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We introduce the geometric formulation of Quantum Mechanics in the quantum gravity context,
and we use it to give a tensorial characterization of entanglement on spin network states. Starting
from the simplest case of a single-link graph (Wilson line), we define a dictionary to construct a
Riemannian metric tensor and a symplectic structure on the space of spin network states, showing
how they fully encode the information about separability and entanglement, and, in particular,
an entanglement monotone interpreted as a distance with respect to the separable state. In the
maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of
the area of the surface dual to the link thus supporting a connection between entanglement and the
(simplicial) geometric properties of spin network states. We extend then such analysis to the study
of non-local correlations between two non-adjacent regions of a generic spin network. In the end,
our analysis shows that the same spin network graph can be understood as an information graph
whose connectivity encodes, both at the local and non-local level, the quantum correlations among
its parts. This gives a further connection between entanglement and geometry.
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I. INTRODUCTION

Background-independent candidates to a full theory of Quantum Gravity, such as Loop Quantum
Gravity [1–5], the modern incarnation of the canonical quantization programme for the gravitational
field, together with its covariant counterpart (spin foam models), and Group Field Theory (GFT)
[6–9], a closely related formalism sharing the same type of fundamental degrees of freedom, propose
a radically new picture of the microscopic quantum structure of spacetime, in which at very small
scales continuum space, time and geometry dissolve into non-geometric, purely combinatorial and
algebraic (group-theoretic) entities. These entities can be described in terms of spin networks,
graphs coloured by irreducible representations of the local gauge group (the Lorentz group, then
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usually gauge-fixed to SU(2)). Quantum spin network states represent elementary excitations of
spacetime itself, and geometric observables are operators acting on them. For example, areas and
volumes correspond to quantum operators which are diagonalized on spin network states. The
heuristic picture for spin networks is therefore that of “grains of space” .

The key issue, then, becomes the reconstruction or "emergence" of continuum spacetime and
geometry from such microscopic building blocks, in some approximate regime of the quantum
dynamics. This issue is intertwined with, but goes also much beyond, the difficulties with defining
a notion of locality in spacetime due to diffeomorphism invariance.

Various strategies for addressing this open issue are being explored. At a more formal level, they
all aim at a better control over the regime of the fundamental theory involving a large number
of fundamental degrees of freedom, and therefore rest on the renormalization of quantum gravity
models. This line of research has witnessed a tremendous progress in the context of renormalization
of group field theory models [10], which amounts automatically to a renormalization of the corre-
sponding spin foam models, as well as in the context of spin foam models understood as generalised
lattice gauge theory techniques [11]. At a more directly physical level, the effective continuum dy-
namics emerging from quantum gravity models has been studied, for example, in the formalism of
group field theory condensate cosmology in [12], so far limited to spatially homogenous universes.

There are many hints that entanglement and tools from quantum information theory should
play a crucial role both in the characterization of the intrinsic properties of the quantum texture
of spacetime and in the reconstruction of its geometry. For instance, even if based on completely
different grounds both at the conceptual and technical level, recent developments in AdS/CFT have
shown that the entanglement of particles on the boundary is directly related to the connectivity
of the bulk regions thus suggesting that our three-dimensional space is held together by quantum
entanglement [13]. Later works based on the so-called Ryu-Takayanagi formula, which relates the
entanglement entropy in a conformal field theory to the area of a minimal surface in its holographic
dual [14], has also shown that the stress-energy tensor near the boundary of a bulk spacetime region
can be reconstructed from the entanglement on the boundary [15, 16].

Also on the side of fundamental quantum gravity formalisms based on spin networks, there are
many proposals to use quantum information to reconstruct geometrical notions such as distance in
terms of the entanglement on spin network states [17–19]. The idea is that in a purely relational,
background independent context only correlations have a physical meaning and it seems reasonable
to regard spin networks themselves as networks of quantum correlations between regions of space
and then derive geometrical properties from the intrinsic informational content of the theory. In
fact, there has been also a lot of activity, recently, in connecting spin network states and tensor
networks, which are a crucial tool for controlling the entanglement structure of many-body quantum
states, and in using the same link to extract information about the entanglement entropy encoded
in spin network states [20, 21]. In particular, in [21], a precise dictionary between tensor networks,
spin networks and group field theory states has been established, and used as a basis for a derivation
of the Ryu-Takanayagi formula in a quantum gravity context. Other work on entanglement in spin
network states can be found in [22, 23]. Moreover, part of the cited work on spin foam renormaliza-
tion [11] relies as well on tensor network techniques, providing another route for understanding how
the entanglement of spin network states affects the continuum limit of quantum gravity models.

This work aims at providing further insights on the transition “from pregeometry to geometry”
by introducing the machinery of the geometric formulation of quantum mechanics (GQM) in the
quantum gravity context. Indeed, the usual Hilbert space of a quantum mechanical system can
be equipped with a Kähler manifold structure inheriting both a Riemannian metric tensor and
a symplectic structure from the underlying complex projective space of rays. This allows to im-
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port the powerful machinery of differential geometry in QM and, in particular, to characterize the
entanglement properties of a composite system in a purely tensorial fashion [24, 25].

Along the same line, we can use quantum tensors to characterize the entanglement on spin
network states. The advantages of this formalism are both computational and conceptual. Indeed,
unlike the calculations involving entanglement entropy, it does not require the explicit knowledge
of the Schmidt coefficients. Moreover, the key structures of the formalism are built purely from the
space of states without introducing additional external structures. We will give further motivations
for the use of such geometric techniques in a quantum gravity context, in the following.

The paper is organized as follows. In section II we give a review of the role of spin networks
in QG and of their interpretation as quanta of space which, because of diffeomorphism invariance,
offer a realization of the pregeometric scenario in terms of building blocks of combinatorial and
algebraic nature. A notion of entanglement on spin network states can be given in terms of the
local correlations coming from gluing links (or surfaces in the dual picture) of open spin network
vertices. In particular, the gauge-invariance requirement at the gluing nodes implies a locally
maximally entangled state [26].

Section III introduces to the basics of Geometric Quantum Mechanics. The space of rays is
recognized to be the proper setting for the description of quantum systems and its main geometric
structures are pointed out. In particular, we focus on the structures on the Hilbert space which can
be regarded as the pull-back of the tensors defined on the ray space. This is the so-called Fubini-
Study Hermitian tensor whose real and imaginary parts provide us with a metric and a symplectic
structure, respectively. For pure states, this metric is the well-known Fisher-Rao metric.

Such a pull-back procedure turns out to be very useful in the analysis of bipartite composite
systems. Indeed, the pulled-back Hermitian tensor on orbit submanifolds of quantum states related
by unitary transformations decomposes in block matrices which encode all the information about
the separability or entangled nature of the fiducial state of the given orbit. Of particular interest
are the off-diagonal blocks of the metric part which encode the information on quantum correlations
between the subsystems and define an entanglement measure interpreted as a distance with respect
to the separable case.

Finally, we set up a correspondence between the GQM formalism and spin networks by focusing
first on the most simple case of a single Wilson line (Sec. IV-VI) and then extending the analysis to
the case of two non-adjacent regions of a generic spin network state (Sec. VII). The analysis of the
tensorial structures leads us to rethink of the spin network graph structure itself as an information
graph whose connectivity is encoded, both at the local and non-local level, on the choice of the
entangled state. The entanglement measure involving the off-diagonal blocks of the metric tensor
can be therefore interpreted ultimately as a measure of graph connectivity. By exploiting the
geometric information carried by a spin network state we are able to define a connection between
entanglement and geometry.

II. QUANTUM STATES OF GEOMETRY: SPIN NETWORKS

We provide here a concise introduction to spin network states, focussing on their interpretation
as elementary building blocks of quantum spacetime. For a more detailed discussion we refer to the
literature cited in the introduction, as well as to [27–35].
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A. Spin networks from canonical Loop Quantum Gravity

Loop Quantum Gravity starts from Einstein’s General Relativity (GR) recast into the form of a
gauge theory with structure group Spin(1, 3), plus the additional gauge symmetries resulting from
the space-time diffeomorphism invariance. A partial fixing of the Spin(1, 3) invariance leads to
a phase space description of the classical theory in terms of connections A of a principal SU(2)-
bundle over spacelike hypersurfaces Σ, embedded in a spacetime manifold M, and sections E of
the associated vector bundle over Σ, whose pull back are Lie algebra valued pseudo two forms.

The two forms E encode the information about the 3d geometry on Σ, while the A carries the
information about the extrinsic curvature of Σ inM.

The conjugated variables (A,E), with standard Poisson brackets, define a (Yang–Mills like)
phase space, which is then reduced by the imposition of the SU(2) Gauss constraint, the spatial
diffeomorphism constraint and the Hamiltonian constraint, respectively implementing the internal
local gauge symmetry and the symmetry under diffeomorphisms.

The Dirac quantization procedure, before the imposition of the diffeomorphism constraints, leads
to Hilbert spaces HΓ associated to graphs embedded in the canonical manifold. Let us describe the
structure of the corresponding states.

Let Γ ⊂ Σ be a graph, i.e., a finite and ordered collection of smooth oriented paths γ` ∈ Σ with
` = 1, . . . , L meeting at most at their endpoints (such paths will be called the links or the edges of
the graph, while the intersection points will be called nodes or vertices), and let ψ : SU(2)L → C
be a (smooth) (cylindrical) function ψΓ(h1, . . . , hL) of L group elements. These group elements
are interpreted as parallel transports h`(A) ≡ hγ`(A) of the connection A along the links γ` of the
graph Γ, embedded in the canonical hypersurface. The linear space of such cylindrical functionals
w.r.t. a given graph Γ can be turned into a Hilbert space by equipping it with the following scalar
product

〈ψ(Γ)|ψ′(Γ)〉 ≡
∫ L∏

`=1

dh` ψ(h1, . . . , hL)ψ′(h1, . . . , hL) , (1)

where dh` are L copies of the (left- and right-invariant) Haar measure of SU(2). The inner product
(1) is invariant under SU(2) gauge transformations acting as left or right multiplications on the
arguments of the wave functions ψΓ, depending on whether the gauge transformation is associated
to the starting or end point of the link to which each argument is referring to. This is a direct
consequence of the invariance of the Haar measure. One then needs to construct a Hilbert space
out of the space of all cylindrical functions for all graphs Γ ⊂ Σ:⋃

Γ⊂Σ

HΓ . (2)

To do this, we need to define a scalar product for cylindrical functions based on different graphs.
Such a scalar product can be deduced from that on HΓ as follows. The construction is based
on the introduction of the so-called cylindrical equivalence relations which reflect properties of
the underlying continuum connection field, and it is therefore directly inspired by the continuum
embedding of the graphs Γ, and thus on the origin of the quantum states ψΓ as coming from
the canonical quantization of a continuum field theory. The details of the construction are not
so important for our purposes. Essentially, we define equivalence classes of graphs that can be
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regarded as subgraphs of a bigger one, i.e.:

[Γ] =
{

Γ1 ∼ Γ2 iff ∃Γ ⊂ Σ : Γ ⊃ Γ1,Γ2

}
. (3)

and the inner product between states associated to different graphs can be defined to be like in (1)
for such bigger graph by defining

〈ψΓ1 |ψ′Γ2
〉 ≡ 〈ψΓ|ψ′Γ〉 , (4)

where Γ = Γ1 ∪Γ2 and the functions ψΓ1
, ψ′Γ2

are trivially extended on Γ by setting them constant
over the links which do not belong to Γ1,Γ2, respectively1. The (unconstrained) kinematical Hilbert
space will be therefore given by:

Hkin =

⋃
Γ⊂ΣHΓ

∼
. (5)

In the spin representation, the equivalence condition ∼ which allows us to define the scalar product
(4) amounts to take all spins zero on the “virtual” links of the extended graph which do not belong
to the starting one [35]. This implies that the Hilbert space (5) can be recasted as a direct sum of
single graph-based Hilbert spaces

Hkin =

⋃
Γ⊂ΣHΓ

∼
=
⊕
Γ⊂Σ

H̃Γ , (6)

but the individual graph-based Hilbert spaces H̃Γ correspond to HΓ without zero modes, i.e., where
the spins j` never take the value zero. This space equipped with the above inner product can then
be understood as a Hilbert space over “generalized” connections on Σ with the so-called Ashtekar-
Lewandowski measure dµAL [36–38],

Hkin ∼= L2(A, dµAL) . (7)

In the following, we will be mainly concerned with the space associated to each graph Γ, thus with
HΓ, and the cylindrical equivalence conditions will not play much of a role.

Finally, let us introduce a basis for the kinematical Hilbert space, and more precisely for each HΓ.
According to the Peter-Weyl theorem [39], a cylindrical function ψΓ ∈ HΓ

∼= L2(SU(2)L, dµHaar)
can be decomposed as

ψΓ =
∑

j`,m`,n`

fm1,...,mL,n1,...,nLD
(j1)
m1n1

(h1) . . . D(jL)
mLnL(hL) , (8)

where D(j`)
m`n`(h`) are the Wigner matrices which give the spin-j irreducible representations of the

group elements h` ∈ SU(2). An orthonormal basis for the Hilbert space HΓ is thus provided by

〈~h|Γ;~j, ~m,~n〉 ≡ D(j1)
m1n1

(h1) . . . D(jL)
mLnL(hL) , (9)

where we have used a compact vectorial notation ~j, ~m,~n to denote the spin labels of the unitary

1 Obviously, this new product reduces to the previous one if Γ1 and Γ2 coincide.
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irreducible representations of SU(2) associated with each link of the graph, and similarly for the
corresponding group elements. Given a notion of kinematical unconstrained Hilbert space Hkin,
constructing the physical Hilbert space Hphys would then amount to a series of reduction processes
under the imposition of the Gauss and diffeomorphism constraints.

In this work we content ourselves with the kinematical structure of LQG, encoded in H0
kin,

obtained from H after the imposition of the Gauss constraint only, which is common to a large
extent also to the group field theory formalism, as we will discuss.

B. Gauge-invariant states and spin network basis

The solutions of the quantum Gauss constraint form the Hilbert space H0
kin of SU(2)-gauge

invariant states, i.e.:

H0
kin ≡ InvSU(2)

[
Hkin

]
, (10)

which can be defined by the same construction outlined in the previous section, but starting from
gauge invariant spacesH0

Γ associated to all possible graphs Γ. From the transformation of continuum
parallel transports under SU(2) transformations, it follows that a gauge transformation acts only
on the nodes of the graph. Therefore, the gauge-invariance requirement for cylindrical functions
translates into the requirement of invariance under the action of the group at the nodes, i.e.:

ψ0
Γ(h1, . . . , hL) = ψ0

Γ

(
g(γ1(0))h1g

−1(γ1(1)), . . . , g(γL(0))hLg
−1(γL(1))

)
, (11)

where γi(0) (resp. γi(1)) indicates the starting (resp. end) point of the link i of the graph Γ. The
above invariance can be implemented by group averaging

ψ0
Γ(h1, . . . , hL) =

∫ V∏
v=1

dgv f
(
g(γ1(0))h1g

−1(γ1(1)), . . . , g(γL(0))hLg
−1(γL(1))

)
, (12)

where V is the number of nodes (vertices) of the graph Γ. In the spin representation of each
function, this corresponds to inserting on each node v of the graph the following projector,

Iv =

∫
dg
∏
`∈v

D(j`)(g) . (13)

with ∏
`∈v

D(j`)
m`n`

(g) ∈
⊗
`∈v

V(j`) (14)

V(j`) denoting the SU(2) irreducible spin-j` representation spaces. Therefore, by using the decom-
position of the tensor product

⊗
`∈v V(j`) into irreducible representations⊗

`∈v

V(j`) =
⊕
i

V(ji) , (15)
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we find that Iv projects onto the gauge invariant part of
⊗

`∈v V(j`), namely the singlet space V(0):

Iv :
⊗
`∈v

V(j`) −→ V(0) . (16)

Being Iv a projector, it can be decomposed in terms of a basis {iα} of V(0) and its dual as

Iv =

dimV(0)∑
α=1

iαi
∗
α ∈ V(0) ⊗ V(0)∗ , (17)

from which, together with the decomposition of
⊗

`∈v V(j`) = (
⊗

` in V(j`)∗)⊗(
⊗

` out V(j`)) between
ingoing and outgoing links of the vertex v, it follows that Iv is the invariant map between the
representation spaces associated with the edges joined at the node v, i.e.:

Iv :
⊗
` in

V(j`) −→
⊗
` out

V(j`) . (18)

Such invariants are called intertwiners. Hence, if we have an p-valent node, the intertwiner is an
element of the invariant subspace InvSU(2)

[
V(j1)⊗· · ·⊗V(jp)

]
of the tensor product space between the

p irreducible representations associated to the links joining that node. However, such a procedure is
possible only if some conditions necessary to have an invariant subspace are satisfied. For instance,
in the case of a 3-valent node, there exists an intertwiner space only if the spin numbers j1, j2, j3
labelling the representations associated to the three links satisfy the Clebsch-Gordan condition:

|j1 − j2| ≤ j3 ≤ j1 + j2 . (19)

For a p-valent node (with p > 3) the space V(0) can have a larger dimension and the construction
consists of adding first two irreducible representations, then the third, and so on, thus giving rise
to a decomposition in virtual 3-valent nodes in which virtual links are labelled by spins k satisfying
the condition (19) and represent the intertwiners as shoved in Fig. 1 for a 4-valent node. Since the

Figure 1: Construction of an intertwiner for a 4-valent vertex.

projector (17) acts only on the nodes of the graph that labels the basis of Hkin, we can write the
result of the action of Iv on elements of Hkin as a linear combination of products of representation
matrices D(j`)

m`n`(h`(A)) contracted with intertwiners. This leads us to give the following

Definition: A triplet (Γ,~j,~i) representing a graph Γ embedded in Σ whose L links are colored by
the spins ~j = (j1, . . . , jL) and whose V nodes are labelled by intertwiners ~i = (i1, . . . , iV ) is called a
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spin network S embedded in Σ associated with the graph Γ. A spin network state |S〉 ≡ |Γ;~j,~i〉
is the cylindrical function over the spin network S associated with the graph Γ which can be written
as

〈A|Γ;~j,~i〉 = ψΓ,~j,~i[A] =
⊗
`

D(j`)(h`(A)) ·
⊗
v

iv , (20)

where D(j`)(h`(A)) are the spin irreducible representations of the holonomy along each link and ·
denotes the contraction with the intertwiners whose indices (hidden for simplicity) can be recon-
structed from the connectivity of the graph.

Spin network states form a complete orthonormal basis for H0
Γ [40]. Indeed, using the Peter-Weyl

theorem according to which the Wigner matrices form an orthonormal basis of L2(SU(2)), and the
definition of the scalar product (4), we have:

〈Γ′;~j ′,~i ′|Γ;~j,~i〉 ≡ 〈ψΓ′;~j ′,~i ′ |ψΓ;~j,~i〉 = δΓ′,Γ δ~j ′,~j δ~i ′,~i . (21)

The SU(2) constraint is implemented by choosing an intertwiner at each node as discussed before.
Thus, the gauge-invariant Hilbert space on a fixed graph Γ with L links and V nodes is given by

H0
Γ =

⊗
j`

(⊗
v

InvSU(2)

[⊗
`∈v

V(j`)
]) ∼= L2(SU(2)L/SU(2)V ) . (22)

Spin networks will be the main focus of our attention in this paper.
As we mentioned, spin network states diagonalize geometric operators such as area and volume.

In particular, only nodes contribute to the spectrum of the volume operator implying that the
volume of a given region of a spin network is actually the sum of v terms each of which is associated
with one of the nodes inside the region. This matches also the identification of spin networks with
states of quantum polyhedra dual to the nodes of the graph [27], where the algebraic data associated
to a spin network define a notion of quantum geometry where each face dual to a link ` has an
area proportional to the spin label j`, and each region around a node v has a volume determined
by the intertwiner iv as well as the spins of the links sharing that node. Such an interpretation
can be traduced into the heuristic picture of Fig. 2 where space is represented by a collection of
“chunks” (the polyhedra dual to the nodes) with quantized volume. Neighbouring chunks share
surfaces whose area is determined by the spin carried by the dual link which intersects it.

Figure 2: Heuristic picture of the quantum geometry of space described by spin network states.
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These discrete building blocks can also be understood independently of any embedding into a
continuum manifold. In fact, even in the canonical LQG formulation of the theory, the imposi-
tion of diffeomorphism invariance forces upon us to avoid relying on any continuum background
structure. Moreover, being the fundamental structure of space a quantum superposition of abstract
non-embedded entities each of which having a different connectivity (i.e., a different graph struc-
ture), what is local in one term of the superposition will in general not be local in others [41, 42].
Therefore, the lack of a background implies that adjacent regions of a spin network do not necessar-
ily correspond to close space regions. Indeed, there is no metric structure that allows us to define a
notion of distance and there is no absolute position at all. But a given region of a spin network can
be localized with respect to other parts of the graph. This picture implies that notions as “close”
and “far” should be understood in terms of relations between parts of a spin network. The picture
of the microscopic structure of space(-time) proposed by LQG nicely realizes Penrose’s original
idea to find a description of quantum geometry which is at the same time discrete and relational
(that is, built up from purely combinatorial and algebraic (i.e., the group data) structures without
any reference to background notions of space, time or geometry) [43]. This is also where quantum
information tools may become crucial.

C. Spin networks as many-body quantum states in group field theory

Before proceeding with our analysis of entanglement in spin network states, and the application
of geometric quantum mechanics, we provide another picture of the same spin network states, which
takes their ‘pre-geometric’nature as given, and does not rely on any continuum structure for the
construction of a corresponding Hilbert space (in particular, it does not proceed to the imposition
of any cylindrical equivalence condition) [44].2. This is the way spin networks appear in the group
field theory formalism. However, there are some works on the possibility of defining spin network
states in a more abstract, combinatorial way also within the canonical LQG approach [46, 47].

The key point of the construction is to understand how spin network states can be reformulated
as “many-body” states. Let us consider a closed graph Γ with V d-valent vertices labelled by the
index i = 1, . . . , V and denote the set of its edges by

L(Γ) = ({1, . . . , V } × {1, . . . , d})2 (23)

such that

[(ia)(ia)] /∈ L(Γ) , [(ia)(jb)] ∈ L(Γ) (24)

where the last condition specifies the connectivity of the graph telling us the existence of a directed
edge connecting the a-th link at the i-th node to the b-th link at the j-th node, with source i
and target j. A generic cylindrical function based on the graph Γ will be a function of the group
elements habij ∈ G (G ≡ SU(2) in LQG) assigned to each link ` := [(ia)(jb)] ∈ L(Γ)3

ψΓ(h11
12, h

21
13, . . . ) = ψΓ({habij } ≡ {h`}) ∈ HΓ

∼= L2(GL/GV ) , (25)

2 For a general conceptual discussion on the meaning of “pregeometry”, see for instance [45].
3 Since in what follows it is important to distinguish different nodes and the links joining them, we admit a certain
excessive complexity of notation using more indices to label links (ab) and their source and target nodes (ij).
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with hij = h−1
ji and we impose gauge invariance at each vertex i of the graph, i.e.:

ψΓ({hij}) = ψΓ({gihijg−1
j }) ∀gi ∈ G . (26)

Consider now a new Hilbert space given by

HV ∼= L2(Gd×V /GV ) , (27)

whose generic element will be a function of d× V group elements

ϕ({gai }) = ϕ(g1
1 , . . . , g

1
d, . . . , g

V
1 , . . . , g

V
d ) ∈ HV (28)

satisfying the gauge invariance at the vertices of the graph, i.e.:

ϕ(. . . , gia, . . . , g
j
b , . . . ) = ϕ(. . . , αig

i
a, . . . , αjg

j
b , . . . ) , ∀α ∈ G . (29)

As in LQG, the measure of the Hilbert space is taken to be the Haar measure. The interpretation of
such functions is that each ϕ is associated to a d-valent graph formed by V disconnected components,
each corresponding to a single d-valent vertex and d 1-valent vertices, which are called open spin
network vertices.
Given a closed d-valent graph Γ with V vertices specified by L(Γ), a cylindrical function ψΓ can be
obtained by group averaging a wave function ϕ

ψΓ({habij }) =

∫
G

∏
[(ia)(jb)]∈L(Γ)

dαabij ϕ({gai αabij ; gbjα
ab
ij }) = ψΓ({gai (gbj)

−1}) (30)

in such a way that each edge is associated with two group elements gai , gbj ∈ G. The integrals over
α operate a “gluing” of the open spin network vertices corresponding to ϕ, pairwise along common
links, thus forming the closed spin network represented by the closed graph Γ. Such a gluing can
be interpreted as a symmetry requirement. Essentially, what we are saying is that we impose the
function ϕ to depend on the group elements gai , gbj only through the combination gai (gbj)

−1 = habij
which is invariant under the group action, by the same group element, at the endpoint of two open
edges to which these group elements are associated as showed in Fig. 3 for the simple example of
the tetrahedral graph. This shows that, only using functions ϕ, it is always possible to construct a
generic function ψ with all the right variables and symmetry properties, i.e., the space of functions
ψ is a subset of the space of functions ϕ.
Moreover, using the Peter-Weyl decomposition theorem, we can give the corresponding formula
in the spin representation which expresses the gluing of open spin network vertices and defines
cylindrical functions for closed graphs as special cases of functions associated to a given number of
them. Indeed, a cylindrical function ψΓ can be decomposed as

ψΓ({habij }) =
∑

ψ
Jabij
{mabij kabij }

∏
i

C
Jabij Ii
mabij

C
Jabij Ii
nabij

∏
[(ia)(jb)]

D
(Jabij )

sabij n
ab
ij

(
{habij }

)
=
∑
{J},I

ψ̃{J
ab
ij },Ii

∏
i

C
Jabij Ii
nabij

∏
[(ia)(jb)]

D
(Jabij )

sabij n
ab
ij

(
{habij }

) (31)

where
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Figure 3: Gluing of open spin network vertices to form a spin network closed graph.

• Jabij label the representations of the group G and D(J) are the corresponding representation
matrices whose indices refer to the start and end vertex of the edge [(ia)(jb)] to which the
group element habij is attached;

• C{J},I are the normalized intertwiners for the groupG, attached in pairs to the vertices, result-
ing from the gauge-invariace requirement, a basis of which is labelled by additional quantum
numbers I. These intertwiners contract all indices of both nodes and of the representation
functions, leaving a gauge-invariant function of spin variables only.

By using a similar decomposition for the function ϕ, the group averaging expression of ψ in terms
of ϕ can be written as

ψΓ({habij = gai (gbj)
−1}) =

∫ ∏
[(ia)(jb)]

dαabij
∑

{ ~Ji,~mi},Ii

ϕ
~Ji,Ii
~mi

∏
i

(∏
j 6=i

D
(Jai )
mai n

a
i
(gai α

ab
ij )

)
C
~Jj ,Ii
~nj

(32)

=
∑

{Jabij },{m
j
i},Ii

ϕ
~Ji,Ii
~mi

∏
i

C
Jabij ,Ii
nabij

∏
[(ia)(jb)]

δJai ,Jbj δmai ,mbjD
(Jabij )

sabij n
ab
ij

(gai (gbj)
−1)(33)

from which, comparing with (31), we get the gluing formula in spin representation

ψ{Jij},Ii =
∑
{~m}

ϕ
~Ji,Ii
~mi

∏
[(ia)(jb)]

δJai ,Jbj δmai ,mbj . (34)

This means that LQG states can be regarded as linear combinations of disconnected open spin
network states with additional conditions enforcing the gluing and encoding the connectivity of the
graph. Explicitly, Eq. (34) shows that such conditions basically correspond to insert intertwiners
given by the identity map at the bivalent vertices where the open links are pairwise glued.
In order to deal with graphs with an arbitrary number of vertices, we consider the Hilbert space

H =

∞⊕
V=0

HV . (35)

Eq. (30), or equivalently (32), shows that there is a correspondence between LQG states and states
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in H. This is actually more than a correspondence at the level of sets of states since it is possible to
prove that the scalar product in HV for the special class of states corresponding to closed graphs
induces the standard LQG kinematical scalar product for cylindrical functions ψΓ ∈ HΓ based on
a fixed graph (see [44] for details). This means that, assuming that the graph Γ has V vertices, HΓ

can be embedded into HV faithfully, i.e., preserving the scalar product.

Still, even though they agree exactly for each HΓ, it is important to stress the main differences
between the new Hilbert space H and H0

kin.

1) The Hilbert space H in (35) is defined by taking the direct sum over all the Hilbert spaces
HV ⊃ HΓ with fixed number of vertices without introducing any cylindrical equivalence class.
As such, unlike the LQG case, zero modes are now included in the Hilbert space.

2) In the new Hilbert space, states associated to different graphs are organized in a different way
w.r.t. the LQG space. Indeed, states associated to graphs with different number of vertices
are orthogonal, but those associated to different graphs but with the same number of vertices
are not orthogonal.

The functions ϕ(~g1, . . . ~gV ) can be understood as “many-body” wave functions for V quanta corre-
sponding to the V open spin network vertices to which the function refers. Indeed, each state can
be decomposed into products of “single-particle”/“single-vertex” states

|ϕ〉 =
∑

{~χi}i=1,...,V

ϕ~χ1...~χV |~χ1〉 ⊗ · · · ⊗ |~χV 〉 , (36)

which in the group representation reads as

ϕ(g) ≡ 〈g|ϕ〉 =
∑
{~χi}

ϕ~χ1...~χV 〈~g1|~χ1〉 . . . 〈~gV |~χV 〉 (37)

where the complete basis of single-vertex wave functions is given by wave functions for individual
spin network vertices, i.e.

|~χ〉 = | ~J, ~m, I〉 : ψ~χ(~g) = 〈~g|~χ〉 =

( d∏
`=1

D(J`)
m`n`

)
CJ1...Jd,In1...nd

. (38)

The normalization condition for the ϕ is provided by∫ V∏
v=1

d~gvϕ̄(~g1, . . . ~gV )ϕ(~g1, . . . ~gV ) =
∑
{χv}

ϕ̄{χv}ϕ{χv} , (39)

where we have used the normalization condition of single-particle wave functions∫
d~g ψ̄~χ ′(~g)ψ~χ(~g) = δ~χ ′,~χ . (40)

The functions ϕ are exactly the many-body wave functions for point particles living on the group
manifold Gd, whose classical phase space is (T ∗G)d ∼= (G × G∗)d which is also the classical phase
space of a single polyhedron dual to a d-valent spin network vertex. The resulting picture of the
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microstructure of spacetime is thus based on glued pre-geometric fundamental building blocks.
This is the general picture underlying the GFT formalism. This is even more evident in a 2nd
quantized, Fock space reformulation fo the same Hilbert space H, where building blocks are created
and annihilated and their gluing corresponds to interactions of combinatorial nature [44, 48]. We
will see also in the following that the gluing of open spin networks can be naturally understood
in terms of entanglement of their spin network degrees of freedom, so that the GFT Hilbert space
fits very well our pre-geometric approach to quantum spacetime and the idea of reconstructing
geometry from entanglement.

III. ENTANGLEMENT IN GEOMETRIC QUANTUM MECHANICS

One of the most appealing reasons to construct a geometric formulation of Quantum Mechanics
(QM) concerns the opportunity of making available “classical methods” of Riemannian and symplec-
tic geometry in a quantum mechanical framework [49]. The geometrization program for Quantum
Mechanics can be synthesized as the replacement of the usual description of a quantum system in
terms of Hilbert spaces with a description in terms of Hilbert manifolds [50–53]. Moreover, accord-
ing to the probabilistic interpretation of QM, we usually identify (pure) states with equivalence
classes (rays) of state vectors |ψ〉 with respect to multiplication by a non-zero complex number
[54]. The space of rays R(H) is a differential manifold identified with the complex projective space
CP (H) associated with H [55]. The manifold structure of this space requires that we replace all
objects, whose definition depends on the linear structure on H, with tensorial geometrical entities
which preserve their meaning under general transformations and not just linear ones [52].

In this section we briefly recall how to construct tensorial quantities on the space of states
of a quantum system by focusing on those tensors on H which can be identified with the pull-
back of tensorial objects defined on the underlying complex projective space. Furthermore, a
pull-back procedure on orbit submanifolds of quantum states with respect to the action of unitary
representations of Lie groups enables us to give a tensorial characterization of quantum entanglement
for composite systems [25].

A. Classical Tensors on Quantum states

Let H ∼= CN be a finite-dimensional Hilbert space of dimension N and denote by {|ej〉}j=1,...,N

its (orthonormal) basis. We can introduce complex coordinate functions {cj} on H by setting
〈ej |ψ〉 = cj(ψ), for any |ψ〉 ∈ H. By replacing functions with their exterior differentials we may
associate with the Hermitian inner product on quantum state vectors 〈·|·〉 : H×H → C a Hermitian
covariant tensor on quantum-state-valued sections of the tangent bundle TH defined by [50, 51, 53]

h = 〈dψ ⊗ dψ〉 :=
∑
j

dc̄j ⊗ dcj , (41)

such that

〈dψ ⊗ dψ〉 (Xψ, Xψ′) = 〈ψ|ψ′〉 (42)

for any vector field Xψ : φ 7→ (φ, ψ), ∀φ ∈ H. This essentially amounts to identify H with the
tangent space TψH at each point of the base manifold.
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The decomposition of the coordinate functions cj into real and imaginary part, say cj = xj + iyj ,
that is to replace H with its realification HR := Re(H) ⊕ Im(H) ∼= R2N , allows to identify an
Euclidean metric and a symplectic structure on HR respectively with the real and imaginary part
of the Hermitian tensor (41), i.e.

h = g + iω = δjk(dxj ⊗ dxk + dyj ⊗ dyk) + iδjk(dxj ⊗ dyk − dyj ⊗ dxk) . (43)

These two tensors are related by a (1, 1)-tensor field J = δjk
(
dxj⊗ ∂

∂yk
−dyj⊗ ∂

∂xk

)
playing the role

of a complex structure. The real differential manifold HR is thus equipped with a Kähler manifold
structure [53].

Coming back to the space of rays, it is well known [54, 55] that the equivalence classes of state
vectors identifying points of the complex projective space CP (H) ∼= R(H) can be represented by
rank-one projectors ρ = |ψ〉〈ψ|

〈ψ|ψ〉 ∈ D1(H) ⊂ u∗(H) called pure states which satisfy the properties
ρ† = ρ, ρ2 = ρ,Trρ = 1. Inheriting the differential calculus from u∗(H), we define an operator-
valued (0,2)-tensor dρ ⊗ dρ which may be turned into a covariant tensor by evaluating it on the
state ρ itself, i.e.

Tr (ρdρ⊗ dρ) . (44)

The pull-back of the tensor (44) from R(H) to H0 ≡ H− {0} along the (momentum) map

µ : H0 3 |ψ〉 7−→ ρ =
|ψ〉 〈ψ|
〈ψ|ψ〉

∈ R(H) ∼= D1(H) ⊂ u∗(H) (45)

gives the so-called Fubini-Study Hermitian tensor [56]

hFS =
〈dψ ⊗ dψ〉
〈ψ|ψ〉

− 〈ψ|dψ〉
〈ψ|ψ〉

⊗ 〈dψ|ψ〉
〈ψ|ψ〉

, (46)

whose real and imaginary parts define a metric and a symplectic structure on H0.

Consider now a manifold M and an embedding iM : M ↪→ H of M into H. The induced pull-back
i∗M of the Hermitian tensor (41) or (46) defines a covariant Riemannian metric tensor and a closed
(symplectic in a non-degenerate case) 2-form on M. In this spirit, it has been shown in [57] that
the Fisher-Rao metric tensor, used in statistics and information theory [58], may be obtained from
the Fubini-Study tensor on the space of pure quantum states.

In particular, if M admits the structure of a Lie group G, we may identify submanifolds of states
as the orbits generated by the action of a unitary representation of the group upon a normalized
fiducial state |0〉 ∈ H0, i.e.

O ∼= G
/
G0 =

{
|g〉 = U(g) |0〉 | g ∈ G

}/
∼ , (47)

where G0 is the isotropy group of the state |0〉. Correspondingly on R(H) we identify orbit sub-
manifolds of pure quantum states with respect to the co-adjoint action on some fiducial pure state
ρ0 = |0〉〈0|

〈0|0〉

ρ(g) = U(g)ρ0U
−1(g) . (48)
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The operator-valued 1-form dρ can be thus written as

dρ = dUρ0U
−1 + Uρ0dU

−1 + Udρ0U
−1 = U [U−1dU, ρ0]−U

−1 , (49)

being dρ0 = 0 for any pure state ρ0. The pull-back of the Hermitian tensor (44) on the orbit
submanifold embedded in D1(H) ∼= R(H) yields the following tensor [25, 51]

K =
{
Tr
(
ρ0R(Xj)R(Xk)

)
− Tr

(
ρ0R(Xj)

)
Tr
(
ρ0R(Xk)

)}
θj ⊗ θk , (50)

where R(Xj) denotes the Lie algebra representation defined by the unitary representation of the
Lie group G and θj the dual basis of left-invariant 1-forms such that U−1dU = iR(Xj)θ

j . Again,
the real symmetric and imaginary skewsymmetric part of the tensor K 4

K+ =
{

1
2Tr
(
ρ0 [R(Xj), R(Xk)]+

)
− Tr

(
ρ0R(Xj)

)
Tr
(
ρ0R(Xk)

)}
θj � θk , (51)

K− = 1
2Tr
(
ρ0 [R(Xj), R(Xk)]−

)
θj ∧ θk , (52)

provide a Riemannian metric tensor and a symplectic structure on the orbit Oρ0 .
Such a pull-back procedure can be extended also to the case of a composite system [24, 25]. The

correlation properties of the fiducial state ρ0 are captured by the tensorial structures induced on the
orbits of the action of local unitary groups which define submanifolds of states with fixed amount
of entanglement.

B. Quantum Fisher tensor for bipartite N-level systems

Let H = HA⊗HB ∼= CNA ⊗CNB be the Hilbert space of a composite system consisting of two N
level systems A and B with number of levels respectively given by NA = dimHA and NB = dimHB .
For the sake of clarity, in what follows we will denote by ⊗ the usual tensor product of spaces and
by ⊗F the product of forms. So let ρ0 be a fiducial pure state in D1(HA⊗HB) and G0 its isotropy
group, we want to compute now the pull-back of the Hermitian quantum Fisher tensor

Tr(ρ dρ⊗
F
dρ) (53)

on the orbits

O ∼= U(NA)× U(NB)
/
G0 (54)

of unitarily related (pure) quantum states

ρ = Uρ0U
−1 , (55)

4 Here [·, ·]± respectively denote the anticommutator and the commutator and we use the shorthand notation

θa � θb =
1

2

(
θa ⊗ θb + θb ⊗ θa

)
, θa ∧ θb =

1

2

(
θa ⊗ θb − θb ⊗ θa

)
.

for the symmetrized and antisymmetrized product of forms.
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induced by the co-adjoint action of the unitary group on ρ0 with respect to the product represen-
tation

U = UA ⊗ UB = (UA ⊗ 1B) · (1A ⊗ UB) . (56)

The corresponding Lie algebra representation u(HA)⊕ u(HB) is provided by means of the following
realization

R(Xj) =

{
σ

(A)
j ⊗ 1B for 1 ≤ j ≤ N2

A

1A ⊗ σ(B)

j−N2
A

for N2
A + 1 ≤ j ≤ N2

A +N2
B

(57)

of the infinitesimal generators of the one-dimensional subgroup of U(NA)×U(NB). In the following,
for both subsystems we will adopt a short-hand notation of indices a, b without specifying their range
of values. Therefore, being U−1dU a left-invariant 1-form, it can be decomposed as5

U−1dU = iσ(A)
a θaA ⊗ 1B + 1A ⊗ iσ(B)

b θbB , (58)

where {θA} and {θB} denote a basis of left-invariant 1-forms on the corresponding Lie group
representation acting on the subsystem A,B respectively. The operator-valued 1-form (49) can be
thus written as

dρ = U
[
iσ(A)
a θaA ⊗ 1B , ρ0

]
−U
−1 + U

[
1A ⊗ iσ(B)

b θbB , ρ0

]
−U
−1 , (59)

from which it follows that

dρ⊗
F
dρ =

(
U
[
iσ(A)
a ⊗ 1B , ρ0

]
−

[
iσ

(A)
b ⊗ 1B , ρ0

]
−U
−1
)
θaA ⊗

F
θbA

+
(
U
[
iσ(A)
a ⊗ 1B , ρ0

]
−

[
1A ⊗ iσ(B)

b , ρ0

]
−U
−1
)
θaA ⊗

F
θbB

+
(
U
[
1A ⊗ iσ(B)

a , ρ0

]
−

[
iσ

(A)
b ⊗ 1B , ρ0

]
−U
−1
)
θaB ⊗

F
θbA

+
(
U
[
1A ⊗ iσ(B)

a , ρ0

]
−

[
1A ⊗ iσ(B)

b , ρ0

]
−U
−1
)
θaB ⊗

F
θbB . (60)

The pull-back of the Hermitian tensor (53) on the orbit submanifold starting from the fiducial state
ρ0 then reads as

K = K(A)
ab θ

a
A ⊗
F
θbA +K(AB)

ab θaA ⊗
F
θbB +K(BA)

ab θaB ⊗
F
θbA +K(B)

ab θ
a
B ⊗
F
θbB (61)

with 
K(A)
ab = −Tr

(
ρ0

[
σ

(A)
a ⊗ 1B , ρ0

]
−

[
σ

(A)
b ⊗ 1B , ρ0

]
−

)
K(AB)
ab = −Tr

(
ρ0

[
σ

(A)
a ⊗ 1B , ρ0

]
−

[
1A ⊗ σ(B)

b , ρ0

]
−

)
K(BA)
ab = −Tr

(
ρ0

[
1A ⊗ σ(B)

a , ρ0

]
−

[
σ

(A)
b ⊗ 1B , ρ0

]
−

)
K(B)
ab = −Tr

(
ρ0

[
1A ⊗ σ(B)

a , ρ0

]
−

[
1A ⊗ σ(B)

b , ρ0

]
−

)
.

(62)

5 Here we use the decomposition of the exterior differential operator d = dA ⊗ 1B + 1A ⊗ dB acting on a product
representation (56).
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Now, being ρ0 pure, we have that ρ3
0 = ρ2

0 = ρ0. Hence a direct computation yields

K(A)
ab = Tr

(
ρ0σ

(A)
a σ

(A)
b ⊗ 1B

)
− Tr

(
ρ0σ

(A)
a ⊗ 1B

)
Tr
(
ρ0σ

(A)
b ⊗ 1B

)
, (63)

K(AB)
ab = Tr

(
ρ0σ

(A)
a ⊗ σ(B)

b

)
− Tr

(
ρ0σ

(A)
a ⊗ 1B

)
Tr
(
ρ01A ⊗ σ(B)

b

)
, (64)

K(BA)
ab = Tr

(
ρ0σ

(B)
a ⊗ σ(A)

b

)
− Tr

(
ρ0σ

(B)
a ⊗ 1A

)
Tr
(
ρ01B ⊗ σ(A)

b

)
, (65)

K(B)
ab = Tr

(
ρ01A ⊗ σ(B)

a σ
(B)
b

)
− Tr

(
ρ01A ⊗ σ(B)

a

)
Tr
(
ρ01A ⊗ σ(B)

b

)
. (66)

Therefore, the pulled-back Hermitian tensor K decomposes into a Riemannian metric K+ and a
symplectic structure K−

K = K+ + iK− , (67)

respectively given by

K+ = K(A)
(ab)θ

a
A � θbA +K(AB)

(ab) θ
a
A � θbB +K(BA)

(ab) θ
a
B � θbA +K(B)

(ab)θ
a
B � θbB , (68)

K− = K(A)
[ab]θ

a
A ∧ θbA +K(B)

[ab]θ
a
B ∧ θbB , (69)

with 

K(A)
(ab) = 1

2Tr
(
ρ0

[
σ

(A)
a , σ

(A)
b

]
+
⊗ 1B

)
− Tr

(
ρ0σ

(A)
a ⊗ 1B

)
Tr
(
ρ0σ

(A)
b ⊗ 1B

)
K(B)

(ab) = 1
2Tr

(
ρ01A ⊗

[
σ

(B)
a , σ

(B)
b

]
+

)
− Tr

(
ρ01A ⊗ σ(B)

a

)
Tr
(
ρ01A ⊗ σ(B)

b

)
K(AB)

(ab) = Tr
(
ρ0σ

(A)
a ⊗ σ(B)

b

)
− Tr

(
ρ0σ

(A)
a ⊗ 1B

)
Tr
(
ρ01A ⊗ σ(B)

b

)
K(BA)

(ab) = Tr
(
ρ0σ

(B)
a ⊗ σ(A)

b

)
− Tr

(
ρ0σ

(B)
a ⊗ 1A

)
Tr
(
ρ01B ⊗ σ(A)

b

)
K(A)

[ab] = 1
2Tr

(
ρ0

[
σ

(A)
a , σ

(A)
b

]
− ⊗ 1B

)
K(B)

[ab] = 1
2Tr

(
ρ01A ⊗

[
σ

(B)
a , σ

(B)
b

]
−

)
(70)

where we used the bracket notation (ab), [ab] for the matrix indices of the symmetric and antisym-
metric part, respectively. Thus, the coefficient matrix of the pulled-back Hermitian tensor splits
into different blocks carrying the information about the separable or entangled nature of the fiducial
state ρ0, say:

Kab =

(
K(A)

(ab) K
(AB)
(ab)

K(BA)
(ab) K(B)

(ab)

)
+ i

(
K(A)

[ab] 0

0 K(B)
[ab]

)
. (71)

Indeed, by means of Fano decomposition of ρ0, it is easy to see that [25]

• when ρ0 is separable the off-diagonal blocks of the metric component vanish and the pulled-
back Hermitian tensor K decomposes into a direct sum KA ⊕ KB of Hermitian tensors asso-
ciated with the two subsystems;

• when ρ0 is maximally entangled the symplectic component vanishes.

In particular, the information about (quantum) correlations between the two subsystems is encoded
in the off-diagonal block-coefficient N2

A×N2
B and N2

B ×N2
A matrices K(AB) and K(BA) which allow
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us to define an entanglement monotone given by [59]

E =
N2
<

4(N2
< − 1)

Tr
(
K(AB)TK(AB)

)
=

N2
<

4(N2
< − 1)

Tr
(
K(BA)TK(BA)

)
, (72)

where N< = min(NA, NB). Such entanglement monotone is directly related to a measure con-
structed with the reduced states ρ(A,B)

0 = TrB,A(ρ0) [60]

Tr
(
R†R

)
=

1

N4
<

Tr
(
K(AB)TK(AB)

)
, R := ρ0 − ρ(A)

0 ⊗ ρ(B)
0 (73)

which allows to interpret Tr
(
K(AB)TK(AB)

)
geometrically as a distance between entangled and

separable states.

IV. QUANTUM METRIC AND ENTANGLEMENT ON SPIN NETWORKS

We are now willing to exploit the information-geometrical approach to Quantum Mechanics
outlined in the previous section to extract geometric structures such as a metric tensor and a
symplectic form directly from states.

As a preliminary step we shall first apply this language to the simple case of a single link (Wilson
line), in order to write down the Fubini-Study metric on the corresponding Hilbert manifold and
use it to characterize the entanglement resulting from the gluing of two lines into one. We shall
see that our analysis leads to interpret (the presence of) the link as a result of entanglement and
to characterize connectivity (i.e., the existence of the link) by means of the entanglement measure
constructed from the off-diagonal block matrices of the metric tensor on orbits of unitarily related
quantum states. In particular, and this is our main result, we shall identify the maximally entangled
state with the gauge-invariant Wilson loop state and in this case the associated entanglement
measure turns out to be proportional to a power of the area (of a surface dual to the link). Hence,
although we consider only a simple case, this approach suggests the possibility of reconstructing the
geometry of quantum spacetime by looking at the correlation structure and entanglement properties
of spin-network states giving for instance a proper definition of the concept of a “quantum distance
measure”.

A. A first dictionary via Wilson line states

The formalism developed in section III provides us with a general algorithmic procedure to
construct tensorial geometric structures on the space of states of a given quantum theory. This
has some important advantage both from the technical and computational point of view. Indeed,
this geometric language not only makes available tools of differential geometry in the framework
of Quantum Mechanics but also provides a way to characterize entanglement in a purely tensorial
fashion with no need to explicitly compute the Schmidt coefficients or the entanglement entropy
which may enter the discussion only in a second time. The procedure can be synthesized in full
generality by means of the following steps:

1) The space of raysR(H) ∼= D1(H) associated to the Hilbert spaceH of the system is recognized
to be the proper setting for Quantum Mechanics. Therefore, the relevant structures are those
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available on the ray space. In particular, we focus on the pull-back to the Hilbert space of
the Hermitian structure (44) naturally available on D1(H) along the momentum map (45),
according to the diagram

H0
µ−−−−→ u∗(H)

π

y xi
R(H) −−−−→∼= D1(H)

(74)

The real and imaginary parts of this tensor provide us with a metric tensor and a symplectic
structure, respectively.

2) We consider a stratification of the Hilbert manifold by means of the orbits with respect to
the action of a Lie group G on H. By choosing a fiducial state |0〉 ∈ H0 and a unitary
representation U(g) of G, the orbit O starting from |0〉 identifies a submanifold of quantum
states |g〉 = U(g) |0〉 when we consider an embedding map via the group action

φ0 : G 3 g 7−→ |g〉 = U(g) |0〉 ∈ H0 , (75)

and correspondingly on the space of rays

φ̃0 : G 3 g 7−→ ρ(g) = U(g)ρ0U
−1(g) ∈ R(H) . (76)

We can thus restrict ourself to the Hermitian tensor on this submanifold by noticing that it
is completely described by the pull-back tensor on the Lie group G according to the following
diagrams

G φ0−−−−→ H0

π0

y xiO
G
/
G0

∼=−−−−→ O

=⇒

G φ0−−−−→ S(H)

U(1)

y yU(1)

G/U(1)
φ̃0−−−−→ R(H)

π0

y xiO
G
/
GU(1)

0

∼=−−−−→ O

(77)

where S(H) = {
∣∣ψ〉 ∈ H0 :

〈
ψ
∣∣ψ〉 = 1} ⊂ H0 is the unit sphere of normalized state vectors

and GU(1)
0 is an enlarged isotropy group taking into account the U(1)-degeneracy directions

for the Hermitian tensor on pure states.

3) The application of the pull-back strategy of the point 2) to the case of a composite bipartite
system (H = HA ⊗ HB) gives us a Hermitian tensor defined on orbits of unitarily related
quantum states, which encodes the information about the entanglement or separability of the
fiducial state we start with. In particular, the off-diagonal blocks can be used to define an
entanglement measure (72) interpreted as a distance from the corresponding separable state.

In order to import the information-geometric machinery in the context of Quantum Gravity, let
us consider the case of a single link (Wilson line) and let us apply the various steps of the above
procedure.
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B. Step 1: Metric tensor on the space of states

A few observations are in order. Let us consider a generic Wilson line state

|ψ(j)
γ 〉 =

∑
mn

c(j)mn |j,m, n〉 ∈ H(j)
γ , (78)

where we assume for simplicity that j is fixed. As pointed out in [61], Eq. (78) is the expansion of
the single-link state in the spin basis. Indeed, starting from the classical phase space T ∗SU(2) ∼=
SU(2)× su∗(2), the SU(2)-valued holonomies h(A) along the path γ and the su(2)-valued fluxes of
the triad fields through the surface crossed by γ play the role of canonically conjugate variables.
Passing to the quantum level, we consider the group basis given by a complete set of orthonormal
states {|h〉 = |h(A)〉 | h ∈ SU(2)}, labelled by group elements, such that

〈h′|h〉 = δ((h′)−1h) ,

∫
SU(2)

dh |h〉 〈h| = 1 (79)

where dh denotes the Haar measure on the link. Note that we are considering the group elements
themselves as operators instead of some coordinate functions on SU(2). By this we mean that |h〉
are the eigenstates of the operator ĥ in the sense that, for any coordinate system on the group, |h〉
are the eigenstates of the coordinates as guaranteed by the property f(ĥ) |h〉 ≡ f(h) |h〉, for any
function f ∈ F(SU(2)). We therefore define the Hilbert space Hγ to consist of those states |ψγ〉
which decompose in the group basis as

|ψγ〉 =

∫
SU(2)

dhψγ(h) |h〉 , (80)

where

ψγ(h) ≡ 〈h|ψγ〉 ∈ L2(SU(2), dh) (81)

is the (cylindrical) wave function which depends on the holonomy h along γ. By using now the
Peter-Weyl decomposition of functions on SU(2) in terms of spin representations, we define the
spin |j,m, n〉 in H(j)

γ
∼= L2(SU(2)) by setting

〈h|j,m, n〉 :=
√

2j + 1D(j)
mn(h) , (82)

and the orthogonality relations of the Wigner representation matricesD(j)
mn ensure the normalization

of the basis states

〈j′,m′, n′|j,m, n〉 = δjj′δmm′δnn′ , (83)

together with the decomposition of the identity

1j =
∑
mn

|j,m, n〉 〈j,m, n| . (84)



22

Any state in Hγ can be therefore expanded in the spin basis as in (78) with coefficients given by

c(j)mn ≡ 〈j,m, n|ψγ〉 =

∫
dhψγ [h] 〈j,m, n|h〉 =

√
2j + 1

∫
dhψγ [h]D

(j)
mn(h) . (85)

Remark: Let us stress that the states |j,m, n〉 are different from the usual spherical harmonics
states |j,m〉, even though they are related by means of the definition of the Wigner matrix elements
D

(j)
mn(h) ≡ 〈j,m|D(j)(h)|j, n〉. The states |j,m〉 are not states on the group but elements of the

vector space V(j) corresponding to the (2j + 1)-dimensional representation, whereas |j,m, n〉 can
be thought of as elements of H(j)

γ
∼= V(j)⊗V(j)∗. Indeed, the spherical harmonics are given by [62]

〈h|j,m〉 := Y jm(h) ≡
√

2j + 1

4π
D

(j)
m0(h) (86)

and, being invariant under the right multiplication by elements of the group U(1), they are functions
on the 2-sphere SU(2)/U(1) ∼= S2. Therefore, they do not form a complete basis for L2(SU(2))
and we need to use the states |j,m, n〉 which instead provide us with a full representation of both
right and left multiplication. We will come back on this point later in this section.

We choose to work with the spin basis because in this way our results will depend explicitly on the
algebraic data of the spin-network graph (j,m and n in this specific situation). Thus, remembering
the notations of section III, we have the following correspondences:

|ea〉 ←→ |j,m, n〉 ≡ |e(j)
mn〉 (87)

ca(ψ) ←→ c
(j)
mn ≡ 〈j,m, n|ψγ〉 (88)

|dψ〉 =
∑
a dca |ea〉 ←→ |dψ(j)

γ 〉 =
∑
mn dc

(j)
mn |j,m, n〉 (89)

Hence the constructions of Sec. III can be now repeated and we find:

〈dψ(j)
γ ⊗ dψ(j)

γ 〉 = dc(j)mn ⊗ dc(j)mn (sum over m,n) . (90)

Indeed:

〈dψ(j)
γ ⊗ dψ(j)

γ 〉 =
∑
mn

〈dψ(j)
γ |j,m, n〉 〈j,m, n|dψ(j)

γ 〉

=
∑
mn

∫
SU(2)

dh 〈dψ(j)
γ |j,m, n〉 〈j,m, n|h(A)〉 〈h(A)|dψ(j)

γ 〉

=
∑

mnm′n′

∫
SU(2)

dh
(
〈dψ(j)

γ |j,m, n〉 〈j,m, n|h(A)〉 〈h(A)|j,m′, n′〉 〈j,m′, n′|dψ(j)
γ 〉
)

= (2j + 1)
∑

mnm′n′

(∫
SU(2)

dhD
(j)
mn(h(A))D

(j)
m′n′(h(A))

)
dc(j)mn ⊗ dc(j)mn

= (2j + 1)
∑

mnm′n′

dc(j)mn ⊗ dc(j)mn
δmm′δnn′

2j + 1
=
∑
mn

dc(j)mn ⊗ dc(j)mn . (91)

Similarly:

〈ψ(j)
γ |dψ(j)

γ 〉 = c(j)mn dc
(j)
mn (sum over m,n) . (92)
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Finally, the pull-back to the Hilbert space of the Fubini-Study Hermitian tensor is given by:

KHγ =
〈dψ(j)

γ ⊗ dψ(j)
γ 〉

〈ψ(j)
γ |ψ(j)

γ 〉
− 〈dψ

(j)
γ |ψ(j)

γ 〉 ⊗ 〈ψ(j)
γ |dψ(j)

γ 〉

〈ψ(j)
γ |ψ(j)

γ 〉
2

=
dc

(j)
mn ⊗ dc(j)mn∑
mn |c

(j)
mn|2

− dc
(j)
mn c

(j)
mn ⊗ c(j)mn dc(j)mn(∑
mn |c

(j)
mn|2

)2 .

(93)

C. Step 2: Pull-back on orbits of quantum states

To pull-back the Hermitian tensor (93) on orbit submanifolds of quantum states we need to
understand what are the objects entering the diagram (77) in the specific case under examination.
Let us therefore choose in H(j)

γ a fiducial Wilson line state given by:

|0〉 ≡ |ψ(j)
γ 〉 =

∑
mn

c(j)mn |j,m, n〉 . (94)

Since we are considering spin basis states |j,m, n〉 constructed with the common eigenstates of the
operator J2 and one of the J ’s (say Jz), i.e., with a fixed orientation (say the z-axis) of the magnetic
moments at the endpoints of the link6, the only transformations that we can perform on such states
are those generated by the operators J1, J2, J3 which have a well-defined action on the basis states.
The group G acting on Hγ is thus given by the group SU(2). Therefore, the diagram (77) which
explain the various levels at which the (co-adjoint) orbit O is embedded in the projective Hilbert
space R(Hγ) now becomes

SU(2)

U(1)

��

φ0 // S(Hγ)

U(1)

��
SU(2)

/
U(1)

φ̃0 //

π0

��

R(Hγ)

SU(2)
/
GU(1)

0

∼= // O

iO

OO

(95)

By considering the SU(2) action on the fiducial state |0〉, we realize the embedding of the Lie group
into Hγ − {0} as

φ0 : SU(2) 3 h 7−→ |h〉 = U (j)(h) |0〉 ∈ Hγ − {0} , (96)

6 We may also consider a more general situation in which we have an additional degree of freedom to take into
account a different direction of the magnetic moment. As discussed in [63], in this case the basis states are
given by |j, m̂, n̂〉, where m̂ simply denotes the new direction (sin θ cosϕ, sin θ sinϕ, cos θ) obtained by rotating
the direction ẑ = (0, 0, 1). This kind of states can be used for istance to account a non-completely precise face
matching of polyhedra glued along faces dual to the graph edges which will give some torsion thus providing a
generalization of Regge geometries as twisted geometries [64, 65].
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where the spin-j-representation is given by

U (j) : SU(2) −→ Aut(Hγ) , h 7−→ U (j)(t) = eiR
(j)(Xk)tk . (97)

with R(j)(Xk) ≡ Jk denoting the set of Hermitian operators which represent the SU(2) generators.
The corresponding embedding of G ≡ SU(2) into the space of rays is given by the co-adjoint action
map

φ̃0 : h 7−→ U (j)(h)ρ0U
(j)†(h) , ρ0 ∈ R(Hγ) . (98)

As showed in Eq. (50), for a pure fiducial state ρ0, the pull-back of the Hermitian tensor (93) to
the co-adjoint orbit starting from it is given by

K = Kk`θk ⊗ θ` , (99)

with coefficients

Kk` = Tr(ρ0JkJ`)− Tr(ρ0Jk)Tr(ρ0J`) . (100)

Moreover, in the case of a pure state, by using the explicit expression for the fiducial state

ρ0 =
|0〉 〈0|
〈0|0〉

=
|ψ(j)
γ 〉 〈ψ(j)

γ |
〈ψ(j)
γ |ψ(j)

γ 〉
, (101)

we find the pulled-back tensor on the corresponding orbits in the Hilbert space Hγ :

Kk` =
〈0|JkJ`|0〉
〈0|0〉

− 〈0|Jk|0〉 〈0|J`|0〉
〈0|0〉2

=
〈ψ(j)
γ |JkJ`|ψ(j)

γ 〉
〈ψ(j)
γ |ψ(j)

γ 〉
− 〈ψ

(j)
γ |Jk|ψ(j)

γ 〉 〈ψ(j)
γ |J`|ψ(j)

γ 〉

〈ψ(j)
γ |ψ(j)

γ 〉
2

= 〈JkJ`〉ψ(j)
γ
− 〈Jk〉ψ(j)

γ
〈J`〉ψ(j)

γ
.

(102)

We then see that the Hermitian tensor on the orbits embedded in Hγ coincides with the covariance
matrix of the SU(2) generators. Indeed, starting from the definition of the covariance matrix whose
entry in the kth row and `th column is

Cov(J)k` = 〈(Jk − 〈Jk〉)(J` − 〈J`〉)〉 , (103)

we have

〈(Jk − 〈Jk〉)(J` − 〈J`〉)〉 = 〈(JkJ` − Jk 〈J`〉 − 〈Jk〉 J` + 〈Jk〉 〈J`〉)〉
= 〈JkJ`〉 − 〈Jk〉 〈J`〉 − 〈Jk〉 〈J`〉+ 〈Jk〉 〈J`〉 = 〈JkJ`〉 − 〈Jk〉 〈J`〉 .

(104)

The tensor (102) therefore will measure the correlations in the fluctuations of the operators J . The
non-commutativity of such operators implies that the covariance matrix (103) is not symmetric,
but if we remember the decomposition of the Hermitian tensor in its real symmetric and imaginary
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skewsymmetric part, we find a metric tensor

K(k`) =
1

2
〈[Jk, J`]+〉0 − 〈Jk〉0 〈J`〉0 ≡ Re

[
〈(Jk − 〈Jk〉)(J` − 〈J`〉)〉

]
, (105)

and a symplectic structure

K[k`] = Im
(

1

2
〈[Jk, J`]−〉0

)
=

1

2
〈εk`rJr〉0 , (106)

where we have used the commutation relations [Jk, J`]− = iεk`rJr of the Lie algebra su(2).

D. Step 3: Link as entanglement of semi-links

The simplest bipartite system is provided by regarding the single link Hilbert space H(j)
γ (for

fixed j) as the tensor product Hilbert space

H(j)
γ
∼= V(j) ⊗ V(j)∗ , (107)

where V(j) denotes the (2j + 1)-dimensional linear space carrying the irreducible representation of
SU(2) and for any j ∈ N

2 , the system {|j,m〉}−j≤m≤j is orthonormal, i.e.

V(j) = span{|j,m〉}−j≤m≤j , (108)

while V(j)∗ is its dual vector space. Indeed, as already mentioned (see remark in Sec. V.A), the
Wilson line state (78) can be regarded as

|ψ(j)
γ 〉 =

∑
mn

c(j)mn |j, n〉 ⊗ |j,m〉
∗

=
∑
mn

c(j)mn |j, n〉 ⊗ 〈j,m| =
∑
mn

c(j)mn |j, n〉 〈j,m|︸ ︷︷ ︸
|j,m,n〉

(109)

in such a way that

ψ(j)
γ [A] ≡ 〈h(A)|ψ(j)

γ 〉 =
∑
mn

c(j)mn 〈h(A)|j,m, n〉 =
√

2j + 1
∑
mn

c(j)mnD
(j)
mn(h(A)) , (110)

where D(j)
mn(h(A)) = 〈j,m|D(j)(h(A))|j, n〉 are the Wigner D-matrix elements corresponding to the

spin-j irreducible representation labelling the link.
More precisely, the Wilson line cylindrical basis functions correspond to the Weyl symbols of the
holonomy operator ĥ(A) with respect to the quantization map |j, n〉 〈j,m| defined by [66]

W(ĥ(A)) ≡ Tr
(
|j, n〉 〈j,m| ĥ(A)

)
= D(j)

mn(h(A)) , (111)

where, for any j ∈ N
2 , the set {v̂jnm} ≡ {|j, n〉 〈j,m|}−j≤n,m≤j of (2j + 1) × (2j + 1) linear maps

|j, n〉 〈j,m| ∈ V(j)⊗V(j)∗ is the canonical basis of the algebra End(V(j)) of endomorphisms of V(j),
othonormal with respect to the scalar product 〈v̂jnm, v̂

j
n′m′〉 = Tr

(
(v̂jnm)†v̂jn′m′

)
.

Let us now try to characterize the entanglement for the bipartite system (107) where essentially
we are thinking of the Wilson line state as the composite state of two semilink states (roughly,
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spherical harmonics Y jm(h) = 〈h|j,m〉). Notice this is basically the same idea used in the GFT
construction of link-connected, thus spin network states associated to connected graphs, from the
basic ‘many-body’states of the formalism, associated to ‘open spin network vertices’(nodes with
outgoing semi-links). According to the diagram (95), we select a fiducial pure state

ρ0 ∈ D1(V(j) ⊗ V(j)∗) ∼= R(V(j) ⊗ V(j)∗) = R(H(j)
γ ) , (112)

and then we consider the product representation

φ0 : G ≡ SU(2)× SU(2) −→ Aut(V(j) ⊗ V(j)∗) , (113)

providing the following embedding map

G 3 g 7−→ ρg = U(g)ρ0U
†(g) ∈ R(V(j) ⊗ V(j)∗) (114)

where U(g) = eiR(Xk)t. Infinitesimal generators R(Xk) are realized as the tensor products between
the identity of a subsystem and the spin operators Jk representing the su(2) algebra in terms of
selfadjoint operators on the Hilbert space V(j) (cfr. Eq. (57)). Thus, according to Sec. III.B, we
find that the pull-back of the Hermitian Fisher tensor Tr(ρdρ⊗dρ) from R(H(j)

γ ) = R(V(j)⊗V(j)∗)
to the co-adjoint orbit

Oρ0 := SU(2)× SU(2)/Gρ0 , (115)

where Gρ0 is the isotropy group of the fiducial state (111)7, decomposes into a symmetric Rieman-
nian and a skewsymmetric (pre-)symplectic component

Kk` = K(k`) + iK[k`] =

(
A C
C B

)
+ i

(
DA 0
0 DB

)
, (116)

with 3× 3 blocks given by

Aab = 1
2Tr(ρ0[Ja, Jb]+ ⊗ 1)− Tr(ρ0Ja ⊗ 1)Tr(ρ0Jb ⊗ 1)

Bab = 1
2Tr(ρ01⊗ [Ja, Jb]+)− Tr(ρ01⊗ Ja)Tr(ρ01⊗ Jb)

Cab = Tr(ρ0Ja ⊗ Jb)− Tr(ρ0Ja ⊗ 1)Tr(ρ01⊗ Jb)
(DA)ab = 1

2Tr(ρ0[Ja, Jb]− ⊗ 1)

(DB)ab = 1
2Tr(ρ01⊗ [Ja, Jb]−)

(117)

Therefore, we see that if ρ0 is maximally entangled, that is the reduced states are maximally mixed

ρ
(A)
0 = ρ

(B)
0 =

1

dimV(j)
1A,B =

1V(j)

2j + 1
, (118)

7 The topology of the orbit will thus depend on the isotropy group of the selected fiducial state. We refer to [67, 68]
for a general discussion.
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then

(DA)ab =
1

2
Tr
(
ρ

(B)
0 [Ja, Jb]−

)
∝ Tr

(
[Ja, Jb]−

)
= 0 , (119)

and similarly for (DB)ab. On the other hand, if ρ0 is separable, i.e., ρ0 = ρ
(A)
0 ⊗ ρ(B)

0 , then we have

Cab = Tr
(
ρ

(A)
0 Ja ⊗ ρ(B)

0 Jb
)
− Tr

(
ρ

(A)
0 Ja ⊗ ρ(B)

0

)
Tr
(
ρ

(A)
0 ⊗ ρ(B)

0 Jb
)

= Tr
(
ρ

(A)
0 Ja

)
Tr
(
ρ

(B)
0 Jb

)
− Tr

(
ρ

(A)
0 Ja

)
Tr
(
ρ

(B)
0

)︸ ︷︷ ︸
1

Tr
(
ρ

(A)
0

)︸ ︷︷ ︸
1

Tr
(
ρ

(B)
0 Jb

)
= 0 . (120)

Thus, as stated in Sec. III.B, information about the separability or entanglement of the fiducial
state ρ0 is encoded into the different blocks of the pulled-back Hermitian tensor on the orbit of
unitarily related states starting from ρ0. Indeed, the vanishing of the symplectic tensor for a
maximally entangled state ρ0 corresponds to a vanishing separability while the off-diagonal blocks
of the Riemannian tensor are responsible for the entanglement degree of the state ρ0 and allow us
to define an associated entanglement monotone Tr(CTC) which identifies an entanglement measure
geometrically interpreted as a distance between entangled and separable states. As we will discuss
later in this work, since we are regarding the link as resulting from the entanglement of semilinks,
such entanglement monotone gives us a measure of the existence of the link itself and so of the
graph connectivity.

E. Two limiting cases: maximally entangled and separable states

In order to visualize the considerations of the previous section, let us focus on the two extreme
cases respectively given by a maximally entangled and a separable Wilson line state, and compute
explicitly the pull-back of the Hermitian tensor on the orbit having that state as fiducial state. To
this aim, we start by considering the Schmidt decomposition [69] of the normalized state (109):

|ψ(j)
γ 〉 =

∑
k

λk |j, k〉 ⊗ 〈j, k| . (121)

In the maximally entangled case all Schmidt coefficients are equal and, according to the normaliza-
tion condition 〈ψ(j)

γ |ψ(j)
γ 〉 = 1, they are given by:

λk =
1√

2j + 1
∀ k ∈ [−j,+j] , (122)

thus yielding a maximally entangled state

|ψ(j)
γ 〉 =

1√
2j + 1

∑
k

|j, k〉 ⊗ 〈j, k| , (123)

which is nothing but the gauge-invariant Wilson loop state |ψWL〉. Indeed, as discussed in Sec. 2.2,
such a state corresponds to glue the two endpoints of the link in a bivalent vertex and contract
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their magnetic moments with an intertwiner provided by the normalized identity in V(j), i.e.:

|ψWL〉 =
∑
k,k′

δk,k′√
2j + 1

|j, k〉 ⊗ 〈j, k′| ≡
∑
k,k′

ik,k′ |j, k〉 ⊗ 〈j, k′| . (124)

Therefore, concerning the open single line state regarded as an entangled state of two semilinks,
there is a correspondence between maximal entanglement and gauge-invariance which is actually
realized by identifying the maximally entangled state (123) with the closed Wilson loop state, i.e.

Hmax. ent. ≡ Hloop = InvSU(2)

[
V(j) ⊗ V(j)∗] ⊂ V(j) ⊗ V(j)∗ ∼= Hlink . (125)

By taking the maximally entangled Wilson loop state as our fiducial state, we are interested in the
corresponding pulled-back Hermitian tensor on the orbit starting from it. The pure state density
matrix ρ0 ∈ D1(V(j) ⊗ V(j)∗) associated with it is given by

ρ0 = |ψWL〉 〈ψWL| =
1

2j + 1

∑
k,k′

(
|j, k〉 〈j, k′|

)
⊗
(
|j, k′〉 〈j, k|

)
, (126)

such that the reduced states are diagonal with eigenvalues exactly given by the square of the Schmidt
coefficients, e.g.

(ρ0)A = TrB(ρ0) =
1

2j + 1

∑
k

|j, k〉 〈j, k| = 1j

dimV(j)
. (127)

Hence, by using Eqs. (116,117), after lengthy but straightforward calculations, the pull-back of the
Hermitian tensor K on the orbit Oρ0 of Eq. (115) takes the following form (see the appendix of [70]
for details) 

1
3j(j + 1) 0 0 1

3j(j + 1) 0 0
0 1

3j(j + 1) 0 0 1
3j(j + 1) 0

0 0 1
3j(j + 1) 0 0 1

3j(j + 1)
1
3j(j + 1) 0 0 1

3j(j + 1) 0 0
0 1

3j(j + 1) 0 0 1
3j(j + 1) 0

0 0 1
3j(j + 1) 0 0 1

3j(j + 1)

 (128)

from which, using the decomposition Kk` = K(k`) + iK[k`] , we see that the real symmetric part
K(k`) decomposes in the block-diagonal matrices A,B and the two equal block-off-diagonal matrices
C, according to

K(k`) =

(
A C
C B

)
(129)

with

A = B =

 1
3j(j + 1) 0 0

0 1
3j(j + 1) 0

0 0 1
3j(j + 1)

 , C =

 1
3j(j + 1) 0 0

0 1
3j(j + 1) 0

0 0 1
3j(j + 1)

 , (130)
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while the imaginary skewsymmetric part K[k`]

K[k`] =

(
DA 0
0 DB

)
,with DA = DB =

0 0 0
0 0 0
0 0 0

 , (131)

gives a vanishing symplectic structure, as expected for the maximally entangled case. Moreover, by
using the off-diagonal blocks (130) of the Riemannian symmetric part, the associated entanglement
monotone is given by

Tr(CTC) =

3∑
a,b=1

C2
ab =

1

3
[j(j + 1)]2 . (132)

On the other extreme, if we consider a separable fiducial state, the two spin states do not talk with
each other and may have in general different spins, i.e.:

|0〉 = |j1, k1〉 ⊗ 〈j2, k2| . (133)

The corresponding pure state density matrix is given by

ρ0 = ρ
(A)
0 ⊗ ρ(B)

0 =
(
|j1, k1〉 〈j1, k1|

)
⊗
(
|j2, k2〉 〈j2, k2|

)
. (134)

Hence, the pull-back of the Hermitian tensor K on the orbit Oρ0 will take the following form [70]
1
2 [j1(j1 + 1)− k21] i

2k1 0 0 0 0
− i

2k1
1
2 [j1(j1 + 1)− k21] 0 0 0 0

0 0 k1(k1 − k2) 0 0 0
0 0 0 1

2 [j2(j2 + 1)− k22] i
2k2 0

0 0 0 − i
2k2

1
2 [j2(j2 + 1)− k22] 0

0 0 0 0 0 k2(k2 − k1)

 (135)

from which we see that, as expected for the separable case, we have vanishing off-diagonal block
matrices C and a direct sum(

1
2 [j1(j1 + 1)− k21] i

2k1 0
− i

2k1
1
2 [j1(j1 + 1)− k21] 0

0 0 k1(k1 − k2)

)
︸ ︷︷ ︸

KA

⊕

(
1
2 [j2(j2 + 1)− k22] i

2k2 0
− i

2k2
1
2 [j2(j2 + 1)− k22] 0

0 0 k2(k2 − k1)

)
︸ ︷︷ ︸

KB

(136)

of two decoupled Hermitian tensors KA and KB one for each subsystem. Moreover, a further
decomposition of the Hermitian tensor (135) as Kk` = K(k`) + iK[k`] , gives a symmetric real part

K(k`) =

(
A C
C B

)
(137)

with

A =

 1
2 [j1(j1 + 1)− k2

1] 0 0
0 1

2 [j1(j1 + 1)− k2
1] 0

0 0 k1(k1 − k2)

 , (138)
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B =

 1
2 [j2(j2 + 1)− k2

2] 0 0
0 1

2 [j2(j2 + 1)− k2
2] 0

0 0 k2(k2 − k1)

 , C =

0 0 0
0 0 0
0 0 0

 , (139)

and an imaginary skewsymmetric part

K[k`] =

(
DA 0
0 DB

)
(140)

with

DA =

 0 1
2k1 0

− 1
2k1 0 0
0 0 0

 , DB =

 0 1
2k2 0

− 1
2k2 0 0
0 0 0

 . (141)

Finally, we have

Tr(CTC) = 0 , (142)

i.e., coherently with its interpretation as a distance from the separable state, the entanglement
measure associated with the block-off-diagonal matrices C is zero in the unentangled case.

V. ENTANGLEMENT IN EXTENDED GRAPH STRUCTURES

A. Gluing links by entanglement

Let us proceed a little step further with respect to what shown in section III, and consider the
description of the entanglement resulting from the gluing of two lines into one. The bipartite Hilbert
space is given by two copies of a single link Hilbert space with fixed but different spin labels, i.e.

H = H(j1)
γ1 ⊗H

(j2)
γ2 , (143)

and the fiducial state is chosen to be a Wilson line state (one link state) coming from the gluing of
two other links, thus admitting the following expression

|0〉 ≡ |ψγ〉 =
1√

2j + 1

∑
m,n,k,`

cmn |j,m, k〉 ⊗ |j, `, n〉 δk,` . (144)

The local SU(2) gauge-invariance requirement at the gluing point v ≡ γ1(1) = γ2(0), implemented
by the bivalent intertwiner δk,`/

√
2j + 1 contracting the magnetic numbers of the glued endpoints,

forces the two spins to be equal (i.e., j1 = j2 = j). In other words, |0〉 is a locally SU(2)-invariant
state in H, that is

|0〉 ∈ H(j)
γ ⊂ H , γ = γ1 ◦ γ2 . (145)
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However, in order to compute an entanglement measure which can be interpreted as the distance
of our fiducial state from the separable one, we need to consider the action φ of a Lie group G on
H and not only on the gauge-reduced level φ̃ : G/SU(2)→ H(j)

γ . Therefore, the underlying scheme
of the construction of the pulled-back Hermitian tensor on the orbit of states with fixed amount of
entanglement will be given by the following diagram

G

SU(2)

��

φ0 // H(j1)
γ1 ⊗H

(j2)
γ2

SU(2)

��

“gluing”

G
/
SU(2)

φ̃0 //

π0

��

H(j)
γ1◦γ2

G
/
G0

∼= // O

iO

OO

(146)

We recall that the group G is a group of local unitary transformations which as such do not modify
the degree of entanglement along the orbit starting at the selected fiducial state. In the specific
case under consideration, the group G is SU(2) and its action on the bipartite Hilbert space (143)
is realized through a product representation

U(H) = U(Hγ1)⊗ U(Hγ2) , (147)

whose infinitesimal generators are given by the SU(2)-generators tensored by the identity of one of
the subsystems. Indeed, each subsystem Hilbert space reads as

H(j)
γi
∼= V(ji) ⊗ V(ji)∗ (i = 1, 2) , (148)

and so the bipartite Hilbert space (143) can be regarded as

H ∼= (V(j1) ⊗ V(j1)∗)⊗ (V(j2) ⊗ V(j2)∗) . (149)

The gluing operation γ = γ1 ◦ γ2 corresponds to select the subspace

V(j1) ⊗ InvSU(2)

[
V(j1) ⊗ V(j2)∗]⊗ V(j2) ⊂ H , (150)

which coincides with the space

V(j) ⊗ V(j)∗ ∼= H(j)
γ , j = j1 = j2 (151)

since, according to the Schur’s lemma [39], when we have only two spin representations the invariant
bivalent intertwining operator V(j1) → V(j2) is either proportional to the identity if j1 = j2 or zero
if j1 6= j2, i.e., the invariant subspace is trivial.
We are thus brought back to the situation of the previous section. The pulled-back Hermitian tensor
K is again given by the pull-back of (117) with a fiducial state now given by (144) and the spin
operators J act non-trivially only at the free endpoints of the resulting new link. Hence, there is no
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need to repeat our calculations and we only notice that, coherently with the general considerations
of Sec. III, we have:

• For the skewsymmetric part:

(DA)ab = 〈0|[Ja, Jb]− ⊗ 1|0〉 =
1

2j + 1

∑
mn`m′n′`′

cm′n′cmn 〈j,m′, `′|[Ja, Jb]−|j,m, `〉 δ`′,`δn′,n

=
1

2j + 1

∑
mn`m′

cm′ncmn 〈j,m′, `|[Ja, Jb]−|j,m, `〉 =
∑
mnm′

cm′ncmn 〈j,m′|[Ja, Jb]−|j,m〉

(152)

being 〈j, `|j, `〉 = 1. We then see that when the fiducial state is maximally entangled, i.e., all
the Schmidt coefficients are equal, we end up with the trace of the commutator which is zero.

• By similar arguments, when |0〉 is separable, we see that the block-off-diagonal matrices of
the symmetric part vanish:

Cab = 〈0|Ja ⊗ Jb|0〉 − 〈0|Ja ⊗ 1|0〉 〈0|1⊗ Jb|0〉 = 〈Ja〉 〈Jb〉 − 〈Ja〉 〈Jb〉 = 0 . (153)

B. Fisher quantum metric for a bounded region of space

We now proceed to a more interesting case of a closed connected graph, thus made of several
links and nodes. This is considerably more involved, of course, than a single link. However, we
must point out that, from the point of view of both LQG and GFT, it remains a drastic truncation
of the set of (kinematical) degrees of freedom, and of the possibly relevant states, particularly
from the point of view of a reconstruction of an approximate continuum spacetime and geometry,
since the latter would most likely require quantum superpositions of graph structures. Indeed, it
implies truncating the theory to a finite set of degrees of freedom loosing the functional aspects
of the theory. It should also be noted, though, that most work in the LQG context is limited to
such fixed-graph computations, due to the complexity of the more general case. In particular, the
following analysis is framed in a very similar way as the one in [? ].

Let us consider then a generic closed connected spin network graph Γ describing a region of
quantum space and let us single out of Γ two (non-adjacent) vertices vA and vB , corresponding to
two generic subregions of space A and B. Such a cut defines an open subgraph ΓR dual to an ideal
connected bounded region R. The boundary of the region ∂R is comprised by two set of edges,
which have only one end vertex laying in R, respectively defining the boundary ∂A and ∂B of the
two regions cut out. Consistently, bulk edges are paths connecting vertices in R. We can picture
R as a 3-ball and ∂R as its boundary 2-sphere punctured by the boundary edges.

We are interested in studying the non-local quantum correlations induced among the two regions
A and B by the presence of R. Following [71], we expect the wave function on R to play the role of
a quantum background metric correlating A to B. Our goal is then to provide an interpretation of
such a metric in terms of the Fisher quantum metric. Therefore, we focus on the open spin network
state with support on ΓR. Due to the presence of open edges, the wave functional defined on the
boundary and bulk holonomies {ge} will not be gauge invariant but rather covariant under SU(2)
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gauge symmetry,

ϕΓR({ge}) ≡
∫
SU(2)

dg ϕΓR({g ge∈∂R, ge∈R}) (154)

Nevertheless, the gauge invariance of the bulk graph allows us to drastically simplify the form of
ϕΓR by means of a gauge fixing procedure (see [71, 72] for full details). This amounts to choosing
a (reference) vertex v0 in ΓR and a maximal tree T therein.8 Hence, to fixing to the identity the
group elements on the edges belonging to the tree, ge∈T = 1.

The functional built on the resulting graph is invariant under the diagonal action of SU(2) on
the open external edges and under the adjoint action of SU(2) on the interior graph,

ϕTΓR({ge∈ΓR}) = ϕTΓR({1}e∈T , {g̃e}e∈∂R, {GTe }e∈R\T ) (155)

with GTe = (Gt(e)−1 geGs(e)) gauge fixed holonomies around the (non-contractible) loops of the
internal graph and {g̃e} holonomies on the boundary edges, given either by (Gt(e)−1 ge) or (geGs(e)),
depending on whether their internal vertex is source or target.

As a result of the gauge fixing, ΓR reduces to a single vertex flower graph with E open edges and
L loops hence the wave functional ϕTΓR can be written as a superposition of single vertex intertwiner
basis states |iR〉 spanning the intertwiners Hilbert space

HR =
⊕
{je,jl}

InvSU(2)

[
V⊗Eje ⊗ (V⊗Ljl ⊗ V

∗⊗L
jl

)
]
, (156)

where je, jl respectively label the spin representations attached to the boundary edges and bulk
loops. Notice that the closure constraint is satisfied, as the sum of the flux-vectors living on the
external edges is balanced by the sum of the flux-vectors on the internal loops.

The wave-function ϕTΓR provides us with the most concise description for a region of quantum
space with non-trivial internal degrees of freedom. The gauge reduction isomorphism does not pro-
duce any coarse graining, nevertheless in the procedure one discards the combinatorial information
about the internal subgraph encoded in the choice of a specific maximal tree T 9.

C. The bipartite system

In order to avoid the complication of dealing with loopy curvature defects [72], we restrict the
analysis to the case of a region of quantum space without non-trivial internal curvature degrees of
freedom. The absence of loops carrying curvature excitations at the reduced, gauge-fixed vertex
allows us to dually think of such region as a portion of 3d space flatly embedded in 4d. In this
case, the flower graph reduces to a n-valent intertwiner. The irreducible representations carried
by the open edges are dual to boundary patches comprising the quantum surface of the convex
flat polyhedron dual to the intertwiner. In particular, we want to divide n in the two sets nA =
({je}|e ∈ ∂A) and nB = ({je}|e ∈ ∂B).

8 The maximal tree is the set of edges in ΓR going through all vertices in the region without ever making any loop.
It has |T | = VR − 1 elements. If |T | = ER, this means that ΓR has no loops, hence trivial topology. The number
of non-trivial loops of ΓR is given by L = ER − |T |.

9 Notice that this combinatorial information is understood to encode physical information. This is manifest, for
example, in the GFT formalism where the number of nodes in a graph is counted by a simple observable of the
theory, the number operator. This means that the gauge fixing procedure, albeit not a coarse graining, as we
emphasized, implies shifting the attention from a subset of observables to another.
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Starting from such separation of degrees of freedom, we can think of the generic pure state ϕTΓR
as a bipartite quantum mechanical system constrained by an overall SU(2) gauge invariance. In
these terms, we can see the intertwiner space as embedded in the larger unconstrained space

HR ⊆ H ≡ HA ⊗HB , (157)

where the two boundary spaces are respectively defined by the tensor product of the SU(2) irreps
labelling the edges

HA ≡
⊗
e∈∂A

Vje and HB ≡
⊗
e∈∂B

Vje . (158)

The two boundary sets of degrees of freedom are “coupled” by the request of gauge invariance at
the vertex. Such coupling generates quantum entanglement. Therefore we have,

HR =
⊕
{je}

InvSU(2) [HA ⊗HB ] (159)

Now, for what concerns our analysis, we further simplify the problem by considering the case of
a single intertwiner graph space, namely we work at fixed {je}, avoiding the full sum

⊕
{je} in the

above (159). This is another strong simplification, since it implies a further reduction of the degrees
of freedom being considered, which were already truncated to a finite number by fixing a graph Γ.

For convenience, we proceed by taking the decomposition of the two tensor product states in
direct sums of irreducible representations: we write each subspace HA,B as

⊕
k Vk ⊗ Dk, where

Vk is a (2k + 1)-dimensional re-coupled spin-k irrep of SU(2), coming with its degeneracy space
Dk. In these terms, the single intertwiner Hilbert space can be explicitely written in terms of the
subsystems A and B, as follows

H{je}R = InvSU(2) [HA ⊗HB ] = InvSU(2)

⊕
k,y

(VkA ⊗ {je∈∂A}Dk)⊗ (VyB ⊗
{je∈∂B}Dy)

 (160)

=
⊕
k,y

δk,y

[
(VkA ⊗ V

y
B)⊗ ( {je∈∂A}Dk ⊗ {je∈∂B}Dy)

]
=
⊕
k

(VkA ⊗ {je∈∂A}Dk)⊗ (VkB ⊗ {je∈∂B}Dk) =
⊕
k

{je∈∂A}H(k)
A ⊗

{je∈∂B}H(k)
B .

Notice that, by gauge invariance, the two re-coupled spin irreps appearing in the second line are
tensored to form a trivial representation for each k. Consistently, the dimension of the single
intertwiner space reduces to

NR ≡ dim(H{je}R ) = dim

[⊕
k

(VkA ⊗ VkB)⊗ (DAk ⊗DBk )

]
(161)

=
∑
k

dimDAk · dimDBk =
∑
k

Nk
AN

k
B .
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where we define Nk
A,B ≡ d

(nA,B)
k = dimD(A,B)

k , the dimensions of the degeneracy spaces.Starting
from the decomposition in (160), a convenient basis in the two subsystems A and B is labeled by
three numbers, respectively |k,m, αk〉 and |k,m, βk〉, with αk, βk giving the number of the different
irreducible representations VkA,B for given k [71]. A basis for the single intertwiner space is then
written as

|k, αk, βk〉 =

k∑
m=−k

(−1)k−m√
2k + 1

|k,−m,αk〉A ⊗ |k,m, βk〉B (162)

Given the peculiar tensor structure of the unfolded intertwiner space, each basis state can be
represented as a tensor product state on three subspaces [71],

|k, αk, βk〉 ≡ |k〉VkA⊗VkB ⊗ |αk〉DAk ⊗ |βk〉DBk (163)

where the generic |ζk〉 labels a basis vector of Dk, with ζk running from 1 to Nk = dimDk.
A generic state vector in H{je}R will be denoted by a superposition of product basis states of the
three subspaces, say

|ψΓR〉 =
∑
k,

αk,βk

c
({je})
k,αk,βk

|k〉VkA⊗VkB ⊗ |αk〉DAk ⊗ |βk〉DBk . (164)

However, we are going to focus our attention to states with correlations entangling the two de-
generacy spaces only. This translates in the choice of a specific class of states, generically written
as

|ψΓR〉 =
∑
αk,βk

c
(k,{je})
αk,βk

|k〉VkA⊗VkB ⊗ |αk〉DAk ⊗ |βk〉DBk , (165)

with no sum over k. Such a choice amounts to discard any quantum correlation among the tensored
irreps space and the degeneracy spaces. This partially reduces the complexity of the problem. In
particular, for fixed spin k of the virtual link, the unfolded intertwiner space (160) admits the
following tensor product structure

Hk,{je}R = {je∈∂A}H(k)
A ⊗

{je∈∂B}H(k)
B = (VkA ⊗ {je∈∂A}Dk)⊗ (VkB ⊗ {je∈∂B}Dk)

= (VkA ⊗ VkB)⊗DAk ⊗DBk .
(166)

A generic pure state density matrix ρR = |ψR〉 〈ψR| ∈ D1(Hk,{je}R ) will then have the following
simplified form

ρR ≡ |ψR〉 〈ψR| = ρ(k) ⊗ ρ(k)
AB , (167)

with

ρ(k) = |k〉 〈k| ∈ D1(VkA ⊗ VkB) , (168)
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and

ρ
(k)
AB =

∑
αk,βk
α′k,β

′
k

c
(k,{je})
αk,βk

c
(k,{je})
α′k,β

′
k
|αk〉〈α′k| ⊗ |βk〉〈β′k| ∈ D1(DAk ⊗DBk ) , (169)

i.e., with respect to the total space Hk,{je}R for fixed k, the pure state ρR is separable and can be
factorized into a tensor product between a pure state ρ(k) involving only the spin k irreps and a
pure state ρ(k)

AB possibly entangling the degeneracy spaces. Since there are no correlations among
the tensored irreps space and the degeneracy spaces, we can trace out ρ(k) and focus our attention
only on the state ρ(k)

AB over the degeneracy spaces.
Therefore, for each k, we can effectively treat the intertwiner state as an entangled pure state

on the bipartite degeneracy space DAk ⊗ DBk . In other words, we can describe the degeneracy
structure of the unfolded intertwiner state as a couple of entangled quantum N -level systems with
number of levels provided by the degeneracy factors Nk

X = dimDXk ≡ d
(nX)
k , X = A,B, respectively.

We would like to stress again that we are interested in studying the quantum correlations between
A and B induced by the spin network state outside A and B, i.e., by the outside space geometry
defined by the complementary region R to A∪B in the graph Γ. The idea is that, in the quantum
geometry defined by the spin network, such correlations could be related to a notion of distance
between two of its parts A and B, that somehow transcends the direct connectivity information
encoded in the graph by the links connecting the two regions and the associated quantum geometric
labels (the group-theoretic data), while at the same time being compatible with them. Once
more, the need to encode geometric properties in algebraic and combinatorial data, first, and
then reconstruct them also via the quantum correlations between the subsystems described by
the quantum states (as subregions of the graph underlying them) stems from the fundamental
background independence of the theory. The latter, as we have discussed, implies not only the
absence of a background metric field defining a notion of position and distance, but also of any
physically significant embedding manifold, that can support such field. Thus everything has to be
encoded in quantum “relations” between parts of the spin network.

In what follows we study the above-mentioned correlations by means of the tensorial structures
intrinsically defined on the space of pure quantum states describing the degeneracy structure of
the unfolded intertwiner state. In particular, we compute the full quantum Fisher tensor on the
orbit submanifolds identified by a fiducial bipartite state (169) and analyze the behaviour of the
corresponding entanglement measure as a function of the virtual spin k which, as discussed before,
is expected to capture the correlations induced among the regions A and B by the quantum metric
defined by the outside spin network geometry.

D. Quantum Fisher tensor for bipartite degeneracy spaces

In order to explicitly calculate the entanglement monotone (72) we need to put the block-
coefficient matrices (70) of the Hermitian tensor K in a more manageable form. To this aim it
is convenient to choose the stardard (or natural) basis for the u(N) Lie algebras associated with
the two subsystems, that is

σ(A)
a 7−→ τ

(A)
aa′ ≡ |ak〉 〈a

′
k| , σ

(B)
b 7−→ τ

(B)
bb′ ≡ |bk〉 〈b

′
k| (170)
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with ak, a′k = 1, . . . , Nk
A ≡ d

(nA)
k and bk, b′k = 1, . . . , Nk

B ≡ d
(nB)
k such that(

τ
(A)
aa′

)
cc′

= δacδa′c′ , (171)

and similarly for the τ (B)’s. Such a change of basis essentially amounts to replace the σ’s with the
τ ’s in the expressions (70). Indeed, the Lie algebra-valued left-invariant 1-form U−1dU can still be
decomposed as in Eq. (58), say

U−1dU = U−1
A dAUA ⊗ 1B + 1A ⊗ U−1

B dBUB = iτ
(A)
aa′ θ

aa′

A ⊗ 1B + 1A ⊗ iτ (B)
bb′ θ

bb′

B , (172)

where, for each subsystem X = A,B, the τ (X) can be expressed as linear combinations of the
infinitesimal generators σ(X) with complex coefficients and, correspondingly, also the new bases of
left-invariant 1-forms (i.e., {θaa′A } and {θbb

′

B }) are now given in terms of C−linear combinations of
the previous ones10. With this choice of basis, the block-coefficient matrices (70) then become:

K(A)

(aa′)
(bb′)

= 1
2Tr

(
ρ0

[
τ

(A)
aa′ , τ

(A)
bb′

]
+
⊗ 1B

)
− Tr

(
ρ0τ

(A)
aa′ ⊗ 1B

)
Tr
(
ρ0τ

(A)
bb′ ⊗ 1B

)
K(B)

(aa′)
(bb′)

= 1
2Tr

(
ρ01A ⊗

[
τ

(B)
aa′ , τ

(B)
bb′

]
+

)
− Tr

(
ρ01A ⊗ τ (B)

aa′

)
Tr
(
ρ01A ⊗ τ (B)

bb′

)
K(AB)

(aa′)
(bb′)

= Tr
(
ρ0τ

(A)
aa′ ⊗ τ

(B)
bb′

)
− Tr

(
ρ0τ

(A)
aa′ ⊗ 1B

)
Tr
(
ρ01A ⊗ τ (B)

bb′

)
K(BA)

(aa′)
(bb′)

= Tr
(
ρ0τ

(B)
aa′ ⊗ τ

(A)
bb′

)
− Tr

(
ρ0τ

(B)
aa′ ⊗ 1A

)
Tr
(
ρ01B ⊗ τ (A)

bb′

)
K(A)

[aa′]
[bb′]

= 1
2Tr

(
ρ0

[
τ

(A)
aa′ , τ

(A)
bb′

]
− ⊗ 1B

)
K(B)

[aa′]
[bb′]

= 1
2Tr

(
ρ01A ⊗

[
τ

(B)
aa′ , τ

(B)
bb′

]
−

)

(173)

The fiducial state (169) can be thus written as

ρ0 =
∑

αα′ββ′

cαβ cα′β′ τ
(A)
αα′ ⊗ τ

(B)
ββ′ . (174)

10 For instance, in the U(2) case we have:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

τ11 =

(
1 0
0 0

)
, τ12 =

(
0 1
0 0

)
, τ21 =

(
0 0
1 0

)
, τ22 =

(
0 0
0 1

)
.

Therefore
σ0 = τ11 + τ22 , σ1 = τ12 + τ21 , σ2 = i(τ21 − τ12) , σ3 = τ11 − τ22

from which, by imposing that U−1dU = iσkθ
k = iτkk′θ

kk′ , it is easy to see that

θ11 = θ0 + θ3 , θ12 = θ1 − iθ2 , θ21 = θ1 + iθ2 , θ22 = θ0 − θ3 .
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where we do not explicitly write the superscripts (k, {je}) to simplify the notation. As discussed in
appendix A, a direct computation of the expressions (173) yields

K(AB)

(aa′)
(bb′)

= ca′b′ cab −
∑
β

ca′β caβ ·
∑
γ

cγb′ cγb , (175)

K(A)

(aa′)
(bb′)

=
1

2

(
δa′b

∑
β

cb′β caβ + δab′
∑
β

cbβ ca′β

)
−
∑
β

ca′β caβ ·
∑
δ

cb′δ cbδ , (176)

K(A)

[aa′]
[bb′]

=
1

2

(
δa′b

∑
β

cb′β caβ − δab′
∑
β

cbβ ca′β

)
. (177)

Similar results hold for K(BA) and the K(B) blocks of the symmetric and antisymmetric part,
respectively.

Finally, omitting for the moment the constant factor in front of the trace in Eq. (72), the en-
tanglement monotone E is given by (cfr. Eqs. (A6,A7)):

E =
∑
aa′cc′

(
ca′c′ cac −

∑
β

ca′β caβ
∑
γ

cγc′ cγc

)2

. (178)

Remark: Here we see the advantage of choosing the standard basis. Indeed, in this basis, our
measure of entanglement E , as well as all the block-coefficient matrices of the tensor K, are written
directly in terms of the coefficients c of the fiducial state.

E. Some special cases

Let us finally check that the blocks of the tensor K actually encode the information about sepa-
rability or entanglement by considering some explicit choice of the fiducial state ρ0. In particular
we have to check that the off-diagonal blocks, and hence the entanglement monotone E , vanish
when ρ0 is separable, while the symplectic part vanishes when ρ0 is maximally entangled. So if ρ0

is separable, the coefficients cαβ factorize as λαλβ and the fiducial state (174) can be written as:

ρ0 =

( NA∑
α,α′=1

λαλ̄α′τ
(A)
αα′

)
⊗
( NB∑
β,β′=1

λβλ̄β′τ
(B)
ββ′

)
≡ ρ(A)

0 ⊗ ρ(B)
0 . (179)

Therefore, when this is the case, the matrix elements of the off-diagonal blocks (175) are given by

K(AB)

(aa′)
(bb′)

= λa′λb′ λ̄aλ̄b − λa′ λ̄a
(∑

β

λβλ̄β

)
· λb′ λ̄b

(∑
γ

λγ λ̄γ

)
= λa′λb′ λ̄aλ̄b − λa′ λ̄aλb′ λ̄b = 0

(180)

where we have used the normalization condition
∑
β |λβ |2 = 1. Thus, being K(AB) = 0 in the

separable case, also the entanglement measure E defined in (72) obviously vanishes as it can be
directly checked from Eq. (178).
On the other hand, if ρ0 is maximally entangled, then the coefficients cαβ are given by δαβ/

√
N<
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with N< = min (NA, NB) and the fiducial state can be written as:

ρ0 =
1

N<

N<∑
α,α′=1

τ
(A)
αα′ ⊗ τ

(B)
αα′ . (181)

From the expression (A5) we then see that

K(A)

[aa′]
[bb′]

=
1

2N<

(
δa′b

∑
β

δb′βδaβ − δab′
∑
β

δbβδa′β

)
=

1

2N<

(
δa′bδb′a − δab′δba′

)
= 0 , (182)

i.e., as expected, the symplectic part vanishes in the maximally entangled case. Moreover, in this
case the entanglement measure (72) is given by

Tr
(
K(AB)TK(AB)

)
=
∑
aa′cc′

(
1

N<
δa′c′δac −

1

N2
<

∑
β

δa′βδaβ
∑
γ

δγc′δγc

)2

=
∑
aa′cc′

(
1

N<
δa′c′δac −

1

N2
<

δaa′δcc′

)2

=
∑
aa′cc′

(
1

N2
<

(δa′c′δac)
2 +

1

N4
<

(δa′a′δcc′)
2 − 2

N3
<

δa′c′δacδaa′δcc′

)
= 1 +

1

N2
<

− 2

N2
<

=
N2
< − 1

N2
<

,

(183)

i.e., restoring the constant factor in Eq. (178)

E =
N2
<

4(N2
< − 1)

Tr
(
K(AB)TK(AB)

)
=

1

4
, (184)

and the distance with respect to the separable state (73) takes the following value:

Tr
(
R†R

)
=

1

N4
<

Tr
(
K(AB)TK(AB)

)
=
N2
< − 1

N6
<

. (185)

Finally, let us consider the intermediate case of a generic entangled fiducial state, that is

cαβ = f(α)δαβ , (186)

with f(α) complex smooth functions satisfying the normalization condition∑
α

|f(α)|2 = 1 . (187)

The fiducial state (174) can be thus written as

ρ0 =
∑
α,α′

f(α)f(α′) τ
(A)
αα′ ⊗ τ

(B)
αα′ , (188)
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and we have

Tr
(
K(AB)TK(AB)

)
=
∑
aa′cc′

(
f(a′)f(a)δa′c′δac −

∑
β

f(a′)f(a)δa′βδaβ
∑
γ

f(c′)f(c)δγc′δγc

)2

=
∑
aa′cc′

(
f(a′)f(a)δa′c′δac − f(a′)f(a)δa′af(c′)f(c)δcc′

)2

=
∑
a

f(a)2
∑
a′

f(a′)2 +
∑
aa′cc′

f(a′)2f(a)2δaa′δaa′f(c′)2f(c)2δcc′δcc′+

− 2
∑
aa′cc′

f(a′)2f(a)2f(c′)f(c)δaa′δa′c′δacδaa′δcc′

=
∑
a

f(a)2
∑
a′

f(a′)2 −
∑
ac

|f(a)|4|f(c)|2δac

=
∑
a

f(a)2
∑
a′

f(a′)2 −
∑
a

|f(a)|6 .

(189)

Therefore, if the functions f are real11, Eq. (189) reduces to:

Tr
(
K(AB)TK(AB)

)
= 1−

∑
a

|f(a)|6 . (190)

In particular, we see that when f(a) = 1/
√
N< ,∀a = 1, . . . , N<, we recover the result (183) for the

maximally entangled case.

To sum up, we collect the above results in the following table:

ρ0 cαβ Tr
(
K(AB)TK(AB)

)
separable λαλβ 0

maximally entangled δαβ√
N<

1− 1
N2
<

f(α)δαβ , f(α) ∈ C
∑
α f(α)2

∑
α′ f(α′)2 −

∑
α |f(α)|6

entangled
f(α)δαβ , f(α) ∈ R 1−

∑
α |f(α)|6

F. Spin- 1
2
graph and large n correlations

As an explicit example let us consider the case of a spin network graph Γ whose edges are all
labeled by spins fixed at the fundamental representation, i.e., je = 1

2 ∀e ∈ ∂A ∪ ∂B ≡ ∂R. The
specific structure of the starting graph is not relevant for our analysis and the only assumption

11 This is actually the case of a Schmidt decomposition.
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we make is that the gauge reduction procedure leads to a single intertwiner graph ΓR between
the 2n (n ∈ N) SU(2)-representations defining the boundary ∂R with no loops carrying curvature
excitations. The number of boundary edges must be necessarily even since there does not exist any
intertwiner between an odd number of 1

2 -spin representations.

With such a choice of spin labels, we may unfold the single 2n-valent intertwiner into two (n+1)-
valent vertices coupling the two boundary sets of n spin- 1

2 edges with a virtual link labeled by a
fixed spin k. As long as k ≤ n, the dimension of the corresponding degeneracy spaces DAk and DBk
can be then expressed in terms of binomial coefficients as [72]:

N = Nk
A = Nk

B = d
(n)
k =

(
2n

n+ k

)
−
(

2n

n+ k + 1

)
=

2k + 1

n+ k + 1

(
2n

n+ k

)
. (191)

Therefore, with this separation of boundary degrees of freedom, the gauge-reduced unfolded in-
tertwiner state can be actually described as a couple of entangled N -level systems with the same
number of levels given by (191).

Let us analize the large n behaviour of the quantum correlations between the two subsystems as
a function of k. We focus on a fiducial state |0〉 ≡ |ψΓR〉 with all coefficients c(k,{je=

1
2})

αkβk
equal to

1√
N

whose corresponding pure state density matrix is given by

ρ0 =
1

N

N∑
αk,α′k=1

τ
(A)
αkα′k

⊗ τ (B)
αkα′k

. (192)

In the previous section we found that, for such a choice of the fiducial state, the entanglement
measure constructed with the off-diagonal blocks of the pulled-back metric tensor on the orbit
starting at ρ0 is given by

Tr
(
K(AB)TK(AB)

)
= 1− 1

N2
. (193)

For large n, say n >> 1, the degeneracy factors (191) admit the following asymptotic expression
[71]

N = d
(n)
k ∼ 22n+1

√
πn

x

(1 + x)
√

1− x2
e−nϕ(x) , (194)

with

ϕ(x) = (1 + x) log(1 + x) + (1− x) log(1− x) , x =
k

n
∈ [0, 1] . (195)

Hence, when k goes to zero, or equivalently x → 0, then ϕ(x) → 0 and d(n)
k=0 goes to zero linearly

with x (i.e., with k). On the other hand, when k becomes comparable with n (that is x → 1),
ϕ(x) ∼ 2 log 2 and d(n)

k=n goes to infinity. Explicitly, we have:

N = d
(n)
k ∼

largen

2√
π

22n
√
n

k

(n+ k)
√
n2 − k2

−→

{
0 for k → 0

∞ for k → n
. (196)
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Thus, the entanglement monotone (193) exhibits the following large n behaviours

Tr
(
K(AB)TK(AB)

)
= 1− 1

N2
= 1− 1(

d
(n)
k

)2 ∼
{
∞ for k → 0

1 for k → n
. (197)

Finally, the corresponding behaviour of the associated distance with respect to the separable
state is

1

N4
Tr
(
K(AB)TK(AB)

)
∼

{
∞ for k → 0

0 for k → n
. (198)

VI. DISCUSSION

As stressed in Section 1, spin network states are supposed to be the fundamental degrees of
freedom representing the quantum structure of spatial three-dimensional geometry12. According to
[18], the degrees of freedom of a spin network flow through the network itself which can be then
considered as a quantum circuit, i.e., the SU(2)-representation vectors living on the edges of the
graph evolve along the edges then meet and intertwine at the nodes, the latter playing the role of
quantum gates. This is a quite interesting interpretation from a relational point of view. Indeed,
as already remarked, in a diffeomorphism invariant context, only relations between objects have
physical meaning and the physical content of the theory should be understood in a purely relation
way. A quantum space state essentially defines a set of correlations between the (sub-)regions of
the spin network and ultimately between regions of space. In the spirit of Penrose’s original idea
[43, 73], spin networks then come to be networks of quantum correlations (entanglements) between
regions of space. The 3-dimensional quantum space can be therefore identified with the set of
processes that can occur on it, processes represented by the various quantum channels forming
the network, and its properties (e.g., connectivity and geometry) should be reconstructed from the
quantum information encoded in the fundamental degrees of freedom. It is therefore crucial to
understand and properly characterize the intrinsic informational content of spin networks.

In this work we have tried to address this issue using the tensorial structures available in the geo-
metric formulation of Quantum Mechanics and their characterization of entanglement. Specifically,
we implemented a three-steps procedure to build up these structures and we have applied it on a
single link state which may be regarded as the most simple circuit consisting of two “one-valent
nodes” (semilink states) and a link connecting them. Indeed, even at the level of the basis states
we associate a state |j,m, n〉 with an irreducible representation of the group SU(2) whose Wigner
matrix D(j)

mn is actually an amplitude 〈j,m|ĥ(A)|j, n〉 from an initial to a final spin state given by
the transformed state under the group action. Hence, a Wilson line must be intended as the de-
scription of the transformation relating the two (quantum) references represented by the endpoints,
i.e., it can be regarded as a process connecting two spin states and generating the minimal element
of geometry13. Such a relational interpretation is well described in our formalism where, for any
fixed spin j, the single link Hilbert space is regarded as a bipartite space H(j) ∼= V(j) ⊗ V(j)∗ of

12 This point of view is shared by most of the background-independent QG approaches, not only LQG. From the
spin foam point of view [29], for instance, a spin network can be thought of as a trivial case of a spin foam with
no spacetime vertices thus representing a static spacetime set-up.

13 Note that the two states are characterized by the same spin j since the action of SU(2) on such states can modify
the magnetic moments but not the spin quantum number.
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two spin-j irreducible representation Hilbert spaces (the presence of the dual space is due to the
opposite ingoing orientation at the second endpoint), and the link itself is actually an entangled
state of the two semilink spin states.
Now the point is to understand which informations can be extracted from the tensorial structures
constructed on the space of states by means of the geometric formalism developed so far. First
of all, let us notice that, being tensors on the state space, they depend on the algebraic and com-
binatorial data carried by the spin-network thus concerning the pregeometric level of the theory.
The latter acquires a geometric character when we define gauge-invariant operators acting on the
quantum states which are then interpreted as the building blocks of a quantum geometry in the
dual simplicial picture. In a background-independent framework, such a “microscopic” quantum
geometry is at the root of space(-time) but how its geometry can be reconstructed in general re-
mains to be understood. The inbuilt diffeomorphism invariance of the formalism (e.g. no role for
any background manifold to start with), makes things trickier.
Therefore, concerning the single link case, it seems more natural to look at the notion of connectiv-
ity rather than of distance. The metric tensor constructed in this work indeed lives on the space of
states not on space(-time). More precisely, it is given by the pull-back of the Fubini-Study metric
tensor from the ray space to the Hilbert space. From this point of view, the entanglement monotone
Tr(CTC) involving the off-diagonal blocks of pulled-back tensor can be interpreted as a measure
of the existence of the link itself, i.e., as a measure of connectivity in the sense of graph topology.
Indeed, as discussed in Sec. 3.8, in general it can be regarded as a distance with respect to the
separable case, i.e.:

Tr(CTC) ∝ Tr(R†R) , R := ρ− ρA ⊗ ρB . (199)

Thus, it is zero when ρ is separable and it is maximum when the state is maximally entangled. By
focusing now on the case of a single link reinterpreted as an entangled state of two semilinks, we
may conclude that

Tr(CTC) = 0 ↔ unentangled semilinks/no link ↔ not connected

Tr(CTC) 6= 0 ↔ link as entangled semilinks ↔ connected

This is even more clear in the case of two links where the entanglement is directly associated to their
gluing into a single link. Hence, we have a relation between entanglement and graph connectivity
as we expect from the relational point of view discussed before where the network graph itself is
regarded as describing the correlations between its nodes and hence there will be a link/a process
connecting two points only if they are correlated (correlations which translate into entanglement at
the quantum level). Moreover, in the maximally entangled case, which corresponds to the gauge-
invariant Wilson loop state, we find that the entanglement measure (132) depends only on the
spin number j labelling the link through the eigenvalue j(j + 1) of the area operator. Therefore,
already at the level of the simplest example of a single link state, the analysis developed so far
seems to suggest a connection between entanglement on spin networks states and their geometric
properties. For istance, the gluing of two link in a gauge-invariant way resulting into a (locally)
maximally entangled state ensures the matching of their dual surfaces into a unique surface dual
to the single link resulting from the gluing. Pushing this interpretation further we may argue that
the connectivity and geometricity of the fundamental degrees of freedom might emerge from their
entanglement properties. In order to check this statement we need to extend our analysis to more
complicated spin networks. Next step may be for istance to consider the gluing of 4 Wilson lines
into a 4-valent node. Only in the maximally entangled case in which we associate the resulting node
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with an invariant tensor (intertwiner) corresponds to a well-defined geometric figure (tetrahedron),
i.e.:

maximally
entangled ←→

gauge-invariant
gluing ←→ closure

condition

Moreover, since there are more degrees of freedom involved, the analysis may reveal some new
connection with other geometric observables (e.g., volume) which are trivial in the single link case.
We stress again that however we are still at a pregeometric level. By this we mean that the advocated
entanglement-geometry connection concerns abstract non-embedded objects and so the resulting
geometric features are not yet those of a continuum spatial geometry, like we are accustomed to
use in effective field theory and in GR. Some ideas concerning this and further possibilities will be
outlined in the section of conclusions.

VII. CONCLUSIONS AND OUTLOOK

Motivated by the idea that, in the background independent framework of a quantum theory of
gravity, entanglement is expected to play a key role in the reconstruction of spacetime geometry,
this dissertation is a preliminary investigation towards the possibility of using the formalism of
Geometric Quantum Mechanics (GQM) to give a tensorial characterization of entanglement on
spin network states. Our analysis focuses on the simple case of a single link graph state for which
we define a dictionary to construct a Riemannian metric tensor and a symplectic structure on
the space of states. The manifold of (pure) quantum states is then stratified in terms of orbits of
equally entangled states and the block-coefficient matrices of the corresponding pulled-back tensors
fully encode the information about separability and entanglement. In particular, the off-diagonal
blocks C define an entanglement monotone Tr(CTC) interpreted as a distance with respect to the
separable state.

The main achievements of our construction are:

1. A formalism which fits well to a purely relational interpretation of the link as an elementary
process describing the quantum correlations between its endpoints.

2. A quantitative characterization of graph connectivity by means of the entanglement monotone
Tr(CTC) which comes to be a measure of the existence of the process/link.

3. A connection between the GQM formalism and the (simplicial) geometric properties of the
quantum states through entanglement. In the maximally entangled case, which for the single
link corresponds to a gauge-invariant loop, the entanglement monotone is actually propor-
tional to a power of the corresponding expectation value of the area operator.

4. Assuming bulk flatness, i.e. the absence of curvature degrees of freedom, a generic region of
a spin network can be thought as an intertwiner between the N links puncturing the dual
surface. From the point of view of the surface, a state of geometry of that region is then
described by a superposition of the possible N-valent intertwiners [18]. It has been proposed
in [19] that a notion of distance between two regions of space should be derived in terms of
the entanglement between the two regions A and B of the underlying spin network induced by
the rest of the network. By regarding the whole system as a bipartite system in which each
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subsystem is a n-level system, where the number of levels is determined by the degeneracy of
the new intertwiner space resulting from the coarse-graining and as such it will depend also on
the spin labelling the virtual link, we have studied in some detail such quantum correlations
using our GQM formalism. In particular, we have obtained several analytic results for the
entanglement monotone Tr(CTC), which support its interpretation as a measure of spatial
connectivity.

These results may be intended as the starting point of a long-term program whose final goal should
be to understand in full generality how the tensorial structures defined on the space of spin network
states can be used to characterize their geometric features and, in particular, how they can provide
new insights to reconstruct the (quantum) geometry of spacetime. We have seen that even at the
simplest level of a single link we can already grasp some connections between entanglement and
geometry. Obviously, being this case so simple, it does not enable us to explore the full spectrum of
possibilities and, as already mentioned, we need to extend our construction to more general cases.
Let us then close by sketching some future perspective:

• The general setup we have used to compute entanglement properties of the bipartite system
associated to two regions of a spin network state should now be extended, and the calculations
generalised. This can be done in several directions, corresponding to the progressive removal
of the various approximations we had imposed on our system, in this work. One is the intro-
duction of curvature degrees of freedom, or of a proper coarse graining procedure to deal with
them. Another is the inclusion of the sum over spin degrees of freedom in the calculations, i.e.
allowing for a superposition of spin network states while keeping the underlying combinatorial
structure fixed. More ambitiously, we need to learn to control the entanglement properties of
superpositions over graph structures. For the latter goal, the GFT formalism may be the one
with the greatest potential. Only such progressive generalization of our results can truly give
strong support for the conjectured entanglement-connectivity relation and, in perspective,
for the entanglement-geometry one. In order to generalise our entanglement calculation to
superpositions of spin network graphs, one possibility is to adopt the tensor model techniques
already used for the calculation of the entanglement entropy of horizon states built out of
spin networks in [23].

• We may focus on coherent states and exploit their interpretation as semiclassical states to
study the classical limit of the metric tensor. Let us also notice that in this case we are selecting
a particular family of states with their own parameter space. Moreover, since the parameter
space of coherent states is isomorphic to the classical phase space of discrete geometries
associated to spin network states, establishing a correspondence between the (entanglement)
properties measured in terms of information geometry and the same simplicial geometry
should be rather direct. This should also enable us to exploit the connection between the
Fubini-Study and the Fisher-Rao metrics and the related tools of information geometry (see
for example [74] where the quantum metric is derived from relative entropy).

• The analysis of entanglement with classical tensors has been extended also to the case of
mixed states [75]. The case of Gibbs states, in which the expectation values of (geometric)
observables such as area play the role of the parameters of the exponential family of maximally
mixed states, would be interesting to study black holes. In particular, once we generalise our
construction to include curvature degrees of freedom in the bulk of our spatial region, any
subsequent coarse-graining of the same curvature degrees of freedom will result in mixed
states. In other words, one could associate the mixed nature of the quantum states being
considered to the curvature degrees of freedom having been traced out.
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• A further interesting aspect concerns the very interpretation of these tensors in those cases
where the space of states is a tensor product of boundary states spaces of a process. The case
of the single link, where the Hermitian tensor can be associated with an amplitude from an
initial to a final spin state, may be generalized to a full (spin foam) path integral amplitude,
meant as a process generating a region of space-time. In this case, the Fubini-Study metric
would provide a metric for the space-time region. This setting has interesting formal analogies
with the general boundary formalism [76, 77].

ACKNOWLEDGMENTS

F. M. thanks AEI Potsdam for hospitality and INFN for support. P.V. acknowledges support
by COST (European Cooperation in Science and Technology) in the framework of COST Action
MP1405 QSPACE and hospitality at AEI Potsdam.

Appendix A: Computation in the Standard Basis

In this appendix we report the explicit computations of the block-coefficient matrices (173) of
the Hermitian quantum Fisher tensor on the orbit generated from the fiducial state

ρ0 =
∑

αα′ββ′

cαβ cα′β′ τ
(A)
αα′ ⊗ τ

(B)
ββ′ . (A1)

Let us start with the off-diagonal blocks:

K(AB)

(aa′)
(bb′)

=
∑

αα′ββ′

cαβ cα′β′ Tr
(
τ

(A)
αα′τ

(A)
aa′ ⊗ τ

(B)
ββ′ τ

(B)
bb′

)
+

−
∑

αα′ββ′

cαβ cα′β′ Tr
(
τ

(A)
αα′τ

(A)
aa′ ⊗ τ

(B)
ββ′

)
·
∑
γγ′δδ′

cγδ cγ′δ′ Tr
(
τ

(A)
γγ′ ⊗ τ

(B)
δδ′ τ

(B)
bb′

)
=

∑
αα′ββ′

cαβ cα′β′ TrA
(
τ

(A)
αα′τ

(A)
aa′

)
TrB

(
τ

(B)
ββ′ τ

(B)
bb′

)
+

−
∑

αα′ββ′

cαβ cα′β′ TrA
(
τ

(A)
αα′τ

(A)
aa′

)
TrB

(
τ

(B)
ββ′

)
·
∑
γγ′δδ′

cγδ cγ′δ′ TrA
(
τ

(A)
γγ′

)
TrB

(
τ

(B)
δδ′ τ

(B)
bb′

)
=

∑
αα′ββ′

cαβ cα′β′ δαa′δα′aδβb′δβ′b −
∑

αα′ββ′

cαβ cα′β′ δαa′δα′aδββ′ ·
∑
γγ′δδ′

cγδ cγ′δ′ δγγ′δδb′δδ′b

= ca′b′ cab −
∑
β

ca′β caβ ·
∑
γ

cγb′ cγb

(A2)

where in the third equality we used the relations TrA
(
τ

(A)
αα′τ

(A)
aa′

)
= δαa′δα′a and TrA

(
τ

(A)
γγ′

)
= δγγ′

(and similarly for the τ (B)’s) which can be easily deduced from Eq. (171). A similar result holds
for the block K(BA).
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As regards the other blocks, by using the commutation and anti-commutation relations[
τ

(X)
aa′ , τ

(X)
bb′

]
± = δa′bτ

(X)
ab′ ± δab′τ

(X)
a′b , X = A,B (A3)

we get

K(A)

(aa′)
(bb′)

=
1

2

∑
αα′ββ′

cαβ cα′β′TrA
(
τ

(A)
αα′

[
τ

(A)
aa′ , τ

(A)
bb′

]
+

)
TrB

(
τ

(B)
ββ′

)
+

−
∑

αα′ββ′

cαβ cα′β′TrA
(
τ

(A)
αα′τ

(A)
aa′

)
TrB

(
τ

(B)
ββ′

)
·

·
∑
γγ′δδ′

cγδ cγ′δ′TrA
(
τ

(A)
γγ′ τ

(A)
bb′

)
TrB

(
τ

(B)
δδ′

)
=

1

2

∑
αα′β

cαβ cα′βTrA
(
τ

(A)
αα′

[
τ

(A)
aa′ , τ

(A)
bb′

]
+

)
−
∑
β

ca′β caβ ·
∑
δ

cb′δ cbδ

=
1

2

∑
αα′β

cαβ cα′β

[
δa′bTrA

(
τ

(A)
αα′τ

(A)
ab′

)
+ δab′TrA

(
τ

(A)
αα′τ

(A)
a′b

)]
+

−
∑
β

ca′β caβ ·
∑
δ

cb′δ cbδ

=
1

2

∑
αα′β

cαβ cα′β (δa′bδαb′δα′a + δab′δαbδα′a′)−
∑
β

ca′β caβ ·
∑
δ

cb′δ cbδ

=
1

2

(
δa′b

∑
β

cb′β caβ + δab′
∑
β

cbβ ca′β

)
−
∑
β

ca′β caβ ·
∑
δ

cb′δ cbδ ,

(A4)

and

K(A)

[aa′]
[bb′]

=
1

2

∑
αα′ββ′

cαβ cα′β′TrA
(
τ

(A)
αα′

[
τ

(A)
aa′ , τ

(A)
bb′

]
−

)
TrB

(
τ

(B)
ββ′

)
=

1

2

∑
αα′β

cαβ cα′βTrA
(
τ

(A)
αα′

[
τ

(A)
aa′ , τ

(A)
bb′

]
−

)
=

1

2

∑
αα′β

cαβ cα′β

[
δa′bTrA

(
τ

(A)
αα′τ

(A)
ab′

)
− δab′TrA

(
τ

(A)
αα′τ

(A)
a′b

)]
=

1

2

∑
αα′β

cαβ cα′β (δa′bδαb′δα′a − δab′δαbδα′a′)

=
1

2

(
δa′b

∑
β

cb′β caβ − δab′
∑
β

cbβ ca′β

)
.

(A5)

Similar results hold for the K(B) blocks of the symmetric and antisymmetric part, respectively.
Finally, let us consider the entanglement measure (72). First of all, let us compute the product
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K(AB)K(AB)T whose matrix elements, according to Eq. (A2), are given by(
K(AB)K(AB)T

)
(aa′)
(bb′)

=
∑
cc′

K(AB)

(aa′)
(cc′)

K(AB)T

(cc′)
(bb′)

=
∑
cc′

K(AB)

(aa′)
(cc′)

K(AB)

(bb′)
(cc′)

=
∑
cc′

[(
ca′c′ cac −

∑
β

ca′β caβ ·
∑
γ

cγc′ cγc

)
·

·
(
cb′c′ cbc −

∑
δ

cb′δ cbδ ·
∑
ζ

cζc′ cζc

)]
=
∑
cc′

(
ca′c′ caccb′c′ cbc +

∑
β

ca′β caβ
∑
γ

cγc′ cγc
∑
δ

cb′δ cbδ ·

·
∑
ζ

cζc′ cζc − cb′c′ cbc
∑
β

ca′β caβ
∑
γ

cγc′ cγc+

− ca′c′ cac
∑
δ

cb′δ cbδ
∑
ζ

cζc′ cζc

)
.

(A6)

Now taking the trace of Eq.(A6) amounts to set a = b, a′ = b′ and to sum over a, a′. Therefore,
omitting for the moment the constant factor in front of the trace in Eq. (72), we have:

E =
∑
aa′cc′

[
c2a′c′ c

2
ac +

(∑
γ

cγc′ cγc

)2(∑
δ

ca′δ caδ

)2

− 2ca′c′ cac
∑
β

ca′β caβ
∑
γ

cγc′ cγc

]
=
∑
aa′cc′

(
ca′c′ cac −

∑
β

ca′β caβ
∑
γ

cγc′ cγc

)2

.

(A7)
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