Discussion started: 12 April 2017 # A representation of the phosphorus cycle for ORCHIDEE (revision 3985) Daniel S. Goll¹, Nicolas Vuichard¹, Fabienne Maignan¹, Albert Jornet-Puig¹, Jordi Sardans^{2,3}, Aurelie Violette⁴, Shushi Peng⁶, Yan Sun⁶, Marko Kvakic⁷, Matthieu Guimberteau^{1,8}, Bertrand Guenet¹, Soenke Zaehle⁵, Josep Penuelas^{2,3}, Ivan Janssens⁹, and Philippe Ciais¹ Correspondence to: Daniel S. Goll (daniel.goll@lsce.ipsl.fr) **Abstract.** Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the land surface model ORCHIDEE, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for influence of nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization and biological nitrogen fixation. Changes in nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from soil to the root surface. 10 The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300yr) and a late stage (4.1 Myr) of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower as observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition. ¹Le Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE CEA/CNRS/UVSO Saclay, Gif sur Yvette, France. ²CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain ³CREAF, 08193 Cerdanyola del Vallés, Catalonia, Spain ⁴LMTG - Laboratoire des Mécanismes et Transfert en Géologie, Toulouse, France. ⁵Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena D-07701, Germany ⁶Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China ⁷ISPA, Bordeaux Sciences Agro, INRA, 33140 Villenave d'Ornon, France ⁸Sorbonne Universités, UPMC, CNRS, EPHE - UMR7619 METIS, 75252 Paris, France ⁹Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 15 #### 1 Introduction As it has been acknowledged that human activity is changing Earth's climate, it is argued that climate research needs to sharpen its view (Marotzke et al., 2017). At it's new suggested focus is the fate of the emitted carbon which is closely linked to the extensive scientific debate about the importance of nutrient limitation (nitrogen and phosphorus supply) for future land carbon uptake (for example Peñuelas et al. (2013); Wieder et al. (2015); Brovkin and Goll (2015)). Yet, none of the earth system models (ESM), which are major tools in advancing the understanding of the role of human activities in the climate system, incorporate a terrestrial phosphorus cycle. The few existing land surface models (LSM) which account for interactions between phosphorus availability and the land carbon cycle suggest a significant role of phosphorus availability for ecosystems on highly weathered soils (Wang et al., 2010; Goll et al., 2012; Yang et al., 2014) with increasing significance as carbon dioxide concentration rise (Goll et al., 2012). However, these findings are highly uncertain due to processes which are poorly constrained by current observational data: soil phosphorus sorption dynamics, phosphatase-mediated mineralization, stoichiometric plasticity, leaf nutrient recycling, and the effects of phosphorus limitation on vegetation (photosynthesis, growth, allocation, mortality) (Wang et al., 2010; Goll et al., 2012; Yang et al., 2014; Reed et al., 2015). Ecosystem manipulation experiments are shown to provide useful information to assess and evaluate LSMs (Medlyn et al., 2015; Meyerholt and Zaehle, 2015), which, in return, facilitate the interpretation of observation data and can guide the design of experiments (Medlyn et al., 2015). The long-term (6–10 years) fertilization experiment in a soil formation chronosequence in Hawaii (Harrington et al., 2001; Ostertag, 2001), with its contrasting availabilities of nitrogen and phosphorus along a soil age gradient going from young phosphorus-rich and nitrogen-poor soils to old highly-weathered soils low in phosphorus but rich in nitrogen, provides an ideal test case for the evaluation of nutrient component in LSMs (Wang et al., 2007; Yang et al., 2014). The potentially important influence of phosphorus availability on the land carbon balance and the recently initiated ecosystem scale manipulation experiments in phosphorus poor environments (for example Ama; Euc; IMB; AFE) as well as other projects related to the role of phosphorus in ecosystem functioning (for example, SPP; QUI) call for the need of new phosphorus enabled LSMs to keep track with these actions (Reed et al., 2015). Here, we describe the implementation of the terrestrial phosphorus cycle into the LSM ORCHIDEE (Krinner et al., 2005) following the principles developed earlier for the introduction of the nitrogen cycle into ORCHIDEE (Zaehle and Friend, 2010). The model is then evaluated with data from a long-term fertilization experiment in a soil formation chronosequence in Hawaii (Harrington et al., 2001; Ostertag, 2001). Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. #### 2 Methods # 2.1 Model description The land-surface model used for this study ORCHIDEE, is based on two different modules (Krinner et al. (2005), their Fig. 2). The first module describes the fast processes such as the soil water budget and the exchanges of energy, water and CO₂ through photosynthesis between the atmosphere and the biosphere. The second module simulates the carbon dynamics of the terrestrial biosphere and essentially represents processes such as maintenance and growth respiration, carbon allocation, litter decomposition, soil carbon dynamics and phenology. Global vegetation is described by 13 meta-classes which correspond to plant functional types (PFT) with a specific parameter set (one for bare soil, eight for forests, two for grasslands and two for croplands). The major modification since Krinner et al. (2005) are listed in the following: a slightly revised carbon allocation scheme from a recent side branch of ORCHIDEE (Naudts et al., 2015), which avoids the capping of leaf area index at a predefined value; an explicit representation of mesophylic conductance to CO_2 and omission of direct effects of soil moisture stress on the maximum rate of carboxylation (V_{cmax}) (Vuichard in prep); a revised thermodynamic scheme which accounts for the heat transported by liquid water into the soil, in addition to the heat conduction process (Wang et al., 2016). # 15 2.1.1 Starting version The implementation of the phosphorus (P) cycle into ORCHIDEE was done into the nitrogen enabled version of ORCHIDEE (ORCHIDEE-CN) (Vuichard in prep.). ORCHIDEE-CN is a re-implementation of the nitrogen cycle from a discontinued version of ORCHIDEE (which became OCN (Zaehle and Friend, 2010; Zaehle et al., 2011)) into a recent version of ORCHIDEE (r3623). The nitrogen cycle in OCN is well evaluated (De Kauwe et al., 2014; Zaehle et al., 2014; Walker et al., 2015; Meyerholt and Zaehle, 2015) and identical to the one in ORCHIDEE-CN except the parametrization of the relationship between leaf nitrogen concentration and maximum carboxylation capacity of photosynthesis (V_{cmax}) as ORCHIDEE (r3623) uses a different carbon assimilation scheme than originally used in Zaehle and Friend (2010). V_{cmax} is directly derived from the leaf nitrogen concentration at the respective canopy level following Kattge et al. (2009): $$V_{cmax,h} = nueN_{leaf,h}^* \tag{1}$$ where $N_{leaf,h}^*$ is nitrogen concentration in leaves at canopy level (h). $N_{leaf,h}^*$ is derived from nitrogen in leaf biomass per ground area (N_{leaf}) using an exponential canopy nitrogen profile (Johnson and Thornley, 1984). $N_{leaf,h}^*$ is corrected for a certain fraction of structural nitrogen per leaf carbon (N_{str}) which does not contribute directly to the carboxylation capacity of photosynthesis (Table 2). $$N_{leaf,h}^* = (N_{str}) \tag{2}$$ The electron transport capacity $(J_{max,h})$ is derived from $V_{cmax,h}$ using the relationship from Kattge and Knorr (2007) which accounts for acclimation of photosynthesis to monthly temperatures. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 15 Figure 1. The effects of nitrogen and phosphorus stress (sub-optimal internal availability) on vegetation and associated processes in OR-CHIDEE. A shortage of internal nutrients reduces tissue nutrient concentrations, overall growth (Equation 11), the shoot-to-root ratio of new growth (Equation 13), litter
quality, and in case of nitrogen the carboxylation efficiency of photosynthesis (Equation 1). In addition, processes enhancing the availabilities of nitrogen and phosphorus are up regulated (Equation 17&29). In the following the representation of the terrestrial phosphorus cycle and its interaction with the cycles of carbon and nitrogen are described. All variables and parameter can be found in Table 1 and 2, respectively. # Vegetation: phosphorus uptake, allocation and turnover Vegetation biomass (carbon, nitrogen and phosphorus) is separated into leaves, roots, sapwood, heartwood, short-term (labile) and long-term storage (reserves) (Zaehle and Friend, 2010; Naudts et al., 2015). We prescribed boundaries for the stoichiometry of leaves, roots, sapwood, heartwood, but not for labile and reserves (Table A1) (Zaehle and Friend, 2010). Plants take up labile dissolved phosphorus from the soil solution following the representation of root nitrogen uptake (Zaehle and Friend, 2010). Plant nutrient uptake is simulated as a function of mineral nutrient availability with the aim to account for the increase in uptake in nutrient starved plants by increasing the uptake capacity per root surface (Schachtman et al., 1998), as well as indirectly through increased root growth and exploration of the soil by roots to increase their resource acquisition (Schachtman et al., 1998). Mycorrhizae are implicitly included in root biomass as mycorrhizal hyphae show comparable uptake characteristics as roots (Schachtman et al., 1998). Due to major contribution of active uptake relative to passive uptake by water flow, we omit to explicitly simulate passive uptake (Schachtman et al., 1998). Hereby, the model does not distinguish between organic and inorganic forms of dissolved labile phosphorus. The maximum root uptake capacity (u_{max}) per root mass (C_{root}) for a given solute concentration follows the combined behavior of low-affinity and high-affinity transporter systems working in parallel which typically shows no saturation at high Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Figure 2. Litter quality feedback enhancing nutrient stress of vegetation while reducing nutrient losses from the ecosystem (a): Increasing nutrient stress reduces tissue nutrient concentrations and subsequent litter quality, which increases the immobilization demand of soil decomposition and thereby reduces the availability of nutrients to plants. The positive litter quality feedback is dampened by the stimulation of root growth, biological nitrogen fixation (b) and enhanced recycling of phosphorus (c): Increases in nitrogen or phosphorus stress up-regulates root growth and the respective processes enhancing either nitrogen (biological N_2 fixation) or phosphorus (biochemical mineralization) availability. soil solute concentrations (Kronzucker et al., 1995; Zhang et al., 2009) and is given by: $$u_{max} = v_{max} a_{root} \frac{P_{sol}}{\Theta} \left(c_k k_{Pmin} + \frac{1}{c_k K_{Pmin} / P_{sol}} \right) \tag{3}$$ Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. where v_{max} is the maximum uptake capacity, $a_{root} \frac{P_{sol}}{\Theta}$ is the dissolved labile phosphorus concentration at the root surface (Equation 22), and c_k a unit conversion factor to convert from phosphorus concentration per soil volume to phosphorus per ground area (P_{sol}) using the soil type specific parameter for soil moisture content at saturation in ORCHIDEE (mcs) as an approximation of pore space following Smith et al. (2014). The combined behavior of the two uptake systems is approximated by the term in brackets, where the linear factor (k_{Pmin}) was chosen to match the observed rate of increase in overall phosphorus uptake at high labile phosphorus concentration (low affinity transporter) (Zhang et al., 2009) (Table 2). The values for the Michaelis-Menten constants are averages of the values reported in Schachtman et al. (1998) (page 448) for K_{Pmin} of the high-affinity system (Table 2). We initially used the values reported in Bouma et al. (2001) for v_{max} for orange trees, but had to reduce these value by a factor of 10 to achieve realistic uptake behavior (Table 2). Plant uptake (F_{up}) is derived from multiplying the root uptake capacity with the root carbon mass (C_{root}) and is scaled with fPN_{plant} to account for actual phosphorus demand and with f_{temp} to avoid phosphorus accumulation in plants and soil at low temperature: $$F_{up} = u_{max}C_{root}fPN_{plant}f_{temp} \tag{4}$$ As phosphorus uptake is energetically costly (Schachtman et al., 1998), plant phosphorus uptake is down-regulated according to the P:N ratio of plant tissue (pn_{plant}) avoiding excessive uptake of phosphorus (luxury consumption) when tissue phosphorus concentration are at the prescribed maximum ($pn_{leaf,max}$): $$pn_{plant} = \frac{P_{labile} + P_{leaf} + P_{root}}{N_{labile} + N_{leaf} + N_{root}}$$ $$(5)$$ The dependency of phosphorus uptake on pn_{plant} is described as: $$fPN_{plant} = max(\frac{pn_{plant} - pn_{leaf,max}}{pn_{leaf,min} - pn_{leaf,max}}, 0.0)$$ $$(6)$$ where $pn_{leaf,min}$ and $pn_{leaf,max}$ are the minimum and maximum foliage P:N ratios. Note that, because neither the nitrogen nor the phosphorus concentration in the labile phosphorus pool (P_{labile}) is constrained by a prescribed P:N ratio ($pn_{leaf,min}$), the actual value of fPN_{plant} may be higher than 1. Further we scale plant phosphorus uptake with a temperature function (f_{temp}). We use the same equation as is used to scale soil carbon decomposition (Krinner et al., 2005), phosphorus mineralization, biochemical mineralization (Equation 17) and nitrogen uptake and mineralization (Zaehle and Friend, 2010). The equation avoids the accumulation of phosphorus in plants or soils at low temperatures, mimicking the inhibition of biological processes when soils are frozen which is not explicitly represented in ORCHIDEE. The phosphorus taken up by plants enters their labile phosphorus pool (P_{labile}) which dynamics are given by: $$\frac{dP_{labile}}{dt} = F_{up} + \sum_{i=leaf,root} \tau_i f_{trans,i} P_i - G_P + F_{reserve}$$ $$\tag{7}$$ where τ_i is the fraction of foliage or roots shed each time step, $f_{trans,i}$ is the fraction of phosphorus recycled and transferred to plant labile phosphorus before tissue is shed, G_P is labile phosphorus allocated to new biomass and $F_{reserve}$ is the flux to or from the long-term storage ($P_{reserve}$). Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Following the dynamics of labile nitrogen (Zaehle and Friend, 2010), P_{labile} is limited to a maximum size $P_{labile,max}$ which is taken as the phosphorus required to allocate the entire labile carbon pool according to the current growth rate and the maximum foliage phosphorus concentration. Any excess labile phosphorus is transferred to $P_{reserve}$ and is mobilized again if the size of the labile phosphorus pool falls below $P_{labile,max}$: $$5 F_{reserve} = \begin{cases} P_{labile,max} - P_{labile} & \text{for } P_{labile} \leq P_{labile,max} \\ P_{labile,max} - P_{labile} & \text{otherwise} \end{cases}$$ (8) Following the assumption regarding nitrogen concentration (Zaehle and Friend, 2010), the phosphorus concentration in newly grown plant tissue is assumed to depend directly on the phosphorus concentration in the labile pool, providing a link between tissue activity and labile phosphorus availability. Foliage phosphorus concentration changes are simulated explicitly, with the phosphorus content of non-foliage tissue varying in proportion to that of the foliage, as observed along gradients of soil fertility (Heineman et al., 2016). The phosphorus required (G_P) to sustain the current growth (G_C) of new tissue can be therefore written as: $$G_P = (\lambda_{leaf} f_{leaf} + \lambda_{root} (f_{root} + f_{fruit}) + f_{sap} \lambda_{sap}) (1 + D_{leaf}) n c_{leaf} p n_{leaf} G_C$$ $$(9)$$ where the f_i are the fractions of carbon allocated to foliage (i=leaf), roots (i=root), fruits (i=fruit) and sapwood (stalks for grass) (i=sap) which are calculated dynamically (Zaehle and Friend, 2010; Naudts et al., 2015), nc_{leaf} and pn_{leaf} are the nitrogen to carbon and the phosphorus to nitrogen ratio of current foliage, λ_i are the phosphorus to carbon allocation to tissue i relative to the phosphorus to carbon allocation to leaves ($\lambda_{leaf}=1$), and D_{leaf} is an empirical elasticity parameter. Analog to leaf nitrogen concentrations (Zaehle and Friend, 2010), the foliage phosphorus concentrations are a dynamic statevariables. If the labile phosphorus pool is not sufficient to maintain the current phosphorus concentration at the current carbon growth rate G_C , the phosphorus concentration of newly grown leaf tissue is allowed to decrease relative to the concentration of existing foliage. Conversely, if labile phosphorus is larger than required, and the plant is not in the phase of flushing new foliage, P concentrations are allowed to increase. To dampen day-to-day variations in tissue nutrient concentrations, such as at the beginning of the growing season an empirical elasticity parameter (D_{leaf}) is included. Meyerholt and Zaehle (2015) tested different assumption about the stoichiometric flexibility in the OCN model and showed that stoichiometric flexibility is needed to reproduce observational data from fertilization experiments, however, they found the original formulation in OCN was too flexible. Vuichard et al (in prep.) revised the formulation of the dampening equation for the leaf nitrogen concentration which is also applied for the leaf phosphorus concentration: $$D_{leaf} = \begin{cases} D_{max} (1 - exp[-(1.6
\frac{1/pn_{leaf} - 1/pn_{leaf,min}}{1/pn_{leaf,max} - 1/pn_{leaf,min}})]) & \text{for } P_{labile} < G_P \\ D_{max} exp[-(1.6 \frac{1/pn_{leaf} - 1/pn_{leaf,min}}{1/pn_{leaf,max} - 1/pn_{leaf,min}})] & \text{otherwise} \end{cases}$$ (10) We adapted the dependency of biomass growth to plant labile nitrogen availability (Zaehle and Friend, 2010) for the de-0 pendency to plant labile phosphorus availability (Figure 1): If the plant labile phosphorus concentration in vegetation fails to Discussion started: 12 April 2017 match the P requirement of biomass carbon growth, the growth of plant tissue is reduced proportionally to match phosphorus availability in the plant labile pool: $$p_{lim} = min(1.0, \frac{g_{max}P_{labile}}{G_P}) \tag{11}$$ where g_{max} is a unit-less scalar regulating the maximal daily fraction of P_{labile} allocated to growth, to avoid a complete depletion of P_{labile} at any given time-step. g_{max} is also used to regulate the allocatable fraction of labile carbon and labile nitrogen and it is a function of temperature (Naudts et al., 2015). G_P is the estimated amount of phosphorus needed to support growth. C growth is then scaled by the minimum of growth limitation factors derived from phosphorus availability (p_{lim}) and nitrogen availability (n_{lim}) (see Equation 22 in SI of Zaehle and Friend (2010)): $$10 \quad np_{lim} = min(p_{lim}, n_{lim}) \tag{12}$$ Nutrient stress in general affects the ratio leaf to root portioning of new growth: $$C_{leaf} = n_{scal} f_{LF} C_{root} \tag{13}$$ where f_{LF} is a function relating leaf mass to root mass based on the pipe theory (Shinozaki et al., 1964) as implemented by Zaehle and Friend (2010) (see equation 10 in Naudts et al. (2015)). n_{scal} is the actual nutrient stress factor and is derived from the minimum of the nitrogen (n_{scal} ,N) and phosphorus (n_{scal} ,P) stress scaling factor: $$n_{scal} = min(n_{scal,N}, n_{scal,P}) \tag{14}$$ $n_{scal,P}$ is given by the deviation of the actual plant phosphorus concentration from the maximal leaf phosphorus concentration relative to carbon concentration: $$n_{scal,P} = \frac{pc_{plant}}{pc_{leaf,ave}} \tag{15}$$ where $pc_{leaf,ave}$ is average of the maximum and minimum leaf phosphorus to carbon ratios ($pn_{leaf,min}$, $pn_{leaf,max}$, $nc_{leaf,min}$, and $nc_{leaf,max}$) and pc_{plant} the growing season average of the labile phosphorus to labile carbon concentration: $$pc_{plant} = \frac{P_{labile} + P_{root} + P_{leaf}}{C_{labile} + C_{root} + C_{leaf}}$$ $$(16)$$ The calculation of $n_{scal,N}$ follows the calculation of $n_{scal,P}$ with the exception that the deviation of the actual plant nitrogen concentration from the maximal leaf nitrogen concentration relative to carbon concentration is used (Zaehle and Friend, 2010). Turnover of biomass phosphorus follows strictly the turnover of each biomass pool as described in Krinner et al. (2005). The phosphorus fluxes are derived from the carbon fluxes and the corresponding stoichiometric ratios, subtracting a fixed fraction of the phosphorus which is resorbed and added to plant labile pool. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 # 2.1.3 Litter & soil organic matter The turnover of litter and soil organic matter follows the CENTURY model (Parton et al., 1993), which describes decomposition as a function of substrate availability, clay content, soil moisture and soil temperature. Organic matter is separated into structural and metabolic litter and three soil organic matter pools (fast, slow, passive) which differ in their respective turnover times with no vertical discretization. Due to the fast turnover of microbial communities, microbial biomass is assumed to be always adjusted to the availability of labile organic matter and is thus part of the fast soil organic matter pool. The model is described in detail elsewhere (Krinner et al., 2005; Zaehle and Friend, 2010). The nitrogen concentrations of decomposing material are assumed to vary linearly with soil mineral nitrogen content. Instead of applying a comparable (empirical) approach for the phosphorus concentration of decomposing material (Parton et al., 1993; Kirschbaum et al., 2003), the phosphorus concentrations varies mechanistically as a function of biochemical mineralization (Equation 17) (Wang et al., 2010; Goll et al., 2012; Yang et al., 2014). # 2.1.4 Biochemical mineralization Biochemical mineralization (phosphatases-mediated) decouples the mineralization of phosphorus partly from carbon decomposition and nitrogen mineralization (McGill and Cole, 1981). In contrast to "biological mineralization" of nitrogen and phosphorus, biochemical mineralization is not driven by the energy demand of microorganisms. Although phosphatase activity, which is a qualitative measure for biochemical mineralization, is common in soils (Stewart and Tiessen, 1987), the quantification of the mineralization rates in the field is not yet possible. We simulate biochemical (phosphatases-mediated) mineralization of phosphorus (F_{bcm}) with the aim to account for the observed increase in F_{bcm} when plants experience sub-optimal P-to-N availabilities as an approximation of the stoichiometric status of the whole ecosystem (Margalef et al (submitted)) including the effect of substrate availability on mineralization (McGill and Cole, 1981) (Figure 2): $$F_{bcm} = fPN_{plant}f_{temp} \sum \tau_{x,ref}P_x \tag{17}$$ where $\tau_{x,ref}$ is the turnover time of phosphorus in soil organic matter pool x (P_x) and the two other variables are scaling functions: First, biochemical mineralization is scaled according to the P:N status of vegetation (fPN_{plant}) to account for the observed link between rizosphere phosphatase activity and plant nutritional status (Fox, 1992; Hofmann et al., 2016). Second, it is scaled with the same equation used to scale mineralization and root uptake according to soil temperature. The values of $\tau_{x,ref}$ are set to half the turnover times used for the "biological mineralization" of organic matter (Krinner et al., 2005), except for $\tau_{passive,ref}$ which set to zero to account for inaccessible phosphorus in stabilized nutrient rich organic matter (Tipping et al., 2016). Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. # 2.1.5 Soil mineral phosphorus The release of phosphorus from minerals is the primary source of phosphorus for many terrestrial ecosystem. In this study, we prescribed site specific release rates (F_{weath}), but a dynamic phosphorus weathering routine is implemented in ORCHIDEE which is described in the appendix. Leaching (F_{leach}) of dissolved phosphorus (P_{sol}) occurs in proportion to fraction of soil water (Θ) lost by sum of simulated drainage and surface runoff (q): $$F_{leach} = P_{sol} \frac{q}{\Theta} \tag{18}$$ We assume that at each time step a fixed fraction (k_s) of labile phosphorus is adsorbed onto soil particles and the remaining fraction $(1-k_s)$ is dissolved. Instead of the commonly used Langmuir equation, we chose a linear approach for sorption, which works well for low soil phosphorus concentrations, which are common in most natural ecosystems (McGechan and Lewis, 2002). The calibration of the Langmuir equation for global application represent a major challenge as global datasets on soil phosphorus content are limited (Yang and Post, 2011) and parameters cannot be derived with enough confidence. Given the high sensitivity of the dynamics of available phosphorus on the sorption dynamics, we choose a simple but sufficiently constrainable approach. Thus the dynamics of sorbed labile phosphorus (P_{sorb}) are given by: $$\frac{dP_{sorb}}{dt} = k_s \frac{dP_{sol}}{dt} \tag{19}$$ The dynamics of dissolved labile phosphorus (P_{sol}) are given by (see Appendix A in Goll et al. (2012) for details): $$\frac{dP_{sol}}{dt} = (1 - k_s)(F_{weath} + F_{up} + F_{min} + F_{bcm} - \tau_{sorb}P_{sorb} - F_{leach})$$ $$(20)$$ where F_{min} is the net biological mineralization of phosphorus. The fraction of adsorbed to total soil labile phosphorus is derived from a global dataset of soil phosphorus fractions Yang et al. (2013) and we use USDA soil order specific parameter values. Further, we assume a constant rate at which adsorbed mineral phosphorus becomes strongly sorbed (τ_{sorb}) and is subsequently fixed into secondary minerals. The turnover time of sorbed phosphorus with respect to occlusion is derived from the difference in occluded phosphorus among the sites of the Hawaii chronosequence (Violette in prep.). #### 2.1.6 Root zone mineral phosphorus As the mobility of phosphorus in soil is very low, plant uptake tends to be limited by the replenishment of phosphorus to the root surface rather than by the root uptake capacity itself (Schachtman et al., 1998). We simulate the labile phosphorus concentration in soil solution in root contact as a function of plant uptake and diffusion of phosphorus from the surrounding towards the root surface without a vertical discretization. We assume that plant uptake is small compared to the actual amount of dissolved phosphorus in total soil volume (Johnson et al., 2003), and thus its effect on the dissolved phosphorus concentration is limited to a small band around the surface of roots. The diffusion of phosphorus from the surrounding to the root surface (F_{diff}) follows Fick's Law: $$F_{diff} = -D\Delta P_{sol} \tag{21}$$ Discussion started: 12 April 2017 Where D is the permeability of the soil to phosphorus and ΔP_{sol} is the difference in the phosphorus concentrations between the soil solution at the root surface $(a_{root} \frac{P_{sol}}{\Theta})$ and solution in the surrounding soil volume outside the diffusive zone around the root $(\frac{P_{sol}}{\Theta})$. Assuming a homogeneous distribution
of soil water, changes in the phosphorus concentration in the root zone are given by: $$5 \quad \Delta P_{sol} = (a_{root} - 1) \frac{P_{sol}}{\Theta} \tag{22}$$ where Θ is the volumetric soil water content and a_{root} is the relative reduction of labile phosphorus in soil solution at the root surface compared to the surrounding. As $a_{root} \leq 1$ the diffusion is a single direction flux. The permeability D is calculated analog to the diffusion coefficient of phosphorus in soils following BARRACLOUGH and TINKER (1981) which accounts for the increased path length in soil using a tortuosity factor (tf). D is further corrected for half the path length between uniform distributed root cylinders (r_{diff}) : $$D = D_0 c_{\Theta} \Theta t f \frac{1}{r_{diff}} \tag{23}$$ Where D_0 is the diffusion coefficient in free water, Θ the volumetric soil water content, and c_{Θ} a unit conversion factor. The tortuosity factor is given by a broken-line function of Θ (BARRACLOUGH and TINKER, 1981): $$tf = \begin{cases} f_1 \Theta + f_2 & \text{for } \Theta \ge \Theta_l \\ \frac{\Theta(f_1 \Theta + f_2)}{\Theta_l} & \text{otherwise} \end{cases}$$ (24) where Θ_l is the soil water content at which the two functions intercept, and f_1 and f_2 are empirical parameters (BARRA-CLOUGH and TINKER, 1981). We assume that the diffusion path (r_{diff}) can be approximated by half the distance between uniformly distributed roots. We restrict the diffusion path length to 0.1 m, as the effect of active root phosphorus uptake on the soil phosphorus concentration in distance of more than 10 cm is negligible (Li et al., 1991). Following Bonan et al. (2014), we derive half the distance between 20 roots as: $$r_{diff} = min(0.1, (\pi RLD)^{0.5}) \tag{25}$$ where the root length density (RLD) (root length per volume of soil) is given by $$RLD = \frac{M_{root}^*}{r_d \pi r_r^2} \tag{26}$$ where r_d is the root specific density and πr_r^2 is the cross sectional area calculated from fine root radius, r_r , and M_{root}^* the root biomass density in the soil volume. The changes in the difference in the labile phosphorus concentration between the root surface and the surrounding, a_{root} , are then derived by $$\frac{da_{root}}{dt} = \begin{cases} \frac{F_{diff} - F_{up}}{P_{sol}} & \text{for } F_{diff} \ge F_{up} \\ 0. & \text{otherwise} \end{cases}$$ (27) Where F_{up} is plant uptake of phosphorus as described earlier. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. # 2.1.7 Biological nitrogen fixation While inputs of nitrogen from nitrogen-rich sedimentary rocks can make a significant contribution to the nitrogen budget of specific sites (Holloway, 2002; Morford et al., 2011), the major natural inputs are from biological fixation of atmospheric dinitrogen which is in ample supply (Vitousek et al., 2013). Biological nitrogen fixation (BNF) represents a key process which can enhance nitrogen availability under elevated CO_2 (Figure 2). Here we use a commonly used representation of BNF which is derived from an empirical correlation between BNF (F_{BNF}) and evapotranspiration (ET) (Cleveland et al., 1999) in which ET is substituted with NPP as they are highly correlated (Thornton et al., 2007): $$F_{BNF} = \alpha_{bnf} \left(1 - e^{\beta_{BNF}NPP_{ann}} \right) \tag{28}$$ where β_{BNF} is an empirical coefficients and α_{bnf} was chosen such that the global rate of BNF is close to an estimate of 58 Tg(N)yr⁻¹ (Vitousek et al., 2013) for a NPP of 60 Pg(C)yr⁻¹. We introduced a scaling function (f_{Nmin} to avoid unrealistic increases in BNF due to increases in NPP in case soil mineral nitrogen is in ample supply (Thomas et al., 2013). $$F_{BNF} = c_{bnf}\alpha_{bnf}(1 - e^{\beta_{BNF}NPP_{ann}})f_{Nmin}$$ (29) where c_{bnf} is a factor to convert from the annual flux to a flux per time step, and NPP_{ann} is the running average of the sum of net primary productivity during the last 12 months. The scaling function f_{Nmin} is from Zaehle and Friend (2010) where it is used to the scale soil organic matter nitrogen content and given by: $$f_{Nmin} = \begin{cases} \left(\frac{n_{th} - (N_{NH4} + N_{NO3})}{n_{th}} & \text{for}(N_{NH4} + N_{NO3}) < n_{th} \\ 0.0 & \text{otherwise} \end{cases}$$ (30) where n_{th} is a threshold of 2 g(N)m⁻² and N_{Nh4} and N_{NO3} the respective concentrations of ammonia and of nitrate in the soil. # 20 2.1.8 Competition between microbes and plants The competition between microbes and plants for labile phosphorus is handled analog to the competition for soil mineral nitrogen (Zaehle and Friend, 2010). Gross phosphorus immobilization, gross biological phosphorus mineralization, biochemical mineralization, as well as plant phosphorus uptake are calculated half-hourly. At any time-step, immobilization due to litter and soil organic matter decomposition is given priority in accessing nutrients from gross biological mineralization. This is in line with recent findings regarding the variability in the nitrogen use efficiency of microbes (Mooshammer et al., 2014) which indicates a dominance of microbes in accessing soil nitrogen and results in increasing immobilization with decreasing litter nutrient content (Figure 2). The nutrient requirement for the built-up of soil organic matter, which affects the nutrients retained from litter decomposition, is dependent on the C:N:P ratio of soil organic matter, whereas the C:N ratios depend on the soil mineral nitrogen concentration Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. (Zaehle and Friend, 2010). Increasing plant uptake of nitrogen reduces the soil mineral nitrogen concentration and thereby reduces the nitrogen retained from litter decomposition in soil organic matter due to its effect on soil C:N ratios. ### 2.1.9 Input fields The parameter describing soil phosphorus sorption (k_s) is USDA soil order specific. The parameters for phosphorus release from minerals $(s_{shield}, w_l, E_{a,l})$ are lithological class specific and read in from GliM lithological map (Hartmann and Moosdorf, 2012). #### 2.2 Site scale simulation The long-term field fertilization experiment along the Hawaiian soil development chronosequence provides an ideal test case for the nutrient components of ORCHIDEE (Vitousek, 2004). We selected sites for which sufficient observational data are available (Harrington et al., 2001; Ostertag, 2001): a 300 year old site which is nitrogen limited (Thurston) and a 4.1 Million year old site which is phosphorus limited (Koke). The two sites have similar climatic conditions (Table 3) and are dominated by the same tree *Metrosideros polymorpha* (Crews et al., 1995). We run the model with observed meteorological data (Harris et al., 2014; Thornton et al., 2016) prescribing nutrient boundary conditions, namely inputs of phosphorus and nitrogen by atmospheric deposition (Chadwick et al., 1999) and inputs of phosphorus by weathering (Crews et al., 1995). To do so, we deactivated the module for dynamic phosphorus weathering (see appendix) and instead prescribed a constant site-specific release rate. In addition, we prescribe site specific physico-chemical soil properties (Crews et al., 1995; Chorover et al., 2004; Olander and Vitousek, 2004). The prescribed vegetation cover is tropical evergreen broadleaf vegetation. We equilibrated the biogeochemical cycles of the 4.1 million yr old site to the climatic conditions and the nutrient inputs using the semi-analytical spinup procedure (Naudts et al., 2015) which was extended to handle nutrient cycles. To capture the transitional nature of the 300 yr old site, we perform a 230 year long spinup simulation. The differences between the simulation duration and the actual age of the site is due to a correction for an initial amount of biomass we have to set in ORCHIDEE due to technical reason (see appendix B). We extended the spinup simulations of both sites into a set of three nutrient addition simulations: adding only nitrogen, only phosphorus, and nitrogen and phosphorus together. A total of $10~\rm g(N)m^{-2}yr^{-1}$ and $10~\rm g(P)m^{-2}yr^{-1}$ are added in the model simulations homogeneously distributed across the year. In the field the same amount per year was applied, but semi-annually (Harrington et al., 2001; Ostertag, 2001). # 2.2.1 Forcing data The meteorological forcing data for ORCHIDEE is derived from Daily Surface Weather Data on a 1-km Grid for North America (DAYMET), Version 3 (Thornton et al., 2016). The data includes meteorological information (short-wave radiation, maximum daily temperature, minimum daily temperature, daily precipitation sum) for the period 1980–2013. In DAYMET, Discussion started: 12 April 2017 **Table 1.** Variables of the model. | Variable | Units | Description | |------------------|--|---| | $V_{cmax,h}$ | $\mu\mathrm{mol}(\mathrm{CO_2})\mathrm{m}^{-2}\mathrm{s}^{-1}$ | maximum carboxylation rate of photosynthesis at canopy level $h; h \in \{1, 2, \dots, 20\}$ per leaf area | | $J_{max,h}$ | $\mu\mathrm{mol}(\mathrm{CO_2})\mathrm{m}^{-2}\mathrm{s}^{-1}$ | maximum electron transport capacity of photosynthesis at canopy level $h; h \in \{1, 2, \dots, 20\}$ per leaf are | | $N_{leaf,h}^*$ | $g(N)m^{-2}$ | leaf nitrogen concentration at canopy level $h; h \in \{1, 2, \dots, 20\}$ per leaf area | | u_{max} | $g(P)g^{-1}(C)30minutes^{-1}$ | maximum root uptake capacity | | C_i | $g(C)m^{-2}$ | carbon in plant tissue $i; i \in \{leaf, root, sapwood, heartwood, coarseroot, fruit\}$ | | a_{root} | _ | relative reduction in dissolved phosphorus concentration at root surface
 | Θ | mm | soil water content | | P_{sol} | $g(P)m^{-2}$ | dissolved labile phosphorus in soil | | P_{sorb} | $g(P)m^{-2}$ | adsorbed labile phosphorus in soil | | F_{up} | $g(P)m^{-2}30minutes^{-1}$ | phosphorus uptake of vegetation | | fPN_{plant} | _ | scaling function | | f_{temp} | _ | temperature scaling function of biological activity | | pn_{plant} | $g(P)g^{-1}(N)$ | phosphorus to nitrogen ratio of active and easily translocatable portion of plant nutrients | | P_i | $g(P)m^{-2}$ | phosphorus in plant tissue $i; i \in \{leaf, root, sapwood, heartwood, coarseroot, fruit\}$ | | N_i | $g(N)m^{-2}$ | $\label{eq:nitrogen} \mbox{nitrogen in plant tissue } i; i \in \{leaf, root, sapwood, heartwood, coarseroot, fruit\}$ | | G_P | g(P)m ⁻² 30minutes ⁻¹ | phosphorus allocated to growth | | $F_{reserve}$ | $g(P)m^{-2}30minutes^{-1}$ | flux between labile and reserve phosphorus pools | | $P_{labile.max}$ | g(P)m ⁻² | maximum size of labile phosphorus pool | | D_{leaf} | - | empirical elasticity parameter for stoichiometry | | pn_{leaf} | $g(P)g^{-1}(N)$ | foliage phosphorus to nitrogen ratio | | nc_{leaf} | $Pg(N)g^{-1}(C)$ | foliage nitrogen to carbon ratio | | G_C | g(C)m ⁻² 30minutes ⁻¹ | carbon allocated to growth | | g_{max} | - | daily fraction of P_{labile} available for growth | | p_{lim} | _ | growth limitation factor derived from phosphorus availability | | n_{lim} | _ | growth limitation factor derived from nitrogen availability | | np_{lim} | _ | actual growth limitation factor | | $n_{scal,P}$ | _ | scaling factor for allocation derived from phosphorus availability | | $n_{scal,N}$ | _ | scaling factor for allocation derived from nitrogen availability | | n_{scal} | _ | actual scaling factor for allocation | | pc_{plant} | $g(P)g^{-1}(C)$ | growing season average of the labile phosphorus to labile carbon concentrations | | F_{bcm} | $g(P)m^{-2}30minutes^{-1}$ | biochemical mineralization rate of phosphorus | | P_x | g(P)m ⁻² | phosphorus in soil organic matter $x; x \in \{active, slow, stable\}$ | | F_{leach} | $g(P)m^{-2}30minutes^{-1}$ | dissolved labile phosphorus losses by leaching | | F_{weath} | $g(P)m^{-2}30minutes^{-1}$ | phosphorus release from primary minerals | | F_{min} | $g(P)m^{-2}30minutes^{-1}$ | phosphorus release from primary minerals | | F_{diff} | gm ⁻² 30minutes ⁻¹ | diffusion of phosphorus to the root zone | | ΔP_{sol} | g(P)m ⁻³ | root zone concentration gradient | | α_{root} | - | relative reduction of labile phosphorus in soil solution at the root | | D | $m30minutes^{-1}$ | soil permeability to phosphorus | | r_{diff} | m | half distance between root cylinders | | tf | _ | tortuosity factor of diffusion | | RLD | mm^{-3} | root length per volume of soil | | M_{root}^* | g(dryweight)m ⁻³ | root biomass density in soil volume | | F_{BNF} | g(N)m ⁻² 30minutes ⁻¹ | nitrogen biologically fixed from the atmosphere | | NPP_{ann} | g(N)m ⁻² 30minutes ⁻¹ | running average of net primary productivity during the last 12 months | | f_{Nmin} | - | BNF dependence on soil mineral nitrogen concentration | Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Table 2. Parameter of the model. | Parameter | Value | Units | Description | Source | |-----------------|-------------------------|--|---|--| | t | 0.0208333 | day | time step of 30 minutes | - | | nue | PFT specific | $\mu\mathrm{mol}(\mathrm{CO_2})\mathrm{g}^{-1}(\mathrm{N})\mathrm{s}^{-1}$ | nitrogen use efficiency of photosynthesis | Kattge et al. (2009) | | N_{str} | $4. \times 10^{-3}$ | $g(N)g^{-1}(C)$ | structural leaf nitrogen | Ali et al. (2015) | | v_{max} | 4.31×10^{-6} | $g(P)\;g(C)\;t^{-1}$ | maximal uptake capacity of roots | calibrated | | K_{Pmin} | 3. | $\mu\mathrm{mol}(\mathrm{P})l^{-1}$ | dissolved phosphorus concentration at which uptake equals $\frac{v_{max}}{2}$ | Schachtman et al. (1998) | | k_{Pmin} | 0.01 | $\mu\mathrm{mol}(\mathrm{P})l^{-1}$ | linear increase in p uptake for high phosphorus concentrations | calibrated Zhang et al. (2009) | | c_k | depends on soil order | $g(P)l\mu mol^{-1}(P)m^{-2}$ | unit conversion factor | this study | | $pn_{leaf,min}$ | PFT specific | $g(P)g^{-1}(N)$ | minimum foliage phosphorus to nitrogen ratio | McGroddy et al. (2004) | | $pn_{leaf,max}$ | PFT specific | $g(P)g^{-1}(N)$ | maximum foliage phosphorus to nitrogen ratio | McGroddy et al. (2004) | | $nc_{leaf,min}$ | PFT specific | $Pg(N)g^{-1}(C)$ | minimum foliage nitrogen to carbon ratio | Zaehle and Friend (2010) | | $nc_{leaf,max}$ | PFT specific | $Pg(N)g^{-1}(C)$ | maximum foliage nitrogen to carbon ratio | Zaehle and Friend (2010) | | $pc_{leaf,ave}$ | PFT specific | $g(P)g^{-1}(C)$ | average leaf phosphorus to carbon ratio | Zaehle and Friend (2010); McGroddy et al. (2004) | | $ au_i$ | PFT specific | _ | fraction of tissue i shed per time step | Krinner et al. (2005) | | $f_{trans,i}$ | 0.57 | _ | retranslocated fraction of tissue phosphorus | McGroddy et al. (2004) | | λ_i | PFT and tissue specific | $g(P)g^{-1}(C)$ | phosphorus to carbon allocation to tissue $i; i \in \{root, sapwood\}$ relative to leaves | McGroddy et al. (2004); Sardans et al. (2015) | | D_{max} | 0.25 | _ | maximum change in phosphorus to nitrogen ratio of new biomass | Zaehle and Friend (2010) | | | | | relative to existing biomass | Vuichard in prep. | | $\tau_{x,ref}$ | pool specific | yr^{-1} | inverse of decomposition rate of phosphorus in | | | | | | soil organic matter pool x due to biochemical mineralization | calibrated | | k_s | depends on soil order | _ | fraction of labile in soil solution | this study | | τ_{sorb} | 9125. | day^{-1} | rate of strong sorption | this study | | D_0 | 1.581×10^{-2} | m^2t^{-1} | phosphorus diffusion coefficient in free water at 25 degree C | Mollier et al. (2008) | | c_{Θ} | $1. \times 10^{-3}$ | _ | unit conversion factor | this study | | Θ_l | 0.12 | $\mathrm{m^{3}(H_{2}O)m^{-3}(soil)}$ | soil water content at which the two functions intercept | BARRACLOUGH and TINKER (1981) | | f_1 | 1.58 | _ | empirical factor | BARRACLOUGH and TINKER (1981) | | f_2 | -0.17 | _ | empirical factor | BARRACLOUGH and TINKER (1981) | | r_d | 0.31×10^{6} | $g(dryweight)m^{-3}(root)$ | root specific density | Bonan et al. (2014) | | r_r | 0.29×10^{-3} | m | root radius | Bonan et al. (2014) | | α_{bnf} | 0.967 | $g(N)yr^{-1}$ | scaling factor for BNF | this study | | β_{bnf} | -3×10^{-3} | $yrg^{-1}(C)$ | empirical factor | Cleveland et al. (1999) | | Cbnf | 57.039×10^{-6} | = | unit conversion factor | this study | | n_{th} | 2. | $g(N)m^{-2}$ | threshold soil mineral nitrogen concentration | Zaehle and Friend (2010) | the mean annual surface temperature and annual sum of precipitation for the actual locations of the two sites (Table 3) substantially deviate from the values reported at site (Crews et al., 1995). Therefore, we pick the closest site nearby Thurston (16km distance; lat=19.8318,lon= -155.411) which has an annual sum of precipitation of $2500\pm250 \,\mathrm{mmyr}^{-1}$ and an average annual temperature $16\pm1\,^{\circ}\mathrm{C}$ as reported in Crews et al. (1995) and use it for both sites (as the DAYMET data for the Koke island did not include any grid point with appropriate climate). We extract additional information which is needed to run ORCHIDEE, namely surface pressure, long-wave downward radiation, and wind, from a 0.5 x 0.5 degree reanalysis data set (CRU-NCEP) (Harris et al., 2014) using the coordinates of the Thurston site. We correct surface pressure from CRU-NCEP with the actual altitude of each site using a lapse rate and derive specific humidity from water pressure, air temperature and surface pressure. The annual inputs of nutrients by atmospheric deposition and weathering (Table 3) are kept constant and are evenly distributed throughout the year. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 # 2.2.2 Site specific parametrization We use site information collected from literature (Harrington et al., 2001; Ostertag, 2001) to parametrize the model (Table 3). We account for differences in the soil characteristics between sites, but use a common parametrization for biological processes. Thereby, we are able to evaluate the differences in vegetation due to differences in soil characteristics and chemical weathering solely. As soils are not vertically discretized in ORCHIDEE, we average observations when given for different soil horizons. The soil fractions for the Thurston are assumed to be 50% sand and 25% silt and 25% clay due to lack of site specific information. We calibrate the soil phosphorus sorption coefficient, k_s , of the 4.1Myr site by adjusting phosphorus availability so that simulated net primary productivity is close to observations. The value of k_s for the 300yr site is derived from the calibrated value for the 4.1k yr site and the relative difference in soil phosphorus sorption capacity between the two sites as computed dynamically in the P-enabled version (Violette in prep) of the mechanistic weathering model WITCH (Goddéris et al., 2006). P release rates from primary and secondary minerals are inferred from the observed differences in the chemical composition of minerals between sites along the chronosequence from (Crews et al., 1995) (Violette in prep). The reference decomposition rate of soil organic matter pools by biochemical mineralization ($\tau_{x,ref}$) are chosen so that the nitrogen to phosphorus ratio of soil organic matter is close to observation of approximately 10
g(N)g⁻¹((P) for sites older than 10kyr in the Hawaiian chronosequence (Crews et al., 1995). This is a common procedure Wang et al. (2010); Goll et al. (2012); Yang et al. (2014) as this flux remains yet to be quantified in the field. We prescribe observed values for specific leaf area, which is a fixed parameter and does not vary over time, and use the 25th and 75th percentile of observed values of leaf P:N of the dominant tree species (KATTGE et al., 2011) as boundaries for the leaf P:N ratio. We further increase the critical leaf age, which scales leaf turnover related to leaf age in ORCHIDEE, from 1.4 yr to 6 yr to account for the substantially longer lifespan of leaves at both sites (Harrington et al., 2001) compared to the default value of ORCHIDEE (Naudts et al., 2015). Following Yang et al. (2014), we adjust the turnover of the passive soil organic matter pools to achieve soil organic carbon stocks at the 4.1Myr close to the observations. The adjusted parameters are used for both sites. The remaining parameter (including parameter for biological nitrogen fixation) are taken from the global parametrization of ORCHIDEE of the tropical evergreen broadleaf PFT (SI Table A1). # 2.2.3 Analysis We aggregate estimates of root production approximated by soil respiration from Ostertag (2001) and compare it to the simulated below-ground component of NPP (namely, NPP allocated to below-ground sapwood, below-ground heartwood, and fine roots). We sum the simulated above-ground component of NPP allocated to sapwood and heartwood and compare it to estimates of wood production based on wood increment and woody litter fall (Harrington et al., 2001). All other components of simulated NPP (fruit, leaf, reserve) are pooled and compared to estimates of non-woody NPP based on litterfall (Harrington Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. et al., 2001). Simulated nutrient use efficiencies (NUE,PUE) are calculated as $$XUE = \frac{NPP}{X_{uptake}} \tag{31}$$ where NPP is annual NPP and X_{uptake} the annual uptake of nutrient $X; X \in \{N, P\}$. Simulated nutrient use efficiencies are then compared to estimates derived from on leaf litter fall, root growth and wood increment in combination with the chemical composition of leaves and wood (Harrington et al., 2001). We further separated the nutrient use efficiencies into its underlying components, carbon production rate per biomass nutrient (X_{prod}) and nutrient residence time (X_{MRT}) , following Finzi et al. (2007): $$XUE = \underbrace{\frac{NPP}{X_{content}}}_{X_{prod}} \times \underbrace{\frac{X_{content}}{X_{uptake}}}_{X_{MRT}}$$ (32) where $X_{content}$ is the whole plant content $[g(X)m^{-2}]$ of nutrient $X; X \in \{N, P\}$. No information on below-ground productivity is available for the fertilization treatment (Harrington et al., 2001). Thus, we calculate above-ground nutrient use efficiencies (aNUE, aPNUE) using above-ground NPP instead of total NPP. Simulated apparent leaf lifespan (including climatic effects) is calculated by dividing the annual mean of leaf mass by the annual sum of NPP allocated to leaf growth. We calculate the rate by which soil organic phosphorus is biochemically mineralized and compare it to measurements of phosphatase activity (Olander and Vitousek, 2000) as a proxy of potential biochemical mineralization due to lack of alternatives. The uncertainty ranges of simulated variables are given by the standard deviation of annual values. We perform Student's t-tests to determine if the fertilization treatments resulted in significantly differences in the tested variables compared to the control experiment in observations (when sufficient information is available) and simulations. ### 3 Results & discussion #### 20 3.1 Control simulation The comparison of carbon and nutrient cycle related ecosystem properties in the control simulations with observations allow to detect model biases which facilitate the evaluation of the outcome of the fertilization experiments. Net primary productivity (NPP) at both sites is well reproduced by the model (Figure 3). The good agreement of NPP at the 4.1Myr site is due to the calibration of the dissolved fraction labile phosphorus (k_s). The NPP at the 300yr site was not calibrated and thus is an independent model outcome. The simulated inter-annual variation in NPP at the 4.1Myr site is very large compared to the 300yr site. The larger variability is caused by an amplification of the drought induced reduction in plant growth under conditions of low phosphorus availability: During periods of drought the soil permeability to phosphorus is reduced and the root zone is more likely to get phosphorus depleted (see appendix C). During longer periods of drought the increased litterfall and subsequent immobilization of phosphorus during litter decomposition further reduces the overall soil phosphorus availability. As a result plant access to phosphorus is lowered and growth diminished. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Table 3. The site conditions prescribed for the simulation for the 300yr old site and the 4.1Myr old site along the Hawaii chronosequence. | | Thurston | Koke | Source | |---|-------------------------|-------------------------|-----------------------------| | latitude [°N] | 19.4140 | 22.1390 | Vitousek (2004) | | longitude [°W] | 155.2353 | 159.6245 | Vitousek (2004) | | altitude [m] | 1176 | 1134 | Crews et al. (1995) | | age [yr] | 300 | 4.1×10^{6} | Vitousek (2004) | | mean annual temperature [$^{\circ}$ C] | 16 | 16 | Crews et al. (1995) | | mean annual precipitation $[\mathrm{mmyr}^{-1}]$ | 2500 | 2500 | Crews et al. (1995) | | N deposition $[gm^{-2}yr^{-1}]$ | $0.6 {\pm} 0.4$ | $0.6 {\pm} 0.4$ | Chadwick et al. (1999) | | P deposition $[mgm^{-2}yr^{-1}]$ | $0.9 {\pm} 0.3$ | 0.9 ± 0.3 | Chadwick et al. (1999) | | P release $[mgm^{-2}yr^{-1}]$ | 434.0 | 0.265 | Violette in prep. | | soil order | Entisols | Oxisols | Vitousek (2004) | | soil pH | 5.0 | 3.8 | Chorover et al. (2004) | | soil bulk density [kgm ⁻²] | 300 | 575 | Olander and Vitousek (2004) | | soil texture (clay:silt:sand) [%] | 25:25:50 | 17:79:4 | Olander and Vitousek (2004) | | dissolved fraction labile $P(k_s)$ [] | 140×10^{-3} | 70×10^{-3} | Violette in prep. | | specific leaf area $[m^2g^{-1}(C)]$ | 11.236×10^{-3} | 11.236×10^{-3} | Vitousek (2004) | | max. foliage N:P ratio $(np_{leaf,max})[g(N)g^{-1}(P)]$ | 18. | 18. | (Kattge et al., 2009) | | min. foliage N:P ratio $(np_{leaf,min})[g(N)g^{-1}(P)]$ | 12.83 | 12.83 | (Kattge et al., 2009) | | critical leaf age [yr] | 5.9 | 5.9 | Harrington et al. (2001) | The model tends to capture the allocation pattern of NPP to the different plant tissues (Table 4). While wood growth is overestimated at both sites, the relative allocation to leaf and roots is rather well reproduced: The simulated ratio between root and leaf growth of 1.50 and 1.53 for the 300yr and 4.1 Myr site, respectively, is somewhat higher than observed (1.36 and 1.33). This shows that the allocation scheme in ORCHIDEE, which accounts in a simplistic way for changes in the allocated fraction of NPP into below-ground allocation in response to stress (light, nutrient, water) (Zaehle and Friend, 2010; Naudts et al., 2015) gives reasonable results. The simulated biomass stocks are in good agreement with the observations, with the exception of fine root mass at the 300yr site and woody biomass at the 4.1Myr site (Figure 3). As wood growth is overestimated, the low woody biomass can be linked to an overestimation of wood turnover (appendix D). Comparably, the overestimation of fine root biomass at the 300yr site is linked to a too high turnover of fine roots (appendix D). The large differences in observed fine root turnover between sites (Ostertag, 2001) cannot be captured by the model as fine root turnover is constant in ORCHIDEE. Nutrient use efficiencies (NPP divided by plant nutrient uptake) are implicit plant properties that depend on the tissue stoichiometry, as well as the relative allocation of NPP to the various plant organs and their respective turnover rates. The nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) are underestimated between 50–60% at both sites (Table 4). Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Figure 3. Comparison between simulations (mean \pm standard deviation) and observations (mean \pm standard deviation - if available) at the 300yr old site (a), and the 4.1 Myr old site (b) along the Hawaii chronosequence. Net primary productivity (NPP) is given in $g(C)m^{-2}yr^{-1}$, the standing stocks of foliage, stems (incl. coarse roots), fine roots, and soil organic matter (SOM) are given in $g(C)m^{-2}$. The standard deviation in case of simulations indicates the inter-annual variability, not model error. The analysis of the underlying components of nutrient use efficiencies following Finzi et al. (2007) (Equation 32), indicate that the underestimation of NUE is mainly driven by the low carbon productivity per plant nitrogen (N_{prod}), while the low bias in PUE is due to a combination of low P_{prod} and the short residence time of plant phosphorus (P_{MRT}) (appendix D). The low N_{prod} and P_{prod} at the 300yr site can be attributed to the overestimation wood biomass and its nitrogen content (appendix D). At the 4.1yr site the underestimation of nutrient content of biomass and wood biomass has opposing effects on the nutrient use efficiencies. The general underestimation of the residence time of phosphorus (Table 4) is likely due a underestimation of the phosphorus content of long-lived plant tissue and the overestimation of wood turnover.
Additionally, the extremely low concentration of plant available phosphorus at the 4.1Myr site results in a set of physiological and morphological Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. **Table 4.** Vegetation characteristics at the 300yr old site and the 4.1Myr old site along the Hawaii chronosequence under natural nutrient condition (control simulation) (mean±standard deviation). The observation based estimates (mean±standard deviation) are from Crews et al. (2001); Harrington et al. (2001); Ostertag (2001). * prescribed parameter. Standard deviation of observation only given when sufficient information is available in the original publication. | | 300yr o | ld site | 4.1Myr | old site | |--|--------------------|-------------------|-------------------|-------------------| | | simulated | observed | simulated | observed | | NPP [gm ⁻² yr ⁻¹] | 784.±347. | 789.±63. | 710.±575. | 757±73 | | NPP _{leaf} [%] | 16. | 25. | 15. | 21. | | $NPP_{stem}[\%]$ | 60. | 41. | 62. | 50. | | NPP _{root} [%] | 24. | 34. | 23. | 28. | | NUE $[g(C)g^{-1}(N)]$ | 115.91 ± 303.5 | 229.9 ± 17.9 | 103.0 ± 89.7 | 224.8 ± 32.7 | | $N_{prod} [g(C)g^{-1}(N)yr^{-1}]$ | $12.1 {\pm} 5.4$ | 27.3 | 12.2 ± 7.8 | 25.0 | | N_{MRT} [yr] | $9.5 {\pm} 112.2$ | 8.4 | $8.4 {\pm} 19.9$ | 9.0 | | $PUE [g(C)mg^{-1}(P)]$ | 1.63 ± 6.04 | $3.22 {\pm} 0.23$ | $1.85{\pm}1.07$ | $3.86{\pm}0.53$ | | $P_{prod} [g(C)mg^{-1}(P)yr^{-1}]$ | 0.17 ± 0.08 | 0.26 | $0.28 {\pm} 0.21$ | 0.24 | | P_{MRT} [yr] | $9.6{\pm}162.2$ | 12.2 | 7.3 ± 60.5 | 16.0 | | biological nitrogen fixation $[g(N)yr^{-1}]$ | $2.25 {\pm}.96$ | 2–3 | $1.71 {\pm} .32$ | - | | leaf lifespan [yr] | 7.6 ± 5.3 | $8.2 {\pm} 1.8$ | $6.3 {\pm} 4.5$ | $3.6 {\pm} 0.6$ | | leaf nitrogen content [% (dry weight)] | 1.33 ± 0.10 | 0.73 ± 0.05 | 1.19 ± 0.41 | $0.95 {\pm} 0.13$ | | leaf phosphorus content [‰(dry weight)] | $0.88 {\pm} 0.11$ | $0.58 {\pm} 0.06$ | $0.66 {\pm} 0.00$ | $0.55 {\pm} 0.04$ | | leaf $N:P$ ratio $[g(N)g^{-1}(P)]$ | 15.1 ± 1.6 | $12.6 {\pm} 1.6$ | 18.0 ± 0.03 | 17.3 ± 2.7 | | N retranslocated [%] | 50* | 41 ± 12 | 50* | 55±6 | | P retranslocated [%] | 57* | 50±9 | 57* | 59±3 | adaptations mechanisms which increase P_{MRT} but are not resolved in ORCHIDEE (for example changes in root morphology and turnover and leaf phosphorus recycling) (Schachtman et al., 1998; Niu et al., 2013; Reed et al., 2015). In ORCHIDEE the somewhat longer nutrient residences times at the young site are primarily due to the site's transient state in which biomass is still accumulating (appendix D). The simulated inter-annual variabilities in nutrient use efficiencies, in particular in the simulated NUE at the 300yr site, are very large due a substantial, but highly variable, contribution of nutrients from internal reserves to new biomass growth (not shown). Reserves can amount of up to 75% of peak nutrient content in fine roots and leaves during the last growing season for evergreen plant functional types in ORCHIDEE (Zaehle and Friend, 2010). In the model, variations in reserves can be large in nutrient poor environments which are subject to periods of reduced growth unrelated to nutrient starvation (here: drought). During droughts the nitrogen reserves are filled with foliage nitrogen which is recycled prior leaf fall, while the nitrogen Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 reserves are depleted when water availability and subsequent growth is high. Defoliation experiments indicate that plants can rely on substantial amounts of internally stored reserves of carbohydrate and nutrients which allow them to survive multiple defoliation events (Hartmann and Trumbore, 2016), however the extent to which plant rely on internal storages are strongly species dependent (Piper and Fajardo, 2014), and the role of nutrient is often overlooked (Hartmann and Trumbore, 2016). Nonetheless, Ichie and Nakagawa (2013) showed that in *Dryobalanops aromatica* stored phosphorus accounted for 67.7% of the total phosphorus requirements for reproduction, while stored N accounted for only 19.7%, indicating substantial nutrient reserves in tropical trees. The simulated leaf N:P ratio is with 15.1 at the 300yr site somewhat higher than the observation of 12.6 ± 1.56 , which lies just outside the lower boundary $(np_{leaf,min})$ of 12.83 in ORCHIDEE (Table 4). At the 4.1Myr site, the simulated leaf N:P ratio is with 18.0 $g(N)g^{-1}(P)$ close to the observation of 17.3 $g(N)g^{-1}(P)$ and equals the upper boundary prescribed in ORCHIDEE ($np_{leaf,max}$). Foliage N:P ratios of less than 14 are commonly associated with nitrogen limitation and ratios above 16 with phosphorus limitation (Koerselman and Meuleman, 1996). Although simulated leaf nitrogen concentration of 1.19 %(dryweight) is 60% higher than observed, it is substantially lower than the optimal concentration prescribed ($cn_{leaf,min}$) of 3.33 %dryweight) indicating substantial effects of nitrogen stress on productivity and allocation at the 300 yr site. Thus, despite being useful tools, the common use of threshold stoichiometric ratios and models with rigid plant traits is somewhat limited when it comes to species specific responses (Verheijen et al., 2016). At the 300yr site, the simulated C:N:P stoichiometry of soil organic matter is with 309:16:1 nearly twice as rich in phosphorus as observed (425:28:1). As no significant difference in phosphatases activities among sites were observed (Ostertag, 2001) and the biochemical mineralization in ORCHIDEE is calibrated to achieve realistic phosphorus concentration in soil organic matter on the long term (4.1 Myr site), the deviation of the simulated from observed phosphorus concentrations has to processes other than biochemical mineralization. A recent data analysis suggests that during initial stages of decomposition losses of carbon and phosphorus are proportional, but there are smaller relative losses of nitrogen, due interactions between soil organic matter and the physical soil environment (Tipping et al., 2016). Reduced losses of nitrogen during initial stages of decomposition would lead to elevated N:P during early stages of soil development compared to later stages. As the simplistic soil decomposition in ORCHIDEE (Parton et al., 1993) omits interactions between soil organic matter and the physical soil environment (Doetterl et al., 2015; Tipping et al., 2016), it fails to reproduce the strong influence of litter stoichiometry on the overall soil stoichiometry. At the 4.1 Myr site, the C:N:P stoichiometry of the soil organic matter is with 158:12:1 relatively close to the observed C:N:P ratio of 215:10:1. The realistic phosphorus content of soil organic matter indicates that the relative contribution of biochemical mineralization is sufficiently well calibrated in the model. It has to be noted, that recent findings indicate a preferential physical stabilization of nutrient rich soil organic matter (Tipping et al., 2016) and a role of phosphatases in rendering organic compounds available as a carbon source to microbes (Spohn and Kuzyakov, 2013). Both findings challenge the classical view of a primary control of biochemical mineralization on the soil organic matter phosphorus concentration (Walker and Syers, 1976). Thus the common calibration approach (Wang et al., 2010; Goll et al., 2012; Yang et al., 2014) might be shortsighted. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 The nitrogen fixation rate of $2.25\pm.96~\mathrm{gm^{-2}}$ at the $300\mathrm{yr}$ site lies within the range observed among sites during early (<150vr) soil development in Hawaii (Crews et al., 2001) (Table 4). The lower fixation rates at the 4.1Mvr site indicate a higher availability of nitrogen from the soil than at the 300yr site. As the regulation mechanisms of nitrogen fixation are elusive (Barron et al., 2009; Vitousek et al., 2013) we only account for direct product inhibition control, a common regulation mechanism in biological systems, via soil mineral nitrogen concentrations (Equation 29), omitting a direct influence of phosphorus availability on nitrogen fixation (Vitousek et al., 2013). In summary, the model is able to capture biomass stocks and NPP reasonably well and - more important - captures the contrasting nutritional states of vegetation among the two sites, indicated by the foliage N:P ratio. As we prescribe a common parametrization of vegetation characteristics for both sites, the differences in the leaf stoichiometry is the emergent outcome of the process governing the access of plants to nutrients and their response to two contrasting situation of nutrient availability. The model fails to reproduce difference in the allocation of NPP to different tissue and tissue turnover between sites, due to omission of plasticity in general for tissue turnover and due to insufficient flexibility in processes which account for environmental effects (allocation). The simulations suggest that the recycling and storage of nutrients in ecosystems subject to periods of drought or other nutrient-unrelated declines in foliage and growth are an important source of nutrients for new growth. We show that the approach of calibrating biochemical mineralization rates using the soil organic matter stoichiometry is problematic, which is in line with growing evidence about the physical stabilization of soil organic matter (Doetterl et al., 2015; Tipping et al., 2016) and new insights into the functioning of phosphatase (Spohn and Kuzyakov, 2013). We further show, that despite ORCHIDEE's intended application when designed, the model is able to capture to a large degree the general state of an ecosystem in a early stage of soil development. #### 20 3.2 Fertilization experiment To evaluate the simulated response of
vegetation to nutrient addition, we perform three nutrient treatment simulation per site: addition of either nitrogen (+N) or phosphorus (+P), or the combined addition of both (+NP). The annual addition rates of nitrogen and phosphorus of $10 \text{ gm}^{-2}\text{yr}^{-1}$ are similar to the field experiments. The model captures the signs of change in net primary productivity (NPP) to the fertilization treatments at both sites: at the 300yr site NPP strongly reacts to the addition of nitrogen, but not to the addition of phosphorus, while at the 4.1Myr site NPP strongly reacts to the addition of phosphorus, but not to the addition of nitrogen (Figure 4). For the 4.1Myr site, also the size of the simulated response ratio (defined as NPP of the nutrient addition experiment divided by the NPP of the control experiment) is comparable to the observed response ratio. At the 300yr site, the simulated positive effect of nitrogen deviates from the observation but is still within the range of uncertainty. However, the synergistic effects of combined addition are not captured by the model, as the model simulates a background phosphorus availability at the 300yr site which is high enough to support the nitrogen stimulated growth. The increases in the NPP per leaf area (NPP/LA) are more pronounced than the increases in leaf area index when nitrogen stress is alleviated (300 yr site), whereas the increases in NPP/LA are comparable to the increases in leaf area index when phosphorus stress is alleviated (4.1 Myr site) (Table 5), in both model and observations. Such a model behavior can be expected Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. **Figure 4.** Comparison of simulated and the observed responses of net primary production to fertilization at the 300yr old site (a) and the 4.1Myr old site (b) along the Hawaii chronosequence. The response ratio is the measured or modeled plant production in the fertilizer treatment divided by its value under unfertilized conditions. The bars represent the measurement uncertainty and the annual variability in simulations, respectively. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 5 **Table 5.** The response of net primary productivity, leaf area index, nutrient use efficiencies and foliar stoichiometry to nutrient addition at the 300yr old sites and the 4.1Myr old site along the Hawaii chronosequence. Given are the relative difference between the nutrient addition experiments and the control simulation and in brackets in the observed changes (Harrington et al., 2001; Ostertag, 2001). We used a Students t-test to test if nutrient addition resulted in a significant difference in the respective variables. If significant (p>0.1) the values are in bold. | | | 300yr old site | : | | 4.1Myr old site | | | |----------------------------|-------------|---------------------|---------------------|---------------------|--------------------|---------------------|--| | | +N | +P | +NP | +N | +P | +NP | | | NPP | +61 (+105)% | 0 (0)% | +60 (+150)% | -4 (0)% | +44 (+50)% | +81 (+60)% | | | NPP/LA | +44 (+86)% | 0 (+72)% | +43 (+128)% | -6 (+41)% | +7 (+32)% | +39 (+31)% | | | LAI | +14 (0)% | 0 (-13)% | +13 (+30)% | +5 (-11)% | +40 (+19)% | +38 (+31)% | | | ANUE (ANPP/NUP) | -22 (+11)% | 0 (+32)% | -21 (+12)% | -25 (-10)% | +3 (+30)% | -23 (-20)% | | | APUE (ANPP/PUP) | -56 (+33)% | -4 (-45)% | -59 (-35)% | +27 (+2)% | -8 (-63)% | -32 (-65)% | | | foliar N:P ratio | -13 (+25)% | -4 (-45)% | -15 (-20)% | 0 (-10)% | -28 (-82)% | -4 (-64)% | | | foliar N content | +40 (+16)% | 0 (-10)% | +46 (+7)% | -15 (+11)% | +30 (-14)% | +106 (+22)% | | | foliar P content | +61 (-7)% | +2 (+64)% | +70 (+33)% | -15 (+22)% | +66 (+467)% | +115 (+342) | | | biochemical mineralization | +233 (+62)% | -21 (-63)% | +104 (-23)% | +39 (+32)% | -67 (-24)% | -30 (-55)% | | due to lack of a direct effect of foliage phosphorus concentration on photosynthesis (Figure 1). While the link between leaf nitrogen concentration and the carboxylation efficiency of photosynthesis (V_{cmax}) is well established (Kattge et al., 2009), the role of leaf phosphorus concentration on photosynthesis is less clear as nitrogen and phosphorus concentrations usually co-vary (Reich et al., 2009; Kattge et al., 2009; Domingues et al., 2010; Walker et al., 2014; Bahar et al., 2016; Norby et al., 2016). The model fails to capture the drop in leaf area index when the non-limiting nutrient is added (which is phosphorus for the 300yr site and nitrogen for the 4.1Myr site). The causes for the drop are unclear (Harrington et al., 2001), but could be related to a increase in grazing in the fertilized plots due to the higher nutrient content of foliage compared to the surrounding (Casotti and Bradley, 1991; Campo and Dirzo, 2003). The model fails to capture the observed reduction in the nutrient use efficiency (NUE, PUE) when the non-limiting nutrient is added (which is phosphorus for the 300yr site and nitrogen for the 4.1Myr site). This can be attributed to the omission of excessive plant uptake of nutrients (luxury consumption) which drives the observed reduction in the use efficiencies of the non-limiting nutrient (Harrington et al., 2001). As luxury consumption doesn't directly affect plant growth (Lawrence, 2001; Van Wijk et al., 2003) and is strongly species dependent (Lawrence, 2001) it is omitted in the model. The model tends to overestimate increases in leaf nitrogen concentration in response to nitrogen addition, while increases in leaf phosphorus concentration in response to phosphorus addition are underestimated (Table 5). This points towards biases in the availability of added nutrients. ORCHIDEE is prone to overestimate sorption losses when labile phosphorus concentration is substantially elevated above natural levels as the linear phosphorus sorption applied here cannot capture the increase in the dissolved fraction when the sorbed fraction approaches the maximum sorption capacity of the soil. The simulation setup of Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. applying fertilizer evenly during the year instead in two fertilization events, underestimates nitrogen losses due to the non-linear relationship between soil emissions and substrate availability (Shcherbak et al., 2014). The responses of biochemical mineralization to nutrient addition tend, with some exceptions, to mirror the observed changes in potential phosphatase activity (Table 5). This indicates that the simplistic approach for biochemical mineralization applied in ORCHIDEE seems to capture the general behavior of phosphatase activity. However, it does not allow do draw any conclusion about the overall significance of biochemical mineralization to total mineralization, which represents a major uncertainty for modeling phosphorus cycling (Goll et al., 2012; Yang et al., 2014; Reed et al., 2015). In summary, the model is able to capture the contrasting responses to the three fertilization treatments among the two sites. We find further that differences between sites in the underlying changes in LAI and NPP/LA are partly captured by the model: The alleviation of nitrogen stress at the 300yr site increases NPP/LA more strongly than LAI, while the alleviation of phosphorus stress increases NPP/LA and LAI equally (Table 5). Nonetheless, the model underestimates the nitrogen limitation of productivity at the 300yr site. The nitrogen capital of this site strongly depends on the nitrogen inputs and the efficiency at which nitrogen is retained in the ecosystem which we could only roughly approximate. #### 4 Conclusions 15 Here, we present the implementation of a terrestrial phosphorus cycle and its interactions with the carbon and nitrogen cycle into the land surface model ORCHIDEE. The model accounts for effects of nutrient stress on tissue nutrient concentration, litter quality, root to shoot allocation and photosynthesis. We further account for root phosphorus uptake and the movement of phosphorus in the soil volume as an additional constraint on soil phosphorus availability to plants, to reduce the sensitivity of plant phosphorus availability to the sorption dynamics which can only be poorly constrained from available data (Goll et al., 2012; Reed et al., 2015). We evaluated the performance of the model at two sites of contrasting nutrient availabilities (Crews et al., 1995; Harrington et al., 2001; Ostertag, 2001). The model captures the different sensitivities of net primary productivity to nutrient addition among sites (Figure 4). It further tends to reproduce differences in the leaf area index and leaf level productivity between the alleviation of nitrogen and phosphorus stress (Table 5). As we prescribed a common parametrization of vegetation characteristics for both sites (Table 3), the contrasting response of vegetation to nutrient addition among sites is the emergent outcome of the process representations governing the access and response of vegetation to changes in nutrient availability. The model shows deficits which can be linked to the lack of plasticity in the allocation of new growth to the different plant tissues and biomass turnover - a common issue in global models (De Kauwe et al., 2014). It further underestimates nutrient use efficiencies in general primarily due to the overestimation of wood nutrient content and wood growth, but we cannot rule out that the nitrogen use efficiency of photosynthesis in ORCHIDEE which is derived from data of plants growing on a wide range of soil nutrient availability (Kattge et al., 2009) does not apply to the extreme environment found during early and late stages of soil formation. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 **Table A1.** Plant functional type (PFT)
specific parameters: tropical evergreen broadleaf forest (TrEBF), tropical raingreen broadleaf forest (TrDBF), temperate evergreen needleleaf forest (TeENF), temperate evergreen broadleaf forest (TeEBF), temperate summergreen broadleaf forest (TeDBF), boreal evergreen needleleaf forest (BoENF), boreal summergreen broadleaf forest (BoDBF), boreal summergreen needleleaf forest (BoDNF), C3 grassland (C3grass), and C4 grassland (C4grass). | | TrEBF | TrDBF | TeENF | TeEBF | TeDBF | BoENF | BoDBF | BoDNF | C3grass | C4grass | Source | |--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------|---| | $nue [\mu mol(CO_2)g^{-1}(N)s^{-1}]$ | 22. | 22. | 20. | 33. | 33. | 20. | 33. | 22. | 45. | 45. | Kattge et al. (2009) | | $cn_{leaf,min} [g(C)g^{-1}(N)]$ | 16. | 16. | 28. | 16. | 16. | 28. | 16. | 16. | 16. | 16. | Zaehle and Friend (2010) | | $cn_{leaf,max} [g(C)g^{-1}(N)]$ | 60. | 60. | 75. | 45. | 45. | 75. | 45. | 45. | 45. | 45. | Zaehle and Friend (2010) | | $np_{leaf,min} [g(N)g^{-1}(P)]$ | 16.68 | 16.68 | 8.34 | 10.84 | 10.84 | 8.34 | 10.84 | 10.84 | 10.84 | 10.84 | McGroddy et al. (2004) | | $np_{leaf,max} [g(N)g^{-1}(P)]$ | 22.57 | 22.57 | 11.29 | 14.67 | 14.67 | 11.29 | 14.67 | 14.67 | 14.67 | 14.67 | McGroddy et al. (2004) | | $\lambda_{root} [g(P)g^{-1}(P)]$ | 1. | 1. | 1. | 1. | 1. | 1. | 1. | 1. | 1. | 1. | Wang et al. (2010) | | $\lambda_{sapwood} [g(P)g^{-1}(P)]$ | .087 | .087 | .087 | .087 | .087 | .087 | .087 | .087 | .087 | .087 | McGroddy et al. (2004); Sardans et al. (2015) | Further, we propose a mechanism by which the negative effect of drought on plant productivity is amplified in phosphorus poor environments. A trade-off between phosphorus acquisition and water transport seems plausible as the uptake of phosphorus requires are larger investment in specialized root systems which explore a larger volume of soil (Schachtman et al., 1998) due to immobility of phosphorus in soils, while uptake of water and mobile nutrient like nitrogen can be achieved by reducing root water pressure. Although, experimental findings indicate nutrient specific interactions between uptake of water and nutrient in tropical vegetation, current knowledge is insufficient (Lovelock et al., 2006; Cernusak et al., 2007; Santiago, 2015) to reject or support the proposed mechanism. # 5 Code availability The ORCHIDEE model version used here is a development branch of ORCHIDEE which is open source. The SVN version of the code branch is https://forge.ipsl.jussieu.fr/orchidee/browser/branches/ORCHIDEE-CN-P revision 3985 from the 17th January 2017. Please contact the corresponding author for the code of the ORCHIDEE-CN-P if you plan an application of the model and envisage longer-term scientific collaboration. # 6 Data availability Primary data and scripts used in the analysis and other supplementary information that may be useful in reproducing the author's work can be obtained by contacting the corresponding author. # Appendix A: Phosphorus release by chemical weathering The release of phosphorus from minerals is the primary source of phosphorus for many terrestrial ecosystem. Besides prescribing release rates as done in this study, ORCHIDEE can simulate phosphorus release as a function of mineral phosphorus concentration, weatherability of minerals, intensity of the hydrological cycles as well as temperature (Hartmann and Moosdorf, Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Table A2. Parameters of the dynamical weathering routine. | Parameter | Value | Units | Description | Source | |--------------|----------------------|-----------------------|---|------------------------------| | S_{shield} | depends on location | _ | soil shielding factor | Hartmann et al. (2014) | | w_l | depends on location | g(P)mm | empirical factor | Hartmann et al. (2014) | | a_l | depends on location | _ | fraction of grid box occupied with lithology \boldsymbol{l} | Hartmann and Moosdorf (2012) | | $E_{a,l}$ | depends on lithology | J | activation energy for lithological class \boldsymbol{l} | Hartmann et al. (2014) | | R | 8.3144598 | $\rm Jmol^{-1}K^{-1}$ | gas constant | | | T_{ref} | 284.15 | K | reference temperature | Hartmann et al. (2014) | **Table A3.** Additional variables of the dynamical weathering routine. | Variable | Units | Description | |----------------|--------------------------------|--------------------------------------| | $f_{tweath,l}$ | _ | temperature dependence of weathering | | q_{ann} | mmyr^{-1} | annual sum of runoff and drainage | | T_{2m} | K | 2 meter air temperature | | q | ${\rm mm}30{\rm minutes}^{-1}$ | sum of runoff and drainage | **Table A4.** The bias (simulated - observed) in carbon production per biomass nutrient (N_{prod}, P_{prod}) . From simulations (default) and as diagnosed by substituting simulated with observed nutrient content (observed xc_i) and/or biomass stocks (observed C_i). | | N_{pr} | od [%] | P_{prod} [%] | | | |-----------------------|----------|--------|----------------|--------|--| | | 300yr | 4.1Myr | 300yr | 4.1Myr | | | default | -59.4 | -44.7 | -20.0 | +23.6 | | | observed xc_i | -30.0 | +33.2 | -30.5 | +26.2 | | | observed C_i | -39.0 | -62.9 | -16.7 | -25.6 | | | observed $C_i \&xc_i$ | -0.6 | -1.7 | -0.6 | -1.7 | | Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. Table A5. The overall residence times of carbon (C_{MRT}) , nitrogen (N_{MRT}) and phosphorus (P_{MRT}) in biomass (excluding storage), as well as the approximated residence time of all elements (C,N,P) in foliage $(X_{MRT,leaf})$, coarse roots and stems $(X_{MRT,wood})$, as well as fine roots $(X_{MRT,root})$. The latter three tissue classes consist of tissue with similar stoichiometry and thus the residence time of element is similar. | | 300 |)yr | 4.1Myr | | | |---------------------|-----------|----------|-----------|----------|--| | | simulated | observed | simulated | observed | | | C_{MRT} [yr] | 12.5 | 10.7 | 9.5 | 14.4 | | | N_{MRT} [yr] | 9.5 | 8.4 | 8.4 | 9.0 | | | P_{MRT} [yr] | 9.6 | 12.2 | 7.3 | 16.0 | | | $X_{MRT,leaf}$ [yr] | 2.1 | 1.6 | 1.8 | 1.6 | | | $X_{MRT,root}$ [yr] | 6.3 | 1.5 | 5.6 | 10.6 | | | $X_{MRT,wood}$ [yr] | 14.7 | 16.3 | 11. | 18.1 | | 2012; Goll et al., 2014). All additional variables and parameters are found in Table A3&A2. The release of phosphorus from minerals is given by: $$F_{weath} = s_{shield} \sum_{l=1,nl} f_{tweath,l} w_l a_l q_{ann} \tag{A1}$$ where s_{shield} is a scaling factor down-regulating release rates for soils where the active zone is disconnected from the bedrock, $f_{tweath,l}$ links the weathering reaction to temperature, w_l is an empirical parameter describing the P content and erodibility of lithological class l, a_l is the fraction of the grid-box occupied by lithological class l, and q_{ann} is a running average of the sum of drainage and surface runoff of the last 12 months. The temperature dependence of weathering is described by an Arrhenius term (Hartmann et al., 2014): $$f_{weath,l} = e^{\left(\frac{-E_{a,l}}{R}\right)\left(\frac{1}{T_{2m} - \frac{1}{T_{ref}}}\right)}$$ (A2) where $E_{a,l}$ is the activation energy of the reaction for lithological class l, R is the gas constant, T_{2m} the long term (3 month) average of 2m air temperature, and T_{ref} the reference temperature. This approach accounts for the hydrological constraint on the dissolution reaction by the removal of products as well as for the energetic constraints of the reaction itself (Hartmann et al., 2014). We take full advantage of the high resolution of the lithological data (Hartmann and Moosdorf, 2012) by assigning each ORCHIDEE grid box the fractional coverage of the 16 lithological classes thereby accounting for sub-grid scale heterogeneity in lithology. Following (Goll et al., 2014), we use 3 months running averages of the climatic drivers (q_{ann}, T_{2m}) . On that time scale, the soil temperature follows the 2m air temperature in most regions of the globe. This allows us to keep the original formulation which is based on air temperature. In soils where the active zone is disconnected from the bedrock the phosphorus release is down-regulated by a soil shielding factor (s_l) which is read in from a global map (Hartmann et al., 2014). Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. **Figure A1.** Soil phosphorus concentration and the effect of root zone depletion on root phosphorus uptake. Shown are values for the year 2003 at the 4.1Myr site. The top plot shows monthly sum of precipitation and gross primary productivity. The lower plot shows phosphorus concentration in the total soil volume (black) and in the root zone (orange) as well root phosphorus uptake (broken green) in the default model configuration. In addition are shown root phosphorus uptake in simulation without soil resistance to phosphorus movement (broken blue), and soil phosphorus concentration in simulations in which root uptake is the minimum of plant demand and soil phosphorus availability (supply-demand approach: Equation C1) (pink). #### Appendix B: Length correction for the spinup simulation of the 300yr old site The 300yr site is characterized by low nitrogen availability due to the short period over which nitrogen could have accumulated via biological fixation and atmospheric deposition (Crews et al., 1995). In ORCHIDEE vegetation has to be initialized with a minimum amount of biomass corresponding to a land cover with trees of an age between 2 and 3 yr (Naudts et al., 2015). The litter and soil organic matter pools are set to a negligible initial value. The minimum biomass corresponds
to a substantial amount of total ecosystem nitrogen $(N_{tot}(0))$ of 20.8 g(N)m^{-2} being present at the end of the first year. Therefore, we reduce duration of the spinup simulation to compensate for the initial nitrogen stock. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 To do so, we perform a 300 yr long simulation and estimate the fraction of nitrogen from biological nitrogen fixation and atmospheric deposition which is retained in the ecosystem (f_r) : $$f_r(t) = \frac{\Delta N_{tot}(t)}{BNF(t) + DEP_{obs}}$$ (B1) where $\Delta N_{tot}(t)$ is the simulated annual change in N_{tot} , BNF(t) is simulated annual flux of biological nitrogen and DEP_{obs} the annual flux of deposition (forcing) of year t We find that, besides during the first 40 yr, the $\overline{f_r}$ is with .11±.04 (average±standard deviation) relatively constant. In combination with estimates of nitrogen fixation (BNF; gm⁻²yr⁻¹) and atmospheric deposition (DEP; gm⁻²yr⁻¹) the time (a) which would have been needed to accumulate the initial stock can be approximated by: $$a = \frac{N_{tot}(t=0)}{\overline{f_r}(BNF_{obs} + DEP_{obs})}$$ (B2) The observed rates of nitrogen fixation (BNF_{obs}) during the first 150 yr of soil development in Hawaii are rather stable (2.0-3.1 g(N)m⁻²yr⁻¹) (Crews et al., 2001), Estimates for atmospheric deposition (DEP_{obs}) are 0.6 ± 0.4 g(N)m⁻²yr⁻¹ (Chadwick et al., 1999). Depending on f_r , 45–95yr would have been passed before 20.8 g(N)m⁻² could have accumulated. We therefore, reduced the simulations duration from 300yr to 230yr. As the simulated NPP matches the observed NPP (Table 4) and the dynamically simulated BNF rates are with $2.25 \,\mathrm{g(N)m^{-2}yr^{-1}}$ well within the observed range, the reduction of the simulation length seems appropriate. # Appendix C: soil phosphorus diffusion In ORCHIDEE root phosphorus uptake and the soil permeability to phosphate ions are explicitly represented (Equation 4 & 21). We aim to reduce the high sensitivity of plant phosphorus availability to the soil sorption coefficient (Goll et al., 2012) which cannot be sufficiently constrained from available observations, by introducing additional constraints on plant access to soil phosphorus which can be constrained from experiments. Figure A1 shows the soil phosphorus concentration and plant uptake for the year 2003 at the 4.1Myr (phosphorus-limited) site. During dry periods, the phosphorus concentration at the root surface drops to levels which are up to 50% lower than in the surrounding due the link between soil moisture and soil phosphorus permeability in the model (Equation 23). As the concentration at the root surface declines plant uptake declines. We performed two additional simulations for the same year. In the first simulation the root zone concentration is set to the concentration of the surrounding (Figure A1; broken line) which corresponds to the assumption of infinite soil permeability. In this simulation the annual uptake of phosphorus was 14% higher than in the default simulation and root phosphorus concentration remains high during dry periods. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 In a second simulation, root uptake was set to the minimum of plant phosphorus demand and soil phosphorus availability as commonly done in global models (supply-and-demand approach) (Thornton et al., 2007; Goll et al., 2012; Yang et al., 2014): $$P_{up} = min(P_{sol}fPN_{plant}, P_{soil}) \tag{C1}$$ In the second simulation, dissolved phosphorus concentration drop drastically and reach after 12 months concentrations close to zero (Figure A1; dotted line) due to the high root uptake. Afterwards, uptake is primarily a function of the dissolved phosphorus pool and therefore more sensitive to dynamics of the processes which replenish it, which namely are soil phosphorus sorption and net mineralization. These sensitivity simulations show that the additional constraints on the phosphorus uptake, for which measurements of root uptake kinetics (Schachtman et al., 1998) as well as phosphorus diffusion (BARRACLOUGH and TINKER, 1981; Olesen et al., 2001) are available, help to reduce the sensitivity of root uptake to the soil phosphorus sorption parameters, which cannot be sufficiently constrained from available data and therefore are commonly subject to calibration. ### Appendix D: Analysis of biases in carbon production rate per biomass nutrient Here we investigate the cause of the model biases in carbon productivity of nutrient x (X_{prod}). All calculation are done with the long-term averages of the simulated variables and not with the annual fluxes like done in the main analysis. Thus the values might deviate slightly from the ones reported earlier. By substituting $N_{content}$ in Equation 32 with the carbon mass of tissue i and the respective x:c ratios (xc_i) we can investigate the contribution of the respective components of X_{prod} to the overall bias in X_{prod} : $$X_{prod} = \frac{NPP}{\sum C_i x c_i} \tag{D1}$$ To calculate the contribution of the bias in nc_i to the bias in N_{prod} , we used simulated nc_i but NPP and C_i from observation 0 in Equation D1. We find that at both sites the underestimation of N_{prod} of -59.4% and 44.7% are related to the overestimation of tissue nitrogen content (see "observed C_i " in Table A4). The effect of biases in simulated biomass on N_{prod} differs between sites, as biomass stocks, and subsequently nitrogen stocks, are underestimated at the 300yr site while they are overestimated at the 4.1Myr site (Figure 3). When biomass and nitrogen content are taken from observation the bias in N_{prod} are in general low due to the good agreement of simulated and observed NPP (Figure 3). The effect of biases in xc_i and/or C_i on P_{prod} are comparable to their effects on N_{prod} at both sites. We calculated the residence time of nutrients $(X_{MRT,i})$ for classes of tissues with sharing similar stoichiometry in OR-CHIDEE, namely leaf, coarse root and stems, and fine roots: $$X_{MRT,i} = \frac{C_i x c_i}{NPP_i x c_i} \tag{D2}$$ where NPP_i is the fraction of NPP being allocated to tissue class i. The equation can be simplified to: $$X_{MRT,i} = \frac{C_i}{NPP_i} \tag{D3}$$ Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. showing that the residence time $X_{MRT,i}$ equals to the residence time of carbon. Table A5 shows the residence times of the different tissue classes as well as C_{MRT}, N_{MRT} , and P_{MRT} calculated as described in the method section of the main manuscript. The observed residence times of carbon, nitrogen and phosphorus (Table A5) are longer at the 4.1Myr than they are at the 300yr site, whereas the model simulates an opposite pattern. As the constant tissue turnover rates are used in ORCHIDEE the model is not able to reproduce differences among sites. The slightly longer residence times at the young site can be attributed to the transient state of vegetation in which it is still accumulating biomass, while the biomass at the old site reached a stable state. The model consistently underestimates the residence time of phosphorus P_{MRT} , which can be attributed to an underestimation of the phosphorus content of stems and coarse roots (not shown). 10 Author contributions. Daniel S. Goll lead the development of the representation of the phosphorus cycle and its implementation into the ORCHIDEE, and performed all simulations and analysis. Fabienne Maignan, Albert Jornet and Nicolas Vuichard assisted with technical aspects of the model and its run environment. Nicolas Vuichard performed the re-implementation of the nitrogen cycle from a discontinued version of ORCHIDEE (now OCN) into a recent version of ORCHIDEE. Soenke Zaehle assisted in revising the nitrogen cycle to be consistent with OCN. Aurelie Violette provided estimates of soil phosphorus parameters from the mechanistic phosphorus weathering model P-WITCH. 15 Jordi Sardans and Josep Penuelas provided stoichiometric data of Metrosideros from their field campaigns as well as additional plant traits complied from literature. Marko Kvakic assisted with the implementation of root phosphorus uptake and soil phosphorus diffusion. Ivan Janssens, Josep Penuelas, Philippe Ciais, Michael Obersteiner contributed to the theoretical concept of phosphorus cycling and its interactions with the biotic and abiotic environment. Shushi Peng and Yan Sun, Matthieu Guimberteau, Bertrand Guenet assisted in ensuring consistency between the nutrient cycles and various other processes in ORCHIDEE. All authors contributed with their comments to the writing of the 20 manuscript. Competing interests. The authors declare that they have no conflict of interest. Acknowledgements. DG is funded by the "IMBALANCE-P" project of the European Research Council (ERC-2013-SyG-610028). SZ was supported by the QUINCY project of the European Research Council (ERC-2014-CoG-647204). We thank the TRY initiative and database which is hosted, developed and maintained by J. Kattge and G. Boenisch (MaxPlanck Institute for Biogeochemistry, Jena, DE) for additional leaf stoichiometric data on *Metrosideros*. We thank Ying-Ping Wang and Ben Houlton for sharding their data compilation on the Hawaiian sites. We thank Sebastiaan Luysseart for the discussions related to biomass allocation. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. #### References 20 25 Amazon Fertilization Experiment (AFEX), https://amazonfertilisationexperiment.wordpress.com. AmazonFACE, https://amazonface.org/. EucFACE, https://www.westernsydney.edu.au/hie/facilities/EucFACE. - 5 Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P),
http://imbalancep-erc.creaf.cat/. - Quantifying the effects of interacting nutrient cycles on terrestrial biosphere dynamics and their climate feedbacks (QUINCY), https://www.bgc-jena.mpg.de/bgi/index.php/Projects/QUINCY. - Forest Strategies for limited Phosphorus Resources (SPP1685), www.ecosystem-nutrition.uni-freiburg.de. - Ali, a. a., Xu, C., Rogers, A., Fisher, R. a., Wullschleger, S. D., McDowell, N. G., Massoud, E. C., Vrugt, J. a., Muss, J. D., Fisher, J. B., Reich, P. B., and Wilson, C. J.: A global scale mechanistic model of the photosynthetic capacity, Geosci. Model Dev. Discuss., 8, 6217–6266, doi:10.5194/gmdd-8-6217-2015, http://www.geosci-model-dev-discuss.net/8/6217/2015/, 2015. - Bahar, N. H. A., Ishida, F. Y., Weerasinghe, L. K., Guerrieri, R., O'Sullivan, O. S., Bloomfield, K. J., Asner, G. P., Martin, R. E., Lloyd, J., Malhi, Y., Phillips, O. L., Meir, P., Salinas, N., Cosio, E. G., Domingues, T. F., Quesada, C. A., Sinca, F., Escudero Vega, A., Zuloaga Ccorimanya, P. P., del Aguila-Pasquel, J., Quispe Huaypar, K., Cuba Torres, I., Butrón Loayza, R., Pelaez Tapia, Y., Huaman Ovalle, J., - Long, B. M., Evans, J. R., and Atkin, O. K.: Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru, New Phytol., doi:10.1111/nph.14079, 2016. - BARRACLOUGH, P. B. and TINKER, P. B.: The Determination of Ionic Diffusion Coefficients in Field Soils. I. Diffusion Coefficients in Sieved Soils in Relation To Water Content and Bulk Density, J. Soil Sci., 32, 225–236, doi:10.1111/j.1365-2389.1981.tb01702.x, 1981. - Barron, A. R., Wurzburger, N., Bellenger, J. P., Wright, S. J., Kraepiel, A. M. L., and Hedin, L. O.: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils, Nat. Geosci., 2, 42–45, doi:10.1038/ngeo366, http://dx.doi.org/10.1038/ngeo366, 2009. - Bonan, G. B., Williams, M., Fisher, R. A., and Oleson, K. W.: Modeling stomatal conductance in the earth system: Linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum, Geosci. Model Dev., 7, 2193–2222, doi:10.5194/gmd-7-2193-2014, 2014. - Bouma, T. J., Yanai, R. D., Elkin, A. D., Hartmond, U., Flores-Alva, D. E., and Eissenstat, D. M.: Estimating age-dependent costs and benefits of roots with contrasting life span: Comparing apples and oranges, New Phytol., 150, 685–695, doi:10.1046/j.1469-8137.2001.00128.x, 2001. - Brovkin, V. and Goll, D.: Land unlikely to become large carbon source, Nat. Geosci, 8, 893, doi:10.1038/ngeo2598, http://dx.doi.org/10. 1038/ngeo2598{%}5Cn10.1038/ngeo2598, 2015. - Campo, J. and Dirzo, R.: Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatán, Mexico, J. Trop. Ecol., 19, 525–530, doi:10.1017/S0266467403003572, 2003. - Casotti, G. and Bradley, J. S.: Leaf nitrogen and its effects on the rate of herbivory on selected eucalypts in the jarrah forest, For. Ecol. Manage., 41, 167–177, doi:10.1016/0378-1127(91)90101-Z, 1991. - Cernusak, L. A., Winter, K., Aranda, J., Turner, B. L., and Marshall, J. D.: Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility, J. Exp. Bot., 58, 3549–3566, doi:10.1093/jxb/erm201, 2007. - Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O.: Changing sources of nutrients during four million years of ecosystem development, Nature, 397, 491–497, http://file/localhost(null) {%}5Cnpapers3://publication/uuid/7ECD2681-24EA-40C4-BC40-6A9C53752C0B{%}5Cnpapers3://publication/uuid/ Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 20 $25FAA339-824E-4065-8609-F771989E96F6\{\%\}5Cnpapers 3: //publication/uuid/E18FAB50-A6E2-4AC7-B336-1451CD393E25\{\%\}5Cnpapers 3: //publication/, 1999.$ - Chorover, J., Amistadi, M. K., and Chadwick, O. A.: Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt, Geochim. Cosmochim. Acta, 68, 4859–4876, doi:10.1016/j.gca.2004.06.005, 2004. - 5 Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Hedin, L. O., Perakis, S., Latty, E. F., Fischer, C. V., Elseroad, A., and Wasson, M. F.: Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems, Glob. Biochem. Cycles, 13, 623–645, doi:10.1029/1999GB900014, http://onlinelibrary.wiley.com/doi/10.1029/1999GB900014/pdf, 1999. - Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Darrell, A., Mueller-dombois, D., and Vitousek, P. M.: Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii, Ecology, 76, 1407–1424, 1995. - 10 Crews, T. E., Kurina, L. M., and Vitousek, P. M.: Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii, Biogeochemistry, 52, 259–279, doi:10.1023/A:1006441726650, http://link.springer.com/article/10.1023/A: 1006441726650{%}5Cnpapers2://publication/uuid/2D8B1F81-45CD-4265-8B45-A79BF51643FF, 2001. - De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y.-P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wårlind, D., Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao, S., Smith, B., McCarthy, H. R., Iversen, C. M., - Hanson, P. J., Warren, J. M., Oren, R., and Norby, R. J.: Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites., New Phytol., doi:10.1111/nph.12847, http://www.ncbi.nlm.nih.gov/pubmed/24844873, 2014. - Doetterl, S., Stevens, A., Six, J., Merckx, R., Oost, K. V., Pinto, M. C., Casanova-katny, A., Muñoz, C., Boudin, M., Venegas, E. Z., and Boeckx, P.: Soil carbon storage controlled by interactions between geochemistry and climate, Nat. Geosci., 8, 780–783, doi:10.1038/NGEO2516, 2015. - Domingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veenendaal, E. M., Schrodt, F., Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., Grace, J., and Lloyd, J.: Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands, Plant, Cell Environ., 33, 959–980, doi:10.1111/j.1365-3040.2010.02119.x, 2010. - Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M. E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D. R., Schlesinger, W. H., and Ceulemans, R.: Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2., Proc. Natl. Acad. Sci. U. S. A., 104, 14 014–14 019, doi:10.1073/pnas.0706518104, 2007. - Fox, T. R.: Rhizosphere Activity and Organic Phosphorus in Two Forested, Soil Biol. Biochem., 24, 579-583, 1992. - Goddéris, Y., François, L. M., Probst, A., Schott, J., Moncoulon, D., Labat, D., and Viville, D.: Modelling weathering processes at the catchment scale: The WITCH numerical model, Geochim. Cosmochim. Acta, 70, 1128–1147, doi:10.1016/j.gca.2005.11.018, 2006. - Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., Van Bodegom, P. M., and Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, 9, 3547–3569, doi:10.5194/bg-9-3547-2012, http://www.biogeosciences.net/9/3547/2012/, 2012. - Goll, D. S., Moosdorf, N., Hartmann, J., and Brovkin, V.: Climate-driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance, Geophys. Res. Lett., 41, 3553–3558, doi:10.1002/2014GL059471, http://doi.wiley.com/10.1002/2014GL059471, 2014. - Harrington, R. A., Fownes, J. H., and Vitousek, P. M.: Production and resource use efficiencies in N- and P-limited tropical forests: A comparison of responses to long-term fertilization, Ecosystems, 4, 646–657, doi:10.1007/s10021-001-0034-z, 2001. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. - Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations the CRU TS3.10, Int. J. Clim., 34, 623–642, 2014. - Hartmann, H. and Trumbore, S.: Understanding the roles of nonstructural carbohydrates in forest trees from what we can measure to what we want to know, New Phytol., doi:10.1111/nph.13955, http://doi.wiley.com/10.1111/nph.13955, 2016. - Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophys. Geosyst., 13, 1–37, doi:10.1029/2012GC004370, http://doi.wiley.com/10.1029/2012GC004370, 2012. - Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A. J.: Global chemical weathering and associated p-release the role of lithology, temperature and soil properties, Chem. Geol., 363, 145–163, doi:10.1016/j.chemgeo.2013.10.025, http://linkinghub.elsevier.com/retrieve/pii/S0009254113004816, 2014. - 10 Heineman, K. D., Turner, B. L., and Dalling, J. W.: Variation in wood nutrients along a tropical soil fertility gradient, New Phytol., doi:10.1111/nph.13904, 2016. - Hofmann, K., Heuck, C., and Spohn, M.: Phosphorus resorption by young beech trees and soil phosphatase activity as dependent on phosphorus availability, Oecologia, 181, 369–379, doi:10.1007/s00442-016-3581-x, 2016. - Holloway, J. M.: Nitrogen in rock: Occurrences and biogeochemical implications, Global Biogeochem. Cycles, 16, 65–1–65–17, doi:10.1029/2002GB001862, http://doi.wiley.com/10.1029/2002GB001862, 2002. - Ichie, T. and Nakagawa, M.: Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica., Ecol. Res., 28, 151–158, doi:DOI: 10.1007/s11284-011-0836-1, 2013. - Johnson, A. H.,
Frizano, J., Vann, D. R., and Johnson, R. A. H.: Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure, Oecologia, 135, 487–499, doi:10.1007/s00442-002-1164-5, 2003. - 20 Johnson, I. R. I. and Thornley, J.: A model of instantaneous and daily canopy photosynthesis, J. Theor. Biol., 107, 531–545, doi:10.1016/S0022-5193(84)80131-9, 1984. - Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species, PLANT CELL Environ., 30, 1176–1190, doi:10.1111/j.1365-3040.2007.01690.x, 2007. - Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models, Glob. Chang. Biol., 15, 976–991, doi:10.1111/j.1365-2486.2008.01744.x, 2009. - KATTGE, J., DÍAZ, S., LAVOREL, S., PRENTICE, I. C., LEADLEY, P., BÖNISCH, G., GARNIER, E., WESTOBY, M., REICH, P. B., WRIGHT, I. A. N. J., CORNELISSEN, J. H. C., VIOLLE, C., HARRISON, S. P., van BODEGOM, P. M., REICHSTEIN, M., ENQUIST, B. J., SOUDZILOVSKAIA, N. A., ACKERLY, D. D., ANAND, M., ATKIN, O., BAHN, M., BAKER, T. R., BALDOCCHI, D., BEKKER, R., BLANCO, C. C., BLONDER, B., BOND, W. J., BRADSTOCK, R., BUNKER, D. E., CASANOVES, F., CAVENDER-BARES, J., - CHAMBERS, J. Q., CHAPIN, F. S., CHAVE, J., COOMES, D., CORNWELL, W. K., CRAINE, J. M., DOBRIN, B. H., DUARTE, L., DURKA, W., ELSER, J., ESSER, G., ESTIARTE, M., FAGAN, W. F., FANG, J., FERNÁNDEZ-MÉNDEZ, F., FIDELIS, A., FINEGAN, B., FLORES, O., FORD, H., FRANK, D., FRESCHET, G. T., FYLLAS, N. M., GALLAGHER, R. V., GREEN, W. A., GUTIERREZ, A. G., HICKLER, T., HIGGINS, S., HODGSON, J. G., JALILI, A., JANSEN, S., JOLY, C., KERKHOFF, A. J., KIRKUP, D. O. N., KITAJIMA, K., KLEYER, M., KLOTZ, S., KNOPS, J. M. H., KRAMER, K., KÜHN, I., KUROKAWA, H., LAUGHLIN, D., LEE, - T. D., LEISHMAN, M., LENS, F., LENZ, T., LEWIS, S. L., LLOYD, J. O. N., LLUSIÀ, J., LOUAULT, F., MA, S., MAHECHA, M. D., MANNING, P., MASSAD, T., MEDLYN, B., MESSIER, J., MOLES, A. T., MÜLLER, S. C., NADROWSKI, K., NAEEM, S., NIINEMETS, Ü. L. O., NÖLLERT, S., NÜSKE, A., OGAYA, R., OLEKSYN, J., ONIPCHENKO, V. G., ONODA, Y., ORDOÑEZ, J., OVERBECK, G., OZINGA, W. I. M. A., PATIÑO, S., PAULA, S., PAUSAS, J. G., PEÑUELAS, J., PHILLIPS, O. L., PILLAR, V., Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 5 25 35 POORTER, H., POORTER, L., POSCHLOD, P., PRINZING, A., PROULX, R., RAMMIG, A., REINSCH, S., REU, B., SACK, L., SALGADO-NEGRET, B., SARDANS, J., SHIODERA, S., SHIPLEY, B., SIEFERT, A., SOSINSKI, E., SOUSSANA, J.-F., SWAINE, E., SWENSON, N., THOMPSON, K. E. N., THORNTON, P., WALDRAM, M., WEIHER, E., WHITE, M., WHITE, S., WRIGHT, S. J., YGUEL, B., ZAEHLE, S., ZANNE, A. M. Y. E., and WIRTH, C.: TRY – a global database of plant traits, Glob. Chang. Biol., pp. no—no, doi:10.1111/j.1365-2486.2011.02451.x, http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x, 2011. - Kirschbaum, M. U. F., Simioni, G., Medlyn, B. E., and McMurtrie, R. E.: On the importance of including soil nutrient feedback effects for predicting ecosystem carbon exchange, Funct. Plant Biol., 30, 223, doi:10.1071/FP02152, http://www.publish.csiro.au/?paper=FP02152, 2003. - Koerselman, W. and Meuleman, A. F. M. A.: The Vegetation N:P Ratio: a New Tool to Detect the Nature of Nutrient Limitation, J. Appl. Ecol., 33, 1441–1450, doi:10.2307/2404783, http://www.jstor.org/stable/10.2307/2404783{%}5Cnhttp://www.jstor.org/stable/2404783, 1996. - Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, n/a–n/a, doi:10.1029/2003GB002199, http://doi.wiley.com/10.1029/2003GB002199, 2005. - Kronzucker, H. J., Siddiqi, M. Y., and Glass, A. D. M.: Kinetics of NO Influx in Spruce, Plant Physiol., 109, 319-326, 1995. - Lawrence, D.: Nitrogen and Phosphorus Enhance Growth and Luxury Consumption of Four Secondary Forest Tree Species in Borneo Author (s): Deborah Lawrence Published by: Cambridge University Press Stable URL: http://www.jstor.org/stable/3068619 REFERENCES Linked refer, J. Trop. Ecol., 17, 859–869, 2001. - Li, X. L., George, E., and Marschner, H.: Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil, Plant Soil, 136, 41–48, doi:10.1007/BF02465219, 1991. - 20 Lovelock, C. E., Ball, M. C., Choat, B., Engelbrecht, B. M. J., Holbrook, N. M., and Feller, I. C.: Linking physiological processes with mangrove forest structure: Phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle, Plant, Cell Environ., 29, 793–802, doi:10.1111/j.1365-3040.2005.01446.x, 2006. - Marotzke, J., Jakob, C., Bony, S., Dirmeyer, P. A., O'Gorman, P. A., Hawkins, E., Perkins-Kirkpatrick, S., Quéré, C. L., Nowicki, S., Paulavets, K., Seneviratne, S. I., Stevens, B., and Tuma, M.: Climate research must sharpen its view, Nat. Clim. Chang., doi:10.1038/nclimate3206, http://www.nature.com/doifinder/10.1038/nclimate3206, 2017. - McGechan, M. and Lewis, D.: Sorption of Phorphorus by Soil, Part 1: Principles, Equations and Models, Biosyst. Eng., 82, 1–24, doi:10.1006/bioe.2002.0054, http://linkinghub.elsevier.com/retrieve/pii/S1537511002900541, 2002. - McGill, W. B. and Cole, C. V.: Comparative aspects of cycling of organic C, N, S, and P through soil organic matter, Geoderma, 26, 267–268, 1981. - 30 McGroddy, M. E., Daufresne, T., and Hedin, L. O.: Scaling of C:N:P stoichiometry in forest worldwide: implications of terrestrial redfield-like ratios, Ecology, 85, 2390–2401, 2004. - Medlyn, B. E., Kauwe, M. G. D., Walker, A. P., Dietze, C., Hanson, P., Hickler, T., Jain, A., Luo, Y., Parton, W., Colin, I., Wang, S., Wang, Y.-p., Weng, E., Iversen, C. M., Mccarthy, H., Warren, J., Oren, R., Norby, R., Division, E. S., Ridge, O., Goethe, G., and Collins, F.: Using Ecosystem Experiments to Improve Vegetation Models: Lessons Learnt from the Free-Air CO 2 Enrichment Model-Data Synthesis, Nat. Clim. Chang., 5, 528–534, doi:10.1038/nclimate2621, 2015. - Meyerholt, J. and Zaehle, S.: The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization, New Phytol., 208, 1042–1055, doi:10.1111/nph.13547, 2015. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 5 10 35 - Mollier, A., De Willigen, P., Heinen, M., Morel, C., Schneider, A., and Pellerin, S.: A two-dimensional simulation model of phosphorus uptake including crop growth and P-response, Ecol. Modell., 210, 453–464, doi:10.1016/j.ecolmodel.2007.08.008, 2008. - Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K. M., Zechmeister-Boltenstern, S., and Richter, A.: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling., Nat. Commun., 5, 3694, doi:10.1038/ncomms4694, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3997803{&}tool=pmcentrez{&}rendertype=abstract, 2014. - Morford, S. L., Houlton, B. Z., and Dahlgren, R. a.: Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock., Nature, 477, 78–81, doi:10.1038/nature10415, http://www.nature.com/nature/journal/v477/n7362/full/nature10415.html?WT.ec{_}i..., 2011. - Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., B??nisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merila??, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, doi:10.5194/gmd-8-2035-2015, 2015. - Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., and Zhang, Y. S.: Responses of root architecture development to low phosphorus availability: A review, Ann. Bot., 112, 391–408, doi:10.1093/aob/mcs285, 2013. - Norby, R. J., Gu, L., Haworth, I. C., Jensen, A. M., Turner, B. L., Walker, A. P., Warren, J. M., Weston, D. J., Xu, C., and Winter, K.: Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama, New Phytol., doi:10.1111/nph.14319, http://doi.wiley.com/10.1111/nph.14319, 2016. - Olander, L. P. and Vitousek, P. M.: Regulation of soil phosphatase and chitinase activity by N and P availability, Biogeochemistry, 49, 175–190, doi:10.1023/A:1006316117817, 2000. - Olander, L. P. and Vitousek, P. M.: Biological and Geochemical Sinks for Phosphorus in Soil from a Wet Tropical Forest, Ecosystems, 7, 404–419, doi:10.1007/s10021-004-0264-y, http://springerlink.metapress.com/openurl.asp?genre=article{&}id=doi:10. 1007/s10021-004-0264-y, 2004. - Olesen, T., Moldrup, P., Yamaguchi, T., and Rolston, D. E.: Constant slope impedance factor model for predicting the solute diffusion coefficient in unsaturated soil, Soil Sci., 166, 89–96, doi:10.1097/00010694-200102000-00002, 2001. - 25 Ostertag, R. E. O.: Fine-Root Dynamics in Hawaiian Montane Forests, Ecology, 82, 485–499, 2001. - Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J.-C., Seastedt, T. R., Garcia Moya, E., Kamnalrut, A., and Kinyamario, J. I.: Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochem. Cycles, 7, 785–809, doi:10.1029/93GB02042, 1993. - Peñuelas, J.,
Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. a.: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe., Nat. Commun., 4, 2934, doi:10.1038/ncomms3934, http://www.ncbi.nlm.nih.gov/pubmed/24343268, 2013. - Piper, F. I. and Fajardo, A.: Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage, J. Ecol., 102, 1101–1111, doi:10.1111/1365-2745.12284, 2014. - Reed, S. C., Yang, X., and Thornton, P. E.: Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor, New Phytol., 208, 324–329, doi:10.1111/nph.13521, 2015. - Reich, P. B., Oleksyn, J., and Wright, I. J.: Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species, Oecologia, 160, 207–212, doi:10.1007/s00442-009-1291-3, 2009. Manuscript under review for journal Geosci. Model Dev. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 5 10 15 20 25 30 - Santiago, L. S.: Nutrient limitation of eco-physiological processes in tropical trees, Trees, 29, 1291–1300, doi:10.1007/s00468-015-1260-x, http://link.springer.com/10.1007/s00468-015-1260-x, 2015. - Sardans, J., Janssens, I. A., Alonso, R., Veresoglou, S. D., Rillig, M. C., Sanders, T. G., Carnicer, J., Filella, I., Farré-Armengol, G., and Peñuelas, J.: Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions, Glob. Ecol. Biogeogr., 24, 240–255, doi:10.1111/geb.12253, http://doi.wiley.com/10.1111/geb.12253, 2015. - Schachtman, D. P., Reid, R. J., Ayling, S. M., S, D. B. D. P., and A, S. S. S. M.: Phosphorus Uptake by Plants: From Soil to Cell, Plant Physiol., 116, 447–453, 1998. - Shcherbak, I., Millar, N., and Robertson, G. P.: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen, Proc. Natl. Acad. Sci., 111, 9199–9204, doi:10.1073/pnas.1322434111, http://www.pnas.org/content/111/25/9199.abstract, 2014. - Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative analysis of plant form the pipe model theory: I Basix analysis, Jpn. J. Ecol., 14, 97–105, 1964. - Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, doi:10.5194/bg-11-2027-2014, http://www.biogeosciences.net/11/2027/2014/, 2014. - Spohn, M. and Kuzyakov, Y.: Phosphorus mineralization can be driven by microbial need for carbon, Soil Biol. Biochem., 61, 69–75, doi:10.1016/j.soilbio.2013.02.013, http://dx.doi.org/10.1016/j.soilbio.2013.02.013, 2013. - Stewart, J. W. B. and Tiessen, H.: DYynamics of soil organic phosphorus, Biogeochemistry, 4, 41-60, doi:10.1007/BF02187361, 1987. - Thomas, R. Q., Zaehle, S., Templer, P. H., and Goodale, C. L.: Global patterns of nitrogen limitation: Confronting two global biogeochemical models with observations, Glob. Chang. Biol., 19, 2986–2998, doi:10.1111/gcb.12281, 2013. - Thornton, P., Thornton, M., and Vose, R.: Daymet V3: Annual Tile Summary Cross-Validation Statistics for North America, Hawaii, Tech. rep., ORNL DAAC, Oak Ridge, Tennessee, USA., doi:http://dx.doi.org/10.3334/ORNLDAAC/1348, 2016. - Thornton, P. E., Rosenbloom, N. a., Mahowald, N. M., Lamarque, J. F. J.-F., Rosenbloom, N. a., and Mahowald, N. M.: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability, Global Biogeochem. Cycles, 21, 1–15, doi:10.1029/2006GB002868, 2007. - Tipping, E., Somerville, C. J., and Luster, J.: The C:N:P:S stoichiometry of soil organic matter, Biogeochemistry, pp. 117–131, doi:10.1007/s10533-016-0247-z, http://link.springer.com/10.1007/s10533-016-0247-z, 2016. - Van Wijk, M. T., Williams, M., Cough, L., Hobbie, S. E., and Shaver, G. R.: Luxury consumption of soil nutrients: a possible competitive strategy in \rabove-ground and below-ground biomass allocation and root morphology for \rslow-growing arctic vegetation?, J. Ecol., pp. 664–676, doi:10.1046/j.1365-2745.2003.00788.x, c:{%}5CPDFs{%}5Cj.1365-2745.2003.00788.x.pdf, 2003. - Verheijen, L. M., Aerts, R., Bönisch, G., Kattge, J., and Van Bodegom, P. M.: Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology, New Phytol., 209, 563–575, doi:10.1111/nph.13623, 2016. - Vitousek, P. M.: Nutrient Cycling and Limitation: Hawaii as a Model System, Princeton University Press, Princeton, N.J., U.S.A., 2004. - Vitousek, P. M., Menge, D. N. L., Reed, S. C., and Cleveland, C. C.: Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems., Philos. Trans. R. Soc. Lond. B. Biol. Sci., 368, 20130119, doi:10.1098/rstb.2013.0119, http://www.ncbi.nlm.nih.gov/pubmed/23713117, 2013. Discussion started: 12 April 2017 © Author(s) 2017. CC-BY 3.0 License. 10 20 - Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. a., Domingues, T. F., Scales, J. C., Wohlfahrt, G., Wullschleger, S. D., and Woodward, F. I.: The relationship of leaf photosynthetic traits V cmax and J max to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study, Ecol. Evol., pp. n/a–n/a, doi:10.1002/ece3.1173, http://doi.wiley.com/10.1002/ece3.1173, 2014. - Walker, A. P., Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Asao, S., Hickler, T., and Norby, R. J.: Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?, Global Biogeochem. Cycles, 5, 1–20, doi:10.1002/2014GB004995.Received, 2015. - Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis, Geoderma, 15, 1–19, doi:10.1016/0016-7061(76)90066-5, http://linkinghub.elsevier.com/retrieve/pii/0016706176900665, 1976. - Wang, F., Cheruy, F., and Dufresne, J. L.: The improvement of soil thermodynamics and its effects on land surface meteorology in the IPSL climate model, Geosci. Model Dev., 9, 363–381, doi:10.5194/gmd-9-363-2016, 2016. - Wang, Y.-P., Houlton, B. Z., and Field, C. B.: A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production, Global Biogeochem. Cycles, 21, n/a–n/a, doi:10.1029/2006GB002797, http://doi.wiley.com/10.1029/2006GB002797, 2007. - Wang, Y.-P. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, doi:10.5194/bg-7-2261-2010, 2010. - Wieder, W. R., Cleveland, C. C., Lawrence, D. M., and Bonan, G. B.: Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study, Environ. Res. Lett., 10, 044 016, doi:10.1088/1748-9326/10/4/044016, http://stacks.iop.org/1748-9326/10/i=4/a=044016?key=crossref.27ff2d3c016ebe5e184f5d9334a5791f, 2015. - Yang, X. and Post, W. M.: Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method, Biogeosciences, 8, 5907–5934, doi:10.5194/bgd-8-5907-2011, http://www.biogeosciences-discuss.net/8/5907/2011/http://www.biogeosciences.net/8/2907/2011/, 2011. - Yang, X., Post, W. M., Thornton, P. E., Jain, A., and Ridge, O.: The distribution of soil phosphorus for global biogeochemical modeling, pp. 2525–2537, doi:10.5194/bg-10-2525-2013, 2013. - Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of phosphorus dynamics in tropical forests A modeling study using CLM-CNP, Biogeosciences, 11, 1667–1681, doi:10.5194/bg-11-1667-2014, http://www.biogeosciences.net/11/1667/2014/, 2014. - Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates, Global Biogeochem. Cycles, 24, 1–13, doi:10.1029/2009GB003521, 2010. - Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601–605, doi:10.1038/ngeo1207, http://dx.doi.org/10.1038/ngeo1207, 2011. - Zaehle, S., Medlyn, B. E., Kauwe, M. G. D., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y.-p., El-masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-budynek, A., Mccarthy, H., Finzi, A. C., Hanson, P. J., Prentice, I. C., Oren, R., and Norby, R. J.: Evaluation of 11 terrestrial carbon nitrogen cycle models against observations from two temperate Free-Air CO 2 Enrichment studies, New Phytol., 202, 803–822, doi:10.1111/nph.12697, 2014. - Zhang, Z., Rengel, Z., and Meney, K.: Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectus validus, Aquat. Bot., 91, 71–74, doi:10.1016/j.aquabot.2009.02.002, 2009.