classical least squares methods 

that seek parameter sets that minimize the squared residuals (Xu, 2002). One such technique is 

the Lsqnonlin algorithm within MATLAB’s Optimization Toolbox. 

Lsqnonlin is a non-linear least-square solver that aids to minimize the squared residuals of a 

non-linear function. The search direction within this gradient-based approach can be defined 

with the Levenberg-Marquardt algorithm (Marquardt, 1963). This method is based on the 

Gauss-Newton method, a simplification of the Newton method, which at each iteration 

substitutes the cost function by a squared approximation and attempts to minimize the residuals 

using least-squares. In comparison to the Newton method, the Gauss-Newton does not require 

second derivatives. Since in the Gauss-Newton method the sum of squares may not decrease at 

every iteration, Levenberg-Marquardt additionally forces a decrease by using a search direction 

that is a cross between the Gauss-Newton direction and the steepest descent direction. 

Therefore, Levenberg-Marquardt is regarded to be more robust than the original Gauss-Newton 

starting point 1 

starting point 2 

local minimum 

global minimum 

direction of gradient 
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attempt (MathWorks, 2015b). However, Lsqnonlin applying Levenberg-Marquardt is not able 

to handle bound constraints, which may be important to obtain reasonable parameter values. 

Fmincon 

Another local, gradient-based search algorithm provided within MATLAB’s Optimization 

Toolbox that overcomes this problem is Fmincon. This solver attempts to find the minimum of 

constrained non-linear multivariable functions using the interior-point algorithm, which is most 

suitable for comprehensive and complex problems (MathWorks, 2015b). The algorithm’s 

procedure is shown in Fig. 3 and illustrated in Fig. 4. Instead of minimizing the original 

inequality constrained problem, interior-point solves an approximation problem with a 

sequence of easier solvable equality constrained problems. Thereto, it employs a barrier 

function, which includes slack variables of the constraints and which ensures that the objective 

function value goes to infinitive if the constraints are crossed. By weighting the barrier function 

with a weight μ, the feasible region of a minimum is restricted (Fig. 4 a). The algorithm 

minimizes the approximation function with fixed, initially high μ, by solving a quadratic sub-

problem (Fig. 4 b). For minimization of the sub-problem either direct steps using a line search 

based on Newton’s method, or, if direct steps cannot be performed (e.g. approximation locally 

convex, Hessian not positive), a conjugate gradient step using the trust region method is applied 

(Waltz et al., 2006). For direct search, the Hessian is approximated by the Broyden-Fletcher–

Goldfarb-Shanno (BFGS) method (Broyden, 1970), and thus can be considered as a Quasi-

Newton approach (MathWorks, 2015b). The trust-region represents the neighborhood around 

the current point, in which the quadratic sub-problem reflects the behavior of the approximation 

reasonably. The minimum within this trust-region is estimated by conjugate gradient steps, 

which similar to the steepest descent don’t rely on second order derivatives, but use a-

orthogonal directions and thus avoid repetitious steps when iteratively moving towards the 

minima. The procedure of minimizing the sub-problem is applied repeatedly for decreasing 

values of μ, starting at the minimum obtained by the preceding step respectively. Thus, 

as μ decreases to zero, the minimum of the approximation should approach the minimum of the 

original cost function (Byrd et al., 2000). 

Global Multi Start 

As the solution of local methods strongly depends on the starting value, global methods are 

more appropriate for calibration of hydrologic models (Gupta et al., 2005). 

The simplest way to search the entire parameter space is to define multiple, randomly sampled 

starting points and apply a local method for each. This is done for example by the global multi 

start solver (GS) provided in MATLAB’s Global Optimization Toolbox. The algorithm 

generates n start points, which are uniformly distributed within the user-defined bounds. The 

solver runs all start points that are feasible with respect to bounds and inequality constraints.  



Theory Model Calibration and Evaluation Methods 

 

 

28 

 

Fig. 3: Scheme of the interior-point method applied by Fmincon (own presentation based on MathWorks (2015b)). 

 

 

Fig. 4: Illustration of the optimization problems and search directions using Fmincon’s interior-point algorithm. 

Blue background color represents the response surface of the original constraint problem, with bright color 

indicating the minimum. Black dotted lines show the constraints and limit the region of feasible solutions. Orange-

to-red lines illustrate the approximation function and show how the barrier function increases function values 

near the constraints and thus restricts the feasible region. Starting from a) the algorithm minimizes cost function 

value within the (restricted) feasible region by either linear search or following the conjugate gradient in a trust 

region. In b) the difference of the move direction between both approaches is depicted in a schematic manner. 

While the direct search direction points to the minimum of the quadratic sub-problem (grey lines), the trust-region 

bounds the area where the quadratic sub-problem is a good approximation of the original response surface. c) 

shows the next iteration with decreased weight of the barrier function where, starting from the solution point of 

the previous iteration, the approximation is further minimized (own representation based on MathWorks (2015b)). 
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After executing the local solver for all feasible start points, the local solutions are ordered by 

their cost function value and compared with each other with respect to the function and 

parameter tolerance. Finally, a sorted list of local solutions that have passed the tolerance 

criteria is reported (MathWorks, 2015a). 

Heuristic Approaches 

Out of the heuristic methods, popular optimization techniques that generate global solutions are 

the Genetic Algorithm (GA) (Wang, 1991), the Shuffled Complex Evolution (SCE) algorithm 

(Duan et al., 1992), Simulated Annealing (SA) (Kirkpatrick et al., 1983), and the Covariance 

Matrix Adaption Evolution Strategy (CMAES) (Hansen and Kern, 2004). Arsenault et al. 

(2013) compared different stochastic optimization methods including those three and found 

SCE performing good for less complex hydrologic models, whereas CMAES outperformed the 

others in terms of finding the lowest minima and convergence speed for both, small and large 

parameter spaces. 

 

CMAES is a state of the art evolutionary algorithm to solve non-linear optimization problems. 

Similar to Quasi-Newton methods, it uses a positive definite matrix within an iterative 

procedure to estimate the area of interest in which to search for the minimum (Hansen, 2014). 

In contrast to classical methods CMAES does not rely on derivatives. Instead, it is based on 

statistical information gathered by repeated sampling of the parameter space. Following the 

principles of evolution, at each iteration, possible solutions (resp. parameter combinations; 

individuals) are generated by variation of the previous set of trial solutions (parent population) 

and selected based on their cost function value (fitness). As shown in Fig. 5, starting from an 

initial point, a multivariate normal distribution, determined by its mean value and covariance 

matrix, is used to sample the initial population. Then, each individual of the sampling is ranked 

by its cost function value and weighted respectively. The weighted combination of the best 

samples is used to calculate a new mean of the distribution and a new empirical covariance 

matrix. In general, updating the mean of the distribution maximizes the likelihood of the 

previous successful individuals, and weighted approximation and adaption of the covariance 

matrix defines the area of potential low cost function values. The covariance matrix is adapted 

with the aid of two evolution paths and a step size coefficient. The evolution paths track the 

progress of the distribution mean (direction and distance) and contain information about the 

correlation between consecutive steps. One of them, the search path, is used to control the step 

size, which is reduced if the path is short (small change of the mean) and increased in case of a 

long path (big change of the mean, indicating best solutions are found in a large distance to the 

previous mean). The step size then is used to increase or decrease the covariance matrix and 

thus defines whether the elements of the next sampling are more remote or more close to each 
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other. The second evolution path that is used to update the covariance matrix includes 

information about the move direction of the mean. Sampling, evaluation of the fitness and 

updating the distribution parameter are repeated until a stopping criteria is reached. CMAES 

then returns the best individual of the last iteration (Hansen and Kern, 2004; Krause, 2007). 

As CMAES does not require derivatives and provides feasible results on non-smooth, non-

continuous, multi-modal and noisy problems, it performs superior to gradient-based methods if 

the response surface is rugged, e.g. due to outliers, various local optima or discontinuities. 

However, because of the adaption process, second-order derivative methods are usually faster, 

especially for less dimensional problems. Therefore, CMAES is typically applied to 

unconstrained or bounded constraint problems with 3 to 100 dimensions and when gradient-

based methods fail (Hansen and Kern, 2004).  

By default, the population size is relatively small, to allow for fast convergence. However, an 

increase of the population size improves the strategies capability of handling noise and local 

minima, making CMAES a reliable tool even for global optimization (Hansen, 2014). 

 

 

 

Fig. 5: Scheme of the CMAES algorithm.Left: processing steps; Right: Evolution of distribution and sampled 

population with each iteration towards the minimum. The different shapes of the distribution of the population 

illustrate the adaption of the covariance matrix with each step. (population: set of trial solutions, individuals: trial 

solutions, fitness: cost function value, distribution of population as the iso-density ellipsoid associated with the 

covariance matrix) (own representation based on Hansen (2014)). 
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mean of distribution 
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Multi-objective Calibration 

Automatic optimization of hydrologic models usually considers one single efficiency criterion, 

which in principle results in good parametrizations with high reliability (Sorooshian et al., 

1993). However, no single-objective function is an adequate measure of all characteristics of 

the observed data (Yapo et al., 1998). Therefore, multi-objective calibration, which aims to 

optimize more than one performance criteria, is often more adequate to incorporate all 

important hydrologic system characteristics (Xu, 2002). Such methods as the Multi-Objective 

Complex Evolution (Yapo et al., 1998), the Multi-Objective Shuffled Complex Evolution 

Metropolis Method (Vrugt et al., 2003b) and the Non-dominating Sorting Genetic Algorithm II 

(Deb et al., 2002) additionally yield the advantage to mitigate effects of parameter equifinality 

as the number of optimal parameter sets for multiple criteria is less than for solely one criterion  

(Fischer, 2013). However, the throwback of these approaches is that they do not provide one 

single solution, but a so called Pareto-front of (equally) good solutions, meaning a set of 

parameter combinations of which each performs best regarding one criterion. Thus, the 

selection of the final ‘optimal’ parameter set is based on a subjective compromise between the 

solutions of the Pareto-front (Fischer, 2013). Additional, computational costs in multi-objective 

calibration increase with the number of considered efficiency criteria, and in general more 

iterations are needed than for single-objective optimization (Coello et al., 2007). One way to 

keep computational costs low, yet to consider different aspects of the hydrological system, is 

to combine multiple criteria in one cost function instead of minimizing a cost function for each 

criterion. For instance, Zhang et al. (2008) uses four different objective functions, that cover  

different aspects of the hydrograph, but optimizes the average of these four. 
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3 Methods and Data 

The following chapter describes the methodologies and data used in this thesis. 

Except for individual maps that are created with ArcGIS 10.2.2 (ESRI 2014), the MATrix 

LABoratory software (MATLAB, TheMathWorks, Inc. 2015) is used for all working steps, 

calculations and analyses. 

An overview on the workflow and how the research questions are addressed is provided by Fig. 

6. To find out which model formulation for infiltration and runoff generation is most 

appropriate and consistent with earth observation data, seven model variants are developed 

based on hydrological process knowledge and literature review. All model variants are 

implemented in MATLAB. Simultaneously, global data sets and time series for model forcing 

and calibration are adjusted to the intended modelling domain and used to delineate the study 

area. In order to find the most suitable optimization method, four commonly applied search 

algorithms and various cost functions are tested. Out of them, one method is selected for 

calibration of the model variants. Thereby calibration intends to find the parameter set that 

provides optimal agreement between observation and simulations for all grid cells in the study 

area, meaning a global uniform parameter set. As this approach neglects spatial heterogeneity 

of physio-geographic conditions, spatialization of runoff-related parameters is incorporated in 

one model variant by implementing global maps of base flow related characteristics. All 

calibrated model variants (original seven variants as well as variants with spatialized 

information) are then evaluated against observed data and compared to each other to identify 

the most convenient. In the last step, this ‘best’ model variant is applied and the model output 

is examined regarding its conformity with terrestrial water storage variations obtained by the 

GRACE measurements, as well as regarding the relative contributions of snow pack, soil 

moisture and groundwater to these variations. 

 

 

Fig. 6: Workflow and corresponding research questions. 
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The different model variants and their implementation are explained in detail in the first section 

of the following chapter. Subsequently, the second section describes the used data sets, their 

preparation and the delineation of the study area. Finally, the experimental design including the 

methods used for selection of the most appropriate optimization method, for model calibration 

and evaluation, as well as for analysis of the model output is illustrated in the last section.  

3.1 Model Description 

In this study, different model variants that all calculate daily water flows and storages are 

developed, tested and compared. 

All variants are forced by observation based data streams of precipitation (P), air temperature 

(T), net radiation (Rn) and evapotranspiration (ET). Each model includes descriptions of snow 

and soil water storages. They simulate the partitioning of P between liquid precipitation 

(rainfall) and snowfall (SF) as well as snow accumulation, snow melt (M), sublimation from 

snow cover (ETSub) and the soil water budget. To represent the latter, the model variants use 

different approaches for allocating incoming water to infiltration (In) and runoff from soil (Qs, 

surplus water that is not absorbed by soil), depending on the current soil moisture conditions 

(SM). ET from soil water storage is acquired from input data and, if necessary, adjusted 

according to available soil moisture. 

Further, two methods for the simulation of runoff are implemented. In the basic approach, total 

runoff (Q) is composed of one component, represented by Qs with consideration of retardation. 

Introducing this temporal delay allows mimicking the role of storage components other than 

soil. In the other approach, the models are extended by a separate groundwater component, 

including groundwater recharge (Perc), groundwater storage (GW) and base flow (Qbase). 

Thus, they distinguish explicitly between a fast, direct runoff component (Qdir) and delayed 

Qbase released from groundwater storage. The sum of both represents Q. 

Altogether, four approaches to represent the soil water budget and two approaches to simulate 

Q are implemented. The combination of them results in seven model variants. 

 

Fig. 7 illustrates the general structure of the models, with the extensions of the groundwater 

variants depicted in gray color. The individual processes and equations are described in detail 

in the following sections. They are conducted for every model time step and every land surface 

grid cell. Tab. 2 lists the model variables, which are denoted using Latin capital letters. 

Parameters (Tab. 3) are written in lower case with a prefix that indicates the corresponding flux, 

pool or state variable (p for scaling parameters, sn for parameters affecting snow, m for melt 

process, s for soil and g for groundwater related processes) and an extension referring to the 

corresponding modeling approach. 



Methods and Data Model Description 

 

 

34 

  

Fig. 7: Schematic structure of the models. Blue color identifies forcing data; gray color identifies extensions of 

the groundwater model variants.  
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Tab. 2: Model variables.       Tab. 3: Model parameters, their description, upper and lower bounds as well as default values. 

Symbol Description Unit  Parameter Description Unit Min Max Default  

Forcing   Scaling of Meteorological Forcing      

P precipitation mm d-1  p_sf scaling parameter for SF - 0 ∞ 1  

T temperature °C  p_et scaling parameter for ET - 0 ∞ 1  

Rn net radiation MJ m-2 d-1  Snow Component      

ET evapotranspiration mm d-1  m_t snow melt factor for T mm K-1 0 10 3 Stacke et al. 

(2011) 
Constants         

G ground heat flux MJ m-2 d-1  m_r  snow melt factor for Rn mm MJ m-2 0 3 2  

Pair air pressure kPa  sn_α sublimation resistance  0 1 0.95  

Pools and State Variables   sn_c minimum SWE that ensures complete  mm 0 ∞ 15 Balsamo et al. 

(2009) FSC fractional snow cover -   snow coverage of the grid cell     

SWE snow water equivalent mm  Soil Component      

SM soil moisture mm  s_max maximum soil water holding capacity mm 0 ∞ 300  

GW ground water storage mm  s_fac_simple tendency of soil to release water  - 0 1 0.5 Rees et al. 

(2004) W total amount of available  mm  s_exp_simple form of relation between runoff and  - 0 ∞ 1 

 water    water storage     

Fluxes   s_exp_berg runoff coefficient - 0.1 5 1.1 Müller-

Schmied et al. 

(2014) 
SF snowfall mm d-1        

RF rainfall mm d-1        

ETSub sublimation from snow cover mm d-1  s_exp_budyko retention efficiency of soil - 0 1 0.6 Zhang et al. 

(2008) M melt from snow cover mm d-1        

IW input water mm d-1  Runoff Component      

In infiltration mm d-1  Basic variants      

Qs runoff from soil mm d-1  q_t recession time scale for Qs  d 0 100 2 Orth et al. 

(2013) actET scaled evapotranspiration mm d-1        

Perc percolation mm d-1  Groundwater variants      

Qbase 

Qdir 

base flow 

direct runoff 

mm d-1 

mm d-1 

 g_r groundwater recharge rate - 0 1 0.16 Alley (1984) 

Q total runoff mm d-1  g_d groundwater depletion factor d-1 0 1 0.01 Müller-

Schmied et al. 

(2014) 



Methods and Data Model Description 

 

 

36 

3.1.1 Snow Component 

Snow storage is implemented as a simple accumulation and melt approach, which further is 

extended by consideration of sublimation and fractional snow cover. The snow storage as 

described by the snow water equivalent SWE [mm] at time t [d] is calculated as mass balance: 

 

𝑆𝑊𝐸𝑡 = 𝑆𝑊𝐸𝑡−1 + 𝑆𝐹𝑡 − 𝐸𝑇𝑆𝑢𝑏𝑡 − 𝑀𝑡 (13) 

 

where SWEt-1 [mm] is the snow water equivalent of the preceding time step which is increased 

by snowfall SFt [mm d-1] and reduced by the amount of sublimation ETSubt [mm d-1] and snow 

melt Mt [mm d-1].  

All precipitation P [mm d-1] is assumed to fall as snow at temperatures below 0 °C. Since 

precipitation estimates, especially during the cold season, are known for biases due to 

substantial under-catch (Rudolf and Rubel, 2005; Seo et al., 2010), P is scaled using the 

parameter p_sf to derive SF at time t, 

 

 𝑆𝐹𝑡 = 𝑝_𝑠𝑓 · 𝑃𝑡 | T < 0 °C (14) 

 

In order to incorporate sub-grid variability, the fraction of the grid cell covered by snow is 

computed following the H-TESSEL approach (Balsamo et al., 2009; ECMWF, 2014): 

  

 
𝐹𝑆𝐶𝑡 = min (

𝑆𝑊𝐸𝑡−1

𝑠𝑛_𝑐
, 1)  (15) 

 

with fractional snow cover FSC [-] at time t being linearly dependent from SWEt-1 of the 

preceding time step and sn_c [mm] being the minimum SWE that ensures complete coverage 

of the grid cell.  

 

Further, snow melt M and sublimation ETSub are assumed to only emerge from snow covered 

area by using FSC as scaling factor in the calculation of these fluxes. 

 

Snow melt M occurs when snow storage is present and temperature exceeds melting 

temperature. Based on the restricted degree-day radiation balance approach described by Kustas 

et al. (1994), melt M [mm d-1] at time t depends on temperature Tt [°C] and net radiation Rnt 

[MJ m-2 d-1]: 

 𝑀𝑡 = (𝑚_𝑡 · 𝑇𝑡 + 𝑚_𝑟 · 𝑅𝑛𝑡)  · 𝐹𝑆𝐶𝑡 | T > 0 °C (16) 
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where the degree-day factor m_t [mm °C-1] and the radiation factor m_r [mm MJ-1] control 

the melt rate. m_t usually ranges from 0 to approximately 5 mm °C-1 (Julander, 2000), while 

based on the enthalpy of fusion of ice (0.3337 MJ mm-1), the physical upper limit of m_r is 

3 mm MJ-1.  

 

The derivation of snow sublimation ETSub is adapted from the approach implemented in the 

GLEAM model. This technique is based on the Priestley and Taylor (1972) formula, which 

calculates evaporation rate as latent heat flux LE [MJ m-2 d-1] based on the available energy Rn 

[MJ m-2 d-1], ground heat flux G [MJ m-2 d-1]) and a dimensionless coefficient sn_α that 

parameterizes evaporation-resistance. LE at time t is derived by  

 

 𝐿𝐸𝑡 = (𝑠𝑛_𝛼 ·  
𝛥𝑡

𝛥𝑡 + 𝛾𝑡
 · (𝑅𝑛𝑡 − 𝐺)) · 𝐹𝑆𝐶𝑡  (17) 

 

with Δt being the slope of the temperature/saturated vapor pressure curve [kPa K-1] and γt 

representing the psychrometric constant [kPa K-1]. Both, Δ and γ, are modified for snow covered 

areas according to Murphy and Koop (2005). 

They calculate Δt as a function of Tt [K] (Eq. (18)), and γt as a function of atmospheric pressure 

Pair [kPa], specific heat of air at constant pressure cp [MJ kg-1 K-1], the ratio molecular weight 

of water vapor/dry air MW and latent heat of sublimation of ice λ [MJ kg-1] (Eq. (19)). 

 

𝛥𝑡 =  (
5723.265

𝑇𝑡
2 +

3.53069

𝑇𝑡 − 0,00728332
 ) · 𝑒

9.550426 − 
5723.265

𝑇𝑡
 + 3.53068·ln(𝑇𝑡) − 0,00728332 ·𝑇𝑡 (18) 

 

 
𝛾𝑡 =  

𝑃𝑎𝑖𝑟 · 𝑐𝑝

𝑀𝐴 ·  𝜆𝑡
  (19) 

 

In Eq. (19), Pair is assumed to be time- and space-invariant with a uniform value of 101.3 kPa 

by what cp = 0.001 MJ kg-1 K-1. MA is a constant of 0.622 and λ is defined by Murphy and 

Koop (2005) as a function of Tt [K]. With a molecular mass of water of 18.01528 g mol-1, λ can 

be calculated as: 

 

 
𝜆𝑡 = (46782.5 + 35.8925 · 𝑇𝑡 −  0.07414 ·  𝑇𝑡

2 +  541.5 ·  𝑒−(
𝑇𝑡

123.75
)

2

) ·  
0.001

18.01528
  (20) 
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Since snow-covered ecosystems can be assumed to be unstressed due to the sufficient 

availability of water, LE corresponds to actual sublimation ETSub (Miralles et al., 2011). And 

ETSub [mm d-1] can be converted from LE through division by λ: 

 

 𝐸𝑇𝑆𝑢𝑏𝑡 =
𝐿𝐸𝑡

𝜆𝑡
  (21) 

 

Altogether, the current model calculates ETSub as a function of Tt, Rnt, Pair, G, sn_α and FSCt. 

While Tt, Rnt and FSCt are variable in time and space and depend on input data, the approach 

postulates constant Pair and G with values of 101.3 kPa resp. 0 MJ m-2 d-1. 

3.1.2 Soil Component 

The central part of the model is the soil water component, which distributes input from rain fall 

and snow melt to soil water storage SM [mm], actual evapotranspiration actET [mm d-1] and 

runoff from soil Qs [mm d-1]. The latter can be understood as surplus water, which does not 

increase soil water storage.  

Like snow, the calculation of soil water storage as represented by soil moisture SM [mm] at 

time t [d] follows the mass balance 

 

 𝑆𝑀𝑡 = 𝑆𝑀𝑡−1 +  𝐼𝑛𝑡 − 𝑎𝑐𝑡𝐸𝑇𝑡  (22) 

 

with SMt-1 [mm] being the soil moisture of the preceding time step which is increased by 

infiltration Int [mm d-1] and reduced by actual evapotranspiration actETt [mm d-1]. 

 

On the one hand, the amount of infiltration In is determined by the inflow IW [mm d-1], which 

is derived from rainfall RF (precipitation P if T ≥ 0°C) and snow melt M at time t [d]: 

 

 𝐼𝑊𝑡 = 𝑅𝐹𝑡 + 𝑀𝑡  (23) 

 

On the other hand, a part of IW may not infiltrate but contribute to runoff from soil Qs. In this 

study, four approaches to estimate the partitioning of IW into SM and Qs are tested regarding 

their suitability for a 1° x 1° daily model. 

Except the first, all of them assume a maximum water holding capacity of the soil layer s_max 

[mm] and relate it to the available amount of water in the soil to calculate either In or Qs. 

Respectively, the other flux is derived in accordance to the law of conservation of mass, so that 

IW equals the sum of Qs and In at time t [d]: 
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 𝐼𝑊𝑡 = 𝐼𝑛𝑡 +  𝑄𝑠𝑡  (24) 

 

The explicit formulations used in this study are introduced in the following. 

Simple Approach 

Based on the strongly simplified assumption that discharge solely depends on the total water 

storage (Brutsaert and Nieber, 1977; Kirchner, 2009), the first approach considers one single 

conceptual storage that comprises all storage components as soil moisture and groundwater. 

Hereinafter it is referred to as simple approach and its variables and parameters are marked by 

the extension simple. 

Following Brutsaert and Nieber (1977) and Rees et al. (2004) outflow is assumed to be 

proportional to a power of the storage, which yields the advantage to only need a minimum 

number of parameters for runoff estimation (Melsen et al., 2014). Accordingly, the method 

estimates Qs [mm d-1] at time t [d] as a function of the total amount of available water W [mm] 

and the calibration parameters s_fac_simple and s_exp_simple:  

 

 𝑄𝑠𝑡 = 𝑠_𝑓𝑎𝑐_𝑠𝑖𝑚𝑝𝑙𝑒 ·  𝑊𝑡
𝑠_exp _𝑠𝑖𝑚𝑝𝑙𝑒  (25) 

 

s_fac_simple describes the tendency of soil to release water and its range varies between 0 – 1. 

A larger value implies more water contributing to Qs, with s_fac_simple = 1 resulting in 

complete conversion to Qs. The unitless parameter s_exp_simple ranges from 0 - ∞ and ensures 

that the function is strictly monotonically increasing, so that Qs increases with W. Further, 

s_exp_simple describes the form of storage, e.g. s_exp_simple = 1 indicates a linear storage 

and s_exp_simple = 2 a quadratic one (Rees et al., 2004).  

As total amount of available water W includes inflow as well as soil and groundwater storages, 

W [mm] at time t [d] is the sum of inflow IW and the soil moisture SM of the preceding time 

step: 

 

 𝑊𝑡 = 𝑆𝑀𝑡−1 + 𝐼𝑊𝑡  (26) 

 

Hence, no explicit separation between soil moisture and groundwater storage is possible and no 

groundwater model variant can be formulated for the simple approach.  

Saturation Approach 

The second approach is consistent with the bucket-scheme of Manabe (1969). All inflow is 

allocated to soil water storage SM until the maximum water holding capacity (field capacity) 
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s_max is reached. Only surplus water contributes to Qs. This method is referred to as saturation 

approach and marked by the extension sat.  

In [mm d-1] at time t [d] is derived by comparing the possible inflow IW with the available 

storage capacity s_max – SMt-1 [mm]: 

 

 𝐼𝑛𝑡 = min (𝐼𝑊𝑡 , 𝑠_ max − 𝑆𝑀𝑡−1)  (27) 

 

If the inflow is less than the available storage capacity, the total amount of inflow is allocated 

to the soil storage so that In = IW and Qs = 0. If the inflow exceeds the available storage 

capacity, In = s_max - SMt-1 and the remaining amount of inflow contributes to Qs, with Qs = 

IW if the soil is completely saturated.  

Bergström Approach 

The third approach is adopted from the WaterGAP 2.2 model (Alcamo et al., 2003; Döll et al., 

2003) that calculates Qs [mm d-1] at time t [d] after Bergström (1995) as: 

 

 
𝑄𝑠𝑡 = 𝐼𝑊𝑡  ·  (

𝑆𝑀𝑡−1

𝑠_𝑚𝑎𝑥
)

𝑠_exp _𝑏𝑒𝑟𝑔

  (28) 

 

In Eq. (28) Qs depends on the inflow IW, the runoff coefficient s_exp_berg and the actual soil 

moisture SM compared to its maximum water holding capacity s_max. As in the saturation 

approach, Qs = 0 if the soil water storage is empty and Qs = IW if the soil is completely 

saturated. However, between these points, s_exp_berg determines the amount of inflow that 

converts to Qs as illustrated in Fig. 8a. While low values of s_exp_berg lead to a high amount 

of Qs even if the soil moisture deficit is low (e.g. low SM/s_max ratio), higher values of 

s_exp_berg increase the proportion of IW that infiltrates.  

This approach is henceforth referred to as Bergström approach and denoted using the extension 

berg. 

Budyko Approach 

Finally, the forth approach is based on a generalized demand and supply framework as 

postulated by Zhang et al. (2008). Their attempt relies on the method of Budyko (1961) for 

modeling mean annual evapotranspiration using a demand/supply index and a similar concept 

by Fu (1981). Both were adapted to simulate the partition of precipitation into direct runoff and 

rainfall retention. In the context of this study, direct runoff corresponds to runoff from soil Qs 

and rainfall retention to infiltration In. The demand limit for Int is the available storage capacity 

s_max – SMt-1, while the supply limit can be considered as inflow IWt. 
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The ratio (s_max – SMt-1)/IWt then represents the demand/supply index for the partition of IW. 

In [mm d-1]  at time t [d] is calculated using Fu’s equation: 

 

𝐼𝑛𝑡 = 𝐼𝑊𝑡 · {1 +
𝒔_𝒎𝒂𝒙 − 𝑆𝑀𝑡−1

𝐼𝑊𝑡
− [1 + (

𝒔_𝒎𝒂𝒙 − 𝑆𝑀𝑡−1

𝐼𝑊𝑡
)

1
1−𝒔_𝒆𝒙𝒑_𝒃𝒖𝒅𝒚𝒌𝒐

]

1−𝒔_𝒆𝒙𝒑_𝒃𝒖𝒅𝒚𝒌𝒐

} (29) 

 

where s_exp_budyko represents the retention efficiency. The parameter ranges from 0 – 1, with 

a larger value resulting in less Qs and more In as illustrated in Fig. 8b. Fig. 8b further shows, 

that considering low parameter values, small variations lead to considerable differences in the 

amount of simulated Qs resp. In. In comparison, for s_exp_budyko > ~0.4 the differences are 

less pronounced and the relation between Qs/IW and SM/s_max appears almost linear if a 

certain soil moisture is reached. 

In the following, the fourth approach is referred to as Budyko approach and is marked by the 

extension budyko. 

 

 

Fig. 8: Influence of the parameter value of a) s_exp_berg and b) s_exp_budyko on the proportion of IW that 

contributes to Qs depending on soil moisture conditions.(In b) s_max = 300 mm is assumed). 

 

Evapotranspiration 

Since in this study an evapotranspiration product is utilized instead of calculating its 

components, the computed In is added to soil water storage before accounting for ET. Thus, 

Eq. (22) is split during the modeling procedure into Eq. (30) and Eq. (33).  

First, soil moisture SM [mm] of the preceding time step t-1 [d] is increased by infiltration In 

[mm d-1]: 

 

 𝑆𝑀𝑡𝑒𝑚𝑝 = 𝑆𝑀𝑡−1 +  𝐼𝑛𝑡  (30) 

a) b) 
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When considering evapotranspiration, the input data is scaled similarly to precipitation to 

provide for data inconsistency. Thus, actual evapotranspiration actET [mm d-1] at time t [d] is 

the product of evapotranspiration ET [mm d-1] and the scaling parameter p_et: 

 

 𝑎𝑐𝑡𝐸𝑇𝑡 = 𝑝_𝑒𝑡 ·  𝐸𝑇𝑡  (31) 

 

To ensure that actET does not exceed the amount of water available in the soil, it is compared 

to the actual soil moisture SMtemp (Eq. (32)) before decreasing SMtemp and determine the final 

SM at time t (Eq. (33)). 

 

 𝑎𝑐𝑡𝐸𝑇𝑡 = min (𝑎𝑐𝑡𝐸𝑇𝑡, 𝑆𝑀𝑡𝑒𝑚𝑝)  (32) 

 

 𝑆𝑀𝑡 = 𝑆𝑀𝑡𝑒𝑚𝑝 − 𝑎𝑐𝑡𝐸𝑇𝑡  (33) 

 

3.1.3 Runoff Component 

For modelling how the surplus water Qs is transferred to actual runoff Q, two approaches are 

investigated, namely the basic and the groundwater variant. 

Basic Runoff Approach 

In the basic approach, the whole amount of runoff from soil contributes to discharge. As this 

one runoff component comprises fast direct runoff as well as delayed interflow and base flow, 

Orth et al. (2013) found consideration of retardation useful. Accordingly, total discharge Q [mm 

d-1] at time t [d] results from the accumulated effects of all runoff from soil Qs [mm d-1] 

generated during the preceding 60 time steps: 

 

 
𝑄𝑡 = ∑ 𝑄𝑠𝑡−𝑖  · [𝑒

−
𝑖

𝐪_𝐭 − 𝑒
−

𝑖+1
𝐪_𝐭 ]

60

𝑖=0

  (34) 

 

 

where the recession time scale q_t [d] determines how quickly runoff from soil is transformed 

into streamflow. In theory, an infinite number of time steps would be necessary to ensure that 

all generated Qs is transformed into discharge. However, the arbitrary number of 60 days allows 

accounting for > 99 % of Qs (Orth et al., 2013), as long as q_t is below 13 days. To allow longer 

recession times when calibrating the model and still account for > 99 % of Qs within the 60 

days-window, the delay component of Eq. (34) is scaled with its sum. 

delay component 
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Introducing temporal delay leads to retention of a portion of Qs. Assuming that this portion is 

retained solely in groundwater, the change of groundwater storage ΔGW [mm d-1] at time t [d] 

can be inferred indirectly using the water balance:  

 

0 =  𝑃𝑡 − 𝑎𝑐𝑡𝐸𝑇𝑡 −  𝑄𝑡 +  𝛥𝑇𝑊𝑆𝑡 (35) 

 

with the change of total water storage ΔTWS [mm d-1] resulting from 

 

𝛥𝑇𝑊𝑆 =  (𝑆𝑊𝐸𝑡 −  𝑆𝑊𝐸𝑡−1) +  (𝑆𝑀𝑡 −  𝑆𝑀𝑡−1) + 𝛥𝐺𝑊𝑡 (36) 

 

so that solving Eq. (35) and Eq. (36) 

 

𝛥𝐺𝑊𝑡 = 𝑎𝑐𝑡𝐸𝑇𝑡 +  𝑄𝑡 −  𝑃𝑡 − (𝑆𝑊𝐸𝑡 −  𝑆𝑊𝐸𝑡−1) −  (𝑆𝑀𝑡 −  𝑆𝑀𝑡−1) (37) 

 

Groundwater Approach 

In the second runoff approach tested, a separate linear storage layer is implemented to account 

for groundwater and delayed base flow explicitly. This attempt is similar to common GHMs 

and the simple conceptual abcd-model as introduced by Thomas Jr (1981).  

Analogous to snow and soil, the groundwater storage GW [mm] at time t (d) is calculated by 

mass balance as: 

 

 𝐺𝑊𝑡 = 𝐺𝑊𝑡−1 +  𝑃𝑒𝑟𝑐𝑡 −  𝑄𝑏𝑎𝑠𝑒𝑡  (38) 

 

where the previous groundwater storage GWt-1 [mm] is increased by percolation Perct [mm d-

1] and decreased by base flow Qbaset [mm d-1]. 

 

Percolation Perc [mm d-1] at time t [d] is calculated as a fraction g_r of runoff from soil Qst 

[mm d-1]: 

 

 𝑃𝑒𝑟𝑐𝑡 = 𝑔_𝑟 · 𝑄𝑠𝑡  (39) 

 

where the parameter g_r represents the groundwater recharge rate which can vary between 0 

(no groundwater recharge) and 1 (all runoff from soil is allocated to the groundwater).  

 

Base flow Qbase [mm d-1] at time t [d] depends on groundwater storage GWt [mm]: 
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 𝑄𝑏𝑎𝑠𝑒𝑡 = 𝑔_𝑑 · 𝐺𝑊𝑡  (40) 

 

where the groundwater depletion factor g_d [d-1] corresponds to the reciprocal of the 

groundwater residence time. Similar to g_r, the range of g_d is 0 – 1.  

 

To identify GW [mm] at time t [d] the mass balance (Eq. (38)) can be solved using Eq. (40): 

 

 𝐺𝑊𝑡 =
1

1 + 𝑔_𝑑
 · (𝐺𝑊𝑡−1 + 𝑃𝑒𝑟𝑐𝑡)  (41) 

 

Fast direct discharge Qdir [mm d-1] at time t [d] equals the amount of Qs [mm d-1], which does 

not contribute to groundwater recharge so that: 

 

 𝑄𝑑𝑖𝑟𝑡 = (1 − 𝒈_𝒓) · 𝑄𝑠𝑡  (42) 

 

The sum of direct discharge Qdir [mm d-1] and base flow Qbase [mm d-1] represents total 

discharge Q [mm d-1] at time t [d]: 

 

 𝑄𝑡 = 𝑄𝑑𝑖𝑟𝑡 + 𝑄𝑏𝑎𝑠𝑒𝑡  (43) 

 

3.1.4 Model Implementation 

The above described approaches are implemented in MATLAB 2015a. Each model component 

is defined as a separate function, of which the final model variants are assembled as shown in 

Fig. 9. As illustrated, the snow component is common for all model variants and is characterized 

by five parameters. The soil component comprises two to three parameters depending on the 

approach, and the runoff component applies one (basic version) resp. two (groundwater version) 

parameters. Thus, the total number of model parameters ranges from eight (SatBasic) to ten 

(BergGW, BudykoGW).  
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Fig. 9: Model configuration in MATLAB(Calc indicates a MATLAB function, while Model refers to the final 

combination of these functions) and number of parameters. 

 

3.2 Data 

This study uses daily time-series of globally gridded precipitation, temperature, net radiation 

and evapotranspiration data products as meteorological forcing. Further, data acquired in the 

Gravity Recovery and Climate Experiment (GRACE) and in the GlobSnow Project are utilized 

for model optimization and evaluation. Temporally constant spatial data is used to define the 

study area and to delineate climate zones for spatial distributed evaluation. Additionally, 

regional information related to base flow is tested for model refinement. 

An overview on the data products and their main characteristics is given in Tab. 4. 

 

Tab. 4: Overview on input data (NH: Northern Hemisphere). 

Data Data Basis Coverage & Resolution Reference 

  Spatial Temporal  

Meteorological Forcing 

Precipitation GPCP v1.2 1° x 1° 

global 

daily 

1996 - present 

Huffman et al. 

(2001), Huffman 

and Bolvin (2013) 

Temperature WFDEI 0.5° x 0.5° 

global 

daily 

1979 - 2012 

Weedon et al. 

(2014) 

Net Radiation CERES 1° x 1° 

global 

3-hourly 

03/2000-05/2015 

Wielicki et al. 

(1996) 

Evapotranspiration FLUXNET 0.5° x 0.5° 

global 

daily 

1982 - 2013 

Tramontana et al. 

(2016) 

Optimization and Evaluation 

Terrestrial Water 

Storage Anomalies 

GRACE Tellus 

JPL- RL05M 

0.5° x 0.5° 

global 

monthly 

2002 - 2015 

Wiese et al. (2015) 

Snow Water 

Equivalent 

GlobSnow v2.0 0.25° x 0.25° 

non-alpine NH 

daily 

1979 - 2012 

Luojous et al. 

(2014) 
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Continuation of Tab. 4. 

Ancillary Data 

Water mask MODIS land cover 

MCD12Q1 

0.0083° x 0.0083° 

global 

-  

regional base flow 

information 

(BFI1-4, K) 

Global Maps of 

Streamflow 

characteristics 

(related to base 

flow) v1.9 

0.125° x 0.125° 

global 

- Beck et al. (2015) 

Köppen-Geiger 

Climate Zones 

World Map of 

Köppen-Geiger 

Climate 

Classification 

0.5° x 0.5° 

global 

- Kottek et al. (2006) 

 

3.2.1 Meteorological Forcing Data 

Precipitation 

Daily precipitation sums represent the main model drivers. In this study, the 1° daily 

precipitation product version 1.2 of the Global Precipitation Climatology Project (GPCP-1DD) 

is used (Huffman et al., 2001; Huffman and Bolvin, 2013). This dataset provides daily, globally 

gridded values of precipitation totals since October 1996, which are produced by a combination 

of precipitation estimates from remote sensing and precipitation gauge analysis. 

Between 40° N to 40° S, precipitation is estimated by the Threshold-Match-Precipitation Index 

(TMPI). This approach uses infrared brightness temperatures which are measured by a variety 

of sensors aboard geosynchronous satellites as the Geosynchronous Operational Environmental 

Satellites (GEOS, United States) and the Meteorological Satellite (Meteosat, European 

Community). The 3-hourly measured temperatures are compared with a threshold temperature 

and a conditional rain rate that are set locally by month. For definition of these parameters, 

Special Sensor Microwave Imager-based (SSMI) resp. Special Sensor Microwave Imager 

Sounder (SSMIS, since late 2003) precipitation frequencies and the GPCP satellite-gauge 

combined monthly precipitation estimate (GPCP-SG) are used (Huffman et al., 2001). The 

latter, as the daily product, is derived from a precipitation estimate merged from the same 

infrared, microwave and sounder satellite data, which then is linearly combined with gauge 

analysis (Huffman and Bolvin, 2013). The in situ component of this analysis is the Monitoring 

Product provided by the Global Precipitation Climatology Centre (GPCC) that is based on 

SYNOP and monthly CLIMAT reports from 7000 - 8000 stations (Schneider et al., 2015). 

As the viewing geometry of the geosynchronous infrared sensors becomes unfavorable near the 

limb of the satellite’s view, sounding data from low-earth polar orbit satellites is used to 

estimate precipitation at latitudes higher than 40°. In this area, the Television and Infrared 

Observation Satellite Operational Vertical Sounder (TOVS, until 2005) and the Atmospheric 

Infrared Sounder (AIRS, since 2005) precipitation datasets are used. They are rescaled to match 
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the TMPI precipitation estimates at the data boundaries (39-40°). The resulting non-zero values 

are further scaled locally to sum to the monthly GPCP-SG (Huffman et al., 2001). 

According to Crow (2007), GPCP-1DD represents one of the best available global precipitation 

products and has been widely used in different studies. As a gauge-corrected product, it is likely 

to outperform fully satellite-based products, especially in areas with dense observational-

networks (Miralles et al., 2011).  

Temperature 

Mean daily temperature is obtained from the WFDEI data product (Weedon et al., 2014). 

WFDEI is generated by applying the Water and Global Change (WATCH) forcing data 

methodology to the ERA-Interim reanalysis data (Dee et al., 2011). The dataset has been created 

as part of the European Union (EU) WATCH project (Harding et al., 2011) and provides global 

meteorological forcing data for land area on a  0.5° x 0.5° grid for the period 1979 – 2012 

(Weedon et al., 2014). 

To generate the WFDEI temperature product, the ERA-Interim temperature data was adjusted 

such that their monthly means match the monthly temperature dataset from CRU (Rust et al., 

2015). The CRU time-series themselves are based on observations from more than 4000 

weather stations worldwide that are interpolated to a 0.5° x 0.5° global grid (Jones and Harris, 

2008). Further, the adjusted data is elevation corrected by applying an environmental lapse rate. 

The resulting daily averaged WFDEI product represents air temperature in Kelvin at 2 m above 

the surface.  

As WFDEI is aimed to support large-scale hydrological modeling, it’s most likely appropriate 

for this study. 

In order to use the WFDEI temperature data as input for a 1° x 1° gridded model, a resampled 

version of the dataset was provided by the MPI-BGC. 

Net Radiation 

Net radiation is defined as the balance between incoming and outgoing shortwave and longwave 

radiation fluxes at the top of the earth’s atmosphere (Sai Krishna et al., 2014). It describes the 

total amount of energy that is available to influence the climate, and thus, among others, 

processes as evaporation (Pan et al., 2015). 

In this study, net radiation is estimated from the SYN1deg Ed3A data product of the Clouds 

and the Earth’s Radiant Energy Systems (CERES) program of the United States’ National 

Aeronautics and Space Administration (NASA) (Wielicki et al., 1996). This dataset represents 

one of the few sources of currently available Earth Radiant Budget data (Sai Krishna et al., 

2014). It provides 3-hourly and monthly shortwave and longwave radiation fluxes from March 

2000 to May 2015 with 1° grid spacing. 
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The product is generated from top-of-atmosphere radiance observed by the CERES instrument 

onboard the NASA’s Terra (since 03/2000) and Aqua (additional since 07/2002) satellites, 

combined with coincident cloud and aerosol properties derived from the Moderate-resolution 

Imaging Spectroradiometer (MODIS), as well as cloud properties and broadband fluxes 

obtained from different geostationary satellites (NASA, 2013). 

Using the daily averaged CERES SYN1deg Ed3A data, net radiation (Rn) is calculated with 

the principle of energy balance from its components, including downward and upward 

shortwave radiation (RS↓ resp. RS↑) as well as downward and upward longwave radiation (RL↓ 

resp. RL↑) (Sai Krishna et al., 2014) : 

 

𝑅𝑛 = (𝑅𝑆 ↓ −𝑅𝑆 ↑) + (𝑅𝐿 ↓ −𝑅𝐿 ↑) (44) 

 

Evapotranspiration 

Evapotranspiration forcing is based on estimates of latent energy LE derived by using a data-

driven approach as described in Tramontana et al. (2016). The procedure integrates eddy 

covariance measurements of land-atmosphere exchanges at globally distributed sites of the 

FLUXNET and CarboAfrica network (Valentini 2014), remote sensing data from MODIS as 

well as meteorological data in a machine learning algorithm. The resulting dataset provides 

daily estimates of LE in Mega Joule per square meter and day on a 0.5° x 0.5° global grid for 

the period 1980 – 2013. 

To upscale in-situ observations to global scale, the approach utilizes a random forest algorithm 

that is trained on site level using  

a) daily meteorological data from the sites combined with long-term time series of CRU-

NCEP v6 (Vivoy, 2015), which is a merged product of CRU monthly 0.5° climate 

variables (1901-2013) (New et al., 2000) and a 6-hourly 2.5° National Centers for 

Environmental Prediction (NCEP) reanalysis dataset (1948-2013) (Kalnay et al., 1996), 

b) the mean seasonal cycle (MSC) of MODIS data averaged for the 3x3 km surrounding 

area of each site and interpolated to daily time steps, 

c) additional variables derived by combining a) and b), including MSC and corresponding 

metrics of dynamic variables as well as plant functional type (PFT) derived from the 

majority class of the MODIS land cover product and a water availability index (WAI) 

based on a simple dynamic water balance model (Tramontana et al., 2016). 

Out of the pool of potential predictor variables, the most suitable subset is chosen by applying 

a Guided Hybrid Genetic Algorithm (GHGA) (Jung and Zscheischler, 2013).  

The random forest is trained using 10-fold cross-validation and subsequently forced with the 

global data sets of predictor variables tiled by PFT. Therefor the algorithm is run separately for 
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grids of each PFT consisting of the average value per PFT and time step at 0.5° and finally the 

weighted mean over the PFT fractions is calculated for each grid cell (Tramontana et al., 2016). 

3.2.2 Calibration and Validation Data 

GRACE Data 

Model optimization in this study mainly relies on terrestrial water storage anomalies obtained 

from the Gravity Recovery and Climate Experiment (GRACE). GRACE as a joint satellite 

mission between the NASA and the German Aerospace Center (DLR) provides time-varying 

measurements of the Earth’s gravitational field since April 2002 by making accurate 

measurements of the inter-satellite range between two co-planar, low-altitude near-polar 

orbiting satellites (GRACE-A and GRACE-B) using GPS and a microwave ranging system 

(Kruizinga and Williams, 2010). Variations in the Earth’s gravitational field represent changes 

in mass distribution, and thus, after removal of processes due to atmospheric and ocean 

dynamics, solid earth and ocean tides, primarily changes in terrestrial water storage. 

In this study, the GRACE Tellus Mascon product based on the GRACE gravity fields 

Release 05 processed at NASA’s Jet Propulsion Laboratory (JPL) (Watkins and Yuan, 2012)  

is applied (Wiese et al., 2015). The dataset provides anomalies of equivalent water thickness in 

centimeter relative to the January 2004 – December 2009 time-mean baseline for both land and 

ocean. The monthly time-series, as well as local scaling coefficients for land area and 

uncertainty estimates in centimeter, are available on a 0.5° x 0.5° grid (Watkins et al., 2015; 

Wiese et al., 2015). 

Unlike previous GRACE Tellus products, the JPL RL05M dataset is derived by using equal-

area 3x3° spherical cap mass concentration blocks (mascons) to solve for monthly gravity field 

variations. In comparison to spherical harmonic coefficients, this approach allows for easier 

implementation of geophysical constraints to filter out noise from the JPL Level-2 Product. 

Further, a Coastline Resolution Improvement (CRI) filter has been applied to ensure a clean 

separation along coastlines within land/ocean mascons (Watkins et al., 2015). For each mascon, 

uncertainties are estimated by scaling the formal covariance matrix, so that, over land, they 

roughly match uncertainty estimates simulated with methods described by Wahr et al. (1998). 

Due to the application of a Kalman filter that links adjacent months in the data stream, 

uncertainty estimates are slightly higher at the beginning and the end of the time series (Watkins 

et al., 2015).   

GRACE products provide a unique homogeneous, global data source that offers insight into 

regional and continental-scale hydrologic processes and is widely used in current scientific 

research (Forman et al., 2012). As the monthly estimates of variations in terrestrial water 

storage include changes of snow, ice, surface water, soil moisture and groundwater, the dataset 
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is appropriate for calibration and validation of large-scale hydrologic models as developed in 

this study (Sakumura et al., 2014).  

GlobSnow Data 

The second dataset used for model optimization in this study is the Snow Water Equivalent 

(SWE) v2.0 estimate generated as part of the European Space Agency’s (ESA) GlobSnow 

project (Luojous et al., 2014). SWE as the product of snow depth and snow density represents 

the resulting water column in case a snow pack melts in place, and thus strongly influences the 

water cycle and biogeochemical cycling in mid- and high-latitudes and high elevation areas 

(Takala et al., 2011). GlobSnow SWE represents a satellite-based, daily dataset for the period 

1979-2012. It provides SWE estimates [mm] for the non-alpine land surface area of the 

Northern Hemisphere with the exception of Greenland on a 0.25° x 0.25° global grid (Derksen 

et al., 2014).  

The processing scheme applies passive microwave measurements from the Scanning 

Multichannel Microwave Radiometer (SMMR) and SSMI/S sensors onboard the Nimbus-7 

resp. DMSP F8, F11, F13, and F17 satellites, and weather station observations of snow depth 

collected by the ECMWF in an assimilation scheme described in Takala et al. (2011). The 

processing utilizes the Helsinki University of Technology (HUT) snow emission model, which 

describes brightness temperature (TB) measured by microwave sensors as a function of SWE, 

snow density and snow grain size (Pulliainen et al., 1999). In a first iteration, the model is used 

to derive grain size estimates at the locations of weather stations from spaceborne TB, a constant 

snow density of 0.24 g cm-3 and snow depth observations. Punctual snow depth observations 

and grain size estimates are interpolated by kriging to form a continuous field and then are used 

as input for the HUT model to retrieve SWE through forward simulations of TB. Hereby, the 

assimilation adaptively weighs the satellite TB with the observed snow depth map to estimate 

the final SWE (Takala et al., 2011). 

Validation of the weekly aggregated GlobSnow SWE product against independent ground-

based measurements from Russia resp. the former Soviet Union revealed an average RMSE 

around 32 mm for reference SWE values below 150 mm, and an increasing retrieval uncertainty 

when SWE is above this threshold. Thus, when considering the full reference datasets, the 

RMSE is approximately 43.5 mm (Luojous et al., 2014). Similar results are obtained for 

reference data from Finland and Canada and relate to a systematically underestimation of SWE 

by passive microwave retrieval algorithms under deep snow conditions. This well documented 

underestimation occurs due to a change in the microwave behavior of the snow pack, which 

transitions from a scattering medium into a source of emission (Takala et al., 2011). Fig. 10 

shows the comparison of GlobSnow SWE estimates and ground measurements of 7388 stations 

across the Northern Hemisphere by Liu et al. (2014), and illustrates this underestimation. 
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Additionally, Fig. 10 suggests a tendency of the GlobSnow product to overestimate SWE values 

less than 30 mm. 

 

 

Fig. 10: Comparison of monthly mean GlobSnow SWE estimate and ground-measured SWE from 7388 

meteorological stations across the northern hemisphere (Global Historical Climatology Network, NOAA) with a) 

139 877 samples and b) 21 501 samples (Liu et al., 2014). 

 

However, GlobSnow provides a clear improvement in retrieval accuracy compared to pure 

passive microwave earth observation products that already saturate for reference SWE values 

between 80 – 120 mm (Hancock et al., 2013; Liu et al., 2014). Thus, the GlobSnow SWE as an 

assimilation product exploits the benefits of both conventional and passive microwave data, 

and shows superior performance in comparison to stand-alone approaches (Derksen et al., 

2014). Additionally, its hemisphere coverage makes it the most suitable data set currently 

available for testing snow processes within large-scale hydrological models (Hancock et al., 

2013). 

3.2.3 Ancillary Data 

Water Mask 

For delineation of the study area and reducing issues due to land/water mixed pixel during the 

modeling, a water mask is applied. The mask provided by Ichii Kazuhito (Fukushima 

University) is derived from the global MODIS land cover product MCD12Q1 based on data 

from the year 2001 (Friedl et al., 2010). The dataset has been resampled from originally 500 km 

spatial resolution to 1 km (0,0083°) by taking the majority class. A further resampling to 1° x 

1° has been conducted at the MPI-BGC. The mask contains information on the fraction of water 

area within one grid cell, ranging from 0 (no water surface area) to 1 (surface completely 

covered by water).  

Base flow related Streamflow Characteristics 

Spatial distributed information related to base flow is obtained from global maps of streamflow 

characteristics produced by Beck et al. (2015). They trained neural network ensembles with 
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observed streamflow from 3000 – 4000 catchments (10 – 10000 km2) to estimate a total number 

of 17 characteristics based on climate and physiographic features. The final maps are derived 

by applying the trained networks globally on ice-free land. They have a spatial resolution of 

0.125° x 0.125° and represent the median of the neural network ensembles for each 

characteristic. 

In this study, the base flow index computed by using four different techniques (BFI1-4) and the 

base flow recession constant (K) come into use. The latter represents the rate of base flow decay, 

whereas BFI is defined as the ratio of the long-term base flow to total streamflow. They are 

calculated from daily streamflow by applying different methodologies as summarized in Tab. 

5. It should be noted, that Beck et al. (2015) define base flow “as the slowly varying portion of 

[streamflow that] includes all slow runoff components”. 

 

Tab. 5: Streamflow characteristics related to base flow as computed and provided by Beck et al. (2015). 

Characteristic Unit Computation 

BFI1 - recursive digital filter, window size of 5 days (Van Dijk, 2010) 

BFI2 - local-min method, duration of surface-runoff set to 5 (Pettyjohn and Henning, 

1979; Sloto and Crouse, 1996) 

BFI3 - 7-day sliding interval (7-day moving min) (Pettyjohn and Henning, 1979; Sloto 

and Crouse, 1996) 

BFI4 - subsequently connecting valleys in series of minima at 5-day non-overlapping 

intervals (Gustard et al., 1992) 

K d-1 window size of 5 days, ignoring days with zero flow (Beck et al., 2013) 

 

Köppen-Geiger Climate Zones 

For spatial distributed evaluation of the models’ performance, the updated digital world map of 

Köppen-Geiger climate classification presented by Kottek et al. (2006) is used to partition the 

study area. The map is based on the effective climate classification by Köppen (1900), who 

distinguishes five vegetation groups and applies hygral and thermal thresholds for further 

subdivision. Accordingly, the five main climates (A – equatorial zone, B – arid zone, C – warm 

temperate zone, D – snow zone, E – polar zone) are specified by a second letter referring to 

precipitation conditions and a third letter related to air temperature. 

The updated version, valid for the second half of the 21st century, is based on monthly, global 

grids of temperature data from CRU (CRU TS 2.1) (Mitchell and Jones, 2005) and observation 

based precipitation from GPCC (VASClimO v.1.1) (Beck et al., 2005), both covering the period 

1951 – 2000. The map is provided in 0.5° x 0.5° spatial resolution and shows the occurrence of 

a total number of 30 climate zones (Kottek et al., 2006). 
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3.2.4 Data Preparation 

The temperature data is converted from Kelvin to Degree Celsius and net radiation from Watt 

per square meter to Mega Joule per square meter and day. Latent energy is converted from 

Mega Joule per square meter and day to evapotranspiration in millimeter per day using a 

constant latent heat of vaporization of 2.45 MJ m-2. Further, negative values are set to zero. 

The GRACE TWS values must be scaled according to the local scaling coefficients for land 

area. Afterwards, the dataset as well as the associated uncertainty layer are resampled to a 1° x 

1° lat/lon grid by applying the average of the sub-grid cells. Further, the data values are 

converted from centimeter to millimeter. As June 2003 is missing in the GRACE product, 

NoData is entered for the corresponding time step. 

The GlobSnow SWE dataset as well as the BFI1-4 and K products are aggregated by applying 

the average of the sub-grid cells to receive the intended spatial resolution. Negative values that 

occur in BFI2 and BFI4 are set to zero to avoid negative modelled fluxes. 

In order to reduce the number of classes, but still represent spatial heterogeneity, Köppen-

Geiger climate zones are aggregated primarily based on the main climate. However, as the snow 

climate covers 56 % of the study area, it is split depending on humidity and summer 

temperatures to the temperate, boreal and boreal semi-arid zones as illustrated in Fig. 11. 

Further, the map is resampled by applying the majority class to each 1° grid. 

Data Preparation for all datasets includes extraction of the relevant time period and the 

delineated study area. 

 

Due to the differing temporal coverage of the input datasets, only the overlapping period from 

01.01.2003 to 31.12.2010 is considered. Overlap also exists from April 2002 to December 2002 

but goes along with two missing months of GRACE TWS data. Thus, the study focusses on the 

period 2003 – 2010. 

 

As the focus lies on snow-affected regions of the Northern Hemisphere, the study area is 

delineated by using the GlobSnow SWE data to define a minimum SWE of 30 mm that has to 

be recorded once in the period 2003 – 2010. In order to minimize the effects of land/water 

mixed pixels, the water mask is used to extract grid cells with more than 50 % land area. Further, 

meteorological forcing data must be available to run the model, so pixels without data for 

precipitation, temperature, net radiation, and evapotranspiration are excluded. The remaining 

area can be potentially used to run the model. However, for optimization, GRACE TWS and 

GlobSnow SWE data need to be available, too. Therefore, only cells with one missing GRACE 

TWS month (i.e. June 2003), measured TWS variations (anomaly  0) and GlobSnow SWE 

data for at least 10 % of all days are considered to be valid for optimization. Applying these 
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constraints, the total amount of 7879 grid cells is reduced by 21.4 % to 6190 valid cells (Fig. 

12). The resulting study area is depicted in Fig. 13. 

 

 

Fig. 11: Aggregation of Köppen-Geiger climate zones. (Precipitation: W – desert, S – steppe, f – fully humid, s – 

summer dry, w – winter dry, m – monsoonal; Temperature: h – hot arid, k – cold arid, a – hot summer, b – warm 

summer, c- cool summer, d – extremely continental, F – polar frost, T – tundra) (Kottek et al., 2006). 

 

 

Fig. 12: Delineation of the study area (* not more than one NaN due to missing measurements in June 2003). 
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Fig. 13: Spatial coverage of the study area and potential model area. 

 

3.3 Experimental Design 

Fig. 15 shows the detailed procedure of this study, which consists of six parts: 

 

1) Comparison of optimization methods 

2) First investigation and model ranking 

3) Incorporation of spatial distributed information 

4) Final model calibration 

5) Model evaluation and ranking 

6) Application and analysis of the best model variant 

 

The general structure and interplay of these parts is explained in the following, while the 

individual methodologies and settings are described more precisely in subsequent sections. 

Tab. 6 provides an overview on the time series considered for the individual steps. 

 

In the beginning, all seven model variants are initialized with globally constant default 

parameter values based on literature. These parameters shall be optimized using automatic 

calibration to improve the fit of the model simulations to the observed GRACE TWS, 

GlobSnow SWE and ET data. Instead of optimizing the parameter set itself, a vector X = [x1, 

x2 … xn] consisting of n scaling factors x, each associated with one parameter of the model 

under consideration, is optimized. Accordingly, upper and lower bounds of each parameter are 

scaled by its default value, when used to constrain the search algorithm. Since GRACE TWS 

is available only in monthly time steps, the monthly average of the daily SWE, TWS, and ET 

data are applied for optimization. Furthermore, the models are run for two (basic runoff 
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variants) resp. 20 (groundwater variants) years prior to estimating the costs in order to initialize 

water storages. Thereto, years with available forcing data are mixed randomly to prevent 

reflection of potential trends. Optimization intends to find the parameter set that achieves the 

best fit between simulations and observations for all grid cells simultaneously. Thus, a global 

uniform parameter set is determined for each model variant, rather than several, spatial varying 

parameter sets. 

 

1) Comparison of optimization methods 

To ascertain the most suitable optimization method that finds the global optimal parameter set 

in a minimum of computational time, while being able to account for known data issues, 

different search algorithms and cost functions are tested and evaluated. In the first step, four 

commonly applied search algorithms are used to optimize the initial cost function CF1 for all 

model variants for 1000 randomly chosen grid cells (Fig. 14b). Based on computational time 

and comparison of the results, one search algorithm is chosen and used for all subsequent 

procedures.  

In the next step, the performance of six different cost functions and their ability to account for 

data uncertainty, especially regarding the GlobSnow SWE product, is assessed. To reduce the 

computation time, the cost functions are optimized for 100 randomly chosen pixel (Fig. 14a). 

The combination of the most suitable cost function and search algorithm represents the ‘best’ 

optimization method, that is applied for final model calibration. More details on the comparison 

of optimization methods is given in chapter 3.3.2. 

 

2) First investigation and model ranking 

Before final calibration, a first investigation of the model variants optimized for 100 grid cells 

is conducted. This investigation includes a ranking of the model variants as well as analysis of 

the corresponding parameter values. The methodologies are described in chapter 3.3.3. Thereby 

analysis revealed that optimized parameter values largely differ for the common snow 

component (chapter 5.1.3). As one aim of this thesis is to identify differences in model 

performance related to the runoff generation processes, disparity in the snow component may 

distort the effect of varying soil and runoff components on soil moisture and runoff simulations. 

Therefor the snow parameter set of the best ranked model is chosen and fixed for all variants 

during final calibration. 

 

3) Incorporation of spatial distributed information 

To examine whether spatialization of model parameters and thus consideration of spatial 

heterogeneity improves model performance compared to global uniform physio-geographic 

characterization, the best ranked groundwater variant is selected to implement exemplarily 
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spatial distributed information on base flow characteristics (Beck-GW variants). The 

implementation is illustrated in chapter 3.3.4. 

 

4) Final model calibration 

Eventually, the soil and runoff parameters of all model variants, including the Beck-GW 

models, are calibrated for 1000 grid cells using the best optimization method (chapter 3.3.5). 

 

5) Model evaluation 

Model performance is evaluated by applying the optimized parameter values for the 5190 grid 

cells not used for calibration. Additionally, all standard model variants are run for the entire 

study area (global run). Their costs for calibration, evaluation and global run are evaluated and 

their simulated global mean seasonal cycles are contrasted. Beck-GW models are compared 

with their standard counterpart based on their calibration results, and only the best performing 

Beck-GW is applied globally and considered when analyzing the mean seasonal cycle. More 

details are given in chapter 3.3.6. 

 

6) Model application 

Finally, the ‘best’ model variant is chosen based on its rank and its simulations are analyzed 

concerning the research questions as described in chapter 3.3.7. 

 

 

  

Fig. 14: Location of the a) 100 grid cells used for comparing cost functions and b) 1000 grid cells used for model 

optimization. Green shaded area marks the study area. 

 



Methods and Data Experimental Design 

 

 

58 

 

Fig. 15: Experimental design of the master thesis. 

 

Tab. 6: Used temporal coverage of the global data sets and time series considered for model run, evaluation of 

the cost functions during comparison of optimization methods, calibration, evaluation and analysis of the best 

model’s results. 

 Considered Time Series 

Global data sets 2003 – 2010 

Model run initialization (2/20 years) + 2003 – 2010 

Evaluation of cost function during optimization & calibration 2003 – 2010 

Model evaluation and analysis 2004 – 2010 

 



Methods and Data Experimental Design 

 

 

59 

3.3.1 Default Parameter Set and Bounds 

The default parameter values as well as their upper and lower bounds are listed in Tab. 3. 

As by default no scaling of the forcing data streams is assumed, the parameters p_sf and p_et 

are initially set to 1. In theory, they may vary between 0 and ∞, yet an upper bound of 3 is 

defined for optimization.  

Regarding the snow component, typical values of the degree-day factor m_t are around 

3 °C mm-1 (Müller-Schmied et al., 2014; Stacke et al., 2011), but may extend to approximately 

5 mm °C-1 (Julander, 2000). In this study, 10 mm °C-1 is defined as the upper reasonable bound 

for snow melt. With an enthalpy of fusion of ice of 0.3337 MJ mm-1, the physical upper limit 

of m_r is 3 mm MJ-1 m2 d1 and the parameter initially is set to 2 mm MJ-1 m2 d1. sn_α serves as 

a calibration parameter for computing sublimation and according to Miralles et al. (2011), a 

constant value of sn_α = 0.95 is by default suitable for every snow covered pixel. For sn_c the 

default value of 15 mm is adopted from Balsamo et al. (2009). As upper limit the very seldom 

occurring amount of 1000 mm SWE is chosen. 

Dependent on soil type and root depth, the water holding capacity for a soil of 1 m depth varies 

between 60 and 590 mm (AG and Bodenkunde, 2005). Although soil depth as well as root depth 

differ considerably, by default a value of s_max = 300 mm is assumed, which approximately is 

the mean of this range. 

s_fac_simple by definition varies between 0 and 1, and as default the mean is applied. 

s_exp_simple can theoretically take any value between 0 and ∞, yet an upper limit of 20 is 

defined for optimization. Initially assuming a linear storage, the default is set to 1, so that with 

s_fac_simple = 0.5 half of the available water contributes to runoff. 

Müller-Schmied et al. (2014) calibrated s_exp_berg against mean annual river discharge at 

1319 gauging stations on a 0.5 x 0.5° grid. Thereto, they considered a range from 0.0001 – 5 

and found s_exp_berg > 1 suitable for most of the catchments. This study adopts the upper and 

lower bounds of Müller-Schmied et al. (2014) and uses s_exp_berg = 1.1 as default value. 

The Budyko approach has been applied by Zhang et al. (2008) on a daily time scale for 265 

catchments in Australia, where the mode of the calibrated s_exp_budyko lay between 0.5 and 

0.66. Thus, an initial value of 0.6 is assumed, while the parameter may range between 0 and 1. 

For the basic variant, Orth et al. (2013) report an recession time scale of 2 days, which is used 

as default value for q_t. However, the parameter may be calibrated between 0 and 100 days, 

assuming that even in a 1° x 1° grid cell water that is not retained in soil will contribute to runoff 

within three months. 

Regarding the groundwater variants, g_r and g_d range from 0 to 1. For g_r, the default value 

is set to 0.16, which was found as average for 10 catchments in New Jersey by Alley (1984). 

Concerning g_d, Alley (1984) identified an average value of 0.26 d-1, while in WaterGAP 2.2 
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a globally uniform value of 0.01 d-1 and in WBMplus of 0.0167 d-1 is assumed (Müller-Schmied 

et al., 2014). Considering the global application, 0.01 d-1 is adopted as default in this study. 

3.3.2 Comparison of Optimization Methods 

The following section briefly introduces the settings of the tested search algorithms and 

explains the differences between the evaluated cost functions. 

Search Algorithms 

In the course of this thesis, four commonly used optimization techniques are tested, including 

the gradient-based local methods Lsqnonlin and Fmincon, a global multi start algorithm 

applying Fmincon (henceforth GSFmincon) and the heuristic CMAES approach by Hansen and 

Kern (2004). Lsqnonlin is chosen as the least-square methods are most commonly used for 

optimization problems (Xu, 2002) and Fmincon as it in comparison to Lsqnonlin handles 

parameter bounds (MathWorks, 2015b). Since these local methods may not provide the best 

possible parameter set, GSFmincon investigates a greater portion of the parameter space and is 

more likely to deliver the global optima. Out of stochastic methods, CMAES showed superior 

performance in finding the best (global) solution (Arsenault et al., 2013) and according to 

Hansen and Kern (2004) outperforms gradient-based methods as GSFmincon if the response 

surface is rugged. Thus, CMAES is tested as fourth search algorithm. 

The techniques have been explained in detail in Chapter 2.3.2, while Tab. 7 provides a short 

summary of the methods. 

 

Tab. 7: Overview on tested optimization techniques. 

 Lsqnonlin Fmincon GSFmincon CMAES 

 local global 

 non-linear least 

square fitting 

non-linear 

constrained   

multi start applying 

Fmincon 

Covariance Matrix 

Adaption Evolution 

Strategy 

Code MATLAB Optimization Toolbox 

(MathWorks, 2015b) 

MATLAB Global 

Optimization Toolbox 

(MathWorks, 2015a) 

source code v3.61 

(Hansen and Kern, 

2004) 

Algorithm Levenberg-

Marquardt 

interior-point scatter-search,  

interior-point 

evolution strategy 

with adaption of 

covariance matrix 

 

For application of the optimizers, an initial starting point, constraints, possible termination 

criteria and some optimizer-dependent variables need to be set. For testing, the options are 

defined as shown in Tab. 8. If not listed otherwise, the function’s default settings are used. 

Stopping criteria as the maximum number of iterations (MaxIter), the maximum number of 

function evaluations (MaxFunEval) as well as termination tolerances for the cost function 

(TolFun) and parameter scaling factors (TolX) are common to all optimizers. For CMAES, 



Methods and Data Experimental Design 

 

 

61 

MaxIter depends on the population size, which is calculated according to the number of problem 

dimensions (number of model parameters) and adjusted so that it’s likely to obtain a global 

solution. The initial step size of CMAES (pSigma) is set in dependency on the upper (ub) and 

lower parameter bounds (lb). DiffMinChange and DiffMaxChange refer to the gradient based 

methods and serve to compute the initial search direction. GSFmincon additional requires the 

number of starting points nStart.  

The initial starting point for each model is defined by the default parameter values listed in Tab. 

3. Optimization is constrained to find solutions within the upper and lower parameter bounds, 

except for Lsqnonlin which does not handle bound constraints. 

To determine the most suitable search algorithm, their computation time as well as their best 

solution obtained for calibration of 1000 randomly chosen grid cells and applying initial cost 

function CF1 are compared. 

 

Tab. 8: Optimization settings used for testing the performance of the four optimization methods and for comparing 

the suitability of various cost functions. 

Option Description Value 

 

 Lsqnonlin, 

Fmincon, 

GSFmincon 

CMAES 

PopSize 
population size, depending on the number of 

problem dimensions N 
- 3(4 + (3 log 𝑁) 

pSigma initial step size - 0.3(𝑢𝑏 − 𝑙𝑏) 

nStart number of starting points (GSFmincon) 50 - 

MaxIter maximum number of solver iterations 1000 𝑒3
(𝑁 + 5)2

√𝑃𝑜𝑝𝑆𝑖𝑧𝑒
 

MaxFunEval maximum number of function evaluations 1000 1000 

DiffMinChange 
minimum change in variables for finite-

difference gradients 
e-2 - 

DiffMaxChange 
maximum change in variables for finite-

difference gradients 
e-1 - 

TolFun 
termination tolerance on the cost function 

value 
e-6 

TolX termination tolerance on the scaling factor e-6 

 

Cost Functions 

In order to account for different model aspects, total costs consist of three components, that are 

summed up equally. As the main objective is to simulate available moisture adequately, the first 

component contrasts the overall fit of modeled TWS (TWSmod) with GRACE TWS data 

(TWSobs). Therefore, the monthly values of both TWS datasets are translated as anomalies to 

the time-mean baseline of the period 01.01.2003 – 31.12.2010 and TWS costs are estimated for 

grid cells and time steps with available observations. To minimize the errors in TWSmod due to 

snow simulation, the second cost component compares simulated SWE (SWEmod) with 

GlobSnow SWE (SWEobs). Similar to TWS, SWE costs are calculated only if SWEobs data is 
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present. As SWEobs is subject to saturation effects (see chapter 3.2.2), the aim is to incorporate 

the increasing uncertainty related to high SWEobs values. Finally, the third cost is implemented 

to punish differences between modeled (ETmod) and the observation based ET (ETobs) in order 

to diminish inconsistencies of model output and forcing data streams. Those may occur if the 

forcing data suggests ETobs > 0, yet the modelled soil water storage is empty and thus ETmod = 0 

is simulated. 

 

In the context of this study, six distinct cost functions are developed and tested for their 

suitability. An overview is provided in Tab. 9. 

 

Tab. 9: Cost functions tested within this study. The table shows according to which formula the cost components 

are calculated, which estimate of uncertainty σ is used and whether the data is further trimmed.  

Cost  TWS cost SWE cost ET cost Trimming 

Function formula σ formula σ formula σ  

CF1 KGE - ρ - KGE - - 

CF2 KGE - KGE - KGE - - 

CF3 wMSE σTWS wMSEa σSWE wMSE σET  

CF4 wMEF σTWS wMEFa σSWE - -  

CF5 wMEF σTWS wMEFa σSWE wMEF σET  

CF6 wMEF σTWS wMEFb σSWE wMEF σET  

 

 

The first cost function (CF1) utilizes the ED of the KGE for the TWS and ET cost components 

to evaluate the overall fit of modelled and observed data streams (Eq. (10)). ED is chosen, since, 

in comparison to KGE, it is subject to minimization and thus directly applicable as cost. 

Regarding TWS, the bias as defined for the KGE equals unity, because TWSmod and TWSobs 

represent anomalies to the time-mean base line. Therefore, this component does not affect the 

ED of TWS cost and is neglected. Furthermore, CF1 attempts to account for increasing 

uncertainty related to high SWEobs values by trying to match SWEobs’s seasonal variation rather 

than its magnitude. Thereto, CF1 calculates the SWE cost component using Spearman’s rank 

correlation coefficient ρ instead of ED, and thus neglects the bias between SWEobs and SWEmod. 

For costs, ρ is subtracted from unity so that high correlation is associated with a lower cost 

value. 

Unlike CF1, the second cost function (CF2) evaluates the overall fit between observed and 

simulated SWE and applies the ED of the KGE for all three cost components. 

While cost function CF1 and CF2 are solely based on the observation data streams, cost 

functions CF3 to CF6 consider the uncertainty σ of the observation data directly. 

Thereto, the third cost function (CF3) calculates the mean square error weighted with the 

uncertainty of the observational data for each cost component (Eq. (3)). 
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In a similar way, cost function 4 (CF4) uses the weighted model efficiency for TWS and SWE 

to evaluate the overall model fit. Unlike the original formula of wMEF (Eq. (8)), the ratio of 

weighted squared residuals to weighted squared variance is not subtracted from unity, so that 

the cost is subject to minimization. In order to let the optimizer scale ET within the bounds of 

p_et, CF 4 does not include a cost component for ET.  

Cost function 5 (CF5) and 6 (CF6) consider ET costs again and calculate all three cost 

components based on wMEF, but differ in the way they account for the uncertainty of SWE. 

 

For CF3-6 the uncertainty of TWS (σTWS) is based on the uncertainty layer provided with 

GRACE mascon data (Fig. 16c). 

Regarding ETobs a relative uncertainty of 10 % is assumed. In order to impede division through 

zero (Eq. (3), (8)), the minimum uncertainty is set to 0.1 mm. The resulting applied uncertainty 

σET as a function of ETobs (Eq. (45)) is shown in Fig. 16a.  

 

𝜎𝐸𝑇 = max ( 0.1 𝐸𝑇𝑜𝑏𝑠 , 0.1) (45) 

 

Based on reported differences to ground-measurements (Liu et al., 2014; Luojous et al., 2014), 

an average of 35 mm absolute uncertainty is applied for SWEobs below a saturation threshold 

(thrsh) of 100 mm (Fig. 16b). Above this threshold, evaluation of GlobSnow SWE suggests 

that the dataset provides no reliable information on the actual SWE amount. Thus, the 

performance of SWEmod is not compared to SWEobs for SWEobs > thrsh. Instead, it is assumed 

that SWEmod provides good estimates of the actual SWE as long as both, SWEobs and SWEmod, 

exceed 100 mm. The way how costs are calculated if SWEobs exceeds the threshold differs 

among wMSEa resp. wMEFa and wMEFb. In wMSEa /wMEFa costs are calculated for the 

difference between SWEmod and the threshold, if SWEmod is less than the thrsh but SWEobs 

exceeds it. If both, SWEmod and SWEobs, exceed 100 mm, costs are set to zero (Eq. (47) – Eq. 

(50)).  

 

𝜎𝑆𝑊𝐸 = 35 (46) 

 

𝑆𝑊𝐸𝑎(𝑆𝑊𝐸𝑜𝑏𝑠 > 𝑡ℎ𝑟𝑠ℎ) =  
max( 𝑡𝑟𝑠ℎ − 𝑆𝑊𝐸𝑚𝑜𝑑(𝑆𝑊𝐸𝑜𝑏𝑠 > 𝑡ℎ𝑟𝑠ℎ), 0)2

𝜎𝑆𝑊𝐸
2

 (47) 

 

𝑆𝑊𝐸𝑎(𝑆𝑊𝐸𝑜𝑏𝑠 ≤ 𝑡ℎ𝑟𝑠ℎ) =  
(𝑆𝑊𝐸𝑜𝑏𝑠(𝑆𝑊𝐸𝑜𝑏𝑠 ≤ 𝑡ℎ𝑟𝑠ℎ) − 𝑆𝑊𝐸𝑚𝑜𝑑(𝑆𝑊𝐸𝑜𝑏𝑠 ≤ 𝑡ℎ𝑟𝑠ℎ))2

𝜎𝑆𝑊𝐸
2

 (48) 

 

𝑤𝑀𝑆𝐸𝑎 =
1

𝑁
∑  𝑆𝑊𝐸𝑎 (49) 
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𝑤𝑀𝐸𝐹𝑎 =
∑  𝑆𝑊𝐸𝑎

∑
(𝑆𝑊𝐸𝑜𝑏𝑠 − 𝜇𝑆𝑊𝐸𝑜𝑏𝑠)2

𝜎𝑆𝑊𝐸
2

 

 

(50) 

 

For wMEFb, values of SWEobs and SWEmod that exceed the threshold are set to the threshold 

before calculating the costs (Eq. (51) – Eq.(53)). 

 

𝑆𝑊𝐸𝑏𝑜𝑏𝑠(𝑆𝑊𝐸𝑜𝑏𝑠 > 𝑡ℎ𝑟𝑠ℎ) =  𝑡ℎ𝑟𝑠ℎ (51) 

 

𝑆𝑊𝐸𝑏𝑚𝑜𝑑(𝑆𝑊𝐸𝑚𝑜𝑑 > 𝑡ℎ𝑟𝑠ℎ) =  𝑡ℎ𝑟𝑠ℎ (52) 

 

𝑤𝑀𝐸𝐹𝑏 =

∑  
(𝑆𝑊𝐸𝑏𝑜𝑏𝑠 − 𝑆𝑊𝐸𝑏𝑚𝑜𝑑)2

𝜎𝑆𝑊𝐸
2

∑
(𝑆𝑊𝐸𝑏𝑜𝑏𝑠 − 𝜇𝑆𝑊𝐸𝑏𝑜𝑏𝑠)2

𝜎𝑆𝑊𝐸
2

 (53) 

 

Additionally, in contrast to CF1 and CF2, CF3-6 further trim the data to exclude outliers in cost 

calculation. Thereto, the 95th percentile of the residuals TWSobs – TWSmod resp. SWEobs – 

SWEmod is calculated and used as a threshold to exclude data points with a greater residual.  

 

 

 

Fig. 16: Applied uncertainty [mm] as a function of a) ETobs and b) SWEobs as well as c) spatial distribution of 

mean TWSobs uncertainty [mm].  

 

a) 

b) 

c) 
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3.3.3 First Investigation and Model Ranking 

For first investigations and to determine the best groundwater model variant, the best solutions 

obtained with the most suitable search algorithm and cost function for 100 grid cells are 

inspected. Therefor the cost function values are examined and used to rank the models. 

According to Gulden et al. (2008), the mean rank (mean rk) is calculated as the average of the 

ranks (rk) for TWS, SWE and ET costs (Eq. (54)). To consider the gap between model costs in 

relation to differing ranges of the cost components, the weighted mean rank (w mean rk) is 

computed by weighting the ranks of the cost components with their corresponding range (R) 

(Eq. (55)).  

 

𝑚𝑒𝑎𝑛 𝑟𝑘 =
𝑟𝑘𝑇𝑊𝑆𝑐𝑜𝑠𝑡 + 𝑟𝑘𝑆𝑊𝐸𝑐𝑜𝑠𝑡 + 𝑟𝑘𝐸𝑇𝑐𝑜𝑠𝑡

3
 (54) 

 

𝑤 𝑚𝑒𝑎𝑛 𝑟𝑘 =
(𝑟𝑘𝑇𝑊𝑆𝑐𝑜𝑠𝑡 𝑅𝑇𝑊𝑆𝑐𝑜𝑠𝑡100) +  (𝑟𝑘𝑆𝑊𝐸𝑐𝑜𝑠𝑡𝑅𝑆𝑊𝐸𝑐𝑜𝑠𝑡100) +  (𝑟𝑘𝐸𝑇𝑐𝑜𝑠𝑡 𝑅𝐸𝑇𝑐𝑜𝑠𝑡100)

3
 (55) 

 

3.3.4 Incorporation of spatial distributed Base flow Information 

To test whether model performance can be further improved by considering spatial distributed 

information, BFI and K estimates by Beck et al. (2015) are implemented. These Beck-GW 

models are identical to the best groundwater model variant of the first investigation, yet 

calculate runoff by applying the spatial distributed information of either K (ModelGWBeck-

K), BFI (ModelGWBeck-BFI1-4), or both, BFI and K (ModelGWBeck1-4) (Fig. 17). Since 

Beck et al. (2015) provides four BFI estimates, the combination results in nine different Beck-

GW models. 

The recession coefficient K [d-1] corresponds to the parameter g_d [d-1] of the standard 

groundwater variants and substitutes this parameter when calculating Qbase [mm d-1] in 

CalcRunoffGW_K and CalcRunoffGW_Beck. BFI is defined as the ratio of the long-term base 

flow to total streamflow and thus relates to the percolating fraction of surface runoff Qs. Hence, 

it replaces the parameter g_r [-] in the MATLAB functions CalcRunoffGW_BFI and 

CalcRunoffGW_Beck. 

Further, K as well as BFI are allowed to be scaled by the parameters p_gd [-] resp. p_gr [-] that 

both are by default set to 1, but can be adjusted during final calibration between a lower bound 

of 0 and an upper bound of 3 similar to p_sf and p_et. To ensure that the percolating fraction of 

Qs and the fraction of groundwater storage GW that forms base flow do not exceed 100 %, the 

minimum of p_gr·BFI and 1 is applied to calculate percolation Perc [mm d-1] and the minimum 

of p_gd·K and 1 to derive base flow Qbase [mm d-1].  
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Fig. 17: Model configuration of Beck-GW variants.(Calc indicates a MATLAB function, while Model refers to the 

final combination of these functions). 

 

3.3.5 Final Model Calibration 

Final model calibration applies the so found most suitable optimization method to find the 

optimal global parameter set for 1000 grid cells, for each model variant. 

Therefor the optimization settings are modified by increasing the maximum number of function 

evaluations to 10000 in order to ensure that the algorithm only stops if no further improvement 

is possible.  

To establish confidence in the optimization results, the output of the optimization algorithm 

with information on the progress of costs and parameters with each iteration is investigated. 

3.3.6 Model Evaluation 

Model verification includes analysis of the optimized parameters and the evaluation of model 

performance for independent data. Thereto, the model variants are applied solely for the 5190 

grid cells not used for calibration as well as globally for the entire study area. Model costs are 

compared for the calibration, the evaluation and the global run and used to rank the model 

variants as described in chapter 3.3.3. Additionally, the mean seasonal cycle (MSC) of all grid 

cells is investigated to examine whether the model variants differ in their temporal dynamic. 

To check for spatial divergences in the models’ performance, pixel wise costs are calculated 

and mapped. Additionally, grid cells with costs higher than the 95th percentile and lower than 

the 5th percentile are identified as areas of especially poor and good model performance. 

3.3.7 Model Application 

To finally address the research questions, the best ranked model variant is applied for the entire 

study area and its results are analyzed for the period 01.01.2004 – 31.12.2010. 

Analysis includes investigation of the MSC to assess seasonal variations and the anomalies to 

the mean seasonal cycle to evaluate inter-annual variability. Areas of poor model performance 

are identified by calculating efficiency criteria as the RMSE, KGE and r additional to the 
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applied cost function for each grid cell and for each modified Köppen-Geiger (KG) zone. Shifts 

in the MSC between TWSobs and TWSmod are measured using cross-correlation. 

For determination of the composition of TWS, the variability of TWS can be explained by the 

variability of its components, mainly represented by SWE, SM and GW. With combining SM 

and GW to total available water W, the variance in TWS (varTWS) results from the sum of the 

variance in SWE (varSWE), the variance in W (varW) and the covariance of SWE and W 

(covar(SWE, W)): 

 

𝑣𝑎𝑟𝑇𝑊𝑆 = 𝑣𝑎𝑟𝑆𝑊𝐸 + 𝑣𝑎𝑟𝑊 + 2𝑐𝑜𝑣𝑎𝑟(𝑆𝑊𝐸, 𝑊) (56) 

 

If SWE and W do not correlate, covar(SWE,W) approximates zero, and varTWS equals to the 

sum of varSWE and varW  (Lehn and Wegmann, 2006). 

In a similar way, the variability of W can be expressed by the variability of SM and GW: 

 

𝑣𝑎𝑟𝑊 = 𝑣𝑎𝑟𝑆𝑀 + 𝑣𝑎𝑟𝐺𝑊 + 2𝑐𝑜𝑣𝑎𝑟(𝑆𝑀, 𝐺𝑊) (57) 

 

Applying Eq. (56) and Eq. (57) for each grid cell on the MSC and the anomaly to the MSC, 

spatial information on the intra- and inter-annual influence of SWE, SM and GW on TWS is 

obtained. The main component for each grid cell is determined by calculating the difference 

between varW and varSWE, both normalized with varTWS: 

 

𝑣𝑎𝑟𝑊

𝑣𝑎𝑟𝑇𝑊𝑆
−  

𝑣𝑎𝑟𝑆𝑊𝐸

𝑣𝑎𝑟𝑇𝑊𝑆
 (58) 

 

Accordingly, positive values indicate a predominant influence of W, while negative values 

represent an increased impact of SWE. 

In the same way, varW is attributed to be more dominated by varSM or varGW. 

 

Additionally, to examine whether a trend in the GRACE TWS data is present and if this is 

captured by the model, the rank-based non-parametric Mann-Kendall test (Kendall, 1975; 

Mann, 1945) utilizing Sen’s slope for trend estimation (Sen, 1968) is applied for the observed 

and modelled TWS anomalies. Thereby, trends are considered significant for p values < 0.05. 
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4 Study Area 

The following chapter briefly characterizes the study area concerning the applied observational 

data for model forcing, calibration and validation. It further introduces the aggregated Köppen-

Geiger zones used for analysis of the model output. 

Precipitation, Temperature and Evapotranspiration 

Fig. 18 illustrates the spatial distribution of mean annual precipitation P [mm a-1] and average 

air temperature T [°C], while Fig. 19 shows the mean annual evapotranspiration ET [mm a-1], 

for each grid cell as well as the global mean seasonal cycle of P [mm month-1] (blue line) and 

T [°C] (red line) for the study area and the period 2003 – 2010.  

According to the applied meteorological data, the average annual precipitation is 578 mm a -1, 

of which 291 mm a-1 evapotranspire. Thereby P, and simultaneously ET, decrease towards the 

more continental parts of North America and Eurasia. Lowest P is observed in polar regions as 

well as in the North American Middle West and from Kazakhstan eastwards to Mongolia. 

Average T decreases north-eastwards, reaching minima on the Canadian Arctic Archipelago as 

well as in Middle and East Siberia.  

The average MSC of T in the study area (Fig. 19c) is characterized by lowest temperatures in 

January and highest in July, with an amplitude of ca. 35 K. P in general is lowest in winter and 

spring, with minimum amounts measured in February. Maximum monthly P is received in July 

and August, and decreases gradually during autumn.  

 

  

Fig. 18: a) Mean annual precipitation [mm a-1] and b) average temperature [°C] of the study area obtained 

from the meteorological forcing data for the period 2003 – 2010. 

 

b) a) 
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Fig. 19: a) Mean annual evapotranspiration [mm a-1] of the study area as well as b) average mean seasonal 

cycle of precipitation [mm month-1] and temperature [°C] obtained from the meteorological forcing data for 

the period 2003 – 2010. 

 

GRACE TWS and GlobSnow SWE 

Fig. 20a shows the mean seasonal amplitude of terrestrial water storage variations observed by 

GRACE (TWSobs) [mm] for each grid cell. The average amplitude of the entire study area is 

110 mm, with high variations being present in the north east and along the west coast of North 

America, the Canadian Arctic Archipelago, North East Siberia including Kamchatka, the West 

Siberian and East European Plain and Anatolia. Areas of low variations are located in central 

North America and the South East of Eurasia. On average, TWSobs is at the maximum in April 

and lowest during September and October. 

In Fig. 20b the average of the annual maximum snow water equivalent of the years 2003 – 2010 

provided by the GlobSnow product (SWEobs) [mm] is depicted for each grid cell. In general, 

SWEobs increases from South to North, whereby highest amounts are observed on the Labrador 

Peninsula, the Canadian Arctic Archipelago, Kamchatka, Middle Siberia and the Scandinavian 

Mountains. These areas coincidence with medium to high annual precipitation (> 900 mm a-1) 

and average temperatures below 5 °C (Fig. 18). The average annual maximum of the entire 

study area is 120 mm, which is observed in March. In spring, SWEobs decreases until June, and 

snow accumulation starts again in September. However, for July and August the GlobSnow 

product does not provide SWE data.  

Köppen-Geiger Zones 

Fig. 21 provides a map of the aggregated Köppen-Geiger (KG) zones and their proportion of 

the study area. The total number of 30 climate zones is reduced to six classes of which five 

a) b) 
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occur in the study area. Each of them covers at least 8 % of the area. Most of the grid cells 

(46 %) are assigned to the boreal zone, followed by the temperate class (25 %), while the polar 

zone represents 12 % of grid cells. Both, arid and boreal semi-arid zone cover approximately 

8 % of the area.  

 

 

Fig. 20: Mean seasonal amplitude of TWSobs [mm] and mean of maximum annual SWEobs [mm] obtained from the 

calibration and validation data for the period 2003 – 2010. 

 

 

 

Fig. 21: Spatial distribution of aggregated Köppen-Geiger zones and the corresponding proportion of the study 

area.  

  

a) b) 
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5 Results 

The following chapter presents the findings of this master thesis. 

In the first part, the results of comparison of optimization methods are shown. Based on these, 

the most suitable method is chosen for final model calibration, which outcome is shown in the 

second section of this chapter. The third section deals with the evaluation of the calibrated 

models and their comparison to infer the most suitable approach. Finally, the last section 

provides the results of application of this model variant, which are investigated regarding their 

conformity with TWSobs and the spatial and temporal composition of TWSmod. 

5.1 Comparison of Optimization Methods 

As one aim of this study is to identify the most suitable optimization method, the following 

section displays the findings of testing different search algorithm and cost functions. 

Subsequently, a first model ranking based on these results is conducted. 

5.1.1 Search Algorithms 

Since the search algorithm shall be least time-consuming, yet provide optimal results, the four 

search algorithms Lsqnonlin, Fmincon, GSFmincon and CMAES are investigated regarding 

their run time as well as their obtained solutions. 

Run Time 

Fig. 22 contrasts the run time needed by Lsqnonlin, Fmincon, CMAES and GSFmincon to 

optimize each model variant for 1000 grid cells. While the local solvers finish within two hours, 

GSFmincon needs longest, with on average 3 days and even 6.5 days for BudykoGW. On 

contrary, CMAES accomplishes on average within 18 hours. In general, optimization of the 

groundwater variants takes longer than of their basic runoff counterparts. 

Comparison of Results (CF1) 

The costs (CF1) associated with the best solution found by each search algorithm are depicted 

for each model variant in Fig. 23. Overall, optimization always reduces costs compared to the 

models’ default parametrization. Thereby Lsqnonlin achieves the least reduction, while 

Fmincon as another local algorithm obtains better results (except for BergGW), that mostly are 

comparable to the global search GSFmincon. The latter solely performs substantially better than 

Fmincon regarding SimpleBasic. Except for BudykoBasic, the largest improvement of costs is 

achieved with CMAES. However, the difference between Fmincon, GSFmincon and CMAES 

is mostly less than 0.03, while the optimized parameter values may differ largely (A 3). 
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Fig. 22: Run time [hours] of the search algorithm for optimizing each model variant for 1000 grid cells. Algorithm 

settings as described in Tab. 8. 

 

   

Fig. 23: Total Costs (CF1) for model variants with default parametrization (Default) and optimized parameter 

values derived by four search algorithms. Model variants: 1-SimpleBasic, 2-SatBasic, 3-SatGW, 4-BergBasic, 5-

BergGW, 6-BudykoBasic, 7-BudykoGW; optimization for 1000 pixel regarding CF1. 

 

5.1.2 Cost Functions 

One major question when determining the most suitable optimization method is how the cost 

function shall be formulated to account for known data issues, especially regarding GlobSnow 

SWE estimates. Therefor six cost functions have been tested, which differ in four issues: 

a) how SWEobs uncertainty is treated, 

b) whether the data streams are trimmed or not, 

c) whether ET costs are considered, and 

d) which efficiency criteria is applied. 

In the following, the findings concerning these topics are shown. 
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a) Treatment of SWEobs Uncertainty 

Concerning SWE, cost functions shall capture several properties. First, whether the temporal 

dynamic is reproduced or not and second whether a bias between SWEobs and SWEmod is 

present. As for the latter increasing uncertainty of SWEobs above a threshold is known, one can 

distinguish between three cases how the bias should be treated theoretically. If both SWEobs and 

SWEmod are below the threshold (<< thrsh), bias should be associated with high costs. On 

contrary, if both values exceed the threshold (>> thrsh), the dataset is assumed to provide no 

reliable information on the actual SWE amount and thus a bias can be neglected. However, as 

a fixed value is set as threshold, yet uncertainty is rather gradual increasing, costs should not be 

too high if SWEobs is just below the threshold (< thrsh) while SWEmod exceeds it (> thrsh). 

All in all, this results in four cases that should be considered when evaluating the cost functions. 

They are summarized in Tab. 10 and exemplarily illustrated in Fig. 24. Fig. 24 further shows 

how the particular cost functions deal with each case and lists the corresponding costs. 

CF1 applies Spearman’s rank correlation ρ and thus compares the ranks of SWEobs and SWEmod. 

This results in high costs if the temporal dynamic is not matched (case 1) and costs of zero if 

the dynamic is reproduced, regardless of whether a bias exists or not (case 2-4). With CF2 a 

shift between SWEobs and SWEmod is associated with high costs, too, and the ED of the KGE 

additional considers bias. Thereby, increasing uncertainty in SWEobs is not taken into account 

so that, in the example, highest costs are obtained for case 3. Similar, applying wMSEa resp. 

wMEFa, CF3-CF5 obtain high costs for temporal shift and consider bias. Since costs are set to 

zero once SWEobs exceeds the threshold, costs are low in case 3, yet relatively high in case 4 

(especially for CF4 and CF5). CF6 uses wMEFb and is identical to CF4 and CF5 in case 1 and 

2, but assigns lower cost values in case 4. 

Consequently, CF1 considers solely case 1 as intended, while CF2 additional treats case 2 

properly. Further, CF3-5 capture case 3 and CF6 finally all 4 cases as they should be (Tab. 10). 

 

Tab. 10: Four cases relevant when evaluating the fit between SWEobs and SWEmod and whether they are considered 

by the cost function as intended. 

Case 1 2 3 4 

Case description 

Temporal Dynamic     

Bias if SWEobs - << thrsh >> thrsh < thrsh 

 SWEmod - << thrsh >> thrsh > thrsh 

Correct () or wrong () consideration by cost function 

CF1     

CF2     

CF3/CF4/CF5     

CF6     
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Fig. 24: Properties of the cost functions regarding SWE. Shown are the original time series (dotted lines), 

assumptions (modifications of SWEobs and SWEmod) made for cost calculation (solid lines) and calculated costs 

(numbers in green) for the four cases (Tab. 10). In c) the first cost value refers to CF3 while the second number 

represents SWE costs for CF4 and CF5 (own representation). 

 

b) Trimming of Data Streams 

Fig. 25b shows an example of the right skewed distribution of absolute residuals between 

TWSobs and TWSmod as well as the 95th percentile threshold applied for trimming. As Fig. 25a 

suggests, differences originate from both, over and underestimation of TWSobs. Thus, while in 

Fig. 26a extreme values increase the range of mean monthly TWSobs variations, the trimmed 

time series of TWSobs and TWSmod differ less in their peaks and minima. Correspondingly, costs 

(CF6) for this example decrease from 0.77 to 0.56. 

 

  

Fig. 25: a) Scatter plot of TWSobs vs. TWSmod and b) histogram of corresponding absolute residuals(SimpleBasic 

optimized for CF6). In a) the color displays the absolute residuals, with dark red marking the 95th percentile 

threshold also shown in b). 

 

b) a) 

c) d) 

a) b) 
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Fig. 26: Mean monthly TWSobs and TWSmod of 100 grid cells. TWSmod is calculated with SimpleBasic optimized 

for CF6. a) shows the mean of all data points while b) plots the mean excluding data points whose residuals 

exceed the 95th percentile threshold. 

 

c) Consideration of ET costs 

Neglecting ET as a cost component in CF4 results in an extreme reduction of ETmod by 

modification of the scaling parameter p_et as shown in Fig. 27. Applying the otherwise identical 

CF5, reveals ET costs of 1.18 for this example, which increases total costs from 0.9 (CF4) to 

2.08 (CF5). 

d) wMSE vs. wMEF 

Applying wMSE (CF3) instead of wMEF (CF4-6) leads to unrealistic behavior in the seasonal 

dynamic of SWEmod simulated with some optimized models. For example, Fig. 28 shows, that 

the mean snow ablation cannot be matched after optimization and that a minimum SWEmod of 

24 mm exists throughout the year. 

 

  

Fig. 27: Mean monthly observed and modelled ET of 100 

grid cells. ETmod is calculated with SimpleBasic 

optimized for CF4.  

Fig. 28: Mean monthly observed and modelled SWE 

of 100 grid cells.SWEmod is calculated with Berg 

Basic optimized for CF3. 

 

5.1.3 First Investigation and Model Ranking 

Based on the results obtained by optimization of all model variants for 100 grid cells using 

CMAES and CF6, a first investigation of the calibrated models is conducted. Therefor they are 

ranked according to the achieved CF6 value and the optimized parameter values are examined. 

a) b) 
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Model Ranking 

Tab. 11 shows the absolute values of costs (abs) and the corresponding ranking of each model 

(rk), as well as their averaged rank (mean rk) and their weighted average rank (w mean rk) 

obtained using CMAES and CF6. 

Overall, lowest total costs are scored using the BergBasic variant, closely followed by BergGW, 

whereas the worst results are obtained by the SatBasic approach. Regarding ET costs, SatGW 

is considered the best. SWE and TWS costs are lowest for BergGW resp. BergBasic. 

The range of costs between the models is extremely low, with 0.07 for total costs, 0.09 for 

TWS, 0.03 for ET and 0.04 for SWE. As additionally the absolute values of the cost components 

and thus their influence on total costs differ, the weighted averaged rank seems to be a better 

index for comparison of overall model fitness than the simple average rank. 

However, both, the averaged rank as well as the weighted averaged rank, indicate BergGW to 

be the best model variant. 

This ranking is in general independent from the applied cost functions (A 4). 

 

Tab. 11: Model variant costs based on CMAES and CF6 applied for 100 grid cells,average ranking according to 

Gulden et al. (2008) and weighted average ranking (abs represents the absolute value of costs and rk identifies 

the rank among the model variants respectively). Green color highlights the best value resp. rank. 

 SimpleBasic SatBasic SatGW BergBasic BergGW BudykoBasic BudykoGW 

Costs abs rk abs rk abs rk abs rk abs rk abs rk abs rk 

Total 1.038 3 1.065 7 1.045 4 0.996 1 1.003 2 1.050 5 1.064 6 

ET 0.047 3 0.045 2 0.037 1 0.070 7 0.060 5 0.061 6 0.058 4 

SWE 0.426 6 0.416 4 0.412 3 0.411 2 0.407 1 0.416 4 0.447 7 

TWS 0.565 4 0.604 7 0.596 6 0.515 1 0.536 2 0.573 5 0.558 3 

mean rk 4.3 3.3 4.3 3.3 2.7 5.0 4.7 

w mean 

rk 
28.5 23.0 23.3 13.2 12.7 26.8 22.7 

 

Parameter Investigation  

The optimized parameter values of the snow component obtained using CMAES and CF6 for 

100 pixels are listed in Tab. 12. Similar to parameters obtained when testing search algorithms 

(A 3), they differ considerably among the model variants although all apply the same model 

formulation and forcing. Solely concerning sn_alpha all variants correspond by decreasing the 

parameter, and consequently ETSub, to a minimum. On contrary snow melt is increased by m_t 

and m_r, that both (almost) reach their upper bound, except for SimpleBasic and SatGW. 

Further, p_sf scales SF to 66 - 84 % of observed P and sn_c varies between 91 and 492 mm. 
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As one aim of this thesis is to identify differences in model performance related to the runoff 

generation processes, disparity in the snow component may distort the effect of varying soil 

and runoff components on soil moisture and runoff simulations. Therefor the snow parameter 

set of BergGW is chosen and fixed for all variants during final calibration. This choice is based 

on the variant’s good ranking regarding SWE costs and its overall performance (both, total costs 

and weighted averaged rank). Additional, the snow parameter set of BergGW reflects roughly 

the average (p_sf, sn_c) resp. corresponds approximately to the majority of optimized values 

(m_t, m_r, sn_alpha), and thus is assumed to be most appropriate to be used as predefined for 

all model variants. 

 

Tab. 12: Default and optimized snow parameter values applying CMAES and CF6 for 100 grid cells. The BergGW 

parameter set used for further proceeding are written in bold letters and marked by a green frame. 

Parameter Default 
Simple Sat Berg Budyko 

Basic Basic GW Basic GW Basic GW 

sn
o
w

 

p_sf 1.00 0.84 0.75 0.79 0.77 0.74 0.76 0.66 

m_t 3.0 6.9 10.0 5.3 10.0 9.9 9.8 9.3 

m_r 2.0 1.6 2.8 1.1 2.7 3.0 2.8 2.7 

sn_alpha 0.95 0.00 0.01 0.00 0.00 0.00 0.00 0.07 

sn_c 15 164 260 91 195 207 256 492 

 

5.2 Final Model Calibration 

In the following the outcome of final calibration of all model variants with fixed snow 

parameters is presented. For each model variant, the CMAES search algorithm and CF6 are 

applied to optimize soil and runoff related parameters for 1000 grid cells. 

The optimization process stopped after 114 (SatBasic) to 417 (SimpleBasic) iterations in each 

case because the termination tolerance for the cost function value was reached. During the 

process, parameter values stabilized, e.g. for BergBasic after approximately 40 iterations (A 6). 

 

Tab. 13 lists the default and optimized parameter values of the final calibration for each model 

variant. 

p_et reduces ET in all model variants, except for BudykoGW, where it is increased by 1 %. 

For SimpleBasic s_fac_simple increases the resistance of soil to release water, while 

simultaneously s_exp_simple increases the amount of Qs with increasing W. Fig. 29 shows the 

resulting relation between Qs and W. As can be seen, the resistance of soil is considerably high 

in the calibrated model, with for instance 179 mm water need to be available to generate 1 mm 

runoff. 
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Tab. 13: Default and optimized parameter values applying CMAES and CF6 for 1000 pixels. 

Parameter Default 
Simple Sat Berg Budyko 

Basic Basic GW Basic GW Basic GW 
so

il
 

p_et 1.00 0.95 0.90 0.91 0.86 0.87 0.88 1.01 

s_fac_simple 0.5 0.0000003 - - - - - - 

s_exp_simple 1 2.9 - - - - - - 

s_max 300 - 133 166 282 232 163 249 

s_exp_berg 1.10 - - - 1.43 2.55 - - 

s_exp_budyko 0.60 - - - - - 0.41 1.00 

ru
n
o
ff

 q_t 2.0 3.0 100.0 - 99.7 - 100.0 - 

g_r 0.160 - - 1.000 - 1.000 - 0.735 

g_d 0.010 - - 0.019 - 0.025 - 0.009 

 

 

Fig. 29: Influence of the soil parametrization in Simple (pink), Bergström (blue) and Budyko (green) model 

variants  on a) the relation between W and Qs and b) the proportion of IW that contributes to Qs depending on 

the actual soil moisture deficit SM/s_max. Solid lines represent the default parametrization, dashed lines the 

calibrated basic runoff variants and dotted lines the calibrated groundwater model variants for Simple models in 

pink, Bergström models in blue and Budyko models in green. The corresponding parameter values are listed in 

Tab. 13. 

 

The maximum soil water holding capacity s_max is decreased for all variants to values between 

133 and 282 mm. 

In Fig. 29 the influence of the calibrated soil parameters on the proportion of Qs in dependency 

on the soil moisture deficit is illustrated and contrasted to the default parametrization. For 

Bergström variants (blue lines) the higher optimized values of s_exp_berg decrease the amount 

of Qs if the soil is not saturated (dashed and dotted blue lines). For the Budyko models (green 

lines), the decrease of s_max increases Qs under not-saturated conditions compared to the 

default parametrization, whereby in contrast to Bergström models, no runoff is generated until 

at least 60 % of the soil water holding capacity is reached. However, BudykoGW in theory 

shows intermediate behavior between default parametrization and BudykoBasic, yet 

a) b) 
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discrepancies emerge when analyzing the simulated values. Thus Fig. 29 does not show 

BudykoGW. 

In the basic runoff models, except for SimpleBasic, the recession time of Qs is increased 

(almost) to its upper bound of 100 days. For SatGW and BergGW, g_r allocates all Qs to the 

groundwater storage. The retention time in ground water storage as defined by g_d varies 

between 40 days (BergGW) and 111 days (BudykoGW). 

5.3 Model Evaluation 

In the following section the results obtained with calibrated model variants are presented. First, 

achieved costs and corresponding ranking of the model variants are reported. Subsequently, 

performance of Beck-GW models is contrasted to their standard counterpart to examine whether 

spatial discretization of base flow related characteristics improves model output. Finally, 

differences in the simulated mean seasonal cycle are shown to evaluate the temporal model 

performance and areas of high resp. low costs are identified to assess spatial conformity 

between model and observations. 

5.3.1 Model Evaluation and Ranking 

Fig. 30 contrasts the costs obtained for calibration (Cal), independent evaluation pixel (Eval) 

and the whole study area (Global) for each model variant. As SWE costs for the calibration 

period 2003 – 2010 vary between basic and groundwater runoff variants due to differing initial 

SWE conditions (A 7), costs depicted here are calculated for the period 2004 – 2010, where 

SWE costs are identical (Fig. 30c).  

For all model variants total, TWS and ET costs for Cal are less than for Eval and Global, 

whereby global application obtains slightly better results than Eval. Total and ET costs increase 

by ca. 1% between Cal and Eval, TWS costs by 2-3 %. However, the pattern of model ranking 

remains the same, except for BudykoGW regarding total costs, which has the best rank for Cal, 

yet the 3rd rank for Eval and Global. 

Regarding global application, BergBasic attains lowest total and TWS costs, followed by 

BergGW, while highest costs are obtained with SatBasic. Considering ET, BergBasic performs 

worst, while best values are scored with BudykoGW, which ET costs are 0.05 less than of other 

model variants (Fig. 30d). 

However, similar to model ranking during first investigations (chapter 5.1.3), cost ranges 

between models are less than 0.1, with 0.06 for total costs, 0.07 for TWS costs, and 0.02 for ET 

costs excluding BudykoGW.  
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Costs obtained for global application as well as the corresponding rank are listed in Tab. 14. 

According to total costs and the weighted average rank, BergBasic is the best performing model 

variant. 

 

 

 

 

Fig. 30: Comparison of a) total, b) TWS, c) SWE and d) ET costs obtained with optimized model variants for the 

period 2004 – 2010. (Model variants: 1-SimpleBasic, 2-SatBasic, 3-SatGW, 4-BergBasic, 5-BergGW, 6-

BudykoBasic, 7-BudykoGW; optimization for 1000 grid cells using CMAES and CF1). 

 

Tab. 14: Costs for global application of the calibrated models,average ranking according to Gulden et al. (2008) 

and weighted average ranking (abs represents the absolute value of costs and rk identifies the rank among the 

model variants respectively). Green color highlights the best value resp. rank; SWE costs for all model variants 

are 0.434. 

 SimpleBasic SatBasic SatGW BergBasic BergGW BudykoBasic BudykoGW 

Costs abs rk abs rk abs rk abs rk abs rk abs rk abs rk 

Total 1.051 5 1.084 7 1.045 4 1.023 1 1.024 2 1.073 6 1.024 3 

ET 0.035 3 0.038 4 0.033 2 0.049 7 0.042 5 0.047 6 0.000 1 

TWS 0.582 4 0.612 7 0.578 3 0.541 1 0.549 2 0.593 6 0.590 5 

mean r 2.7 4.0 2.0 3.0 2.7 4.3 2.3 

w mean 

rk 
11.1 18.7 8.2 6.0 7.4 17.4 12.4 

 

a) b) 

c) d) 
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5.3.2 Incorporation of spatial distributed Base flow Information 

In the following the costs and parameter values of calibrated Beck-GW models (fixed snow 

parameters, optimization using CMAES and CF6 for 1000 grid cells) are shown in comparison 

to their standard counterpart BergGW. 

Costs 

Fig. 31 displays total costs for BergGW and Beck-GW models obtained for the grid cells used 

for calibration using default (black) and optimized (red) parameter values. When applying 

default parameter values, integration of BFI maps improves model performance, while 

considering K causes higher costs. Also, including K together with BFI2 and BFI4 (Beck2, 

Beck4) leads to higher costs than the combination of BFI1 resp. BFI3 and K (Beck1, Beck3). 

After optimization, total costs of Beck-GW models applying solely BFI estimates are similar 

to the original BergGW model (ca. 1.036), while the performance remains slightly poorer when 

K estimates are factored in (ca. 1.041). 

 

 

Fig. 31: Total Costs of Beck-GW model variants for 1000 calibration pixel with default parametrization (Default) 

and optimized parameter values (Cal).Model variants are labeled as explained in Fig. 32. 

 

Optimized Parameter 

Fig. 32 contrasts the optimized parameter values of the standard BergGW and the Beck-GW 

models.  

p_et of all variants is approximately 0.87, while s_max of models including K is around 20 mm 

higher and s_exp_berg tends to be lower than with models not applying K. Groundwater 

recharge rate g_r is 100 % for both, the standard BergGW and the Beck-GW K model. Similar, 

p_gr increases the BFI estimates, while in most cases the parameter reaches its upper bound. 

The groundwater recession coefficient g_d of the standard and Beck-GW BFI models is 

between 0.0245 and 0.0247 d-1
, which is equivalent to 41 days. K of all Beck-GW models is 

decreased to 42 – 44 % of its original value by p_gd, resulting in a mean retention time of 26 

to 27.5 days. 
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Fig. 32: Optimized parameter values (Cal) of Beck-GW model variants. 

 

5.3.3 Differences in the Mean Seasonal Cycle 

To examine whether differences in model structure lead to divergent representation of the 

temporal dynamic of simulated fluxes and storage components, mean seasonal cycles (MSCs) 

are investigated. Fig. 33 shows the MSC of ET, Q, SWE as well as storage anomalies in SM, 

GW and TWS to the average of the period 2004 – 2010 for all model variants and the Beck-

GW BFI1 model. As can be seen, the latter is identical to the corresponding standard BergGW 

variant. 

The seasonal dynamic of ET with minimum values during winter and the maximum in June/July 

is in general captured well by all models, although solely BudykoGW replicates high ETobs 

values during the summer. 

Q is minimal in February/March, increases during spring until reaching its maximum in 

May/June and decreases again. Except for BergBasic and BergGW that both simulate constant 

decrease until winter, simulated Q slightly increases again in September and reaches a second, 

less pronounced maximum in October. Further, apart from SimpleBasic, basic runoff variants 

obtain higher peak values than their groundwater counterparts, and simulate less Q during 

winter months. However, it is noticeable that the difference between BudykoBasic and 

BudykoGW is more pronounced than between SatBasic and SatGW resp. BergBasic and 

BergGW. 

In general, highest evaporation (BudykoGW, SimpleBasic, SatGW) coincidences with less Q 

during summer months. 
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Fig. 33: Mean seasonal cycle (MSC) (2004 – 2010) simulated by the seven standard model variants and Beck-

GW-BFI1 model. for ET, Q, SWE, and anomaly of SM, GW and TWS to the corresponding mean of the period 

2004 – 2010. SWEmod 1 represents the MSC calculated using data points with available SWEobs while SWEmod 2 

illustrates the MSC considering all time steps for all grid cells. The uncertainty estimates of TWSobs (grey shaded 

area) are provided within GRACE Tellus JPL- RL05M and averaged in the same way as TWSobs. 

 

Due to identical parametrization, all model variants coincidence in the simulated MSC of SWE. 

They accord with SWEobs in terms of snow accumulation starting in September, reaching its 

maximum in March and decreasing again until the end of June. Nevertheless, models 

underestimate SWE during accumulation, and overestimate high snow accumulation as well as 

snow ablation. 

Regarding SM, the absolute values of models differ due to different s_max, yet the anomaly to 

the mean of the period 2004 – 2010 shows the same pattern for most variants. During winter, 

SM is around the average value, reaches its maximum in April/May, decreases to the minimum 

in August before increasing again. This MSC is more pronounced with Bergström variants than 

with Saturation versions and BudykoBasic. In contrast, SM of SimpleBasic and BudykoGW is 

minimal during winter, and while SimpleBasic apart from that qualitatively corresponds with 

the MSC of the other models, BudykoGW shows less variation. 
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While SimpleBasic shows no variation of GW, the MSC by all other model variants shows a 

similar pattern. GW is lowest in winter, refills during spring, reaches its maximum in May/June, 

depletes, except for Bergström variants, until August, increases again slightly resp. stays 

constant until October, and finally decreases to its minimum in February. Bergström variants 

differ as they simulate continuous decrease from June to February.  

The modelled TWS dynamic with maximum in March/April and minimum in August is similar 

for all model variants. However, TWS of SatBasic and BudykoBasic decreases faster and the 

amplitude of SimpleBasic, SatGW and BudykoGW is less than with other models. Compared 

to TWSobs, all models show shift as TWSmod decreases and increases earlier. Thus, TWS tends 

to be underestimated in spring and summer and overestimated in autumn and winter. However, 

TWSmod mostly lies within the range of uncertainty estimates for TWSobs (grey shaded area). 

This is especially true for Bergström model variants, for which discrepancies are solely in May 

and June greater than expectable TWSobs uncertainties. 

5.3.4 Spatial Distribution of Costs 

To assess spatial conformity between model output and observations and to identify areas of 

good and poor model performance, pixel wise costs (CF6) are calculated for each calibrated 

model variant and compared. 

Between different model variants, the spatial distribution of total costs does not differ largely, 

with the correlation coefficient being > 0.93. While BergBasic, BergGW and Beck-GW-BFI1 

models correspond, SatBasic and BudykoBasic qualitatively show higher costs in Central 

Siberia, whereas SimpleBasic, SatGW and BudykoGW obtain higher cost values in East 

Siberia. Regarding ET costs, values increase towards the southern-most regions of the study 

area (south west North America, Kazakhstan, Mongolia) in all model variants. SWE costs show 

the same pattern due to identical parametrization. Therefore, spatial variations of total costs 

among model variants are ascribable to differences in TWS costs. 

Fig. 34a shows the spatial distribution of total costs for the period 2004 – 2010 obtained for the 

BergBasic model. The relative contribution of TWS and SWE to total costs is calculated 

according Eq. (59) and depicted in Fig. 34b. Hereby positive values indicate stronger influence 

of TWS costs (red) and negative values of SWE costs (blue), while values around zero (green 

color) suggest comparable contribution of TWS and SWE costs. 

 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝑇𝑊𝑆 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
−

𝑆𝑊𝐸 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
 (59) 

 

Total costs are highest in the southern areas of the study area, the North American west and 

north coast, East Siberia, the Central Siberian Plateau and Scandinavia. In general, areas with 
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low costs are more frequently in Eurasia than in North America. Thereby, costs in North 

America mostly result from a mismatch of TWS, except for the west coast and northern Canada. 

Further, TWS costs primarily affect costs in Scandinavia, the West Siberian Plain, North East 

Siberia and the South East Asian territories of the study area. In Eurasia, SWE costs are the 

main component of total costs in the East European Plain, Kazakhstan, the Central Siberian 

Plateau and Eastern Siberia. 

 

 

Fig. 34: Total costs of the optimized BergBasic model (a) and relative contribution of TWS and SWE to them (b) 

for each grid cell for the period 2004 – 2010. In b) negative values (blue color) indicate stronger influence of SWE 

costs and positive values (red color) indicate stronger influence of TWS costs. 

 

Fig. 35 highlights the location of grid cells with especially poor (red) and good (green) model 

performance regarding TWS. Accordingly, highest TWS cost tend to occur in coastal and 

mountainous regions, while lowest costs are mainly obtained in the East European Plain and 

Central Siberian Plateau.  

The percentage of grid cells related to their fraction of water area is depicted in Fig. 36. It shows 

that 86 % of the study area have less than 5 % water fraction, while 8 % have more than 5 % 

and another 6 % more than 20 % water coverage. Among the classes of water fraction, the total 

number of grid cells with high costs is approximately constant. However, as the overall number 

of grid cells with high water fraction decreases, grid cells with high water fraction are more 

likely to count among high TWS costs. On contrary, low costs mainly occur for pixels with 

< 5 % water fraction. Nevertheless, the correlation coefficient between TWS costs (resp. total 

costs) and the fraction of water area per grid cell is 0.08. 

 

a) b) 
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Fig. 35: Spatial distribution of grid cells with highest and 

lowest TWS costs. 

Fig. 36: Fraction of water area per grid cell and relation 

to TWS costs. 

 

5.4 Application of the best Model Variant 

The following section shows the results obtained by application of the BergBasic model variant 

for the period 2004 – 2010. 

First, the MSC of TWS components as well as corresponding anomalies to the MSC are 

investigated and compared to observations, in order to evaluate whether the model is able to 

reproduce intra- and inter-annual variability. For both, MSC and anomalies, efficiency criteria 

are calculated for each grid cell and KG zone to assess spatial conformity. Subsequently, 

variations in the MSC and anomalies of TWS are attributed to its components to examine spatial 

differences in their relative contributions on TWS variability. The final section contrasts 

modelled and observed trends in TWS anomalies, and thus addresses the last research question 

whether trends in TWSobs can be reproduced.  

5.4.1 Mean Seasonal Cycle 

The average MSC for the entire study area has been illustrated in chapter 5.3.3. For the MSC 

of each KG zone see A 12 and A 13. 

Thereby Fig. 33 revealed a shift in the average MSC between TWSobs and TWSmod. The spatial 

distribution of the lag [months] obtained using cross-correlation for each grid cell is depicted 

in Fig. 37. For approximately 40 % of the study area the MSC of TWSobs and TWSmod are in 

phase, while around 50 % of all grid cells have a shift of -1 month. A lag of more than 3 months 

is present in the south east of the Eurasian study area. As it is apparent from Tab. 15, the larger 

shift coincidences with the arid and boreal semi-arid KG zone. 
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Fig. 37: Spatial distribution and frequency of shift between MSC of TWSobs and TWSmod. 

 

Besides the shift, the average MSC of the entire study area suggests that the seasonal amplitude 

of TWSobs
 can be reproduced well (Fig. 33). Simultaneously, the average maximum of the MSC 

of SWEmod is higher than the maximum of SWEobs. To see whether there are areas where the 

TWS amplitude is not reproduced and whether the overestimation of mean maximum SWE is 

imputable to certain areas, Fig. 38 shows the amplitude in MSC of TWSobs and TWSmod for each 

grid cell, while Fig. 39 maps the average maximum SWEobs and SWEmod. 

Regarding the TWS amplitude, Fig. 38 suggest good agreement in the spatial pattern and 

magnitude for each grid cell. Areas of obvious discrepancy are Scandinavia, where the model 

overestimates the seasonal amplitude, and the Canadian Archipelago, where the model 

underestimates the seasonal amplitude. 

For maximum seasonal SWE, the spatial pattern qualitatively matches, too, yet the model 

simulates considerably higher snow amounts in regions where maximum SWEobs > 170 mm 

(Fig. 39). On contrary, the magnitude for areas of less SWEobs coincidences, except for the 

North American west coast, where substantial higher snow amounts are simulated. 
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Fig. 38: Mean seasonal amplitude of a) TWSobs [mm] and b) TWSmod [mm]for the period 2004 – 2010.  

 

 

Fig. 39: Mean of maximum annual a) SWEobs [mm] and b) SWEmod [mm] for the period 2004 – 2010. 

 

Tab. 15 lists the correlation, KGE and RMSE of ET, SWE and TWS calculated for each KG 

zone as well as the whole study area, while Fig. 40 maps the correlation between the MSC of 

TWSobs and TWSmod resp. SWEobs and SWEobs. For maps of KGE and RMSE criteria see A 9 

and A 10. 

Regarding TWS, the correlation is with r = 0.93 on average high. Lower correlation is achieved 

for central North America, the West Siberian Plain, East Siberia, and especially the south east 

of the Eurasian study area, which is also characterized by the largest shift in TWS MSC. 

Thereby Tab. 15 attributes the lowest correlation again to the boreal semi-arid and arid zone. 

a) 

a) 

b) 

b) 
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Regarding absolute differences, an average RMSE of 14 mm represents a mismatch of 12 % of 

the mean seasonal TWS amplitude (110 mm for both TWSobs and TWSmod). RMSE is highest 

in areas of low correlation and additional along the North American west coast, East Siberia 

and Kamchatka as well as Scandinavia. This results in relative high RMSE values for the 

temperate and polar zone (Tab. 15), yet the values remain within the uncertainty range of 

TWSobs. KGE, as it includes correlation as well as the bias, shows similar patterns as r, yet 

additional highlights the mismatch in the polar zone and Scandinavia due to absolute 

differences. However, globally a KGE of 0.93 is achieved. 

In comparison to TWS, the correlation of SWE is on average higher (r = 0.95), yet declines 

towards the south of the study area, with lowest r values again for the arid and boreal semi-arid 

zone. The global RMSE of 12 mm represents, similar to TWS, 12 % of the mean seasonal SWE 

amplitude (98 mm). However, RMSE values of 21 mm resp. 17 mm show divergences 

especially in the polar and boreal zone, whereby highest divergences are obtained for the North 

American west coast, East Siberia, Kamchatka and the West Siberian Plain. Additional, KGE 

indicates poorer reproduction of SWE than of TWS, with worst performance in the polar zone.  

 

For ET, r, KGE and RMSE show good agreement between ETobs and ETmod, except for the arid 

zone. The spatial pattern of r, KGE as well as RMSE correspond to the spatial distribution of 

ET costs. 

 

Tab. 15: Characteristics of MSC for each KG zone and the entire study area(Global). σTWSobs is the mean 

uncertainty estimate of GRACE TWS data for each zone, respectively. Criteria for each zone are calculated based 

on the simulations and observations of each pixel within the zone respectively (not for each pixel and subsequently 

aggregated). 

KG 

zone 

TWS 

shift 

mean 

σTWSobs 

Correlation r KGE RMSE [mm] 

[months] [mm] ET SWE TWS ET SWE TWS ET SWE TWS 

Arid -1.5 ± 15 0.99 0.92 0.83 0.62 0.64 0.73 0.33 6 13 

Temp -0.6 ± 21 1.00 0.98 0.91 0.79 0.64 0.88 0.25 9 20 

Bor -0.5 ± 19 1.00 0.98 0.95 0.80 0.82 0.95 0.17 21 14 

Bor-sa -1.9 ± 17 1.00 0.90 0.68 0.78 0.72 0.46 0.23 9 14 

Polar -0.4 ± 18 1.00 0.93 0.97 0.77 0.50 0.74 0.12 17 15 

Global -0.7 ± 19 1.00 0.95 0.93 0.78 0.72 0.93 0.20 12 14 
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Fig. 40: Correlation of mean seasonal cycle between a) TWSobs and TWSmod and b) SWEobs and SWEmod for each 

grid cell and the period 2004 – 2010.  

 

5.4.2 Anomalies to the Mean Seasonal Cycle 

Similar to MSC, first the time series for the period 2004 – 2010 are investigated to see whether 

the model can reproduce the temporal dynamic of observed anomalies. Subsequently the spatial 

pattern is considered to identify areas of good and poor model performance. 

 

The global average anomalies of modelled TWS components (SWE, SM, GW, W, TWS) and 

corresponding observations are shown in Fig. 41, while the anomalies of each KG zone can be 

found in A 16 – A 19. 

Overall, model performance is poorer compared to the MSC (Tab. 16). 

For SWE, the correlation coefficient considering the whole study area is 0.62 (Tab. 16). 

Especially positive anomalies in the spring 2008 and 2009 as well as in autumn 2010 are not 

reproduced by the model. This misfit is also shown by RMSE = 26 mm and KGE < 0. 

Further, Fig. 41 indicates that variations in mean W are characterized by the same pattern as 

the anomaly of SM, while GW variations are on average less pronounced. 

Regarding TWS, the global r = 0.82 and KGE = 0.48 show better performance than for SWE 

anomalies (Tab. 16). Thereby general tendencies in fluctuations correspond, while the model 

does not reproduce short term variations, resulting in an overall RMSE of 69 mm. 

 

b) a) 
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Fig. 41: Average global anomaly to mean seasonal cycle of a) SWEobs and SWEmod, b) SM, GW and W, and c) 

TWSobs  and TWSmod. 

 

Tab. 16: Characteristics of anomaly to MSC for each KG zone and the entire study area(Global). Criteria for each 

zone are calculated based on the simulations and observations of each pixel within the zone respectively (not for 

each pixel and subsequently aggregated). 

KG zone 
Correlation r KGE RMSE [mm] 

ET SWE TWS ET SWE TWS ET SWE TWS 

Arid 0.93 0.62 0.82 -1.96 -0.39 0.54 0.03 6 7 

Temp 0.97 0.77 0.88 -1.79 -0.09 0.66 0.01 5 6 

Bor 0.88 0.64 0.83 -0.12 -0.33 0.66 0.00 5 7 

Bor-sa 0.67 0.55 0.74 -4.28 -0.12 0.59 0.01 5 10 

Polar 0.64 0.41 0.58 -42.77 -2.16 0.33 0.01 9 25 

Global 0.93 0.62 0.82 -27.94 -5.81 0.48 0.06 26 69 

 

The spatial distribution of correlation between the anomalies of TWSobs and TWSmod resp. 

SWEobs and SWEobs is shown in Fig. 42. For maps of corresponding KGE and RMSE criteria 

see A 14 and A 15. 

For both, TWS and SWE, correlation is highest in the central continental regions of the study 

area and tends to decline towards its borders. Similar, the average correlation of each KG zone 

reveals low correlation for the polar zone and poor performance in the boreal semi-arid zone. 
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On contrary to MSC, considering r, anomalies in the arid zone are similar good reproduced as 

in the temperate and boreal zone. The spatial pattern of KGE coincides with that of r, and KGE 

as well as RMSE identify highest mismatch in the polar zone. However, both show 

discrepancies in the arid zone, too. 

Concerning ET, the spatial pattern of all efficiency criteria is similar to the one of the MSC and 

ET costs, yet criteria values are less. Thereby r and KGE indicate lowest agreement for the polar 

and boreal semi-arid zone, while highest absolute differences are obtained for the arid zone. 

 

 

Fig. 42: Correlation of anomaly to mean seasonal cycle between a) TWSobs and TWSmod and b) SWEobs and SWEmod 

for each grid cell and the period 2004 – 2010.  

 

5.4.3 Composition of TWS 

The next section examines the relative contribution of SWE, SM, GW and W to TWS 

variability. In order to see whether the influences change on different time scales, the intra-

annual variability (MSC) as well as the inter-annual variability (anomalies to MSC during the 

period 2004 – 2010) are considered.  

Mean Seasonal Cycle 

Fig. 43a plots the modelled variance against the observed variance in the MSC of TWS. As can 

be seen, the magnitude of seasonal variance in general can be captured by the model, yet it does 

not reproduce highest variability. 

Fig. 44 shows the spatial distribution of variance in the mean seasonal cycle of TWSobs and 

TWSmod. Visual comparison and a Spearman’s rank correlation ρ = 0.71 indicate good 

reproduction of the spatial pattern. Both show highest variance along the North American west 

coast, for North East Siberia including Kamchatka, the West Siberian Plain, the East European 

a) b) 
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Plain, Anatolia, and North East North America. Observed high variance on the Canadian Arctic 

Archipelago is not reproduced by the model, while it simulates high variance for Scandinavia 

which is not measured by TWSobs. 

  

 

Fig. 43: Pixel wise variance of TWSobs vs. TWSmod in a) the mean seasonal cycle, and b) anomalies to the mean 

seasonal cycle. Dark red color marks absolute residuals that exceed the 95th percentile. 

 

 

Fig. 44: Variance in the mean seasonal cycle of a) TWSobs and b) TWSmod for each grid cell and the period 2004 – 

2010. 

 

If two times the covariance between W and SWE is low, meaning the variances varW and 

varSWE do not correlate, variability in TWS can be seen as the combined effect of varW and 

varSWE. Indeed, the covariance between W and SWE in general is low, although A 21 shows 

a slightly negative correlation between SWEmod and W in areas of highest SWEmod.  

a) b) 
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However, Fig. 45a shows the difference between varW/varTWS and varSWE/varTWS, so that 

negative values (blue color) indicate a greater influence of variability in SWE on intra-annual 

TWS variations, while positive values (red color) identify areas where TWS variability is 

mainly caused by variability in SM and GW (which sum up to W). 

Thus, Fig. 45a suggests that variations in the MSC of TWS in northern regions are mainly 

influenced by variations in SWE, while south of approximately 50° latitude variations of W 

prevail. Compared to North America, the influence of W in western Eurasia reaches more 

northwards and the transition to SWE dominated regions is more gradual.  

As W is composed of SM and GW, its variability can be explained in the same way. Thus, Fig. 

45b shows the relative contributions of varSM and varGW on varW, with negative values (blue 

color) indicating a greater influence of varGW and positive values (red color) indicating 

dominance of varSM. Accordingly, Fig. 45b suggests that variability in W is primarily caused 

by variations of SM. The influence of simulated GW solely prevails on the Canadian Arctic 

Archipelago, the northern coast of Eurasia, East Siberia and East China. 

 

 

Fig. 45: Difference between a) varW and varSWE normalized with varTWS and b) varSM and varGW normalized 

with varW of the MSC. 

 

Anomaly to the Mean Seasonal Cycle 

Fig. 43b plots the modelled variance against the observed variance in the anomaly of TWS. 

Compared to the seasonal variation (Fig. 43a), the simulated inter-annual variability of TWS is 

in general less. Thereby, the model considerably underestimates high TWS variance. 

The spatial distribution of the variance in TWSobs and TWSmod anomalies is shown in Fig. 46. 

Qualitatively the spatial pattern can be roughly reproduced (ρ = 0.36). Similar to MSC, areas 

a) b) 
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of high variance are the North American west coast, Kamchatka, the West Siberian Plain, the 

East European Plain, Anatolia, and North East North America including the Canadian Arctic 

Archipelago, while low variance is measured in south eastern regions of the study area. In 

contrast to MSC, high variability is present in central North America, and the distribution in 

general appears patchier. 

 

 

Fig. 46: Variance in the anomaly to the mean seasonal cycle of a) TWSobs and b) TWSmod for each grid cell and 

the period 2004 – 2010. 

 

Similar to MSC the covariance between W and SWE resp. SM and GW is mostly low (A 23), 

and thus variability in TWS resp. W can be attributed to its components, respectively. 

Fig. 47a shows the difference between varW/varTWS and varSWE/varTWS, so that negative 

values (blue color) indicate a greater influence of variability in SWE on inter-annual TWS 

variations, while positive values (red color) identify areas where TWS variability is mainly 

caused by variability in W. As Fig. 47a indicates, inter-annual variability in TWS is largely 

dominated by W, while influence of SWE variations is only present in on the Canadian Arctic 

Archipelago, the northern west coast of North America, North East Siberia and the northern 

West Siberian Plain. 

Additional, Fig. 47b displays the relative contributions of varSM and varGW on varW, with 

negative values (blue color) indicating a greater influence of varGW and positive values (red 

color) indicating dominance of varSM. As can be seen, the variability of W in areas where it 

dominates TWS variation is predominated by SM, while in regions where TWS is mostly 

influenced by SWE, W varies due to variations in GW. 

 

a) b) 
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Fig. 47: Difference between a) varW and varSWE normalized with varTWS and b) varSM and varGW normalized 

with varW of the anomalies to MSC. 

5.4.4 Trends in TWS 

To examine trends in the observed and simulated TWS, trends obtained by the Mann-Kendall 

test and applying Sen’s slope for each grid cell are qualitatively classified in not significant 

(p > 0.05), positive (Sen-slope > 0) and negative (Sen-slope < 0). Fig. 48 shows the spatial 

distribution of these classes for TWSobs, while Fig. 50 highlights areas of correspondence and 

deviations between observation and model regarding trend direction as well as significance. 

The corresponding confusion matrix lists the number of grid cells per class for each 

classification and the resulting accuracy. According to Fig. 48, negative trends in TWSobs are 

present for the West Eurasian Steppe, East Siberia, Alaska and large parts of central Canada 

including the Canadian Arctic Archipelago. Positive trends on contrary are observed for central 

North America, the Labrador Peninsula, as well as for large parts of Eurasia. 

Overall, these trend directions can qualitatively be reproduced with an accuracy of 42 %. 

Thereby 49 % of the significant negative trend and 52 % of the significant positive trend are 

captured. Thus, the model obtains better agreement with observations than when trend classes 

are assigned randomly, which on average produces an overall accuracy of 33 % (A 27). While 

the spatial pattern of agreement/disagreement is heterogeneous (Fig. 50), it shows that the large-

scale negative trends in the West Eurasian Steppe, East Siberia, Alaska and Canadian Arctic 

Archipelago, as well as less widespread positive trends in East Europa, and central Asia and 

North America can be simulated.  

However, Fig. 49 contrasts the obtained Sen-slopes for TWSobs and TWSmod anomalies. Similar 

to the TWS variance in anomalies, the model tends to underestimate both, positive and negative 

trends. 

a) b) 
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Fig. 48: Qualitative trends in the anomaly to the mean 

seasonal cycle of a) TWSobs and b) TWSmod for the 

period 2004 – 2010.  

Fig. 49: Sen-slope of significant trends in TWSobs vs. 

TWSmod anomalies. Black solid line: 1:1 line. 

 

 

 

   obs 
Total 

User 

Acc 
  neg not sig pos 

m
o

d
 neg 1147 673 471 2291 0.50 

not sig 552 553 382 1487 0.37 

pos 634 870 908 2412 0.38 

Total 2333 2096 1761 6190  

Producer 
Acc 

0.49 0.26 0.52  0.42 

Fig. 50: Correspondence between trends in TWSobs and TWSmod anomalies to the mean seasonal cycle (left) and 

confusion matrix (right).neg/pos – correspondence in significant negative/positive trends; ncor – no 

correspondence in significant trends; nsig – correspondence in not significant trends; nsig/sig – not significant 

trend in TWSobs but significant trend in TWSmod; sig/nsig – significant trend in TWSobs  but not significant trend 

in TWSmod. 
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6 Discussion 

The following chapter discusses the results presented in the previous section and aims to answer 

the research questions of this thesis. 

First, some general sources of uncertainty and errors are outlined that are basic for further 

interpretation. The subsequent section addresses the second research issue “which optimization 

method is most suitable”. Therefor the tested optimization methods are reviewed, the most 

suitable is identified, and the quality of the final calibration is discussed. Ensuing, the calibrated 

model variants are compared regarding their parameter values, their simulated mean seasonal 

cycles, as well as their overall performance, in order to answer research question one “which 

model formulation is ‘best’”. The forth part of this chapter finally focusses on the scientific 

research questions by analyzing the spatial and temporal model performance in comparison to 

GRACE TWS and GlobSnow SWE products, and discussing the composition of TWS 

variations. Eventually, some remarks for future work are proposed. 

6.1 Sources of Errors and Uncertainties 

Since every model is an approximation of the real system, uncertainties are inherent in 

modelling results (Fischer, 2013). They originate from multiple sources, including a general 

lack of knowledge and process understanding, the applied forcing and calibration data, model 

structure and parameters, as well as the quality of the model calibration (Moriasi et al., 2007). 

Thereby it should be noted, that while subject to its own uncertainties, calibration to a certain 

degree compensates errors and inconsistencies of the input data and structural problems 

originating from simplified process representation (Müller-Schmied et al., 2014). 

Input Data 

Regarding the input data, global estimates are derived from in-situ measurements, remote-

sensing based observations and/or reanalysis, each of which are subject to specific uncertainties 

that are transferred when linking them to combined products (Lettenmaier et al., 2015). Thus, 

uncertainty in global data sets arises from a sparse observational network, measurement errors 

and gaps due to missing data as well as errors and assumptions in retrieval algorithms and 

methods (Döll et al., 2015). Furthermore, inconsistencies between the used data products may 

introduce additional errors in the model results (Sood and Smakhtin, 2015).  

Among the meteorological forcing data of hydrological models, uncertainty is highest for 

precipitation products (Döll et al., 2003). This study uses the GPCP-1DD product, which 

combines precipitation estimates from different satellites and employs a gauge analysis to 

control for the bias between satellite retrievals and ground measurements. While currently 

multi-satellite data “provide the best source of precipitation information” (Lettenmaier et al., 
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2015), issues remain due to orographic effects, heterogeneous surfaces especially in coastal 

zones, difficulties in distinction between precipitation and cold land as well as for quantitative 

estimates of snow fall because of diverse radiative effects depending on the shape of snowflakes 

(Lettenmaier et al., 2015). Further, although bias-adjusted, small scale and high intensity 

precipitation events may not be captured (Behrangi et al., 2011), and uncertainty remains for 

large regions of the study area due to a sparse observational network. On the other hand, the 

observational data used for correction itself introduces errors, as gauge data is characterized by 

a systematic under-catch because of losses due to wind, wetting, evaporation, infiltration as 

well as blowing and thrifting of snow. Frequent light rainfall, windy conditions and errors 

during snow fall lead especially in arctic regions to substantial underestimation of precipitation 

(Rudolf and Rubel, 2005).  

 

Similar to the precipitation data, the applied evapotranspiration product is subject to errors of 

its components, as the eddy covariance measurements and the MODIS products, as well as of 

the retrieval method itself. Thereby it is known for poor estimation of inter-annual variability 

(Jung et al., in preparation). 

Since existing global climate data sets differ in their data basis, processing and resolution, 

simulations are highly sensitive to the used meteorological forcing (Guo et al., 2006). Similar, 

Müller-Schmied et al. (2014) found that seasonal TWS variations simulated with WaterGAP 

2.0 are mostly influenced by climate forcing data, rather than by model structure or auxiliary 

physio-geographic information. To determine the influence of the data streams applied in this 

study, further analysis may compare model results when forced with other data sets. 

 

Besides meteorological forcing, also the data used for calibration and evaluation are subject to 

specific errors. While their uncertainty estimates have been included in the optimization 

process, errors need to be considered when interpreting the obtained modelling results as well. 

GRACE TWS estimates suffer from measurements errors in the satellite-instruments and orbit 

determination, errors due to incomplete reduction of non-hydrological mass variations (e.g. 

post-glacial rebound, seismic deformations) during processing and leakage errors from signals 

of adjacent areas (Güntner, 2008; Landerer and Swenson, 2012). The latter are inherent to the 

product, as GRACE measurements are continuously and thus a filter function, or as in the 

version used in this study, mascons have to be applied to extract mass variations for a certain 

area. Thereby, processing seeks the optimal compromise between noise reduction (accuracy) 

and signal loss (spatial resolution). Scaling the GRACE data with the provided gain factors, 

allows to account for the filtering effect on the signal and interpret it at sub-mascon resolution 

(Watkins et al., 2015). Since appropriate ground truth data on TWS is missing, the uncertainty 

of the final TWS product can only be estimated based on the measurement errors and simulation 
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studies that account for the leakage error. In general, errors increase from high to low latitudes, 

as well as with decreasing similarity to the hydrological signal in the surroundings (Güntner, 

2008). 

As highlighted before, accurate satellite-based SWE measurements remain a problem due to 

saturation effects of the signal, and especially in areas of heterogeneous surface and snow 

distribution as mountains and forests (Lettenmaier et al., 2015). Kim et al. (2009) found passive 

microwave retrievals of SWE most accurate in North American and Eurasian tundra and 

prairies, that are characterized by relatively thin, cold snow packs and little topographic 

variability or dense vegetation. While GlobSnow SWE as an assimilation product shows clear 

improvement in the accuracy compared to pure satellite estimates, underestimation for deep 

snow conditions (e.g. at the end of winter) and overestimation for SWE < 30 mm (e.g. when 

accumulation starts resp. at the end of melt season) has to be considered (Hancock et al., 2013; 

Liu et al., 2014). 

Model Structure 

Uncertainties in the model structure are related to the applied model algorithms and the 

neglection of relevant processes. In general, the model error is supposed to decrease with 

increasing model complexity, while simultaneously the associated increasing data demand 

increases errors caused by input data (Müller-Schmied et al., 2014). 

As this study aims to develop the simplest feasible model, numerous hydrological processes are 

simplified or ignored. Among others, all model variants do not consider coincident occurrence 

of rain- and snowfall, rainfall interception on snow, liquid water capacity of snow, interception, 

surface overland flow when infiltration capacity is exceeded, capillary rise and other surface-

ground water interactions, as well as surface water storages as lakes and rivers, human water 

use and lateral water flow from one grid cell to another. Partly, neglection is reasonable 

considering the scale and intended spatial resolution. For instance, according to Hagemann and 

Dümenil (1997) capillary rise is insignificant on the global scale, and although human water 

use causes strongest variations in the mean annual TWS in arid and semi-arid regions (Döll et 

al., 2015), Müller-Schmied et al. (2014) found its incorporation less decisive compared to 

model forcing and other parameters. 

Among the included processes, predefined threshold temperatures for snow fall and melt may 

introduce problems, as both are solely based on literature and a range for transition of rainfall 

to snowfall resp. of increasing melt rate would better reflect reality. Further, all model variants 

include temporal retardation of runoff, either by explicitly considering a groundwater storage 

and distinguishing between direct runoff and base flow (groundwater variants), or by 

introducing a delay component and implicitly assigning restrained water to groundwater storage 
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(basic variants). In both cases, this one retardation component faces and thus has to comprise 

various (intermediate) storages and delay times of the real system. 

Since this study uses an ET product, it does not distinguish between transpiration and 

evaporation and assumes that evaporation from the canopy and surface water as well as the 

effect of land cover resp. land use is included in the ET product. 

Additionally, sub-grid spatial heterogeneity and, more general, spatial diversity of physio-

geographic characteristics as soil properties, land cover and altitude that influence hydrologic 

responses significantly are neglected. The effect of introducing such spatial distributed 

information on model performance is investigated with the Beck-GW models (see chapter 

6.3.4). 

Model Parameters 

Additional to model structure, uncertainties originate from the interdependencies between 

different model parameters. To assess this uncertainty due to model parametrization, to identify 

the effect of individual parameters on the modelling result and to determine the ‘sensitive’ 

parameters, it is advisable to conduct a sensitivity analysis, which includes multiple model runs 

with diverging parameter sets (Fischer, 2013). This has not been done in this study, but should 

be included in further research, as in particular parameters of the snow component are highly 

interconnected (see chapter 6.2.2). Therefore, also the correlation matrix between the 

parameters has to be inspected. 

Further, all parameters are optimized for a global uniform value, and thus do not reflect spatial 

differences, as would be for example expected for the soil parameters due to spatial variability 

of soil properties. 

Quality of Calibration 

Uncertainties in the calibration arise from the applied optimization method itself, meaning the 

suitability of the search algorithm and the cost function, as well as from the optimization 

settings (e.g. termination criteria). Further, the choice of parameters to be optimized and their 

predefined parameter bounds influence the quality of the calibration result. As several 

optimization methods have been tested, these issues will be discussed in the following section. 

6.2 Model Optimization 

The subsequent paragraphs review the choice and remaining issues of the applied optimization 

method as well as the (final) model calibration. Thus, they address the second methodological 

research question. 
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6.2.1 Optimization Methods 

In general, different ways of multi-criteria calibration exist. This study combined all criteria in 

one cost function and performed one-objective calibration, in order to reduce computational 

time, resulting in one ‘optimal’ solution. As the contribution of the individual criteria to total 

costs reflects their conceptual relevance – ET costs < SWE costs < TWS costs – summing them 

up equally is acceptable and no additional weighting necessary.  

Out of the tested search algorithm, the local solvers were faster, yet obtained higher costs 

compared to CMAES, which suggests that they converged in a local minimum. While 

GSFmincon needed the longest computational time due to multiple starting points, it did not 

considerably improve costs. Moreover, the differences between the algorithms’ solutions are 

small, yet optimized parameter values differ largely. This indicates a highly complex parameter 

space with several local optima, which makes a global search algorithm unavoidable. From the 

applied global solvers, CMAES needs less computational time, obtains lowest costs and in 

general is supposed to perform superior for heterogeneous parameter spaces (Hansen, 2014). 

Therefore, it is chosen as the most suitable search algorithm. 

However, investigation of the trade-offs between the model’s ability to fit all criteria would 

yield further insights in model behavior and parameter uncertainty due to input data and model 

structure. Other multi-criteria approaches as the Non-dominating Sorting Genetic Algorithm II, 

that for instance has been used by Werth et al. (2009) and Xie et al. (2012), provide a Pareto-

front with ‘equally good’ parameter combinations and thus allow such examination (Vrugt et 

al., 2003a; Xie et al., 2012).  

 

Regarding the tested cost functions, it was shown that ETobs needs to be included as a constraint. 

Otherwise, the calibrated models tend to neglect ET as surplus water just as well can drain, 

since runoff is not limited. Additional constraining the model by discharge data would force 

simulation of ET in order to match TWS and Q, so that ET could probably be excluded from 

the cost function.   

Further, trimming of the data was found to be necessary to diminish the effects of extreme 

values, which likely are outliers resp. result from measurement errors. Another common 

approach in hydrologic modelling is to use logarithmic transformed efficiency criteria, that put 

less emphasis on high values (Krause et al., 2005). This makes sense when the aim is to evaluate 

discharge, and in particular low flood conditions. However, TWS represents anomalies to a 

time-mean baseline and thus in general high (negative and positive) values need to be 

reproduced in order to simulate the amplitude correctly. Regarding snow dynamics, logarithmic 

variants would be suitable in terms of considering the underestimation of deep snow conditions, 

yet they simultaneously put too much weight on overestimated low SWEobs values. Thus, 
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applying an efficiency criteria weighted by the individual uncertainty of the constraint is most 

convenient. As using wMSE resulted in unrealistic simulations, wMEF is found to be most 

appropriate to evaluate the model performance. Among the tested ways to account for the 

uncertainty in SWEobs, CF6 finally is able to assign costs in the intended way. Although it does 

not explicitly include the overestimation of thin snow layers, the non-varying absolute value of 

σSWE reflects higher uncertainty for low values of SWEobs. However, it should be noted that 

the saturation of the SWE signal among others depends on the snow grain size and the 

stratification of the snow pack (Takala et al., 2011), and thus setting a fixed threshold to 

determine when SWEobs does not provide reliable estimates is somewhat arbitrary. 

Nevertheless, the findings show that the search algorithm CMAES and cost function CF6 based 

on the wMEF criteria is the most suitable optimization method. 

6.2.2 Model Calibration 

During the first investigation of model results when testing different cost functions, it was found 

that the parameter values substantially vary between the model variants, especially for the snow 

component. This variation of snow parameters in particular reflects well-known problems of 

parameter equifinality, because all model variants use the same snow component and no 

structural differences exist. It is very likely that the snow component is over-parametrized, as 

four out of the five snow parameters regulate the reduction of SWE – either by scaling the 

amount of snow fall (p_sf), simulating sublimation (sn_alpha), or modelling snow melt in 

dependency on temperature (m_t) or radiation (m_r). Further sn_alpha, m_t, and m_r are 

related to temperature resp. net radiation, which in turn correlate. Thus, SWEmod can be reduced 

by various parameter combinations to fit with SWEobs, which is proven by comparable SWE 

costs of the different model variants. This increases uncertainty in assigning the relevance of 

individual processes. So, although a spatial and temporal distinction between sublimation and 

snow melt would be desirable, the current structure of the snow component does not allow 

reliable interpretations. Therefore, further studies should either use the traditional day-degree 

approach instead of the restricted one, or refrain from the attempt to explicitly consider 

sublimation. Alternatively, considering discharge in multi-criteria calibration may decrease 

uncertainty in snow parametrization as it would allow better control on the amount of SWE that 

supplies input water in form of snow melt and the proportion that leaves the system through 

sublimation. In either case, investigation of the parameter’s correlation and interdependencies 

should be conducted. 

In order to reduce parameter equifinality and to facilitate the focus on the effects of differing 

soil and runoff parametrization, it has been decided to fix snow parameters during final model 

calibration. Therefor the parameter set of the best performing model during first investigations, 

namely BergGW, has been chosen. Although this parameter set reflects the majority resp. 
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average of the other model’s snow parameter, the predefinition introduces uncertainty, as for 

instance the parameter set is calibrated for 100 grid cells instead of 1000 as in final calibration, 

and on the other hand other model variants may perform better with individual snow 

parameters. Nevertheless, detailed investigation of snow related processes is beyond the scope 

of this thesis, as the focus lies on runoff generation and dynamics of TWS – for which reliable 

representation of the snow pack as it is achieved with this parameter set is sufficient.  

Regarding overall model performance in terms of costs, final calibration could improve 

conformity with TWSobs and SWEobs. Thereby higher costs for evaluation grid cells and global 

application are common. However, the difference is minor and thus suggests that parameters 

optimized for 1000 grid cells are representative for the whole study area and models are not 

over-calibrated. 

Final model calibration terminated after a few hundred iterations because the tolerance for the 

cost function values was reached, which can also indicate a very flat region in the parameter 

space (Xu, 2002). However, as the parameter values stabilized after solely 40 iterations, this 

may also relate to the predefined snow parameters, that don’t allow much variability in the soil 

and runoff parametrization to gain an optimal fit with TWSobs. Consequently, predefined snow 

parameters enable direct comparison of the soil and runoff parametrization, but to exploit the 

model’s full potential all sensitive parameters need to be calibrated. 

Further, subsequent investigations should use identical initial storages, in particular regarding 

the snow conditions, for basic and groundwater variants. A shorter initialization period is 

reasonable, but the last year(s) should coincide to allow consistent comparison. 

6.3 Comparison of Model Variants 

To identify the model formulation that is most appropriate to simulate TWS dynamics, seven 

model variants have been implemented, calibrated and compared as part of this study. The 

following section aims to answer  

1) how the model variants differ after final calibration in terms of their parameters, 

2) their mean seasonal dynamics and 

3) their overall performance, as well as 

4) whether spatial varying of base flow related parameters facilitates improvements in 

model performance, and finally  

5) which model variant is ‘best’. 

6.3.1 Calibrated Model Parameters 

As the snow parameter set is predefined, the individual model variants do not differ regarding 

their simulated snow dynamics. For all variants solid precipitation is reduced by p_sf, although 
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an increase would be more likely in view of the typical undercatch especially of snowfall. 

However, reduction on contrary accounts for sublimation of frequent light snowfall and high 

winds, that are common in high latitudes (Derksen et al., 2014). Sublimation itself is not 

considered using the chosen snow parameter set, as the sublimation factor sn_alpha is set to 

zero. Thus, no reduction of SWE is simulated as long as temperatures remain below 0 °C. 

Instead, the snow pack is only reduced by melt, whereby both, m_t and m_r (almost) reach their 

upper bound, theoretically leading to fast decrease of SWEmod as soon as temperatures exceed 

0 °C. High values of both parameters indicate that on global average both, temperature and net 

radiation, determine reduction of the snow pack. The rapid decrease introduced by m_t and m_r 

is smoothed by a relatively high value of sn_c, because melt is scaled down if SWEmod is below 

the 207 mm threshold that is associated with complete snow coverage of the grid cell. As a 

result, melt is highest under deep snow conditions while a shallow snow pack vanishes 

comparatively slow.  

Among the final calibrated models, the parametrization of SimpleBasic generates runoff solely 

if the amount of available water is relatively high. In contrast to the other model variants, the 

retardation q_t of 3 days is short, so that the comparatively low water release leaves the system 

nearly immediately. While BergBasic almost shows a linear relation between soil moisture 

deficit and the runoff generating proportion of IW, in BudykoBasic at least 60 % of the 

maximum water holding capacity has to be reached to generate runoff. BergGW is intermediate 

between both approaches. s_max of SatBasic and SatGW are comparatively low, which 

indicates the necessity of runoff generation even when few water is available. In the basic 

versions, runoff is delayed up to 100 days, which equals to the upper limit and thus it is likely 

that delay time would be increased if it was not constrained. This assumption is countered by 

the fact that although the calibrated SatGW and BergGW completely allocate Qs into the 

groundwater storage, the delay time within this storage is short. For BudykoGW the retardation 

time is comparable to the basic versions, but it simulates Qdir, which compensates the 

differences in total Q to the other model variants. 

According to Hagemann and Dümenil (1997), overland flow with delay times of several days 

to few weeks is dominant among flow processes in regions that are highly affected by snow 

melt. Thus, the calibrated models in reflect the main runoff process resp. water retardation 

associated with the study area. However, base flow, that accounts for constant discharge during 

winter and in dry areas, usually is denoted by lag times from few months to several years in 

hydrologic models with 0.5° spatial resolution (Hagemann and Dümenil, 1997). This long-term 

retardation thus is clearly not included in the present models. 

Besides, detailed investigation of the model results showed, that the parametrization of 

BudykoGW causes unexpected model behavior. After calibration, the parameter s_exp_budyko 

reaches its upper bound of 1, so that the divisor in one exponent in the infiltration computation 
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(Eq. (29)) becomes zero. For division through zero the MATLAB environment generates 

infinity, which eventually results in calculation of infiltration as the difference between s_max 

and SM. Consequently, this bug needs to be fixed by adjusting the upper parameter bound of 

s_exp_budyko in order to allow appropriate conclusions about the performance of the intended 

BudykoGW approach. 

6.3.2 Differences in the Mean Seasonal Cycle 

In general, all model variants simulate comparable mean seasonal dynamics of water fluxes and 

storages, in particular for ET and TWS anomalies, as they were used to constrain the model, 

and for SWE because of identical parametrization. Besides, minor differences exist regarding 

timing and quantity, which will be discussed in the following.  

Regarding snow dynamics, the models coincidence with the MSC of SWEobs. Thereby 

underestimation at the beginning of accumulation as well as overestimation of deep snow 

conditions are reasonable when considering the uncertainty of the SWEobs estimates, which 

overestimate thin snow layers and saturate for deep snow packs. The obtained overestimation 

during ablation from March to June on contrary suggest that melt is not modelled fast enough. 

As the melt factors m_t and m_r are high, this primarily relates to sn_c, that reduces the 

decrease of SWEmod for medium and thin snow layers. Nevertheless, the simulated SWE 

dynamics are within the assumed uncertainty of SWEobs. 

Monthly ET is highest in June and July due to high net radiation resp. temperature, highest 

water supply from snow melt and summertime precipitation, as well as due high plant 

productivity. In the model variants, p_et reduces especially these high ETobs values, while solely 

BudykoGW with p_et = 1.01 does not substantially modify ETobs. 

Although ET is not decreased, SM of BudykoGW shows almost no seasonal variations, as its 

near water holding capacity throughout the year. This missing seasonal cycle can be attributed 

to the bug in the soil parametrization. SM, as simulated by the other model variants, is 

maximum in April/May due to input from snow melt, minimum in August due to high ET, and 

then increases again as consequence of summertime precipitation and decreasing ET. These 

seasonal variations are more pronounced in the Bergström variants because they allow 

reduction of SM in terms of Qs for greater soil moisture deficits. During winter, SM is on its 

average value, as it receives no resp. less input due to prevailing solid precipitation and is 

simultaneously not reduced by ET or Qs – in the saturation approach because the maximum 

water holding capacity is not reached and in Bergström and Budyko variants because of missing 

liquid input. As Qs in the SimpleBasic approach is not dependent on liquid input but on water 

availability, negative anomalies are simulated in winter as the water storage still releases runoff. 

Moreover, for SimpleBasic SM represents all available water, including soil moisture, ground 

water etc. The implicitly derived GW on contrary can be understood as delayed runoff, e.g. in 
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channels. Therefore, the shorter retardation time of 2 days makes sense, because long-term 

retardation is already included in the calculation of Qs. Accordingly, SimpleBasic has no MSC 

of ‘groundwater’, which remains constant throughout the year. The other model variants on 

contrary show the depletion of the GW storage in winter, which is equivalent to the negative 

SM anomaly of SimpleBasic. Apart from depletion in winter, GW anomalies show the same 

seasonal pattern as SM. Thus all model variants confirm in the seasonal cycle of W, which is 

characterized by negative anomalies in winter due to drainage and positive in spring as result 

of infiltrating snow melt (Niu et al., 2007). 

Similar, runoff is minimal in winter due to less liquid input as determined by low temperatures. 

It increases in spring due to snow melt and reaches its maximum in May/June when nearly the 

whole snow pack is melted. This represents a delay of 2 – 3 months in comparison to maximum 

snow cover, and corresponds to the retardation time defined by q_t and g_d. Like SM, Q shows 

a second maximum in October that is related to precipitation maxima in July/August. In the 

Bergström variants summertime runoff is comparatively high and thus the second maxima less 

pronounced, because runoff is already generated for greater soil moisture deficits. In general, 

summertime Q is less for models with higher p_et values, as ET reduces SM and thus less water 

is available for runoff generation. Further, higher peak values in the basic runoff variants are 

caused by the logarithmic form of the retardation equation – a value of 100 days for q_t means 

that within 100 days all water leaves the system as runoff, but the amount is higher during the 

first days. In contrast, groundwater runoff variants apply a linear storage that constantly releases 

base flow, resulting in higher wintertime Q. The noticeable disagreement between simulated Q 

of BudykoGW and BudykoBasic can be inferred to the changed algorithm by 

s_exp_budyko = 1. 

Due to snow accumulation in February and March and subsequent melting, TWS in mid- and 

high-latitudes of the Northern Hemisphere is maximum in April. This positive signal remains 

until June, followed by negative values due to runoff and ET, before mass starts to accumulate 

again in October (Rangelova et al., 2007). In contrast, all models show a lag of approximately 

one month, so that TWSmod decreases too rapidly, reaches its minimum in August and then 

starts to accumulate too early. This suggests insufficient representation of retardation (Güntner, 

2008), but model structure and parametrization cannot be the only reason as a longer delay time 

theoretically is possible in the groundwater variants. As this feature is common to all model 

variants, it will further be discussed within analysis of the model application in chapter 6.4.1. 

In addition to the phase, some models show discrepancies in the amplitude. Nevertheless, the 

simulated TWS anomalies are mostly within the uncertainty range of TWSobs, and with 

BergBasic being closest to TWSobs. 
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6.3.3 Differences in Model Performance 

Regarding their overall performance in terms of costs, the ranges between individual model 

variants are small, which suggests, that all are equally suitable to simulate SWE and TWS 

dynamics. Comparatively low ET costs achieved for the BudykoGW variant result from the 

maintenance of ET values, as ETobs is not reduced by p_et. 

In spatial terms, similar patterns of costs are obtained for all model variants, indicating that all 

approaches are equally suited to simulate TWS dynamics for the study area and good resp. poor 

performance in one region is not primary influenced by differences in the soil and runoff 

algorithm. This is further supported by the remaining ranking of model variants for calibration 

grid cells, evaluation grid cells and global application. An exception is the degradation of 

BudykoGW, which is presumably related to the bug in its algorithm,  

Alltogether, the calibrated Bergström approaches, which were among the best performing 

variants throughout the testing of optimization methods, obtained the lowest costs after final 

calibration. Thereby BergBasic outperformes BergGW in terms of costs, as well as in terms of 

computational time needed for calibration. 

6.3.4 Incorporation of spatial distributed Base flow Information 

To examine whether spatial distributed information improves model performance in 

comparison to global uniform parametrization, global estimates of base flow index BFI and 

base flow recession constant K obtained by Beck et al. (2015) have been incorporated in the 

BergGW model. These products are supposed to provide useful information for large-scale 

groundwater recharge estimation and parametrization, and indeed, Beck-GW models applying 

BFI (Beck-BFI1-4) estimates for determination of groundwater recharge showed superior 

performance compared to their standard counterpart with default parametrization. However, if 

K estimates are integrated (Beck-K, Beck1-4), results decline. BFI and K as defined by Beck 

et al. (2015) consider all slow runoff components, such as snow and ice melt, interflow and 

base flow. Integrating BFI into the model to determine the percolating resp. delayed portion of 

Q is feasible, because the groundwater storage in BergGW has to compensate all lagged runoff. 

Similar, K comprises various delay times and among others those associated with snow. Since 

the snow storage is explicitly simulated within the model, this causes poorer performance when 

K estimates are applied. 

In order to account for these discrepancies and to reduce inconsistencies between the input data, 

BFI and K are allowed to be adjusted by the scaling parameters p_gr resp. p_gd during final 

calibration. Calibration improved the performance of all model variants, that afterwards achieve 

similar costs. Thereby the calibrated Beck-BFI1-4 models perform equally good as the 

calibrated standard BergGW, while model variants using K still obtain slightly worse results.  
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Regarding the soil component, the calibrated models have similar values of p_et, s_max and 

s_exp_berg. For Beck-BFI1-4 the scaling parameter p_gr increases the fraction of percolating 

water, for BFI2 and BFI4 as much as the parameters’ upper bounds allows, and less for BFI1 

and BFI3 that already have higher values than the other BFI estimates. As consequence, similar 

to the standard BergGW, all Qs percolates, resulting in similar costs. Thus, calibration 

diminishes the effects of integrating spatial distributed information. 

K is characterized by retention times of approximately 14 days in high- and mid-latitudes and 

3 days in southern, arid regions (A 2). As the calibrated parameter p_gd decreases the recession 

coefficient to 42 – 44 %, the delay time for the majority of the study area is increased to 34 

days and thus approximates the delay of standard models, while the lag in arid regions is only 

8 days. Although a spatial varying delay time is physically reasonable considering diverse 

pedologic and geologic properties, it results in poorer model performance in terms of costs, 

probably because of shorter retention especially in arid regions. 

In conclusion, no improvement regarding simulation of TWS by applying spatial distributed 

characteristics related to the percolation rate or recession coefficient is achieved, as in the 

calibration process the additional information is diminished. These data may provide useful 

information to partition runoff or constrain HMs to discharge, but do not aid in the context of 

this study.  

6.3.5 Résumé 

In conclusion, all model variants have comparable costs, in terms of overall performance as 

well as in terms of spatial distribution. Further, they simulate comparable mean seasonal 

dynamics of water fluxes and storages, whereby minor differences are related to the individual 

parametrization. Thereby, incorporation of spatial distributed base flow parametrization yields 

no additional advantage. Thus, all model variants are in general equivalently well suited to 

simulate TWS. Despite strong resemblance, the models applying the Bergström approach 

achieved the best agreement with GRACE TWS. Although an explicit groundwater component 

as in BergGW enables simulation of longer water retardation including base flow induced 

runoff during winter, BergBasic showed superior performance regarding TWS. As BergBasic 

additionally requires calibration of one parameter less and thus less computational time, it can 

be considered as the most appropriate model formulation in terms of consistency with GRACE 

TWS and therefore has been applied for detailed analysis of TWS dynamics in this thesis. 

6.4 Model Application 

The following section discusses the results obtained by applying the BergBasic model and aims 

to answer the scientific research questions of  
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1) how well the model can reproduce temporal and spatial patterns in the observations,  

2) how the TWS is composed and how this composition varies spatially and temporally,  

3) as well as whether the model is able to reproduce trends in the GRACE TWS signal. 

6.4.1 Spatial and Temporal Model Performance 

In general, the BergBasic performs fairly well for the majority of the study area. 

Regarding overall model performance, East Siberia and Scandinavia are identified as regions 

of high errors, that are mainly caused by differences between TWSmod and TWSobs. Additional, 

the model performs poor at the Central Siberian Plateau and along the North American west 

and north coast. The poor performance in these regions, as well as in other areas with relatively 

high total costs, is mainly due to a disagreement in SWE dynamics.  

Besides, model performance decreases towards the South of the study area. On the one hand, 

this is due to a greater mismatch between ETobs and ETmod, on the other hand the model seems 

not able to reproduce low TWS variations in areas that receive few annual snow.  

Higher errors regarding ET in the arid and boreal semi-arid zone can be attributed to less ETmod 

in summertime. ETmod is reduced by the scaling factor p_et, which, since it is globally 

optimized, is adjusted to the needs of the wetter and cooler boreal and temperate zones that 

capture larger areas. Compared to other zones, the precipitation and thus soil moisture that 

provides water for ETmod is less in the arid and boreal semi-arid environments and thus leads to 

this greater misfit.  

 

To further assess the models ability to reproduce spatial and temporal patterns of the GRACE 

TWS and GlobSnow SWE observations, the mean seasonal cycle and inter-annual anomalies 

are investigated. Besides the overall performance, regions of discrepancies are highlighted and 

possible reasons for these differences discussed. 

Mean Seasonal Cycle 

Regarding snow dynamics, the model in general overestimates annual maximum SWE, 

especially in regions where SWEobs is high, as the Central Siberian Plateau, and what 

accordingly are the regions of highest RMSE. However, considering the underestimation of 

deep snow conditions by SWEobs, this overestimation by the model is reasonable. Solely along 

the North American west coast moderate SWEobs values are highly overestimated, which 

probably relates to underestimation of TWSobs variations (see below). Additionally, the KGE 

highlights the polar zone as a region of considerable discrepancies. This zone in general suffers 

from issues in the GlobSnow retrieval algorithm due to the influence of (permanent) ice layers, 

ice/snow mixed pixels, and mountainous terrain (region in Asian mountains classified as polar).  
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Regarding the temporal correlation SWE is reproduced better than TWS, among others because 

the seasonal cycle is in comparison less influenced by uncertain data streams as summertime 

precipitation and ET (while snow fall is scaled and thus adjusted to better fit SWEobs). 

Nevertheless, mean seasonal variations of TWSobs are in general well captured by the model, as 

proven by high correlation and KGE values as well as by RMSEs within the uncertainty range 

of TWSobs. 

On average, BergBasic reproduces the seasonal TWS amplitude. However, the amplitude is 

underestimated in arid and semi-arid regions, as well as for the Canadian Archipelago, and 

overestimated for Scandinavia. Underestimation in the arid and boreal semi-arid zones 

simultaneously results in highest RMSE values for these regions. Possible reasons that may 

result in underestimation of the seasonal amplitude are the scaling of high summer time ET to 

less amounts by p_et, underestimation of precipitation input (Xie et al., 2012), neglected input 

from adjacent wetter areas and mountain ranges, as well as neglection of fluctuations in deep 

groundwater and human water extraction. Additionally, according to Hagemann and Dümenil 

(1997), base flow with retardation times from few months to several years plays an important 

role in the hydrological cycle in dry regions with rare precipitation, yet the applied BergBasic 

model is not able to model such long delay times. 

Underestimation in the area of the Canadian Archipelago can relate to problems in satellite 

measurements of light snow fall (Lettenmaier et al., 2015) and thin snow packs containing hoar 

layers (Derksen et al., 2014), and thus result from underestimation of both, the precipitation 

forcing as well as the SWEobs constraint. Additionally, underestimation of TWSobs variations 

may be largely influenced by leakage errors in the GRACE signal that includes variations of 

adjacent (sea) ice masses (Rangelova et al., 2007). Similar, overestimation in Scandinavia, 

which is also associated with high RMSE values, is mainly due to leakage errors, that reduce 

the GRACE estimate due to smaller signals over oceans (Niu et al., 2007). 

High RMSE is also obtained for the North American west coast and Kamchatka, which 

analogous can be inferred to leakage errors, but additionally coincidences with highest RMSE 

for SWE. Thereby the model overestimates SWEobs and underestimates TWSobs variations, 

which indicates that it is only capable to fit TWS variations by simulating high variations in 

SWE. Using both observations as constraints results in intermediate estimates and errors 

regarding both, SWEobs and TWSobs. Thus the discrepancies mainly result from data 

inconsistencies in these regions. Thereby errors originating from the SWEobs retrieval algorithm 

are likely, as these are mountainous regions with diverse topography, forests, lakes and rivers 

and additionally under the influence of the coast. As both data sets are subject to retrieval 

uncertainties, it is difficult to ascertain which is more reliable. However, high annual 

precipitation suggests that SWEobs is more uncertain, or, less likely, that the simple model 
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structure lacks processes other than snow accumulation and melt to generate high TWS 

variability. 

 

Besides divergences in the amplitude, differences in the phase of the MSC are more obvious. 

Such a systematic delay between GRACE TWS and hydrological models has already been 

obtained by earlier studies, where, depending on the region, modelled TWS preceded 1 – 6 

weeks (Rangelova et al., 2007; Schmidt et al., 2008; Werth et al., 2009). Commonly, these 

discrepancies are attributed to missing water storage compartments and associated delay of 

runoff, as well as to shortcomings in the meteorological forcing and/or the GRACE data itself 

(Güntner, 2008). 

As the differing phase is inherent to all tested model variants, model structure in terms of 

insufficient water retardation cannot be the primary reason. Moreover, a less negative anomaly 

of TWS from September to February coincidences with underestimation of SWEobs during snow 

accumulation, while underestimation of positive TWSobs anomalies in spring correlates with 

overestimation of SWEobs during ablation from March to June. Since optimization intends to fit 

both variables, TWSmod, which in wintertime mainly consists of SWEmod, in its monthly amount 

is intermediate between TWSobs and SWEobs in order to achieve the best performance compared 

to both variables. This again suggests, to some degree, inconsistencies between GlobSnow and 

GRACE data streams. Considering the uncertainties of the observational data, SWEobs, and thus 

to some extent still SWEmod, is overestimated for the beginning of accumulation, leading to less 

negative TWSmod than observed. Further, the underestimation of deep snow conditions by 

SWEobs causes an underestimation of positive TWSobs anomaly. During spring and until August, 

the negative anomaly in TWSmod is more pronounced than in TWSobs. Thus, the retardation of 

melt water (and precipitation) seems to be insufficient. In the groundwater variants a longer 

delay time would have been possible, which further could compensate other missing (surface) 

storages by implicitly including them in their parametrization. However, groundwater variants 

did not show superior performance, which suggests that regional differing aspects of retardation 

with diverse delay times exist, that are not coverable by one linear storage alone. For example, 

in the northern and polar regions retardation over frozen soil may play a role. Further, routing 

and inundation along large rivers would delay water export, but vary spatially in dependence 

on the drainage network (Güntner, 2008). For instance, Alkama et al. (2010) showed that 

variations in river storage highly effect TWS variations, especially in cold regions where river 

water is partly frozen during winter. 

Besides these discrepancies in spring, high precipitations in late summer and simultaneously 

decreasing ET cause increasing simulated mass accumulation starting from August, while 

TWSobs reaches its minima not until September. Despite higher uncertainty of TWSobs in these 
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months, summertime precipitation may be overestimated or ET underestimated. Furthermore, 

BergBasic may not represent the continuing depletion of water storages. 

 

When investigating the spatial distribution of the lag between TWSobs and TWSmod, a stronger 

disagreement gets obvious for the arid and boreal semi-arid regions, that hence are also 

characterized by lowest correlation values. Similar, Ngo‐Duc et al. (2007), Swenson and Milly 

(2006) and Schmidt et al. (2008) received differences in the phase for arid regions as the deserts 

of Western China, Mongolia and South West North America. These regions are characterized 

by a low TWS amplitude, and thus the errors of the GRACE signal itself are high in relative 

terms (Güntner, 2008).  

Except for the arid and semi-arid zone, the lag between TWSmod and TWSobs seems to be related 

to lower elevations and large river basins (Fig. 37). Accordingly, no lag is present in 

Scandinavia, the Central Siberian Plateau, East Siberia and Kamchatka, which tend to be areas 

of higher elevation. Intermediate lowlands as associated with the Ob and Lena basin, on 

contrary show a shift in the phase of TWS and thus also lower correlation in their time series. 

Here the preceding of TWSmod may result from neglection of snow melt resp. runoff from 

adjacent uplands, that in reality with delay add water to the grid’s TWS. Another reason may 

be a longer retardation time due to smaller slopes and the buffering effects of wetlands, lakes, 

and the river itself. Regarding high latitudes in North America, for similar reasons a lag is 

present for the Alaskan Yukon basin and the Canadian Mackenzie basin. A lag of two months 

in central Canada can be attributed to the numerous lakes and surface water bodies that 

characterize this region, yet are not represented in the model. For the somewhat higher 

elevations of the Labrador Peninsula, which lacks of large rivers, the MSC fits again. Indicative 

of the link to river retardation is the existence of numerous surface water bodies on the Labrador 

Peninsula, and the missing lag for the lowlands surrounding the Hudson Bay. 

However, considering the whole study area, no statistical correlation between a lag in MSC and 

elevation, the occurrence of lakes and wetlands (data based on Lehner and Döll (2004)), or 

estimates of water holding capacity (data based on Webb et al. (2000)) is detectable. This 

suggests, that the mismatch cannot be ascribed to one cause alone, but different effects for 

different regions. While it is more likely that the lag in higher latitudes, resp. the polar and 

boreal zones, results from the effects of large rivers, the preceding in arid and boreal-semi arid 

zones may be caused by general poorer representation of low TWS variations, which are 

associated with a relative high error. Besides, inadequate parametrization using global uniform 

parameter values, as well as deficiencies in the meteorological forcing and errors in GRACE 

estimates influence the explained discrepancies. 
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Anomalies to the Mean Seasonal Cycle 

In comparison to seasonal variations, the model clearly performs poorer in reproducing inter-

annual variability. This usually is the case for hydrologic models, as a result of storage 

parametrization and missing processes (Landerer and Swenson, 2012; Zeng et al., 2008). 

Besides, also the observational data streams suffer from deficiencies and uncertainties in 

capturing long-term variations. 

The fact that the average SWEobs anomalies of the study area show less short term fluctuations 

than TWSobs anomalies suggests that TWSobs anomalies are dominated by other factors, as 

variations of summertime precipitation, groundwater fluctuations and change of surface water 

bodies, but also non-hydrologic effects such as seismic deformations (Güntner, 2008). In 

comparison, the modelled TWS anomalies are more smooth, and in their amplitude comparable 

to wintertime SWEmod, while anomalies of W only pause through during the summer months. 

These variations in W are then dominated by variations in SM, while the amplitude of the 

indirectly estimated GW is extremely slight. This suggests that missing resp. insufficient 

representation of water retardation and extraction diminishes the model’s ability to reproduce 

short term fluctuations in inter-annual variability. Regarding summertime variations, additional 

ETobs is known to underestimate inter-annual variability (Jung et al., in preparation), and thus 

partly accounts for the insufficient representation of TWS fluctuations.  

Nevertheless, the model reproduces the general tendencies of TWS anomalies. Thereby highest 

correlation is obtained for the continent centers and largest errors for the polar and arid zones. 

In the polar zone and high latitudes, one factor for these differences may be the neglection of 

the effects of melting permafrost, that in long-term changes TWS. Additionally, TWSobs 

probably includes water changes caused by variations in (sea) ice and glaciers that due to the 

leakage error pass through (Güntner, 2008). So, a decreasing TWSobs anomaly towards more 

negative values in the polar zone that cannot be simulated (see A 18) relates to the currently 

observed decrease in glacier and ice mass (IPCC, 2014). Further, Rangelova et al. (2007) 

showed that effects from post-glacial rebound may not be sufficiently removed, and influence 

e.g. TWS variations on the Labrador Peninsula. This is a region where the obtained correlation 

between TWSobs and TWSmod anomalies is low, too. In southern, and especially arid regions, an 

insufficient representation resp. parametrization of long-term storages as deep groundwater and 

the extraction of deep soil water for ET are among the main reasons for discrepancies. Further, 

the model does not consider human water withdrawal, which in dry years leads to a more 

pronounced negative anomaly of TWS (Güntner, 2008). 

Besides issues due to model structure and leakage errors in TWSobs, the gain factors, which are 

needed to reduce filtering effects in the GRACE TWS estimates, are optimized to recover 

variations on seasonal time scales. Thus uncertainty in their suitability for inter-annual and 

long-term interpretations exists (Landerer and Swenson, 2012). 
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6.4.2 Composition of TWS 

One aim of this study is to determine the relative contributions of snow, soil moisture, and 

groundwater dynamics on variations of TWS, and to identify whether and how they vary 

temporally and spatially. Therefore, the intra-annual and inter-annual variability of TWSobs and 

TWSmod have been investigated and compared, and finally the dominant factor of variability in 

TWSmod has been identified for both time-scales.  

Mean Seasonal Cycle 

In general, the seasonal variability of TWSobs is reproduced well for most of the study area by 

the model. Exceptions are highest variations associated with an underestimation for the 

Canadian Archipelago and an overestimation for Scandinavia, for which already poorest 

performance regarding the MSC has been shown. As already discussed before, these 

divergences are likely due to leakage errors in the GRACE signal. Besides, underestimations 

of high TWSobs variability may result from uncertainties in the meteorological forcing, as 

precipitation for example fails to record extreme events with high rainfall intensities. 

The results show, that variations in the MSC of TWS in northern regions are mainly influenced 

by variations in SWE, and thus confirm earlier studies (Rangelova et al., 2007). On contrary, 

variations of W prevail south of approximately 50° latitudes, which in turn primarily results 

from variations in SM. This endorses the findings of Ngo‐Duc et al. (2007), who showed that 

TWS in the Mississippi basin is mainly influenced by seasonal variations in soil moisture. The 

more northwards reaching influence of W in western Eurasia as well as the spatial pattern in 

North America goes along with the temperature gradient. Moreover, comparison with average 

annual temperature suggests, that for T > 10 °C variability of SM dominates, while for T < 0 °C 

snow dynamics prevail. Although this is plausible, it also highlights the dependency on the 

temperature data set used for model forcing.  

The variability in the MSC of W is primarily caused by variations of SM. Simulated soil 

moisture is highly variable as it is influenced by various factors including changes in the amount 

of precipitation, snow melt, and evapotranspiration, as well as (constantly) released Qs. On 

contrary, GW, which is estimated indirectly from Qs and represents all delayed runoff, depends 

primarily on soil moisture and thus in general shows less variation. Nevertheless, the influence 

of GW prevails on the Canadian Arctic Archipelago, the northern coast of Eurasia, East Siberia 

and East China, which except for the Canadian Arctic Archipelago are snow dominated regions 

that receive relatively more annual precipitation. Here the soil is mostly saturated, due to snow 

melt in spring, sufficient precipitation in summer and low ET, and thus less variable. Additional 

high summer time precipitation then leads to increased Qs, of which the delayed amount in the 

BergBasic is ascribed to GW. 
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As the co-variance between SWEmod and W is low, but not zero, uncertainty remains. Especially 

regions that experience deep snow conditions show a negative covariance, meaning high 

SWEmod values are associated with low W. Considering the model structure, this is reasonable 

because when snow accumulates, no water infiltrates, which decreases SM as runoff still is 

possible. Vice versa, when snow melts or is not present, infiltration leads to high SM. This 

relation is more pronounced in regions, where much snow accumulates during winter and that 

experience high amounts of precipitation in summer. 

In contrast to SWEmod and W, the seasonal covariance between SM and GW is more pronounced 

and shows positive correlation for the coastal regions as well as for western Eurasia, that tend 

to receive more precipitation (ca. > 600 mm a-1). In this context more precipitation leads to 

higher SM, ergo to higher Qs and thus to more delayed water that is ascribed to GW. 

Anomalies to the Mean Seasonal Cycle 

Regarding the inter-annual variability, the model performs poorer and does especially not 

reflect high TWSobs fluctuations, as already shown. Reasons are again the insufficient 

representation of long-term water storages in the model, poor representation of inter-annual 

variability in ETobs and other meteorological forcing, as well as errors in TWSobs due to the 

processing of GRACE data (e.g. gain factors adjusted for seasonal variations) and leakage 

errors, that probably let the spatial distribution of the variability in TWSobs anomalies appear 

patchier. As additional some co-variance between SWEmod and W resp. SM and GW is present, 

predictions of the relative composition of inter-annual TWS variability are highly uncertain.  

Nevertheless, the results show that in comparison to intra-annual variability, the inter-annual 

variations in TWSmod are dominated by W. This is mainly caused by highly variable 

summertime precipitation events. On contrary, the results suggest that annual snow fall is less 

variable, as the variations in SWEmod are less pronounced compared to W. Exceptions are 

regions of high maximum SWE, that accordingly show a considerable relative contribution of 

SWEmod to the inter-annual TWSmod variability. 

Similar to the intra-annual variability, and for the same reasons, W is dominated by variations 

in SM, while GW solely shows higher contribution in regions of high SWEmod amounts. 

Résumé 

In conclusion, the model is able to simulate seasonal variability of TWSmod well, and reveals 

that in northern regions it is dominated by variations in SWE, while in lower latitudes soil 

moisture dynamics prevail. Inter-annual variations on contrary are mainly dominated by soil 

moisture, whereby the model showed poorer performance in representing variations in TWSobs.  

In general, model-based partitioning of TWS in different compartments is related to various 

uncertainties, as it depends on the model structure (e.g. which water storages are considered) 

and based on parametrization, the model gives divergent estimates (e.g. more soil moisture or 
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more groundwater) (Xie et al., 2012). However, as this study additional applied a snow product, 

and good resp. reasonable agreement has been obtained, confidence in the variability of the 

snow dynamics exists. Since further, intra-annual TWS variability is reproduced well, at least 

the relative contributions of SWEmod and W to the seasonal variability of TWSmod are expected 

to be reliable. Besides, some uncertainty remains regarding the inter-annual influence on TWS 

variations, as well as regarding the contribution of SM and GW to the variability in W, 

especially as GW in BergBasic is estimated indirectly and strongly affected by SM. 

6.4.3 Trends in TWS 

Besides general model performance, this study examines whether trends in GRACE TWS 

observations can be simulated by the model. Therefore, the Mann-Kendall test applying Sen’s 

slope has been used. As this test is based on the median of the slopes between each value of the 

time series and its successor, it is not influenced by outliers, but prone to autocorrelation in the 

time series, which is a possible source of uncertainty in the estimated trends. 

Similar to inter-annual variability and anomalies, the model in general tends to underestimate 

the observed trends. Qualitatively, the trend directions can be reproduced with an accuracy of 

42 %, in equal shared by positive and negative directions. This is better than by chance, but still 

denotes a mismatch for almost 60 % of the study area. Thus, the findings show, that the 

estimation of inter-annual trends with the model is quite uncertain and corresponds to 

observations only in few regions of the study area. Additionally, the brevity of the considered 

time series allows few interpretation (Güntner, 2008). Moreover, as the gain factors are adjusted 

to seasonal interpretation, they “may thus not be suitable to quantify trends from GRACE Tellus 

land data” (Watkins et al., 2015).  

Nevertheless, modelled and observed trends coincidence for some regions, for instance 

regarding negative trends in northern regions as East Siberia, Alaska and the Canadian Arctic 

Archipelago, that are associated with loss of snow and ice (Ditmar et al., 2010). Discrepancies 

in negative trends in these northern regions as in may result from leakage errors of adjacent 

melting sea ice or glaciers, or from not considered melting of permafrost. Fasullo et al. (2016) 

found negative trends in mid-latitudes as in the Eurasian Steppe to be caused by decreasing 

precipitation and drying due to natural variability as associated with the Atlantic Multi-Decadal 

Oscillation or the Pacific Decadal Oscillation and further teleconnections. These trends are also 

simulated by the model. Positive trends on contrary are in general less explicitly interpretable 

(Ditmar et al., 2010), but may also relate to large-scale oscillation feedbacks. While such 

positive trends in central North America and parts of Eurasia are simulated, the model fails to 

predict positive trends observed for the Labrador Peninsula. Here TWSobs may partly suffer 

from insufficient correction of the post-glacial rebound, which causes a positive trend and is 

not considered in the model (Ditmar et al., 2010).  



Conclusion and Outlook Model Application 

 

 

118 

7 Conclusion and Outlook 

The aim of this thesis was to develop a simple hydrological model that simulates the dynamics 

of the terrestrial water storage and its components in snow affected regions on the Northern 

Hemisphere, and to constrain it via multi-criteria calibration to GRACE TWS and GlobSnow 

SWE observations. Therefor various optimization methods have been tested to identify the most 

suitable for multi-criteria calibration. Further, different model formulations of soil moisture 

dynamics and runoff generation have been implemented and examined in order to determine 

the most appropriate model approach that achieves maximum consistency with observational 

data. Based on these findings, the calibrated ‘best’ model variant has been applied to investigate 

whether variations of the observed GRACE TWS can be reproduced and how the contributions 

of snow, soil moisture and groundwater dynamics to the TWS signal vary spatially and 

temporally. 

Out of the tested optimization methods, the Covariance Matrix Adaption Evolution Strategy 

(CMAES) performed superior in terms of computational time and provided solution when 

compared to other search algorithm. Further, known data issues are considered best by CF6 that 

is composed of the wMEF of each constraint, which integrates uncertainty estimates of the 

observed variable, respectively. Thus, the combination of CMAES and CF6 is found to be the 

most suitable optimization method for multi-criteria calibration in this study. 

The obtained differences of the implemented model variants in terms of spatial and temporal 

performance are minor, as the models’ complexity is comparable and the calibrated parameter 

sets have similar effects. Also, incorporation of spatial distributed base flow parametrization 

yields no additional advantage to gain a better fit to observed TWS. However, the Bergström 

approach for soil dynamics achieved the best agreement with GRACE TWS data, whereby 

BergBasic is preferable to the groundwater variant as it showed slightly better performance and 

includes one parameter less. 

In terms of spatial and temporal consistency to the observational data, BergBasic in general 

performs considerably well, whereby arid and semi-arid regions are identified as areas of main 

discrepancies, primarily related to insufficient parametrization and representation of relevant 

processes in these less snow-affected areas. Besides, problems in areas as the North American 

west coast and the Canadian Arctic Archipelago, where SWEobs is moderate but TWSobs is high, 

as well as a lag in the phase of the mean seasonal cycle between modelled and observed TWS 

suggest that inconsistencies between the GRACE and GlobSnow data streams exist, which in 

combination with limitations due to the simple model structure and errors in the input data lead 

to discrepancies. 
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Despite the preceding, BergBasic is able to capture the mean seasonal variability of observed 

TWS, and reveals that intra-annual variations of TWS in northern regions are dominated by 

variations in SWE, while in lower latitudes soil moisture dynamics prevail. Inter-annual 

variations on contrary are mainly dominated by soil moisture. Thereby the model showed 

poorer performance as it tends to underestimate variations of TWSobs. Similar, trends in TWS 

anomalies are solely reproduced with an accuracy of 42 %, and are underestimated as well. The 

interpretation of both, inter-annual variations and trends, is further limited by not-negligible 

uncertainty in the input data and limitations in the model structure. 

Albeit the findings of this study are promising, some issues remain and require further research. 

For one thing, calibration and comparison of the model variants revealed considerably problems 

due to over-parametrization, in particular of the snow component. Therefore, parameter 

correlations have to be inspected and sensitivity analysis is advisable to estimate the uncertainty 

introduced by the individual parameters. To further reduce parameter interdependencies, it is 

commendable to either neglect explicit simulation of sublimation from snow, to apply the 

traditional day-degree approach, or to better constrain the model e.g. by discharge observations. 

In this context, future efforts should not exclude a groundwater variant, as they have higher 

potential to simulate long-term retardation and the timing of runoff correctly, which probably 

becomes necessary when discharge is used as a constraint. Applying discharge as constraint 

may additionally help to better define retardation of runoff and thus improve the representation 

of the phase in TWS. In this context also inclusion of river routing can improve compliance, as 

the lag tends to relate to low elevations and large river basins. Moreover, the findings suggest 

that discrepancies in the TWS phase result from spatially varying causes and retardation effects 

with different times that cannot be captured by one global parameter. Thus, spatial varying of 

the delay factors q_t resp. g_d should be tested. In the present study, spatial distributed recession 

coefficients haven’t improved model results in terms of costs, but the applied information 

probably was not consistent with the model structure. Besides the delay factor, spatial 

distributed values of p_et yield the potential to improve model performance, especially in arid 

and semi-arid regions. 

In conclusion, this master thesis identified a simple hydrological model with 9 effective 

parameters that provides mean seasonal variations of TWS with substantially well conformity 

to GRACE TWS estimates for snow affected regions on the Northern Hemisphere. The model 

also allows determination of the influence of snow and soil moisture dynamic on these 

variations, yet its ability to predict inter-annual variability and trends is limited. Further efforts 

are necessary to better constrain the model and improve representation of spatial and temporal 

variability. 
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Appendix 

I) Study Area 

 

A 1: Average net radiation [MJ m-2 d-1] of the study area obtained from the meteorological forcing data for the 

period 2003 – 2010. 

 

 

A 2: Base flow Index 1 (BFI1) and base flow recession constant K [d-1] for the study area as provided by Beck et 

al. (2015). 
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II) Comparison of Optimization Methods 

Optimized Parameter Values of tested Search Algorithm 

 

A 3: Comparison of optimized parameter values applying Lsqnonlin, Fmincon, GSFmincon and CMAES with CF1 

for 1000 grid cells during testing of optimization methods. 

Model Ranking according to Total Costs for each Cost Function 
 

 

A 4: Ranking of model variants according to total costs obtained with different cost functions (CF1-CF6) during 

testing of cost functions (applying CMAES for 100 grid cells). 
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III) Final Model Calibration 

 

A 5: Characteristics of the final calibration of BergBasic. (CMAES, CF6, 1000 grid cells) left: Evolution of 

function values (total costs), the difference of the current function value to the overall minimum found, and step 

size sigma as well as the final best solution. The graph shows that the function value decreases with each iteration, 

while the improvement is considerably low (< 10-5) and thus the optimization process stopped after approximately 

120 iterations. right: Evolution of the length of principle axes of CMAES’ distribution ellipsoid for each 

(parameter) dimension. Reduction of all axes length indicates that the population converges to the minimum. 

 

 

A 6: Stabilization of parameter values during optimization (BergBasic). x indicate the optimized scaling factors 

associated with (1) p_et, (2) s_max, (3) s_exp_berg and (4) q_t. 
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A 7: Total, TWS, SWE and ET costs for calibration (Cal), evaluation (Eval), and the entire study area (Global) 

for the period 2003 – 2010. Model variants: 1-SimpleBasic, 2-SatBasic, 3-SatGW, 4-BergBasic, 5-BergGW, 6-

BudykoBasic, 7-BudykoGW; optimization for 1000 grid cells using CMAES and CF1. 
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IV) Pixelwise Costs 2004 – 2010 of BergBasic 

 

 

A 8: Total, TWS, SWE and ET costs (CF6) of optimized BergBasic model for each grid cell for the period 2004 – 

2010. 

  



Appendix Master Thesis 

 

 

CXXXVII 

 

A 9: RMSE of mean seasonal cycle between TWSobs and TWSmod (left) an) SWEobs and SWEmod (right) for each grid 

cell for the period 2004 – 2010. 

 

 

A 10: KGE of mean seasonal cycle between TWSobs and TWSmod (left) and SWEobs and SWEmod (right) for each grid 

cell for the period 2004 – 2010. 
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V) Mean Seasonal Cycle of KG zones 

 

 

 

A 11: Comparison of the mean seasonal cycle (MSC) of precipitation P [mm d-1], temperature T [°C], 

evapotranspiration ET [mm d-1] and runoff Q [mm d-1] for each KG zone. Dotted lines: observations; solid lines: 

simulations. 
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A 12: Comparison of the mean seasonal cycle of snow water equivalent SWE [mm], soil moisture SM [mm] and 

groundwater GW [mm] (right) as well as the mean seasonal cycle of the corresponding storage anomalies to the 

baseline 2004 – 2010 for each KG zone. Dotted lines: observations; solid lines: simulations. 
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A 13: Comparison of the mean seasonal cycle of observed and simulated terrestrial water storage anomalies 

TWSobs (dotted lines) and TWSmod (solid lines) [mm] to the baseline 2004 – 2010 for each KG zone. The uncertainty 

estimates of TWSobs are depicted as grey shaded area. 
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VI) Anomaly to Mean Seasonal Cycle of KG zones 

 

 

A 14: RMSE of anomaly to mean seasonal cycle between TWSobs and TWSmod  (left) and SWEobs and SWEmod (right) 

for each grid cell for the period 2004 – 2010. 

 

 

A 15: KGE of anomaly to mean seasonal cycle between TWSobs and TWSmod for each grid cell for the period 2004 

– 2010. 
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A 16: Anomaly of precipitation P [mm d-1], temperature T [°C], and evapotranspiration ET [mm d-1] to the mean 

seasonal cycle 2004 – 2010 for each KG zone. Dotted lines: observations; solid lines: simulations. 

 

 

      

A 17: Anomaly of SM and GW to the mean seasonal cycle 2004 – 2010 for each KG zone. 
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A 18: Anomaly of SWEobs (dotted lines) and SWEmod (solid lines) [mm] to the mean seasonal cycle 2004 – 2010 for 

each KG zone. 
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A 19: Anomaly of TWS [mm] to the mean seasonal cycle 2004 – 2010 for each KG zone. 
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VII) Composition of TWS 

Variances in Mean Seasonal Cycle 

 

 

A 20: Variance in the mean seasonal cycle of simulated snow water equivalent SWEmod, total available water W 

(SM + GW), soil moisture SM and groundwater GW of each grid cell for the period 2004 – 2010. 

 

A 21: Two times the covariance between the mean seasonal cycle of SWEmod and W resp. SM and GW of each grid 

cell for the period 2004 – 2010. Positive values/red colors indicate a positive correlation, while negative 

values/blue colors indicate a negative correlation. 



Appendix Master Thesis 

 

 

CXLVI 

Variances in Anomalies to Mean Seasonal Cycle 

 

 

 

A 22: Variance in the anomaly to the mean seasonal cycle of simulated snow water equivalent SWEmod, total 

available water W (SM + GW), soil moisture SM and groundwater GW of each grid cell for the period 2004 – 

2010. 

 

A 23: Two times the covariance between the anomaly to mean seasonal cycle of SWEmod and W resp. SM and GW 

of each grid cell for the period 2004 – 2010. Positive values/red colors indicate a positive correlation, while 

negative values/blue colors indicate a negative correlation. 
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A 24: Differences between the variances varTWSobs and varTWSmod of the mean seasonal cycle (left) and anomalies 

to the mean seasonal cycle (right) for each grid cell and the period 2004 – 2010. Negative values/blue colors 

indicate that the model overestimates TWS variability, while positive values/red color suggest underestimation of 

TWSobs variance by the model. 

 

VIII) Trends in TWS Anomaly 

 

A 25: Trend (Sen-slope) in TWSobs (left) and TWSmod (right) anomalies to the mean seasonal cycle (right) for each 

grid cell and the period 2004 – 2010. Negative values/blue colors indicate a negative trend, while positive 

values/red color suggest a positive trend. Significance is not considered. 
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A 26: Qualitative trends in the anomaly to the mean seasonal cycle of TWSmod for the period 2004 – 2010. 

 

A 27: Confusion matrix of randomly generated trend classes and qualitative trends in TWSobs anomaly. With three 

possible classes, the overall accuracy by chance is 33 %. 

   obs 
Total 

User 

Acc 
  neg not sig pos 

ra
n

d
o

m
 neg 754 787 750 2291 0.50 

not sig 488 479 520 1487 0.37 

pos 837 782 793 2412 0.38 

Total 2333 2079 2048 2063 6190 

Producer 
Acc 

0.49 0.36 0.23 0.38 0.33 
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