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The Very Basics of Higher-Spin Theory Pan Kessel

1. Introduction

These notes are based on a two one-hour lectures given at the Twelfth Modave Summer School
in Mathematical Physics 2016 in which I tried to give master and PhD students a good working
knowledge of the very basics of higher-spin gauge theories. The free theory of fully symmetric
massless higher-spin fields is discussed in detail. I tried to make the lectures as interactive as
possible which is, of course, hard to reproduce in this write-up. Nevertheless, I hope to preserve
at least the spirit of these lectures by adding various exercises and their solutions. The reader is
strongly encouraged to work through them.

The material presented here is absolutely elementary and contains no original results. I hope
that it provides a good start for studying more advanced and intermediate concepts of higher-spin
theory.

There are a number of useful resources on this subject. Three references from which I partic-
ularly benefited while preparing the lectures are

• Section 2 of [1] which also discusses in detail fermionic and massive higher-spin fields.

• Section 2 of [2] which in later chapters also provides a useful starting point to learn about
more advanced aspects of higher-spin theories, in particular Vasiliev theory.

• Section 2 of [3]: this reference also discusses the particularities of three-dimensional higher-
spin theories.

For some parts of the discussion, I follow these references quite closely.

2. Fronsdal Equation

Gauge fields are one of the most important building blocks of modern theoretical physics. For
example, the standard model of particle physics contains various spin-1 gauge fields which lead
to the electroweak and strong force. The most simple example of a spin-1 gauge field is given by
electromagnetism. Maxwell’s equation can be written in the following form

∂
µFµν = 0 , (2.1)

where the spacetime indices are denoted by µ,ν , . . .∈ {0,1, . . . ,D−1} and the field strength tensor
is given in terms of the spin-1 field Aµ by

Fµν = ∂µAν −∂νAµ . (2.2)

By inserting (2.2) in (2.1), one obtains

2Aµ −∂µ∂
σ Aσ = 0 . (2.3)

Obviously, the field strength (2.2) is invariant under the following spin-1 gauge transformation

δAµ(x) = ∂µξ (x) , (2.4)
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where ξ is an arbitrary function of the spacetime coordinates xµ . As a result, also the equation of
motion (2.3) is invariant under this gauge transformation.

Spin-1 gauge fields can be used to describe all fundamental forces of nature but gravity. Note
however that the standard model contains Yang-Mills gauge fields whose equations of motion are
similar to the abelian Maxwell theory (2.3) but also contain additional interaction terms. Only
when we neglect these interaction terms by restricting to terms linear in the gauge fields do we
obtain free equations of motion of the form (2.3).

In the case of gravity, free equations of motion can be obtained from the vacuum Einstein
equations

Rµν = 0 (2.5)

by rewriting the metric as gµν = ηµν +hµν and only keeping terms linear in hµν , one then obtains

2hµν −∂(µ∂
σ hν)σ −∂µ∂νhσ

σ = 0 , (2.6)

which can be checked to be gauge invariant under the following spin-2 gauge transformation

δhµν = ∂(µξν) . (2.7)

For a summary of our symmetrization conventions see Appendix A.
Since general relativity and the standard model are described by spin-2 and spin-1 gauge fields

respectively (in the sense we have explained above), it is therefore tempting to generalize the equa-
tions of motions (2.3) and (2.6) to arbitrary spin-s. A natural ansatz1 for this is given by the Fronsdal
equation [4]

Fµ1...µs =2φµ1...µs−∂(µ1∂
σ

φµ2...µs)σ +∂(µ1∂µ2φµ3...µs)σ
σ = 0 , (2.8)

where Fµ1...µs is called the Fronsdal tensor. The gauge transformation of the Fronsdal field is given
by

δφµ1...µs = ∂(µ1ξµ2...µs) . (2.9)

However, one can easily show that the gauge variation of the Fronsdal tensor is proportional to the
trace of the spin-s gauge parameter

δFµ1...µs = 3∂(µ1∂µ2∂µ3ξµ3...µs)σ
σ . (2.10)

Problem 1. Calculate the gauge variation of the Fronsdal tensor Fµ1...µs .

Therefore, in order to ensure that the Fronsdal equation is gauge invariant, we have to require2

that the gauge parameter is traceless

ξµ1...µs−3σ
σ = 0 . (2.11)

1At this stage, one might wonder why there are no terms involving double-traces φµ1...µs−4σλ
σλ and also higher

traces. In Section 4, we will impose double-tracelessness condition φµ1...µs−4σλ
σλ = 0 in order to show that the equations

of motion propagate the correct degrees of freedom. Therefore, we do not include these terms in (2.8).
2In principle, one could also attempt to impose a differential constraint on the gauge parameter. Let us consider

s = 3 for definiteness. In this case, the most general solution of ∂µ1 ∂µ1 ∂µ1 ξ ′ = 0 is a polynomial of degree two. If one
requires that the gauge parameter vanishes at infinity, the only solution is ξσ

σ ≡ 0. In the case of s > 3, an analogous
argument leads to the same conclusion.
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3. Degrees of Freedom

In the last section, we have presented a natural ansatz (2.8) for an equation of motion of a spin-
s field φµ1...µs by generalizing the Maxwell and linearized Einstein equations. In the following, we
will show that the Fronsdal field φµ1...µs indeed propagates the correct number of degrees of freedom
of a massless spin-s field in D-dimensional Minkowski spacetime which is given by(

D−3+ s
s

)
−
(

D−5+ s
s−2

)
. (3.1)

In order to derive this number, we first need to review the Wigner method for constructing
unitary irreducible representations of the Poincaré algebra which we will briefly sketch in the fol-
lowing. The discussion will be slightly technical. Upon first reading, the reader might want to take
(3.1) as given and skip to Section 4.

For a detailed account of the Wigner method, we recommend Chapter 2 of Weinberg’s book
’The Quantum Theory of Fields’ [5] and lecture notes by Bekaert and Boulanger [6] which also
contain applications to higher-spin theory.

3.1 Wigner Classification

In quantum field theory, we associate particles with unitary irreducible representations of the
Poincaré algebra

[Mµν ,Mρσ ] = i(ηµρMνσ −ηνρMµσ −ηµσ Mνρ +ηνσ Mµρ) , (3.2a)

[Pµ ,Mρσ ] =−i(ηµρPσ −ηµσ Pρ) , (3.2b)

[Pµ ,Pν ] = 0 . (3.2c)

These representations can be found using the Wigner method which can be roughly summarized
as follows: the generators Pµ should be realized as self-adjoint, commuting operators and can
therefore be simultaneously diagonalized with eigenstates |k〉, i.e.

Pµ |k〉= kµ |k〉 . (3.3)

Lorentz transformations map |k〉 to |k′〉 with kµ and k′µ in the same Lorentz orbit. The space
spanned by a given state |k〉 carries a representation of the little group which is the stabilizer of kµ

in the Lorentz group SO(1,D−1), i.e.

Gk = {Λ |Λµ
σ kσ = kµ and Λ ∈ SO(1,D−1)} . (3.4)

The corresponding Lie algebra is called little algebra. Unitary irreducible representation of the
little algebra uniquely induce unitary irreducible representations of the Poincaré algebra.

In the following, we will illustrate this procedure both for the massive and massless case.

3.1.1 Massive Case

Let us consider the case of a Lorentz orbit with k2 = −m2. Following Wigner’s method, we
consider a particular element of this Lorentz orbit which, for convenience, we choose to be

kµ = (m,0,0, . . . ,0) . (3.5)
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The corresponding little algebra is given by so(D−1). A unitary irreducible representations of this
algebra can be encoded by a Young diagram

· · · · · · · · · m1

· · · m2
...

...
...

...
...

...
...

· · · mn ,

(3.6)

which has n rows and there are mi boxes in the i-th row with m1 ≥ m2 ≥ m3 ≥ ·· · ≥ mn. The
so(d−1)-tensors

φa11...a1m1 ,a21···a2m2 , ... ,an1...anmn
, ai j ∈ {1, . . . ,D−1} , (3.7)

form a basis3 for the vector space of the representation associated with the Young diagram if

• they are completely symmetric in the indices of type a1i, in indices of type a2 j and so on.

• symmetrization of all indices associated with row i with any index associated with row j > i
vanishes4, for example

φ(a11...a1m1 ,a21)...a2m2 , ... ,an1...anmn
= 0 . (3.8)

• all traces vanish5, for example

δ
a11a12 φa11...a1m1 ,a21...a2m2 , ... ,an1...anmn

= 0 . (3.9)

Let us consider the Young diagram with mi = 0 for i = 1 . . .n which is usually denoted by •.
This corresponds to the trivial representation and the associated vector space is spanned by so(d−
1)-scalars φ . Similarly, the Young diagram 2 corresponds to the vector representation whose
representation space is spanned by so(d−1)-vectors φa. More generally, the representation space
associated with Young diagrams with m1 = s and mi = 0 for i > 1,

· · · s ,

is spanned by completely symmetric and traceless rank-s tensors φa1...as . These representations
are related by the Wigner method to massive spin-s representations of the Poincaré algebra and
therefore to massive spin-s particles.

Tensors related to Young diagrams with more than one row are generically neither fully sym-
metric nor antisymmetric. They are associated with massive mixed symmetry particles which play
an important role in string theory. We will however restrict ourselves to the completely symmetric
case in the following. Furthermore, we will focus on massless particles only which are discussed
in the next section.

3This basis is usually referred to as the symmetric basis. One also often considers an antisymmetric basis but we
will not do so in the following. See, for example, Appendix E of [2] for more details.

4It can be shown that this condition for j = i+1 implies all that all symmetrization for j > i+1 vanish.
5It can be shown that tracelessness in the first class of indices, e.g. a1 j with j ∈ {1, . . . ,m1}, implies that all other

traces vanish. For a proof of this statement, we refer to Appendix E of [2].
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3.1.2 Massless Case

For the case k2 = 0, we choose

kµ = (E,0, . . . ,0,E) . (3.10)

Lorentz transformations generated by the so(D− 2) subalgebra leave this vector invariant. All
massless particles in nature transform in a representation of the Poincaré algebra induced by this al-
gebra.6 Therefore, the representation theory for the massless case is the same as for massive repre-
sentations in one dimension lower. In particular, there is a spin-s representation whose vector space
is spanned by completely symmetric and traceless so(D−2)-tensors φb1...bs with bi ∈ {1 . . .D−2}.
These representations are related to massless spin-s particles.

3.1.3 Counting Degrees of Freedom

The degrees of freedom of a massless spin-s particle is given by the dimension of the massless
spin-s representation discussed in the last section. As explained, its representation space is spanned
by so(D−2)-tensors

φb1...bs , (3.11)

which are completely symmetric and traceless. So counting the degrees of freedom of a mass-
less spin-s particle reduces to counting the independent components of completely symmetric and
traceless so(D−2)-tensors.

Let us first neglect the trace constraint and consider fully symmetric so(D−2)-tensors. Their
independent components can be conveniently determined using the stars and bars trick. For this,
first notice that because all indices bi are symmetric their order is of no importance. We will
therefore represent each index by a star ?. The different values that these indices can take are
represented by D−2 ’buckets’ separated by D−3 bars |. As an example, for D = 5 and s = 3 we
represent φ111 by

???| | (3.12)

and φ123 = φ213 = . . . by
?|? |? . (3.13)

The total number of possible combinations of D−3 bars and s stars is given by(
D−3+ s

s

)
(3.14)

and is therefore equal to the independent components of a fully symmetric rank-s so(D−2)-tensor.
To take into account the trace constraint, one has to subtract its independent degrees of freedom.

6There is a subtlety here: the maximal subalgebra of the Lorentz algebra leaving (3.10) invariant is actually
iso(D− 2). However, in nature, we exclusively observe particles which transform in representations for which only
the generators of the subalgebra so(D−2)⊂ iso(D−2) are non-trivially realized.
Representations which realize the full iso(D−2) algebra non-trivially could again by studied using the Wigner method.
They would lead to a momentum-like continuous quantum number which is usually referred to as ’continuous spin’.
Such a quantum number is not observed in nature and we will therefore not consider these representations in the follow-
ing.
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Because taking the trace of a tensor reduces the number of free indices by two, we conclude that a
completely symmetric and traceless so(D−2)-tensor of rank-s has(

D−3+ s
s

)
−
(

D−5+ s
s−2

)
(3.15)

independent components which is precisely (3.1).

4. Propagating Degrees of Freedom of Fronsdal Field

In the last section, it was discussed that the number of degrees of freedom of a massless spin-s
field is (3.1). In this section, we will try to show that the Fronsdal field φµ1...µs indeed carries these
degrees of freedom.

As we will prove in the following, the Fronsdal equation describes the propagation of a mass-
less spin-s particle if we require double-tracelessness for the Fronsdal field

φµ1...µs−4
σ

σ
κ

κ = 0 . (4.1)

Note that the double-trace constraint (4.1) is gauge invariant as its gauge variation necessarily
involves a trace of the gauge parameter which vanishes, see (2.11).

In order to show that the double-traceless Fronsdal field indeed propagates the correct degrees
of freedom, it is convenient to choose de Donder gauge

Dµ1...µs−1 = ∂
σ

φµ1...µs−1σ −
1
2

∂(µ1φµ2...µs−1)σ
σ = 0 . (4.2)

For later purposes, we note that the de Donder tensor Dµ1...µs−1 is traceless as you are invited to
check in the following problem.

Problem 2. Show that the de Donder tensor Dµ1...µs−1 is traceless.

By calculating the gauge variation of the de Donder tensor,

δDµ1...µs−1 =2ξµ1...µs−1 , (4.3)

we see that (4.2) does not fix the gauge completely. The residual gauge freedom is given by gauge
parameters which obey 2ξµ1...µs−1 = 0.

Problem 3. Calculate the gauge variation of the de Donder tensor Dµ1...µs−1 .

In de Donder gauge, the Fronsdal equation (2.8) becomes a simple wave equation

2φµ1...µs = 0 , (4.4)

as can be easily shown by observing that Dµ1...µs−1 = 0 also implies that the following tensor van-
ishes7

∂(µ1Dµ2...µs) = ∂(µ1∂
σ

φµ2...µs)σ +∂(µ1∂µ2φµ3...µs)σ
σ . (4.5)

7There is no factor of 1
2 in the last term as for the symmetrization on the left hand side of (4.5) one needs s

permutations. The last term in the de Donder tensor contains s−1 permutations. On the other hand, the last summand
on the right hand side of (4.5) consists of s(s−1)

2 permutations. The factor 1
2 in (4.2) balances this mismatch.

6
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But this tensor precisely coincides with the last two terms in the Fronsdal equation (2.8). In this
gauge, the solution for the Fronsdal equation therefore takes the form

φµ1...µs(x) =
∫

dDk eikx eµ1...µs(k) (4.6)

with k2 = 0. The completely symmetric tensor eµ1...µs is double-traceless and therefore has(
D−1+ s

s

)
−
(

D−5+ s
s−4

)
(4.7)

independent components - as can be verified by the stars and bars method along similar lines as in
Section 3.1.3. But some of these components are related by the gauge condition (4.2) which, since
the de Donder tensor is traceless, imposes(

D−2+ s
s−1

)
−
(

D−4+ s
s−3

)
(4.8)

conditions on eµ1...µs . Furthermore, the residual gauge symmetry 2ξµ1...µs−1 = 0 is solved by

ξµ1...µs−1(x) =
∫

dDxeikx
ξ̃µ1...µs−1(k) (4.9)

with k2 = 0. Since ξ̃ is traceless, this allows us to eliminate(
D−2+ s

s−1

)
−
(

D−4+ s
s−3

)
(4.10)

components from eµ1...µs . So in total, we are left with(
D−1+ s

s

)
−
(

D−5+ s
s−4

)
−2
{(

D−2+ s
s−1

)
−
(

D−4+ s
s−3

)}
(4.11)

degrees of freedom. One can easily check that this number precisely agrees with (3.1) and therefore
the Fronsdal equation indeed propagates the correct number of degrees of freedom.

Note that for this proof, it was essential that the double-trace constraint was imposed.8 The
Fronsdal equation therefore indeed describes the propagation of a massless spin-s field.

5. Action

Now that we have shown that the Fronsdal equation (2.8) indeed describes the propagation
of a massless spin-s particle, it is natural to construct the corresponding Fronsdal action whose

8It is important to emphasize that we have only proven that the double-tracelessness of the Fronsdal field is a
sufficient condition for the propagation of the correct degrees of freedom. As is discussed in Appendix B, it is not a
necessary condition. If the double-trace constraint is not imposed, the second and higher-traces of the Fronsdal field
vanish on-shell (provided that we impose suitable boundary conditions) and therefore do not propagate any additional
degrees of freedom . In this case however, the Fronsdal equation cannot be derived from a gauge-invariant action. For
this reason, one usually imposes the double-trace constraint.

7
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equations of motion are equivalent to the Fronsdal equation (2.8). As we will show in the following,
this action is given by

S =
1
2

∫
dDx φ

µ1...µs Fµ1...µs , (5.1)

where we have defined

Fµ1...µs = Fµ1...µs−
1
2

η(µ1µ2Fµ3...µs)σ
σ , (5.2)

with Fµ1...µs denoting the Fronsdal tensor defined in (2.8). As you are invited to check in Problem
4, the Fronsdal action (5.1) is symmetric in the sense that∫

dDx φ
µ1...µs Fµ1...µs(ψ) =

∫
dDx ψ

µ1...µs Fµ1...µs(φ) , (5.3)

where we have to impose suitable boundary conditions such that all total derivatives in the integrand
lead to vanishing contributions to the action. Using this symmetry, one can easily vary the action

δS =
1
2

∫
dDx

{
δφ

µ1...µs Fµ1...µs(φ)+φ
µ1...µs Fµ1...µs(δφ)

}
=

∫
dDx δφ

µ1...µs Fµ1...µs(φ) (5.4)

and obtain the corresponding equation of motion

Fµ1...µs = 0 . (5.5)

Note that this is not the Fronsdal equation (2.8). However, one can easily show that (5.5) is equiv-
alent to the Fronsdal equation (2.8) by taking the trace of (5.2) which gives

η
µs−1µsFµ1...µs ∝ Fµ1...µs−2σ

σ . (5.6)

This result will be checked in Problem 5. Thus the equation of motion (5.5) implies that the trace
of the Fronsdal tensor vanishes, i.e. Fµ1...µs−2σ

σ = 0. The Fronsdal tensor F and the tensor F only
differ by a trace term - as can be seen by comparing with the definition of F in (5.2). We therefore
conclude that the equation of motion (5.5) indeed implies the Fronsdal equation (2.8).

Problem 4. Check that the symmetry property (5.3) indeed holds. Hint: First consider the case
s = 3.

Problem 5. Prove the relation (5.6).

Along similar lines, one can also show that the Fronsdal action is gauge invariant under
δφµ1...µs = ∂(µ1ξµ2...µs) with traceless gauge parameter ξ . The variation (5.4) and partial integration
implies that

δS ∝

∫
dDx ξ

µ2...µs ∂
µ1Fµ1...µs (5.7)

8
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Using the definition of F of (5.2), the integrand is given by

ξ
µ1...µs−1

(
∂

σ Fµ1...µs−1σ −
1
2

∂
σ

η(σ µ1Fµ2...µs−1)λ
λ

)
, (5.8)

where we have suitably relabeled the indices. Since the gauge parameter is traceless, the last term
only contributes if the metric η carries the index σ . Therefore, the integrand is given by

ξ
µ1...µs−1

(
∂

σ Fµ1...µs−1σ −
1
2

∂(µ1Fµ2...µs−1)λ
λ

)
. (5.9)

By an explicit calculation, one can then show that the expression in the bracket vanishes

∂
σ Fµ1...µs−1σ −

1
2

∂(µ1Fµ2...µs−1)λ
λ ≡ 0 (5.10)

and therefore the action is gauge invariant. Equation (5.10) is called the Bianchi identity and will
be proven in the following exercise.

Problem 6. Show that (5.10) indeed holds.

In summary, it was shown in this section that there exists a gauge invariant action (5.1) whose
equation of motion are equivalent to the Fronsdal equation (2.8). Although we will not prove this
statement, it is important to note that the Fronsdal action is unique - up to partial integration and an
overall constant.

6. AdS backgrounds

So far, we have considered higher-spin fields propagating on a Minkowski background. As we
will now discuss, one can also consistently define a Fronsdal equation for dS and AdS background
geometries. For concreteness, we will only explain the latter case in detail.

Naively, one could hope to obtain the Fronsdal equation for AdS from the one for flat space
(2.8) by replacing partial derivatives ∂ by the covariant derivatives ∇ of AdS space. One then needs
to check whether the resulting equation is gauge invariant under

δφµ1...µs = ∇(µ1ξµ2...µs) with gσκ
ξσκµ1...µs−3 = 0 , (6.1)

where gµν denotes the metric of AdS space. The calculation would follow similar lines as for
the flat case in Problem 1 with the additional complication that the covariant derivatives no longer
commute, e.g.

[∇µ ,∇ν ]vρ =− 1
l2 (gµρ vν −gνρ vµ) , (6.2)

where l is the AdS radius. This in turn leads to additional terms in the gauge variation of the action
that do not cancel out. Luckily, there is an easy way to fix this: one just adds two additional terms
to the action which precisely cancel the contributions of the commutators. The resulting Fronsdal
equation is then given by9

2φµ1...µs−∇(µ1∇
σ

φµ2...µs)σ +
1
2

∇(µ1∇µ2φµ3...µs)σ
σ

− 1
l2 m2

s φµ1...µs−
2
l2 g(µ1µ2φµ3...µs)σ

σ = 0 , (6.3)

9The factor of 1
2 in the last term of the first line is due to our symmetrization convention as explained in Appendix

A.

9
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where m2
s = s2 + s(D− 6)− 2(D− 3). Note that the mass-like term proportional to m2

s in the
equation of motion is required for gauge invariance. This is different to the Minkowski case where
a mass term would break gauge invariance.10

Problem 7. Show that (6.3) is invariant under (6.1). Warning: This problem is more difficult. If
you find it hard to solve read the solutions and make sure that you can follow the calculation.

The Fronsdal equation for dS space can be obtained by flipping the sign of the cosmological
constant Λ∼ 1

l2 . One can also find a suitable generalization of the Fronsdal action (5.1) for (A)dS
backgrounds. We refer to Section 2 of [2] for a discussion of this.

Our proof for the gauge invariance of (6.3) heavily relies on the fact that the commutators
of covariant derivatives take the form (6.2) and therefore only holds for maximally symmetric
spacetimes. For generic backgrounds, the gauge variation of the first line in (6.3) is schematically
of the form

R...(∇ξ )...+(∇R)...ξ ... , (6.4)

where ξ and R are the spin-s gauge parameter and the background Riemann tensor respectively and
the ellipsis schematically denote various contractions of indices. The last term can not be canceled
by adding additional terms to the Fronsdal equation because the gauge parameter arises without a
covariant derivative acting on it. Therefore for generic backgrounds, one can not construct a gauge
invariant (generalization of the) Fronsdal equation.

From our discussion in this section, it follows that maximal symmetry of a spacetime back-
ground is a sufficient condition for the existence of a gauge invariant Fronsdal equation. However,
to the best of my knowledge, a necessary and sufficient condition is not yet known.

7. Outlook

In these lectures, we have discussed the Fronsdal equation in detail. Gauge invariance of
the Fronsdal equation imposes tracelessness of its corresponding gauge parameter, as was dis-
cussed in Section 2. We then showed in Section 4 that the Fronsdal equation indeed describes the
correct degrees of freedom. For our proof, it was essential to impose that the Fronsdal field is
double-traceless. In Section 5, we then presented an action whose Euler-Lagrange equations are
equivalent to the Fronsdal equation. Until this point, our discussion was valid only for flat back-
grounds. In Section 6, we then generalized the Fronsdal equation to the other maximally symmetric
backgrounds, i.e. AdS and dS.

For s= 2, the Fronsdal equation reduces to the linearized Einstein equations. It is natural to ask
if there is also a generalization of the full Einstein equations for higher-spin fields or, put differently,
if there exist non-linear field equations which reduce to the Fronsdal equations upon linearization
around a given background. For AdS and dS backgrounds, such equations were indeed found by
Vasiliev and collaborators [7, 8]. For flat backgrounds, it is widely believed that no such equations
exist.

10The concept of mass is a bit subtle in AdS space as P2 is not a quadratic Casimir of the AdS isometry algebra,
where Pµ is the generalized translation operator of the AdS isometry algebra.

10
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Vasiliev equations are formulated in a highly non-standard manner using an infinite number
of auxiliary fields and coordinates. A detailed understanding of its physical implications is still an
active area of current research.

Both four- and three-dimensional Vasiliev theory are of particular interest as they arise as bulk
duals of particularly simple conformal field theories. A certain type of four-dimensional Vasiliev
theory is dual to the free O(N) vector-model, i.e. N free bosons which transform in the funda-
mental representation of the global O(N) symmetry [9, 10]. Three-dimensional Vasiliev theories
are dual to a certain generalization of two-dimensional minimal models [11]. These dualities have
generated considerable attention over the last years and provide an interesting class of AdS/CFT
dualities from which one might hope to understand the underlying mechanisms of these corre-
spondences better. See, for example, [12] for a review of the four-dimensional and [11] for the
three-dimensional case.

String theory contains an infinite tower of massive higher-spin fields with masses M2 ∼ l−2
s ,

where ls is the string length. One considers typically the point particle limit for which ls is taken
to be small compared to the length scale we are interested in. In this regime, the higher-spin fields
become very massive and are therefore irrelevant for low-energy physics. However, there is also the
opposite limit of ls much greater than the physical length scale. In this tensionless limit, all higher-
spin fields are massless and the theory therefore possesses a huge higher-spin gauge symmetry. It is
widely believed that this is the underlying gauge algebra of string theory and by higgsing this gauge
symmetry the infinite tower of higher-spin fields becomes massive. Over the last years, this Higgs
mechanism has become a very active and exciting field of research [13, 14, 15]. This was achieved
by comparing the dual conformal field theories of particular higher-spin and string theories (in the
tensionless limit and on certain backgrounds).

Given all these exciting applications, higher-spin theories are a topic worth studying and hope-
fully these lectures will help the reader in learning more about the subject.
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I want to thank Andrea Campoleoni, Stefan Fredenhagen, Alexander Kegeles, Gustavo Lucena
Gomez, Evgeny Skvortsov, Charlotte Sleight, Rakibur Rahman and Karapet Mkrtchyan for useful
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A. Conventions

Throughout these lectures, we use symmetrization conventions which involve all necessary
permutations without any additional factors, for example

∂(µξν) = ∂µξν +∂νξµ . (A.1)

Similarly, for the fully symmetric tensor ξ µ1...µs−1 , we have

∂
(µ1ξ

µ2...µs) = ∂
µ1ξ

µ2...µs +∂
µ2ξ

µ1µ3µ4...µs + · · ·+∂
µsξ

µ1...µs−1 , (A.2)

11
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so in total s permutations. As a last example, we note that ∂(µ1∂µ2φ ′
µ3...µs−2)

involves
(s

2

)
terms, e.g.

for s = 3

∂(µ1∂µ2φ
′
µ3...µs)

= ∂µ1∂µ2φ
′
µ3
+∂µ1∂µ3φ

′
µ2
+∂µ2∂µ3φ

′
µ1
, (A.3)

whereas ∇(µ1∇µ2φ ′
µ3...µs)

involves s(s−1) terms because the covariant derivatives do not commute,
e.g. for s = 3

∇(µ1∇µ2φ
′
µ3...µ3)

= ∇µ1∇µ2φ
′
µ3
+∇µ2∇µ1φ

′
µ3

(A.4)

+∇µ1∇µ3φ
′
µ2
+∇µ3∇µ1φ

′
µ2

(A.5)

+∇µ2∇µ3φ
′
µ1
+∇µ3∇µ2φ

′
µ1
. (A.6)

This mismatch in the number of permutations also explains the relative factor of 1
2 in the last term

of the first line in (6.3) with respect to (2.8).
Although these conventions might look rather cumbersome on first sight, they are convenient

as they tend to lead to a lower number of explicit factors in the equations.
By φ ′µ1...µs−2

we denote the trace of the Fronsdal field. We use similar notation for other tensors
as well.

B. More on the Double-trace Constraint

In Section 4, we have seen that the Fronsdal field propagates the correct degrees of freedom
(3.15) of a massless spin-s field. Our proof relied on the fact that the Fronsdal field is double-
traceless (4.1). In this appendix, we will show that the Fronsdal field propagates the correct degrees
of freedom (3.15) even without imposing the double-trace constraint (provided that we impose
suitable boundary conditions). This point is often stated incorrectly in the literature.11

In order to see this, let us assume that the double-trace constraint (4.1) is not imposed on
the Fronsdal field. As a result, the Fronsdal equation (2.8) contains additional components due to
non-vanishing higher traces12. Furthermore the Bianchi identity (5.10) is modified to

∂
σ Fµ1...µs−1σ −

1
2

∂(µ1Fµ2...µs−1)λ
λ =−3

2
∂(µ1∂µ2∂µ3φµ4...µs−1)

λσ
λσ . (B.1)

Problem 8. Show that the modified Bianchi identity (B.1) indeed holds.

We therefore conclude that imposing the Fronsdal equation Fµ1...µs = 0 implies that

∂(µ1∂µ2∂µ3φµ4...µs−1)
λσ

λσ = 0 . (B.2)

But this differential equation has only polynomial solutions. For example for s = 4, the most
general solution is given by φ λσ

λσ = c+ cµxµ + cµνxµxν . If we require that the Fronsdal field

11I want to thank Karapet Mkrtchyan for patiently explaining this subtlety to me. To the best of my knowledge, this
observation was first made in [16] - see footnote 2 on page 2 of this reference.

12By higher traces of a fully symmetric tensor tµ1...µs , we mean

tµ1...µs−4
λσ

λσ , tµ1...µs−6
κλσ

κλσ , . . . .

12
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vanishes at infinity, the only solution is given by φµ1...µs−4
λσ

λσ = 0. Therefore, the Fronsdal field is
now double-traceless on-shell and, as a result, its higher traces do not carry any degrees of freedom.
But for the other components of the Fronsdal field, we can repeat exactly the same argument as in
Section 4 to show that they carry the expected number of degrees of freedom (3.1) of a massless
spin-s field.

We also immediately conclude that the Fronsdal action13 (5.1) is no longer gauge invariant as
this required the Bianchi identity (5.10) which is now modified. One could easily restore gauge
invariance by modifying the definition (5.2) of F to

Fµ1...µs →Fµ1...µs +
1
2

ησ(µ1∂µ2∂µ3φ
′′
µ4...µs)

. (B.3)

The additional term precisely cancels the term on the right hand side of the modified Bianchi
identity (B.1). However, the resulting equations of motion are no longer equivalent to the Fronsdal
equations and propagate ghost degrees of freedom in addition to a massless spin-s field.

In summary, we have seen in this appendix that the Fronsdal equation propagates the correct
degrees of freedom (3.15) even without imposing double-tracelessness of the Fronsdal field but
cannot be derived from a gauge invariant action in this case. Double-tracelessness of the Fronsdal
field is therefore a necessary condition for gauge invariance of the Fronsdal action but not for the
propagation of the correct degrees of freedom of the Fronsdal equation (for which it is however a
sufficient condition as we have seen in Section 4).

Let us also mention in passing that there are also formulations of actions and equations of
motion which do not require a trace constraint on the gauge parameter at the price of introducing
non-localities or auxiliary fields (see [17] and references therein).

C. Solutions

Problem 1

There are various ways to check this but one of the most simplest is using the following trick14:
one introduces auxiliary constant vectors uµ . Using these, we can define a generating function for
the Fronsdal field

φ(u) =
1
s!

φµ1...µs uµ1 . . .uµs . (C.1)

Furthermore, we will use the notation dµ ≡ ∂ u
µ . With these definitions, the Fronsdal equation can

be rewritten as

Fφ(u) = (2−u∂ d∂ +
1
2

u∂ u∂ d2)φ(u) = 0 , (C.2)

where we use for example the notation u∂ = uσ ∂σ for contractions and similar for other terms.
The equivalence to the Fronsdal equation can be seen by plugging (C.1) in (C.2) and performing

13By Fronsdal action, we mean (5.1) where we use the definition of F given in (5.2) with the Fronsdal operator
defined in (2.8). The latter is now no longer double-traceless as we have not imposed a double-tracelessness constraint
on the Fronsdal field.

14I want to thank Rakibur Rahman for pointing this out.

13
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all differentiations with respect to u. One then obtains

1
s!

(
2φµ1...µs− s∂

σ
∂µ1φµ2...µsσ +

s(s−1)
2

∂µ1∂µ2φ
′
µ3...µs

)
uµ1 . . .uµs

=
1
s!

(
2φµ1...µs− ∂

σ
∂(µ1φµ2...µs)σ +∂(µ1∂µ2φ

′
µ3...µs)

)
uµ1 . . .uµs .

The term is the bracket of the last line is the Fronsdal equation (2.8). To obtain this line, we have
made use of our symmetrization conventions explained in Appendix A.

Along similar lines, one can check that the gauge variation of the Fronsdal field in this lan-
guage is given by

δφ(u) = u∂ ξ (u) , (C.3)

where ξ (u) = 1
(s−1)! ξµ1...µs−1 uµ1 . . .uµs−1 . Therefore, the variation of the Fronsdal equation is given

by

Fδφ(u) =
(
2−u∂ d∂ +

1
2

u∂ u∂ d2
)

u∂ ξ (u)

Using the fact that [d2,u∂ ] = 2d∂ , this can be rewritten as

Fδφ =

(
2u∂ −u∂ [d∂ ,u∂ ]+

1
2
(u∂ )3 d2

)
ξ (u) .

With [d∂ ,u∂ ] =2, we arrive at

Fδφ(u) =
(
[2,u∂ ]+

1
2
(u∂ )3 d2

)
ξ (u)

=
1
2
(u∂ )3 d2

ξ (u) ,

where we have used that the commutator in the first line vanishes since the spacetime partial deriva-
tives commute.

One can now convert this expression back into index notation as follows

1
s!

δFµ1...µs uµ1 . . .uµs =
1
s!
(1

2 s(s−1)(s−2)∂µ1∂µ2∂µ3ξ
′
µ4...µs

)
uµ1 . . .uµs

=
1
s!

(
3∂(µ1∂µ2∂µ3ξ

′
µ4...µs)

)
uµ1 . . .uµs

We thus conclude that δFµ1...µs = 3∂(µ1∂µ2∂µ3ξ ′
µ4...µs)

.
The formalism introduced above has the advantage that it takes automatically care of all sym-

metrization factors and also generalizes straightforwardly to other backgrounds - as we will see in
a later exercise.

Problem 2

By taking the trace and using the fact that the Fronsdal field is double-traceless, one obtains

gµs−2µs−1 Dµ1...µs−1 =gµs−2µs−1
(
∂

σ
φµ1...µs−1σ − 1

2

(
∂µ1φ

′
µ2...µs−1

+∂µ2φ
′
µ1µ3...µs−1

+ · · ·+∂µs−1φ
′
µ1...µs−2

))
=∂

σ
φ
′
µ1...µs−3σ −∂

σ
φ
′
µ1...µs−3σ = 0 .

14
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Problem 3

The gauge variation of the de Donder tensor is given by

δDµ1...µs−1 =∂
λ

δφλ µ1...µs−1−
1
2

∂(µ1δφ
′
µ2...µs−1)

=∂
λ
(
∂λ ξµ1...µs−1 +∂µ1ξλ µ2...µs−1 + · · ·+∂µs−1ξµ1...µs−2λ

)
− 1

2 2∂
λ

∂(µ1ξµ2...µs−1)λ

=2ξµ1...µs−1 +∂
λ

∂(µ1ξµ2...µs−1)λ −∂
λ

∂(µ1ξµ2...µs−1)λ

=2ξµ1...µs−1 ,

where to obtain the second equation, we have used δφ ′µ1...µs−2
= 2∂ λ ξλ µ1...µs−2 which follows from

the tracelessness of the gauge parameter.

Problem 4

Let us first consider the case of s = 3. We recall that

Fµνρ = Fµνρ −
1
2

η(µνF ′
ρ) . (C.4)

The trace of the Fronsdal tensor is given by

F ′µ = η
νρFµνρ =2φ

′
µ −η

νρ
∂

λ
(
∂µφνρλ +∂νφµρλ +∂ρφµνλ

)
+η

νρ

(
∂ν∂ρφ

′
µ +∂ν∂µφ

′
ρ +∂µ∂ρφ

′
ν

)
=22φ

′
µ −2∂

λ
∂

σ
φµλσ +∂µ∂

λ
φ
′
λ
. (C.5)

Therefore Fµνρ is given by

2φµνρ −∂
λ

∂(µφνρ)λ +∂(µ∂νφ
′
ρ)−

1
2

η(µν

(
22φ

′
ρ)−2∂

λ
∂

σ
φρ)λσ +∂ρ)∂

λ
φ
′
λ

)
In order to prove the symmetry property of the action, we need to show that

∫
ψµνρFµνρ(φ) =∫

φ µνρFµνρ(ψ). The integrand contains terms of the following form:

• ψµνρ2φµνρ and φ ′µ2φ ′µ

• ψµνρ∂µ∂λ φνρ
λ and ψ ′µ∂µ∂λ φ ′λ

These terms are obviously symmetric upon imposing suitable boundary conditions. The remaining
terms are not individually symmetric but combine to

3ψ
µνρ

∂µ∂νφ
′
ρ +3ψ

′
ρ∂µ∂νφ

µνρ . (C.6)

This combination is again symmetric upon partial integration. Therefore, we have shown the sym-
metry property of the action for s = 3.

The case for general s follows along very similar lines. The trace of the Fronsdal tensor is
given by

F ′µ1...µs−2
= 22φ

′
µ1...µs−2

+∂
σ

∂(µ1φ
′
µ2...µs−2)σ

−2∂
σ

∂
λ

φµ1...µs−2σλ (C.7)

We now consider the contraction ψµ1...µsFµ1...µs(φ). Similarly to the spin-3 case, the only non-
manifestly symmetric terms are proportional to

ψ
µ1...µs∂µ1∂µ2φ

′
µ3...µs

+ψ
′
µ1...µs−2

∂µs−1∂µsφ
µ1...µs . (C.8)

This sum is again manifestly symmetric.

15
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Problem 5

In order to show this property, it is advantageous to first prove that the Fronsdal tensor is double-
traceless. For this we take the trace of (C.7) which gives

η
µs−3µs−2F ′µ1...µs

= η
µs−3µs−2(22φ

′
µ1...µs−2

+∂
σ

∂(µ1φ
′
µ2...µs−2)σ

−2∂
σ

∂
λ

φµ1...µs−2σλ )

Since the Fonsdal field is double-traceless, the first term will not contribute. For the same reason,
the second term will only contribute if one of the derivatives is carrying either an µs−3 or µs−2

index. These terms cancel the contribution from the last term, i.e.

η
µs−3µs−2F ′µ1...µs

= 2∂
σ

∂
κ

φ
′
µ1...µs−4σκ −2∂

σ
∂

κ
φ
′
µ1...µs−4σκ = 0 . (C.9)

Therefore the Fronsdal tensor is double-traceless. We can then easily deduce that

η
µs−1µsFµ1...µs = η

µs−1µs(Fµ1...µs−
1
2

η(µ1µ2Fµ3...µs)σ
σ ) ∝ F ′µ1...µs−2

. (C.10)

The precise proportionality factor is

1−D/2− 1
2 2(s−2) =−D+2s−6

2 (C.11)

where the last term on the right hand side arises from terms were only either µs−1 or µs is carried
by the metric η in η(µ1µ2Fµ3...µs). There are 2(s−2) such terms. Note that for s≥ 2 this factor does
not vanish for spacetimes with D > 2.

Problem 6

We want to see that

∂
σ Fµ1...µs−1σ −

1
2

∂(µ1F ′
µ2...µs−1)

(C.12)

vanishes.
The first summand can be straightforwardly evaluated using the definition of the Fronsdal

tensor (2.8):

∂
σ

(
2φµ1...µs−1σ −∂

κ
∂(σ φµ1...µs−1)κ +∂(σ ∂µ1φ

′
µ2...µs−1)

)
=−∂

σ
∂

κ
∂(µ1φµ2...µs−1)σκ +2∂(µ1φ

′
µ2...µs−1)

+∂(µ1∂µ2∂ ·φ ′
µ3...µs−1)

. (C.13)

Using the definition of the Fronsdal tensor (2.8), the second summand is

− 1
2

∂(µ1

(
22φ

′
µ2...µs−1)

+∂
κ

∂µ2φ
′
µ3...µs−1)κ

−2∂
κ

∂
λ

φµ2...µs−1)κλ

)
=−2∂(µ1φ

′
µ2...µs−1)

−∂(µ1∂µ2∂ ·φ ′
µ3...µs−1)

+∂
σ

∂
κ

∂(µ1φµ2...µs−1)σκ (C.14)

The last line follows since

∂(µ1

(
∂

κ
∂µ2φ

′
µ3...µs−1)κ

)
= 2∂(µ1∂µ2∂ ·φ ′

µ3...µs−1)
, (C.15)

Since the symmetrization on the left hand side involves (s−1)(s−2) terms while on the right hand
side

(s−1
2

)
terms are needed.

By comparing (C.14) with (C.13), we see that (C.12) indeed vanishes. This shows the gauge
invariance of the Fronsdal action.
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Problem 7

For this problem, we will use the formalism of generating functionals introduced in the solution of
Problem 1. Make sure that you have understood this solution before reading further.

In terms of the generating functions, the Fronsdal equation on AdS space (6.3) is given by

Fφ(u) =
(
2−u∇d∇+

1
2

u∇u∇d2− 1
l2 m2

s −
α

l2 u2 d2
)

φ(u) = 0 . (C.16)

for α = 1 and m2
s = s2 + s(D−6)−2(D−3). In the following, we will indeed show that α and m2

s

are fixed to these values by requiring gauge invariance of (C.16) under

δφ(u) = u∇ξ (u) . (C.17)

Tracelessness of the gauge parameter enforces d2 ξ (u) = 0. Using completely analogous reasoning
as in Problem 1, the gauge variation of the Fronsdal tensor can be seen to be be given by

Fδφ =

(
2u∇−u∇[d∇,u∇]− 2α

l2 u2 d∇ − 1
l2 m2

s u∇

)
ξ (u) ,

where we have used the tracelessness of the gauge parameter. One easily can convince oneself that

[d∇,u∇] =2+dσ uλ [∇σ ,∇λ ] .

In order to evaluate the last term, we use that

Rσλτρ =− 1
l2

(
gστgλρ −gλτgσρ

)
(C.18)

for AdS backgrounds and

[∇σ ,∇λ ] f (u) = Rσλτρ uτdρ f (u) , (C.19)

for an arbitrary function f . Using these identities and tracelessness of the gauge parameter, one
obtains after some straightforward algebra

Fδφ(u) =
{
[2,u∇]+

1
l2 (u∇(D+ud)ud−2u∇ud)− 2α

l2 u2 d∇ − 1
l2 m2

s u∇

}
ξ (u) . (C.20)

We will now use the identity

[u∇,2] =
1
l2

(
u∇(2ud +D−1)−2u2 d∇

)
, (C.21)

which we will prove later. By applying this identity, we arrive at

Fδφ(u) =
−1
l2

{(
m2

s − [s2 + s(D−6)−2(D−3)]
)

u∇−2(α−1)d∇
}

ξ (u)

where we have used ud ξ (u) = (s−1)ξ (u). This fixes the mass to be m2
s = s2+s(D−6)−2(D−3)

and the constant α = 1.

17
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The only step left to complete the proof, is to derive identity (C.21). In order to do so, it is
useful to first consider

[u∇,∇σ ]∇
σ f (u) = uλ Rλσ

σ
τ ∇

τ f (u)+uλ
∇

σ Rλστρ uτdρ f (u)

=− 1
l2

(
u∇(ud +D−1)−u2d∇

)
f (u) ,

where we used covariant constancy of the Riemann tensor for AdS spacetime to obtain the first
equation and (C.19) along with (C.18) for the last line. From this, the identity (C.21) follows
straightforwardly by again using (C.19) and (C.18).

Problem 8

In the following, we again use the method of generating functions introduced in the solutions to
Problem 1.

The left hand side of the modified Bianchi identity (B.1) can in this language be rewritten as

d∂F(u)− 1
2

u∂ d2F(u) . (C.22)

We now plug in the definition of F(u) given by (C.1) and sort by powers of the d operator. This
leads to{

d∂2−d∂ u∂ d∂ − 1
2

u∂ d22+
1
2

d∂ (u∂ )2 d2 +
1
2

u∂ d2 u∂ d∂ − 1
4

u∂ d2 (u∂ )2 d2
}

φ(u) (C.23)

Using the identities [d2,(u∂ )2] = 4d∂ u∂ −22 and

1
2
(
d∂ (u∂ )2 d2 +u∂ d2 u∂ d∂

)
= u∂ d∂ u∂ d2 +u∂ (d∂ )2

We arrive at {
d∂2−d∂ u∂ d∂ +u∂ (d∂ )2− 1

4
(u∂ )3 d4

}
φ(u)

which using [u∂ ,d∂ ] =−2 in the second summand is equal to

−1
4
(u∂ )3 d4

φ(u) (C.24)

We therefore conclude that the Bianchi identity is indeed violated by a double-trace term. The
factor can be easily determined by plugging in the definition of φ(u):

−1
4

1
s!

s(s−1)(s−2)∂µ1∂µ2∂µ3φ
′′
µ4...µs

uµ1 . . .uµs =−3
2

1
s!

∂(µ1∂µ2∂µ3φ
′′
µ4...µs)

uµ1 . . .uµs .
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