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Abstract: We establish a dictionary between group field theory (thus, spin networks and

random tensors) states and generalized random tensor networks. Then, we use this dictio-

nary to compute the Rényi entropy of such states and recover the Ryu-Takayanagi formula,

in three different cases corresponding to three different truncations/approximations, sug-

gested by the established correspondence.
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4.2 Rényi Entropy from Spin-Networks 39

5 Randomness and Universality 42

6 Conclusions 44

A Average over the random tensor 44

B Structure of the matrix of ET (ρ⊗n) 47

C From (4.87) to (4.88) 48

1 Introduction

Background independent approaches to quantum gravity suggest a picture of the mi-

crostructure of the universe in which continuum spacetime and geometry disappear and

are replaced by discrete and non-spatiotemporal entities. Among them, Loop Quantum

Gravity (LQG) [1–5], the modern incarnation of the canonical quantization programme

for the gravitational field, together with its covariant counterpart (spin foam models), and
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Group Field Theory (GFT) [6–9], a closely related formalism sharing the same type of

fundamental degrees of freedom, identify this microstructure with (superpositions of) spin

networks, which are graphs labeled by group-theoretic data. More precisely, in GFT mod-

els of quantum gravity spin network states arise as many-body states in a 2nd quantised

context, whose kinematics and dynamics are governed by a quantum field theory over a

group manifold with quanta corresponding to tensor maps associated to nodes of the spin

network graphs. Random combinatorial structures, corresponding both to the elementary

building blocks of quantum spacetime and to their interaction processes, become central.

The same is true in the related context of random tensor models [10–12], which, for our

present purposes can be seen as a simplified version of GFTs, stripped down of the group-

theoretic data, leaving only the combinatorial aspects. Indeed, the random tensors can

be understood as the GFT fields considered for the special case of a finite group. For a

more detailed account of these three quantum gravity formalisms, and for the many results

obtained, we refer to the cited literature. In the following, we will provide more precise

definitions of their main ingredients.

Tensor networks, in recent years, as powerful quantum information tools in the con-

text of condensed matter and, more generally, quantum many-body systems (including

quantum field theory). For recent reviews, see [13, 14]. Also in this case, we will give

precise definitions in the following. Here it suffices to say that tensor networks encode the

entanglement properties of many-body systems in their combinatorial structure, in which

tensors are connected along a network pattern and identify (the coefficients, in a given

basis, of the wave function corresponding to) quantum states of the given system. Born

as convenient mathematical tools for numerical evaluations of many-body wavefunctions,

which become translatable into graphical manipulations, tensor network techniques have

found an amazing number of applications: from the classification of exotic phases of quan-

tum matter (e.g. topological order) [15, 16] to new formulation of the non-perturbative

renormalization of interacting quantum field theories [17–19], down to realizations of the

AdS/CFT correspondence [20–23].

Despite their disparate origin, it should be clear already from our sketchy description

that the type of mathematical structures identified by quantum gravity approaches and

used in the theory of tensor networks are very similar. And consequently, it is very natural

to try to put the two frameworks in more direct contact. This is the main goal of the

present article. Indeed, the structural similarity had been noted before [24–27], and also

exploited in the context of renormalization of spin foam models treated as lattice gauge

theories [28–31]. The last set of works, in particular, has already shown how fruitful tensor

network techniques can be for quantum gravity models.

Before we start presenting our results, we want to offer some motivations for our work,

both from the quantum gravity perspective and from the tensor network side.

From the quantum gravity point of view, the general motivation is clear. Tensor

networks provide a host of tools and results that could find useful application in quantum

gravity; in particular they may become central tools in the renormalization analysis of

GFT models [32–37], in addition to their mentioned role in the renormalization analysis

of spin foams models [38–40]. And such renormalization analyses are, in turn, the main
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avenue for solving the crucial problem of the continuum limit in such formalism.

More specifically, tensor networks are very effective in taking into account and control-

ling the entanglement properties of quantum states in many-body systems. This is exactly

the language in which GFT deals with quantum gravity states; moreover, in GFT, the very

connectivity of spin network states, encoded in the links of the underlying graphs, is asso-

ciated with entanglement between the fundamental quanta constituting them (associated

to nodes) [41]. One example of this type of application, as we show in this paper, is the

computation of entanglement entropy in spin network states and relate LQG with holog-

raphy, which was also the subject of a number of other works in the LQG/GFT literature

[27, 42–55].

Further, the identification of the true (interacting) vacuum state of a quantum grav-

ity theory, in absence of any space-time background or preferred notions of energy, is a

difficult matter even at the purely conceptual level, leaving aside the formidable techni-

cal challenges. One possible criterion, suited to this context, is to look for states which

maximize entanglement, by some measure (e.g. entanglement entropy). In this respect,

to reformulate the kinematics and dynamics of GFT and LQG states in terms of tensor

networks, and to do the same for their renormalization, seems a promising strategy.

Finally, recent results in the application of tensor networks to AdS/CFT [21–23] sug-

gest that this application would be fruitful even within the conventional perspective of

canonical quantum gravity (which includes, at least historically, canonical LQG). From

this perspective, in fact, the task of quantum gravity is the construction of the space of

quantum states of the gravitational field which satisfy the (quantum counterpart of the)

Hamiltonian constraint encoding the dynamics of quantised GR. A number of results in

AdS/CFT suggest that a static AdS space-time, which we expect to be one such state, at

the quantum level, satisfies the Ryu-Takayanaki (RT) formula [20] for the entanglement

entropy, which is very efficiently computed (as we also show in this paper) via random ten-

sor network techniques[23]. One is led to conjecture that this may be a general properties

of physically interesting quantum states of the gravitational field, and so far no counterex-

ample to this conjecture has been found. This prompts the search, by the same techniques,

for similar states in canonical quantum gravity.

From the perspective of the theory of tensor networks, one general good point of

dwelling into the correspondence with quantum gravity states should also be obvious. This

identifies a new domain of applications, of truly fundamental nature, for techniques and

ideas which have already proven powerful in others. Indeed, we expect that a number of

key results obtained via tensor network techniques, most notably holographic mappings

and indications of new topological phases in many-body systems, can be reproduced in

this new context, with deep implications. In perspective, it is here that one will be able to

test the suggestion that quantum information has a truly foundational role to play in our

understanding of physical reality.

More practically, a number of techniques have been developed, and many results ob-

tained, concerning the dynamics of GFT and spin-network states, also thanks to the many

related developments in the theory of random tensors, and our dictionary proves that the

GFT formalism provides a natural definition of the dynamics of random tensor networks.
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Specifically, it means that the many results in GFT can help dealing with general (non-

Gaussian) probability distributions over random tensor networks, as well as offering new

takes on more standard problems, like entropy calculations, in tensor network theory. In

fact, we offer some examples of these applications in the following.

In this paper, we do not target the more ambitious objective of a calculation of the

RT formula for the entanglement entropy in the full quantum gravity formalism of group

field theory. Having established the general dictionary between group field theory states

and (generalized) random tensor networks, we content ourselves with reproducing the RT

formula in three new cases, but staying close to the standard derivation: for random tensor

networks endowed with a gauge invariance property motivated by the quantum gravity

setting; for group field theory states corresponding to generalized tensor networks, but only

using a group field theory dynamics in the simplest approximation and dealing only with

averages over the tensor functions associated to the network nodes, rather than treating

the full tensor network as a group field theory observable; for the simple truncation of

group field theory states corresponding to spin networks with fixed spin labels. We leave

a more complete and comprehensive analysis for forthcoming work.

The paper is organized as follows. In the next section, we summarize the basic el-

ements of spin network states and of their embedding in the GFT formalism, as well as

the definition of tensor networks. Having done so, we show the precise correspondence

between GFT states and tensor networks, showing how the first generalizes and provides

a Fock space setting for the second. In the following section, as a first application of this

correspondence, we compute the 2nd Rényi entropy for random tensor networks and derive

the RT formula for them, in the case of tensors endowed with a gauge symmetry. This case

is immediately suggested by the GFT framework, since this type of gauge symmetry plays

a crucial role in GFT models of (lattice) gauge theory and quantum gravity. In section 4

we derive the Nth Rényi entropy using GFT techniques, in the group representation and

for a generalized tensor network, but without taking advantage of the full GFT formalism;

next, we compute the same Rényi entropy and derive the RT formula from a purely spin-

network perspective, see as a truncation of more general GFT states. This is meant to

be a clear example of how the same problem can be fruitfully approached from both sides

of the correspondence. Finally, in the last section, we discuss one key universality result

from the theory of random tensors, which extends straightforwardly to GFTs, and which

could have direct impact on the applications of random tensor networks. We end up with

a summary of our results.

2 Group Field theory and Tensor Networks

A d-dimensional GFT is a combinatorially non-local field theory living on (d copies of) a

group manifold [6–9]. Due to the defining combinatorial structure, the Feynman diagrams

F of the theory are dual to cellular complexes, and the perturbative expansion of the quan-

tum dynamics defines a sum over random lattices of (a prior) arbitrary topology. A similar

lattice interpretation can be given to the quantum states of the theory. For GFT models
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where appropriate group theoretic data are used and specific properties are imposed on the

states and quantum amplitudes, the same lattice structures can be understood in terms of

simplicial geometries. The associated many-body description of such lattice states can be

given in terms of a tensor network decomposition. The corresponding (generalized) tensor

networks are thus provided with a field theoretic formulation and a quantum dynamics

(and, in specific models, with additional symmetries). In this section, after a brief intro-

duction to the GFT formalism, we detail this correspondence between GFT states and

(generalized) tensor networks.

2.1 Group Field Theory

Let G denote an arbitrary semi-simple Lie group; in the following, we assume for simplicity

that G is compact, but the framework can easily be generalized to the non-compact case.

A group field ϕ is a complex function defined on a number of copies of the group manifold

G:

ϕ : Gd → C (2.1)

gi 7→ ϕ(gi)

where we use the shorthand notation gi for the set of d group elements {g1, g2, · · · , gd}.
The GFT field can be also seen as an infinite-dimensional tensor, transforming under

the action of some (unitary) group U×d, as:

ϕ(g1, .., gd)→
∫

[dgi]U(g′1, g1) · · ·U(g′d, gd)ϕ(g1, ..., gd),

and

ϕ∗(g1, .., gd)→
∫

[dgi]U
∗(g1, g

′
1) · · ·U∗(gd, g′d)ϕ∗(g1, ..., gd)

for

∫
dgU(g′i, gi)

∗U(gi, g̃i) = δ(g′i, g̃i). (2.2)

This requires the d arguments of the GFT field to be labeled and ordered. We will

see in the following how one can decompose the same field into finite-dimensional tensors;

in this finite-dimensional case, the correspondence with tensor network formalism will be

evident, and it will also be evident then in which sense GFTs provide a generalization of

it.

The GFT dynamics is defined by an action, at the classical level, and a partition

function at the quantum level. The combinatorial structure of the pairing of field arguments

in the GFT interactions is part of the definition of a GFT model. An interesting class of

models [6–12] is defined by the requirement that the interaction monomials are tensor

invariants, i.e. that GFT fields are convoluted in such a way as to produce an invariant

under the above mentioned (unitary) transformations1.

1Such invariants are in one to one correspondence with colored d-graphs B constructed as follows: for

each GFT field (resp. its complex conjugate) draw a white (resp. black) node with d outgoing links each

labeled by d different colors, then connect all links in such a way that a white (resp. black) node is always

connected to a black (resp. white) node and that only links with the same color can be connected.
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Another class of GFT models is instead based on the requirement that the Feynman

diagrams of the theory are simplicial complexes, which in turn requires the interaction

kernels to have the combinatorial structure of d-simplices. This class of models is also the

one on which model building for 4d quantum gravity has focused on, producing models

whose Feynman amplitudes have the form of simplicial gravity path integrals and spin

foam models [6–9], and, more generally, lattice gauge theories. This leads to additional

symmetry requirements on the GFT fields and interactions, which will play a crucial role

in the following.

In this last case, the GFT action has the general form

Sd[ϕ] =
1

2

∫
dgidg

′
i ϕ(gi)K(gig

′−1
i )ϕ(g′i) + (2.3)

+
λ

d+ 1

∫ d+1∏
i 6=j=1

dgij V(gijg
′−1
ji )ϕ(g1j) · · ·ϕ(gd+1j),

where dgi is an invariant measure on G and we use the notation ϕ(g1j) = ϕ(g12, · · · , g1d+1).

K is the kinetic kernel, V the interaction kernel, λ a coupling constant for the d+ 1-degree

homogeneous interaction. The two kernels satisfy the invariance properties

K(h gig
′−1
i h′) = K(gig

′
i), (2.4)

V(hi gijg
′−1
ji , h

−1
j ) = V(gijg

′−1
ji ) ∀h, h′, hi ∈ G.

This implies that the action is invariant under the gauge transformations δϕ(gi) = ϕ̃(gi),

where ϕ̃ is any function satisfying∫
G

dh ϕ̃(hg1, · · · , hgd) = 0. (2.5)

This symmetry is gauge fixed if one restricts the field ϕ to satisfy

ϕ(hgi) = ϕ(gi). (2.6)

The action is also invariant under the global symmetry

ϕ(g1, · · · , gd)→ ϕ(g1h, · · · , gdh). (2.7)

GFT’s Feynman diagrams define cellular complexes F weighted by amplitudes assigned

to the faces, edges and vertices of the dual two-skeleton otabularf a chosen triangulation of

a d dimensional topological spacetime MF . As mentioned, their Feynman diagram evalu-

ations reproduce the associated amplitudes of a spin foam model, or, in different variables,

of a simplicial gravity path integral [56–58], providing a generalisation of the lattice formu-

lation of gravity à la Regge, with an accompanying sum over lattices, generalising matrix

models for 2d gravity to any dimension [6–12].

Let us give some more detail on the construction, to clarify the above points. A

specific theory, with a specific related Feynman cellular complex, is completely defined by
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Figure 1. Correspondence between Feynman diagram and triangulation: Each strand of the graph

forms a closed loop which can be interpreted as the boundary of a 2d disk. These data are enough

to reconstruct a topological 2d complex F , the vertices and edges of this complex correspond to

vertices and edges or the Feynman graph, the boundary of the faces of F correspond to the strands

of the Feynman graph.

the choice of the kernels. Lets consider the simplest case, consisting in the choice

K(gi, g
′
i) =

∫
G

dh
∏
i

δ(gig
′−1
i h), (2.8)

V(gijg
′−1
ji ) =

∫
G

∏
i

dhi
∏
i<j

δ(hi gijg
′−1
ji , h

−1
j ) (2.9)

where δ(·) is the delta function on G and the integrals ensure the gauge invariance defined in

(2.5), and let us restrict to the case of dimension d = 3. To keep track of the combinatorics

of field arguments in the kernels, it is useful to represent the Feynman diagram as a stranded

graph. The field ϕ has three arguments, so each edge of a Feynman diagram comprises

three strands running parallel to it. Four edges meet at each vertex and the form of the

interaction V in (2.9) forces the strands to recombine as in Figure 1.

The three strands running along the edges can be understood to be dual to a triangle

and the propagator K gives a prescription for the gluing of two triangles. At the vertex,

four triangles meet and their gluing via V form a tetrahedron. With this interpretation the

Feynman diagram of a GFT is clearly dual to a triangulated 3d simplicial complex (which

will be generically a singular pseudo-manifold) and this is true in any dimension [59–61].

The quantum states of the theory can be given a similar combinatorial characterization

in terms of graphs and dual cellular complexes, as it should be already intuitive in the above

example, in which GFT fields themselves are associated to triangles. We will no detail this

aspect of the formalism.

2.2 Fourier modes of the group field as tensor fields

As a function on a group G, the field ϕ can be decomposed in terms of unitary irreducible

representations (ρ, Vρ) of G using the Peter-Weyl theorem, L2(G) '
⊕

ρ V
ρ ⊗ V ∗ρ, giving
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ϕ(g) =
∑
ρ

dρTr[ϕ̂ab ρ
ab(g)] (2.10)

Here, dρ ∈ N is the dimension of the representation ρ : G → Aut(Vρ), the indices

a, b = 1, . . . , dρ are matrix indices associated to the matrix ρ(g) representing the group

element g, and ϕ̂ρ ∈ V ρ ⊗ V ∗ρ ' End(Vρ) is the matrix Fourier coefficient of the function

ϕ. In other words, each ϕ̂ρ is a rank dρ = N matrix.

Let us consider, as a specific example, the same decomposition for the case of d = 3,

with G = SU(2). The unitary irreps of SU(2), Vj , are labeled by the spin j ∈ N/2. Using

the right invariance property of the field, one obtains the following decomposition

ϕ(g1, g2, g3) =
∑
{j}

Tr

[
ϕ{j}m1,m2,m3

(∏
i

√
djiD

ji
mi,ni(gi)

)
ī{j}n1,n2,n3

]
(2.11)

where dj is the dimension, Dj(g) ∈ End(Vj) the group matrix element and i
{j}
n1,n2,n3 ∈

HomG(Vj1 ⊗Vj2 ⊗Vj3 ,C) is the three-valent intertwiner operator (related to the Clebsch-

Gordan map Ψj3
j1j2

: Vj1 ⊗ Vj2 → Vj3). We used the shorthand notation {j} for the set of

spin labels (j1, j2, j3).

The fields ϕ
{j}
m1,m2,m3 result from the contraction of the Fourier transformed GFT fields

ϕ̂{j} with the intertwiner tensor imposing the gauge symmetry at the vertex. 2

ϕ
{j}
{m} =

∑
{k}

ϕ̂
{j}
{m};{k} i

{k}
{j}

∏
i

√
dji . (2.12)

The Fourier transformed fields depend on the (discrete) representation space of the Lie

group in question. Thus, generically Fourier transformed GFT fields are tensors of some

rank d, ϕ{mj} with discrete indices ~mj = {m1, . . . ,md}. 3

In (2.11), such tensors are contracted with the spin network basis tensors

S
{j}
{m} =

(∏
i

√
djiD

ji
mi,ni(gi)

)
ī
{j}
{n}, (2.13)

encoding the properties of the vertex of the spin network graph dual to the (d-1)-dimensional

triangulation that can be associated to the GFT states.

2.3 Group Field Single Particle States

Functions ϕ(gi) can also be understood as single particle wave functions for quanta corre-

sponding to single open vertices of a spin network graph (in fact, they also label coherent

2This is the standard factorization of a symmetric tensor into a degeneracy tensor with all the degrees of

freedom and a structural tensors (the Clebsch-Gordan coefficients) completely determined by the symmetry

group G (Wigner-Eckart theorem) [25].
3To regularize some quantities, especially at the dynamical level, it may be necessary to impose a (large)

cut-off N in the range of the representation indices.
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states of the GFT field operator, which define the simplest condensate states of the theory

[55, 62, 63]).

Let us define these ‘single-particle’quantum states as

|ϕ〉 =

∫
Gd

dgi ϕ(gi) |gi〉 (2.14)

where dgi ≡ dg1dg2 . . . dgd is the Haar measure on the group manifold Gd, invariant under

the gauge transformation, and the vectors |g1〉 . . . |gd〉 provide a basis on the respective

infinite dimensional spaces H ' L2[G].

The single particle state |ϕ〉 is then defined in H⊗d. Moreover we require |ϕ〉 to be

normalized (this is of course not the case for the classical GFT fields or the GFT condensate

wavefunctions):

〈ϕ|ϕ〉 =

∫
dgi ϕ(gi)ϕ(gi) = 1. (2.15)

Considering the case of G = SU(2), we can decompose the basis |g〉 into the unitary

irreducible representation of SU(2) as

|g〉 ≡
∑
j,m,n

√
djD

j
mn(g)

∣∣∣j, n,m†〉 (2.16)

and vice versa ∣∣∣j, n,m†〉 =

∫
SU(2)

dg
√
djD

j
mn(g) |g〉 . (2.17)

In particular, the tensor decomposition given in (2.11) holds at the quantum level, hence

defining the quantum fields ϕ
{j}
m1,m2,m3 as actual tensors states.

Tensors in (2.13) defines the SU(2)-invariant single vertex spin network wave functions

(in group representation)

ψχ(gi) = 〈χ|gi〉 =

(∏
i

√
djiD

ji
mi,ni(gi)

)
ī
{j}
{n}, (2.18)

The basis vector |χ〉 = |j,m, i〉 denotes the standard SU(2) spin network basis (labelled by

spins and angular momentum projections associated to their d open edges, and intertwiner

quantum numbers).

2.4 Many-Body Description and Tensor Network States

We now describe the quantum states of the formalism, emphasizing their many-body struc-

ture, following [64].

Consider a d-valent graph formed by V disconnected components, each corresponding

to a single gauge invariant d-valent vertex and d 1-valent vertices, thus having d edges.4

We refer to this type of disconnected components as open spin network vertices.

4One could work instead with the larger Hilbert spaces of non-gauge invariant states L2[Gd×V ] without

imposing any gauge symmetry at the vertices of spin network graphs, and consider this condition as part

of the dynamics. The above construction would proceed identically, with the same final result, but with

the basis of single-vertex states now given by the above functions without the contraction of representation

function with a G-intertwiner.
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Figure 2. A tensor network Γ is a set of tensors whose indices are contracted according to a

network pattern. A network pattern can be always represented as a graph, given by a set of nodes

(n) and links (`) connecting nodes. A link is called an internal link when it connects two different

nodes; while it is called a boundary link when it connects only one node. The number of links that

connect to a node is called the valence of the node..

To such a graph we can associate a generic wavefunction given by a function of d× V
group elements,

Φ(gia) = Φ(g1
1, ..., g

d
1 , g

1
2, ..., g

d
2 , · · · , g1

V , ..., g
d
V ) (2.19)

defined on the group space Gd×V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function ϕ(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ∗G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |Φ〉 ∈ HV ' L2[Gd×V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,

Φ(gai ) = 〈gai |Φ〉 =
∑

χi,i=1...V

ϕχ1...χV ψχ1(gi) · · ·ψχV (gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network Γ. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions ψχ1(gi) · · ·ψχV (gi), the gluing is

implemented by the identification of the spin labels jai and jbj associated to the two edges

being glued and by the contraction of the corresponding vector indices ma
i and mb

j . In

other words, the corresponding wave functions for closed graphs can be decomposed in a

basis of closed spin network wave functions, obtained from the general product basis by

means of the same contractions:

ΦΓ(gai ) = 〈gai |ΦΓ〉 =
∑

χa,a=1...V

Φ
j1i ...j

V
i

Γ

[(∏
L∈Γ

δjai ,jbj
δmai ,mbj

)
ψχ1(gi) · · ·ψχV (gi)

]
(2.21)
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where the coefficients of the wave function can in turn be understood as the resulting of

considering generic coefficients ϕχ1...χV and contracting them with some choice of functions

M
jai j

b
j

nai n
b
j

δjai ,jbj
:

Φ
j1i ...j

V
i

Γ = ϕχ1...χV

(∏
L∈Γ

δjai ,jbj
M

jai j
b
j

nai ,n
b
j

)
, (2.22)

where the contraction is left implicit.

For fixed {j}, each resulting contraction scheme of tensors (each identified by a set of labels

χ) defines a tensor network state.

In the group representation, the gluing amounts to considering wave functions with a

specific symmetry under simultaneous group translation of the arguments associated to

the edges being glued:

ΦΓ(gia) = ΦΓ(g1
1, ..., g

d
1h

d1
1V , g

1
2, ..., g

d
2 , · · · , g1

V h
d1
1V , ..., g

d
V ) . (2.23)

In the end, given a tensor network with graph Γ, the Φj1i ...j
V
i defined above will contain all

the information about the combinatorics of the quantum geometry state.

A further special case corresponds to those states for which the coefficients ϕχ1...χV them-

selves have a product form, i.e. can be decomposed in terms of tensors. In this case, as it

is for the spin network wave functions, the coefficients Φj1i ...j
V
i can be obtained as a tensor

trace

Φj1i ...j
V
i = Tr[

⊗
L

M
⊗
v

ϕ
{j} (v)
{m} ] , (2.24)

again, in the case of fully connected graphs Γ (otherwise, some angular momentum labels

will remain on the left had side, corresponding to the edges that have not been glued).

In lattice theory, we would say that the network Γ (fixed {j}) provides a tensor network

decomposition of the tensor state Φj1i ...j
V
i .

The equivalence of a special class of GFT states with the lattice tensor network states,

and the sense in which GFT states generalise them, can be further elucidated by the

following example.

2.5 Link state as a gluing operation

A tensor T̂ is a multidimensional array of complex numbers T̂λ1,...,λd ∈ C. The rank of

tensor T̂ is the number d of indices. The size of an index λ, denoted d|λ|, is the number of

values that the index λ ∈ N takes [65].

Analogously, at the quantum level, to each leg of the tensor one associates a Her-

mitian inner product space HD, with dimension D given by the size of the indices λ ∈
{1, 2, ..., d|λ| = D}. Given an orthonormal basis |λn〉, n = 1, . . . , |D| in HD, a covariant

tensor of rank d is a multilinear form on the Hilbert space of the vertex T : Hn ≡ H⊗dD → C.

We denote its components in the canonical dual tensor product basis by

T̂λ1···λd ≡ T (λn1 , . . . , λnd), (2.25)
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hence the tensor state

|T 〉 =
∑

λ1,...λd

T̂λ1···λd |λ1〉 ⊗ · · · ⊗ |λd〉 (2.26)

A tensor network is generally given by a set of d-valent vertices v, corresponding to rank

d tensors.In particular, a state corresponding to a set of unconnected vertices is written as

a tensor product of individual vertex states

|TN 〉 ≡
⊗
n

|Tn〉 (2.27)

Individual vertex states are glued by links. To each end of a link we associate a Hilbert

space HD. The Hilbert space of the link ` is then H` = H⊗2
D and a link state can be written

as

|M〉 = Mλ1λ2 |λ1〉 ⊗ |λ2〉 (2.28)

where we choose to take the link states |M〉 to be generically entangled.5 In general, the

entanglement of the links will encode the information on the connectivity of the graph.

Two nodes are connected if their corresponding states contract with a link state,

T̂12 ≡ 〈M | |T1〉 |T2〉 = T
(1)
λ1···λa···λvMλaλbT

(2)
λ′1···λb···λ′u

v⊗
i 6=a
|λi〉 ⊗

u⊗
j 6=b

∣∣λ′i〉 (2.30)

Notice that if |M〉 was a non-entangled state, the connection would be trivial, i.e. the two

nodes would be practically disconnected and the corresponding state could be written as

a tensor product of two states,

T̂12 = T
(1)
λaλ1···λvAλa

v⊗
i=1

|λi〉 ⊗BλbT
(2)
λbλ
′
1···λ′u

u⊗
j=1

∣∣λ′i〉
=
∣∣T ′1〉⊗ ∣∣T ′2〉 (2.31)

Then given a network N with N nodes and L links, the corresponding state is

|ΨN 〉 ≡
L⊗
`

〈M`|
N⊗
n

|Tn〉 (2.32)

Because all links are contracted with nodes, |ΨN 〉 is then in the Hilbert space associated

to the boundary links of the network, which is denoted as H∂N . |ΨN 〉 is a state in H∂N .

5One can observe it by defining a density matrix ρM ≡ |M〉 〈M | and tracing out one of the Hilbert

space, without losing generality, tracing out HD of |λ2〉, then computing the von Neumann entropy of the

reduced density matrix ρ1 ≡ Tr2ρM = M†M . The entropy S = Trρ1 ln ρ1 is non-zero unless Mλ1λ2 can

split as Mλ1λ2 = Aλ1Bλ2 . For simplicity, in the next sections we will often assume that the link state is

maximally entangled, i.e.

|M〉 =
1√
D
δλ1λ2 |λ1〉 ⊗ |λ2〉 . (2.29)
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The above structure can be identified also for the special GFT states mentioned at

the end of the previous subsection, which are formed by generalised L2(Gd) functions

associated to the nodes of the network. In this case, the analogous of the generic link state

in (2.28), which is also the group counterpart of the gluing operators associated in the spin

representation to the matrices M , can be defined in as the convolution functional

〈Mg` | ≡
∫

dg1dg2 M(g†1g`g2) 〈g1| ⊗ 〈g2| ∈ H∗⊗2, (2.33)

where the functionsM(g) are assumed to be invariant under conjugationM(g) = M(hgh−1).

When a link ` connects two nodes, say a and b, the corresponding state 〈Mg` | contracts

with states |ϕa〉 and |ϕb〉

〈Mg` | |ϕa〉 |ϕb〉 =

∫
dg1dg2dgai dgbi M(g†1g`g2) ϕa(g1, g

a
i )ϕb(g2, g

b
i ) |gai 〉 |gbi 〉 ,(2.34)

where we have singled out, among the arguments of the vertex wave functions ϕ the ones

affected by the gluing operation. In these terms, the open d-valent tensor network graph

Γ with V vertices, can be written as

∣∣Φg`
Γ

〉
≡
⊗
`∈Γ

〈Mg` |
V⊗
n

|ϕn〉 =

∫
dg∂ ΦΓ(g`, g∂) |g∂〉 (2.35)

where the {g∂} denote the group elements on the open links.

The role of the link state in tensor network, thus, is naturally generalised by the

convolution function, defined for the group field variables. This is due to the fact that

the group fields ϕ(gi) on Gd can be interpreted as rank d tensors, with indices spanning

the group space G, and associated Hilbert space (for each index) being L2(G).6 The

multiparticle state given in (2.23) can then be interpreted as a tensor state with indices g∂
and rank given by the number of open links of the spin network graph.

2.6 Link function in spin decomposition

As showed in 2.4, many-body state can also be decomposed into spin representations.

Suppose M(g†1g`g2) can be written as

M(g†1g`g2) =
∑
jmn

djM
j
mnD

j
mn(g†1g`g2) (2.38)

6The case of ordinary, finite-dimensional tensors is obtained if we pass from a Lie group to a discrete

group. Let us consider, as a basic example, the case of a field defined on the discrete nth cyclic group Zn.

Given the nonempty set

X = {~λ |~λ = (λ1, . . . , λd), λk ∈ Zn}. (2.36)

the field ϕ : X → R (or C) is a real or complex valued function on X and we indicate by

ϕ~λ ≡ ϕ(~λ). (2.37)

the value of ϕ on the set of d elements ~λ. The function ϕ~λ can be interpreted as a tensor with d discrete

indices ϕλ1,...,λd , where λ ∈ {1, 2, . . . , |dim(Zn)|}.
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Then, as a simple example, the state 〈Mg` | |ϕa〉 |ϕb〉 can be written in terms of ϕj
kn, im

and M j
mn as7

〈Mg` | |ϕa〉 |ϕb〉 =

∫
dg1dg2dgai dgbi M(g†1g`g2)ϕa(g1, g

a
i )ϕb(g2, g

b
i ) |gai 〉 |gbi 〉

=
∑

jmnklpq

∑
iaib

[ia]p[ϕa]
jja
pnanM

j
nm[ib]q[ϕb]

jjb
qmb(−m)(−)m |jb,mb〉 |ja,na〉 [ia]kakD

j
kl(g`)[ib]lb(−l) ×

×(−)l |ja,k†a〉|jb, l
†
b〉 (2.39)

Graphically, the last line can be presented as

〈Mg` | |ϕa〉 |ϕb〉 =
∑
jmnkl

∑
iaib

(2.40)

From the graphic equation, one can immediately observe that the upper part is an open

tensor network
∣∣Φji

〉
, given by the tensor trace of a collection of tensors

φ ji
m ≡

∑
n

inϕ
j
nm (2.41)

for each node and matrices M j
mn for each link.

2.7 Random Tensor Network States

A random tensor network (RTN) is a tensor network in which tensors Tλ1···λv on each node

are unit vectors chosen independently at random from their respective Hilbert spaces. A

tensor state |T 〉, defined in the Hilbert space Hn = H⊗vD , contains Dv complex components.

These components define a complex vector Tµ in a Dv dimensional vector space HT . We

choose a gauge such that numerically Tµ ≡ Tλ1···λv ,

µ =

v∑
a=1

λaD
v−a = 0, 1, . . . , D4 − 1. (2.42)

Since HT is isomorphic to Hn, one can give an inner product between two vectors in HT

as TµT
′
µ. Moreover, |T 〉 ∈ Hn being normalized, one has as well

〈T |T 〉 = T λ1···λvTλ1···λv = TµTµ = 1 (2.43)

7Notice that we are introducing the bold font for vectorial quantities, in order to shorten the notation

in spin representation.
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The Hilbert space HT is the fundamental representation of U(Dv) group.

Given an arbitrary reference state T 0
µ , a group element U ∈ U(Dv) will transform T 0

µ to

a new vector TUµ ≡ (UT 0)µ. A random tensor Tλ1···λv corresponds then to a random choice

of the group element U ∈ U(Dv) defining TUµ .8 In a random network, a group element Un
is independently chosen for each node of the network.

Let us consider now a tensor Tλ1···λv which satisfies the following symmetry

Tλ1···λv = T[λ1+`]D···[λv+`]D , ∀` ∈ Z (2.44)

The square bracket [· · · ]D denotes the modular arithmetic: for all k ∈ Z and D ∈ Z+

[k]D = k mod D, [k]D ∈ Z/D (2.45)

where Z/D is the the set of integers modulo D. Such a tensor state can be considered as a

particular case of a group field tensor, with indices taking values on a finite group space.9

For all k1, k2 ∈ Z and D ∈ Z+, it satisfies the following rules:

[k1] +[k2]D = [k1 + k2]D , (2.46)

[k1] +[k2]D]D = [k1 + k2]D, [D]D = 0

In the case with symmetry (2.44), only Dv−1 components are independent. Because

of the gauge choice (2.42), Tµ can be written as a direct sum of D vectors

Tµ ≡


Tµ0

Tµ1

...

TµD−1

 , µi = 0, 1, . . . , Dv−1 − 1, (2.47)

∀i = 0, 1, . . . , D − 1, in which the components in Tµi are independent from each other.

However one can observe that if we use the gauge choice (2.42)

Tµi 6= Tµj , ∀i 6= j (2.48)

In order to avoid this inconsistency, we choose a new gauge Tµ =
⊕D−1

i=0 Tµi ≡ Tλ1···λv , with

µ = λ1D
v−1 +

v∑
a=2

[λa − λ1]DD
v−a (2.49)

In the new gauge, numerically the components satisfy

Tµi = Tµj , ∀i, j (2.50)

and in direct summed representation, for a given component Tµ

Tµ = T[µ+`Dv−1]Dv , ∀` ∈ Z (2.51)

8The random average of an arbitrary function f(|V x〉) of the state |Vx〉 is equivalent to an integration

over U according to the Haar probability measure
∫

dUf(U |0x〉), with normalization
∫

dU = 1.
9In a tensor field theory the gauge symmetry characterising the group field function, as defined in (2.6),

can also be imposed as a “dynamical” feature via the choice of a specific kernel in the action.
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From now on, for simplicity, we denote the tensor with the symmetry (2.44) with two

indices: µ and i = λ1 ∈ Z/D as Tµi = Tλ1···λv , with

µi =
v∑
a=2

[λa − λ1]DD
v−a ∈ Z/Dv−1 (2.52)

For a given i, the vector Tµi is lying on a Dv−1 dimensional space, which is a funda-

mental representation space of the group U(Dv−1). Because TµTµ = 1 and (2.44), Tµi is

also normalized

TµiTµi = D−1, ∀i = 0, 1, · · · , D − 1 (2.53)

Then in this case the tensor Tλ1···λv is at random means that with respect to the same Tµ0 ,

the group element Un ∈ U(Dv−1) is randomly chosen for each node.

The random character plays a central role in the study of the entanglement area laws

in tensor networks. Indeed, random pure states are nearly maximally entangled states [66],

hence can be used as a toy model of a thermal state [67, 68]. This in particular implies

that the computation of typical entropies and other quantities of interest for these states

can be mapped to the evaluation of partition functions of classical statistical models as

showed in [23].

The interpretation of group fields as tensors provides an actual generalisation of the

tensor network decomposition techniques in terms of random tensor fields. Moreover, a

given GFT model provide the same generalised tensor network states with a dynamical

description, each model corresponding to a specific probability measure 1
Z dν(ϕ) for the

field ϕ, defined through its partition function Z and momenta (correlations).

2.8 Dictionary

We summarize the established dictionary between group field theory states and generalized

random tensor networks in terms of two synthetic tables.

The correspondence between group field and tensor network description is resumed in

Table A:
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Table A Group Fields Tensors

classical ϕ : Gd → C
gi 7→ ϕ(gi)

T : X → C
X = {~λ |~λ = (λ1, . . . , λd)}

ϕ(~g) ≡ ϕ(g1, g2, · · · , gd) Tλ1λ2···λd ≡ T (~λ)

gi ∈ G generic group e.g. λi ∈ Zn, nth cyclic group

gauge sym ϕ(h~g) = ϕ(~gi) our case T (~λ+ ~̀) = T (~λ)
~̀≡ (`, · · · , `), ` ∈ Z

quantum |~g 〉 ∈ H⊗d ' L2[Gd] |λi〉, i = 1, . . . , d|λ| = D in HD

one particle

state

|ϕ〉 = ϕ(~g) |~g 〉 |Tn〉 = Tλ1···λd |~λ〉 ∈ Hn = H⊗dD tensor state

gluing

functional

〈Mg` | =∫
dg1dg2 M(g†1g`g2) 〈g1| 〈g2|

∈ H∗⊗2

|M〉 = Mλ1λ2 |λ1〉 ⊗ |λ2〉 ∈
H` = H⊗2

D

link state

multiparticle

state

|ΦΓ〉 ∈ HV ' L2[Gd×V /GV ] |ΨN 〉 tensor

network

state

product

state

convolution

∣∣Φg`
Γ

〉
≡
⊗

`∈Γ 〈Mg` |
⊗V

n |ϕn〉
=
∫

dg∂ ΦΓ(g`, g∂) |g∂〉
|ΨN 〉 ≡

⊗L
` 〈M`|

⊗N
n |Tn〉 ∈

H∂N

tensor

network

decomposition

randomness 1
Z dν(ϕ)

field theory probability measure

TUµ ≡ (UT 0)µ
T 0
µ ≡ T 0

λ1···λd
∈ HT ,

U ∈ U(dim(HT ))

random

tensor state

The generalisation of tensor networks in terms of group fields states is evident in the

spin-j decomposition of the latter ϕ(gi) =
∑

j Tr[ϕ j
{m}

(∏
i

√
djiD

ji
mi,ni(gi)

)
ī j{n} ].

Once we turn off the sum over all possible js, fix the representation labels and ask

them to be equal, generically Fourier transformed GFT fields ϕ j
{m}, are tensors of single

rank d, with discrete indices mi = {m1, . . . ,md} spanning a finite dimensional space. The
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equivalence is resumed in table B:

Table B GFT network Spin Tensor Network Tensor Network

node ϕ(~g)
≡ ϕ(g1, g2, g3, g4)

ϕ j
{m}

∝
∑
{k} ϕ̂

j
{m}{k} i

j{k}

T{µ}

link M(g†1g`g2) M j
mn Mλ1λ2

sym ϕ(h~g) = ϕ(~g)
∏v
s D

j
msm′s

(g)iim′1···m′v
= iim1···mv

∏v
s Uµsµ′sTµ′1···µ′v =

Tµ1···µv

state
∣∣Φg`

Γ

〉
≡⊗

` 〈Mg` |
⊗

n |ψn〉
|Ψji

Γ〉 ≡⊗
`〈M j` |

⊗
n |φ

jnin
n 〉

|ΨN 〉 ≡⊗L
` 〈M`|

⊗N
n |Tn〉

indices gi ∈ G ,

|gi 〉 ∈ H ' L2[G]

mi ∈ Hj , SU(2) spin-j

irrep.

µi ∈ Zn, nth

cyclic group

dim ∞ dimHj = 2j + 1 dimZn = n

In the following sections, with the longer-term goal of a full understanding and com-

putation of the RT formula in the field-theoretic GFT context, we are going to use the

inputs provided by the established dictionary between GFT states and (random) tensor

networks to reproduce the RT formula in three different cases corresponding to three dif-

ferent truncations/approximations, suggested by the established correspondence. In the

next section, we derive a RT formula by calculating the 2nd Rényi entropy, reproducing

the original argument given in [23] for the case of a random tensor network with additional

gauge symmetry described above. Then, we further generalize the approach by means of

the GFT formalism and spin network techniques, as further steps towards the calculation

of the RT formula within a complete quantum gravity setting. We expect the random

character at the core of the original derivation to be naturally captured by our field the-

oretic generalization. In particular, the correspondence will allow us to use the standard

path integral formalism to evaluate the expectation values of entropies and other tensor

observables.

3 Ryu-Takayanagi formula for Random Tensor Networks with Gauge

Symmetry

The Ryu-Takayanagi formula[20], originally derived in the context of the gauge gravity du-

ality, for continuum fields on a smooth background, shows that the entanglement entropy

in d+1 dimensional conformal field theories can be obtained from the area of d-dimensional

minimal surfaces in AdSd+2. This entropy-area relation is recognised to be of fundamen-

tal importance for at least three key reasons. First, it suggests a convenient approach to
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the calculation of entanglement entropy of quantum fields (a notoriously difficult problem)

via the calculation of geometric quantities which is, most often, much easier. Second, it

supports a general relation between entanglement and geometry, in turn leading to the sug-

gestion that the whole of spacetime geometry can be understood as emergent from (quan-

tum information-theoretic) properties of non-spatiotemporal quantum building blocks. Of

course, this last suggestion has a life on its own and it has been brought forward in many

different contexts [63, 69–76]. Third, it provides a concrete and general indication of the

holographic character of gravity, which goes beyond the AdS/CFT gauge gravity duality

framework.

In this section, we derive the RT formula by performing the calculation of the 2nd

Rényi entropy of the random tensor network. A generalized calculation on the Nth Rényi

entropy will be performed in next section in the context of GFT and spin-networks.

3.1 Replica Trick and Rényi Entropy

We start by recalling some general tools for the computation of the entanglement entropy

between two subsystems of a given quantum system.

The entanglement entropy between two subsystems is defined as the von Neumann entropy

computed from the reduced density matrix of one subsystem.

Suppose a system S is divided into two regions A and B. The reduced density matrix

of region A is defined by tracing out the Hilbert space in part B from the density matrix

ρ of the system S:

ρA = TrB(ρ) , (3.1)

and the entanglement entropy between A and B is given by the von Neumann entropy

SEE(A) = −Tr[ ρ̂A ln ρ̂A ], (3.2)

where

ρ̂A ≡
ρA
Trρ

(3.3)

is the normalized reduced density matrix.

Because of the difficulties in computing directly the von Neumann entropy, one use

the so-called replica trick to approach the problem. Contracting N copies of the reduced

density matrix ρA and taking the logarithm of the trace of ρNA , one obtains the Nth-order

Rényi entropy

SN (A) = − 1

N − 1
ln Trρ̂NA . (3.4)

We can also define

Z
(N)
A ≡ TrρNA = Tr[ρ⊗NP(π0

A;N, d)], (3.5)

ZN0 ≡ (Trρ)N ,
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Figure 3. Boundary ∂N of network N is divided into two parts A and B.

where P(π0
A;N, d) is the permutation operator acting on the states in region A,

P(π0
A;N, d) =

N∏
s=1

δ
µ

([s+1]D)

A µ
(s)
A

(3.6)

and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N→1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state |ΨN 〉. The tensor

network state |ΨN 〉 is given by (2.32), which is in the Hilbert space of H∂N . States can be

written in terms of index notation.

|ΨN 〉 ⇐⇒ Ψ{λA}{λB} ≡ ΨAB (3.8)⊗
n

|Tn〉 ⇐⇒

(⊗
n

Tn

)
{λA}{λB}{λC}

≡ TABC (3.9)

⊗
`

〈M`| ⇐⇒

(⊗
`

M `

)
{λC}

≡MC (3.10)

So based on the definition (2.32), the tensor network state is rewritten as

ΨAB =MCTABC (3.11)

where we divide the boundary ∂N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to ΨAB is

ρAABB = ΨABΨAB (3.12)
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Then the S2 is defined as

e−S2 =
Z

(2)
A

Z
(2)
0

(3.13)

Z
(2)
A = Tr[ρ⊗2P(π0

A; 2, d)] (3.14)

Because when n = 2, the cyclic group Sn only has two elements: identity 1 and swap

operator F, so

P(π0
A; 2, d) ≡ F(A) (3.15)

Then

Z
(2)
A = Tr[ρ⊗2F(A)] = (3.16)

= ρA1A1B1B1
ρA2A2B2B2

F
(A)

A1A1A2A2
1

(B)

B1B1B2B2

Z
(2)
0 = Tr[ρ⊗2] = (3.17)

= ρA1A1B1B1
ρA2A2B2B2

1
(A)

A1A1A2A2
1

(B)

B1B1B2B2

Now let us average the random tensor at each node. As shown in the previous section,

the average of the tensor with symmetry (2.44) is given by (B.10) and (B.4)

ET (ρ⊗2
Tn

) =
1

DnDv−1[2]

∑
m(1)m(2)

(
1m(1)m(2) + Fm(1)m(2)

)
(3.18)

As defined in (A.4), Dv−1[2] = Dv−1(Dv−1 + 1). And let us define the normalization as

D2 = D2Dv−1[2] (3.19)

For the whole density matrix of tensor with N nodes,

ET (ρ⊗2) = TrC

[⊗
n

ET (ρ⊗2
Tn

) ρ⊗2
M

]
(3.20)

=
1

DN2
TrC

 N⊗
n

∑
mn(1)mn(2)

(
1mn(1)mn(2) + Fmn(1)mn(2)

)
ρ⊗2
M


=

1

DN2

∑
{mn(1)}{mn(2)}

TrC

[⊗
n

1mn(1)mn(2)

⊗
n′

Fmn′ (1)mn′ (2) ρ
⊗2
M

]

For a N -node network, the sum above, naively, is a sum of (2D2)N terms, 2D2 choices

for each node. But we will see later that several of the terms are zero. Consider a link

connecting two nodes, there are three classes of situations:
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1. 1m(1)m(2) and 1m′(1)m′(2)

Tr
[
1m(1)m(2) ρ

⊗2
M`
1m′(1)m′(2)

]
= δ[λ(1)−m(1)]D,λ(1)δ[λ(2)−m(2)]D,λ(2)δ[λ′(1)−m′(1)]D,λ

′
(1)
×

×δ
[λ′(2)−m′(2)]D,λ

′
(2)
δλ(1)λ′(1)δλ(1),λ

′
(1)
δλ(2)λ′(2)δλ(2),λ

′
(2)

= δ[λ(1)−m(1)]D,λ(1)δ[λ(2)−m(2)]D,λ(2)δ[λ(1)−m′(1)]D,λ(1) (3.21)

×δ[λ(2)−m′(2)]D,λ(2)

= δ[λ(1)−m(1)]D,[λ(1)−m′(1)]Dδ[λ(2)−m(2)]D,[λ(2)−m′(2)]D

= D2 δm(1)m′(1)δm(2)m′(2) (3.22)

2. Fm(1)m(2) and Fm′(1)m′(2)

Tr
[
Fm(1)m(2) ρ

⊗2
M`
Fm′(1)m′(2)

]
= δ[λ(1)−m(1)]D,λ(2)δ[λ(2)−m(2)]D,λ(1)δ[λ′(1)−m′(1)]D,λ

′
(2)
×

×δ
[λ′(2)−m′(2)]D,λ

′
(1)
δλ(1)λ′(1)δλ(1),λ

′
(1)
δλ(2)λ′(2)δλ(2),λ

′
(2)

= δ[λ(1)−m(1)]D,λ(2)δ[λ(2)−m(2)]D,λ(1)δ[λ(1)−m′(1)]D,λ(2) ×
×δ[λ(2)−m′(2)]D,λ(1)

= δ[λ(1)−m(1)]D,[λ(1)−m′(1)]Dδ[λ(2)−m(2)]D,[λ(2)−m′(2)]D

= D2 δm(1)m′(1)δm(2)m′(2) (3.23)

3. 1m(1)m(2) and Fm′(1)m′(2)

Tr
[
1m(1)m(2) ρ

⊗2
M`
Fm′(1)m′(2)

]
= δ[λ(1)−m(1)]D,λ(1)δ[λ(2)−m(2)]D,λ(2)δ[λ′(1)−m′(1)]D,λ

′
(2)
×

×δ
[λ′(2)−m′(2)]D,λ

′
(1)
δλ(1)λ′(1)δλ(1),λ

′
(1)
δλ(2)λ′(2)δλ(2),λ

′
(2)

= δ[λ(1)−m(1)]D,λ(1)δ[λ(2)−m(2)]D,λ(2)δ[λ(1)−m′(1)]D,λ(2) (3.24)

δ[λ(2)−m′(2)]D,λ(1)

= δ[λ(1)−m(1)]D,[λ(2)−m′(2)]Dδ[λ(2)−m(2)]D,[λ(1)−m′(1)]D

= δ[λ(1)−m(1)+m′(2)]D,[λ(1)−m′(1)+m(2)]D (3.25)

= D δ[m(1)+m(2)]D,[m′(1)+m′(2)]D (3.26)

On the boundary of region A, since at one end of the boundary link is F(A) = F00, so

there are only two classes of situations

1. F(A) and Fm′(1)m′(2)

Tr
[
F(A) ρ⊗2

M`
Fm′(1)m′(2)

]
= Tr

[
F00 ρ

⊗2
M`
Fm′(1)m′(2)

]
= D2 δ0m′(1)δ0m′(2) (3.27)
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2. F(A) and 1m′(1)m′(2)

Tr
[
F(A) ρ⊗2

M`
1m′(1)m′(2)

]
= Tr

[
F00 ρ

⊗2
M`
1m′(1)m′(2)

]
= D δ0,[m′(1)+m′(2)]D (3.28)

On the boundary of region B, at one end of the boundary link is 1(B) = 100, there

exist two classed of situations,

1. 1(B) and Fm′(1)m′(2)

Tr
[
1(B) ρ⊗2

M`
Fm′(1)m′(2)

]
= Tr

[
100 ρ

⊗2
M`
Fm′(1)m′(2)

]
= D δ0,[m′(1)+m′(2)]D (3.29)

2. 1(B) and 1m′(1)m′(2)

Tr
[
1(B) ρ⊗2

M`
1m′(1)m′(2)

]
= Tr

[
100 ρ

⊗2
M`
1m′(1)m′(2)

]
= D2 δ0m′(1)δ0m′(2) (3.30)

There are several main observations from the above calculations:

1. The calculations on averaging Z
(2)
A and Z

(2)
0 over T is like to set a series of networks

where each node is assigned with a matrix 1m(1)m(2) or Fm(1)m(2) and the boundary

is assigned with F(A) and 1(B) for Z
(2)
A , and 1(A) and 1(B) for Z

(2)
0 .

2. For all 1m(1)m(2) and Fm(1)m(2), the ones with [m(1)+m(2)]D 6= 0 will never contribute

to Z
(2)
A and Z

(2)
0 . In fact, if there is one node has [m(1) + m(2)]D 6= 0, it will make

its neighboring node satisfying [m(1) +m(2)]D 6= 0, and these nodes will make their

neighboring nodes satisfying [m(1) + m(2)]D 6= 0. Because all nodes connect to the

boundary through a certain number of links, the consequence is that the boundary

should be [m(1) + m(2)]D 6= 0, but we assume that the boundary is assigned by

100 or F00, i.e. [m(1) + m(2)]D = 0. Non of the matrix at each node will satisfy

[m(1) + m(2)]D 6= 0. All matrices should satisfy [m(1) + m(2)]D = 0. So in the

following discussion we only consider the matrices of Fm(1)m(2) and 1m(1)m(2) with

[m(1) +m(2)]D = 0

3. If a node is Fm(1)m(2), then its neighboring nodes can only be Fm(1)m(2) or 1m′(1)m′(2)

with [m′(1) +m′(2)]D = 0; vice versa. So the network is divided into several regions,

where in each region, all nodes are associated with the same matrix. If a region is

with Fm(1)m(2), its neighboring region can only be with 1m′(1)m′(2), vise versa. An

example is shown in Figure (3). Each regions a labeled with F or 1. The boundary

of these regions are called the domain walls. The domain walls are the links, that

one end of which is assigned with F and the other ends is with 1.

– 23 –



Figure 4. Network with boundary condition: A = F(A) and B = 1(B) is divided into regions. The

nodes in red regions are assigned with F and the ones in blue are with 1.

4. As shown in this figure, the domain walls form different patterns P for the network.

For a given pattern, changing a region’s label from Fm(1)m(2) to Fm′(1)m′(2) will not

change the value of its corresponding term in Z
(2)
A or Z

(2)
0 . It introduces the degen-

eracy of the region. The degeneracy of the region that does not connected to the

boundary is D, which is the number of the possible choice of the pair (m(1),m(2)).

So

ET (Z
(2)
A ) =

1

DN2

∑
PA

dPAZ
(2)
PA , (3.31)

ET (Z
(2)
0 ) =

1

DN2

∑
P0

dP0Z
(2)
P0

(3.32)

where dP is the degeneracy of the pattern, which is the product of the degeneracy of

each region in these pattern. Z
(2)
P is given as

Z
(2)
P = D2(L−LP )DLP = D2L−LP (3.33)

where L is the total link number in a given network N , including links across ∂N ;

LP is the links across the domain walls in P.

5. The main contribution of ET (Z
(2)
A ) is the pattern with the least number of links

through the domain walls. We call this domain wall with least link number the

minimal surface. One can show that this claim is true even the degeneracy dP is

taken into account. In fact, all patterns can be generated from the one only with

minimal surface by deforming the minimal surface and adding new regions. Starting

from the pattern with the minimal surface, no matter how to deform the minimal

surface, it would not be minimal. So the only choice is to add more regions. However

when you add a region, it will contribute to dP with D but to the number of domain

wall links at least v > 1, the valence of a single node, thus in total one has to product

D1−v < 1 to the original Z
(2)
P , which makes the new one smaller than the original

one. So the main contribution of ET (Z
(2)
A ) should be from the pattern with only the

minimal surface. And in this pattern there is only two regions which is labeled by
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Figure 5. The pattern with only the minimal surface σmin. Boundary condition: A = F(A) and

B = 1(B).

F(A) and 1(B), respectively.

ET (Z
(2)
A ) =

1

DN2
D2L−Lmin

(
1 +O(D−1)

)
(3.34)

6. The main contribution of ET (Z
(2)
0 ) is the pattern without any domain walls. This is

because its boundary condition is 1(A) = 1(B) = 100. There exist the pattern without

any domain wall and all nodes are assigned with 100. Then

ET (Z
(2)
0 ) =

1

DN2
D2L

(
1 +O(D−1)

)
(3.35)

Figure 6. The pattern without the minimal surface. Boundary condition: A = 1(A) and B = 1(B).

The leading contribution of S2 is given as

ET (e−S2) ∼
ET (Z

(2)
A )

ET (Z
(2)
0 )

= D−Lmin
(
1 +O(D−1)

)
(3.36)

when D � 1,

S2 = Lmin lnD +O(D−1) (3.37)
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This is the Ryu-Takayanaki formula for S2.

Interestingly, ET (Z
(2)
A ) and ET (Z

(2)
0 ) can be written as the Ising model. Assign Sm(1)m(2) =

1 to node with 1m(1)m(2), and assigned Sm(1)m(2) = −1 to node with Fm(1)m(2). Assign

H = 1 to the boundary with 1 and H = −1 to the boundary with F. Then

ET (Z(2)) =
1

DN2

∏
〈nn′〉

(δSS′δm(1)m′(1)δm(2)m′(2) + δS,−S′)

×e−
lnD

2
(SS′+3)

∏
〈n∂〉

(δHSδ0m(1)δ0m(2) + δH,−S)×

×e−
lnD

2
(HS+3) (3.38)

4 Ryu-Takayanaki formula from Group Field Theory and spin networks

In this section we will rely on the structure of the Hilbert space of quantum gravity states

in the context of the group field theory formalism, in turn very closely related to the

kinematical Hilbert space of loop quantum gravity (see [64] for more details on the relation).

The Rényi entropy of a state associated to a given open graph will be computed in both

group and spin-network representations. We will obtain a formula very similar to the

Ryu-Takayanagi one.

4.1 Rényi Entropy for GFT states in the group representation as generalised

tensor networks

In this subsection, the Rényi entropy is calculated by using the techniques of the group field

theory. The starting point is the state |ΨΓ〉 corresponding to a network with each node

associated to a generalised tensor analogous to a group field. The calculation proceeds

along the very same steps performed in the previous section, in the conventional tensor

network formalism, as natural given the dictionary we have established between the two

languages. This calculation is not in the full GFT setup, i.e. the state |ΨΓ〉 is not treated,

in the calculation of the averaging over random (generalised) tensors, as an n-point function

of a given GFT. This more complete calculation is postponed to a future analysis. Still,

we apply several techniques from GFT and generalized the calculations in [23] based on

our dictionary:

1. Tensors are generalized to group fields, from a finite dimensional object to a square

integrable L2 function, mapping from group manifolds to the complex numbers C.

2. A gauge symmetry of the group field associated to each vertex as a vertex wave

function is introduced in order to fit our setup more to the context of the quantum

gravity theory.

3. The average over the N -replica of the wave functions (generalised tensors) associated

to each network vertex is reinterpreted as a N -point correlations of a (simple) GFT

model, which turns the Rényi entropy into an amplitude in GFT.
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The last point can be seen as an approximation of a more complete calculation in which

the (average over the) whole tensor network is understood as a GFT N-point function, and

computed as such. This more complete calculation based on the full GFT setup is being

explored [77]. We believe that the leading term of the entropy, at least for the entanglement

entropy, would not be changed.

We divide the boundary ∂Γ of the graph Γ(VΓ, LΓ, L∂Γ) ,with VΓ nodes, LΓ internal links

and L∂Γ boundary links, into two parts, called A and B. The Rényi entropy between A

and B can be calculated as follows.

The density matrix ρ is defined as:

ρ = |ΨΓ〉 〈ΨΓ| = Tr`

[⊗
`

|M`〉 〈M`|
⊗
n

|ψn〉 〈ψn|

]
≡ Tr`

[⊗
`

ρ`
⊗
n

ρn

]
. (4.1)

The quantity we are interested in is the Nth order Rényi entropy,

e(1−N)SN =
ZN

ZN0
=

E(TrρNA )

E(Trρ)N
=

ETr[ρ⊗NP(π0
A;N, d)]

E(Trρ)N

=
Tr
[⊗

` ρ
N
`

⊗
n E(ρNn )P(π0

A;N, d)
]

Tr
[⊗

` ρ
N
`

⊗
n E(ρNn )

] . (4.2)

The key step is to compute the quantity

E(ρNn ) = E[(|ψn〉 〈ψn|)N ] = E

[(∫ N∏
a

dgadga ψn(ga)ψn(ga) |ga〉
〈
ga
∣∣)] , (4.3)

or, more precisely, the one inside the above integral

E

[
N∏
a

ψn(ga)ψn(ga)

]
. (4.4)

where dg ≡
∏
i dgi, ψ(g) ≡ ψ(g1, · · · , g4) and g is independent from g, which denotes the

arguments of ψ. Now we define the averaging E[· · · ] via the path integral of some group

field theory model

E
[
f [ψ,ψ]

]
≡
∫

[Dψ][Dψ] f [ψ,ψ] e−iS[ψ,ψ] (4.5)

where S[ψ,ψ] is the action of the given model of interest,

S[ψ,ψ] =

∫
dgdg ψ(g)K(g,g)ψ(g) + λSint[ψ,ψ] + cc. (4.6)

where the first term on the right hand side is the kinetic term. In the following calculation

we will consider the case in which

K(g,g) = δ(g†g) , (4.7)
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thus a free part of the action of the simple form

S0[ψ,ψ] =

∫
dg ψ(g)ψ(g)10 . (4.8)

We further assume that the coupling constant λ is much smaller than 1, so the path integral

E
[
f [ψ,ψ]

]
can be perturbatively expanded in powers of λ

E
[
f [ψ,ψ]

]
=

∫
[Dψ][Dψ] f [ψ,ψ] e−iS0[ψ,ψ]

(
1 + λSint[ψ,ψ] +O(λ2)

)
≡ E0

[
f [ψ,ψ]

]
+O(λ) . (4.9)

This is the regime of validity of the so-called spin foam expansion, seen from within the

GFT formalism [1–9]. In the following calculation, we will only focus on the leading term

E0

[
f [ψ,ψ]

]
11.

Because of the gauge symmetry ψ(hg) = ψ(g), the gauge equivalent paths in the above

path integral have to be removed (via gauge fixing). In order to do so, we first introduce

the following notation: if g = (g1, g2, g3, g4), then

[g] ≡ g−1
1 g = (1, g−1

1 g2, g
−1
1 g3, g

−1
1 g4) . (4.10)

Then, we insert the delta functional

δ[ψ(g)− ψ([g])] (4.11)

into the path integral, so that the average becomes

E0

[
f [ψ,ψ]

]
≡
∫

[Dψ][Dψ] f [ψ,ψ] δ[ψ(g)− ψ([g])] e−i
∫

dg ψ(g)ψ(g) . (4.12)

Since this equation is simply the expectation value of f [ψ,ψ] in the free group field theory,

we can immediately give the expectation value of (4.4) via Wick theorem:

E0

[
N∏
a

ψ(ga)ψ(ga)

]
= C

∑
π∈SN

N∏
a

δ
(

[ga][gπ(a)]
†
)

= C
∑
π∈SN

∫ N∏
a

dha

N∏
a

δ
(
hagagπ(a)

†
)

, (4.13)

where g is independent from g, which denotes the arguments of ψ; and

δ([g][g]†) ≡
4∏
s=2

δ
(
g†1gsgs

†g1

)
δ
(
hgg

)
≡

4∏
s=1

δ
(
hgsgs

†
)

. (4.14)

In the second equality, we re-introduce the gauge symmetry by inserting integrals of ha ∈
SU(2), N = 1, 2, · · ·N into the delta functions such that gsa on each leg of the node are on an

10Notice that several GFT models of quantum gravity [6–9] can be put in this form.
11This, in turn, means that, from the point of view of the quantum gravity model, the quantum dynamics

is not imposed and we confine ourselves to a purely kinematical evaluation of the observable of interest.
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equal footing, unlike g1 = 1 in the gauge fixing procedure. So in the following calculation,

the network is without gauge fixing, i.e. all integrals of g have to be performed.

Denote now
∏N
a δ
(
hagagπ(a)

†
)

as

Ph(π) ≡
N∏
a

δ
(
hagagπ(a)

†
)

=
4∏
s=1

N∏
a

δ
(
hagsagsπ(a)

†
)
≡

4∏
s

Psh(π) , (4.15)

where h denotes the set of ha, a = 1, · · · , N . When ha = 1 for all a from 1 to N ,

P1(π) =

N∏
a

δ
(
gagπ(a)

†
)

= P(π;N,D4) =

4∏
s

Ps(π;N,D4) (4.16)

where P(π;N,D4) and Ps(π;N,D4) are the representations of π ∈ SN on H⊗4 and H,

respectively.

Then, ZN and ZN0 become

ZN ≈ CVΓ
∑

πn∈SN

∫ ∏
n

dhn Tr

[⊗
`

ρN`
⊗
n

Phn(πn)P(π0
A;N, d)

]

≡ CVΓ

∑
πn∈SN

∫ ∏
n

dhn NA(hn,πn) (4.17)

ZN0 = CVΓ
∑

πn∈SN

∫ ∏
n

dhn Tr

[⊗
`

ρN`
⊗
n

Phn(πn)

]

≡ CVΓ
∑

πn∈SN

∫ ∏
n

dhn N0(hn,πn) , (4.18)

which means that ZN and ZN0 correspond to summations of the networks NA(hn,πn) and

N0(hn,πn) where at each node n we have a contribution Phn(πn) and at each link ` we

have a contribution ρN` . The only difference between these two networks is the boundary

condition: where ZN is defined with P(π0
A;N, d) on A of ∂Γ and P(1;N, d) on A of ∂Γ,

and ZN0 is defined with P(1;N, d) for all boundary region ∂Γ.

Since at each node Phn(πn) is decoupled among the incident legs, because of (4.15), the

value of the networks NA(hn,πn) and N0(hn,πn) can be written as products factorised

over links:

NA(hn,πn) =
∏
`∈Γ

L`(πn, πn′ ; hn,hn′)
∏
`∈A
L`(πn, π0

A; hn)
∏
`∈A

L`(πn,1; hn) (4.19)

N0(hn,πn) =
∏
`∈Γ

L`(πn, πn′ ; hn,hn′)
∏
`∈∂Γ

L`(πn,1; hn) . (4.20)

Because the L` on the boundary are special cases of the L` in the graph Γ, it is enough to

calculate the L` on the internal links. In general, L(π, π′,h,h′) can be written as a trace

of a modified representation of a permutation group element $ ≡ (π′)−1π as

L(π, π′; h,h′) = Tr
[
Ph(π)ρN` Ph′(π)

]
= Tr

[
PH

(
(π′)−1π

)]
≡ Tr [PH ($)] , (4.21)
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where

H =

{
Ha

∣∣ Ha ≡
(
h′$(a)

)†
ha, ∀a = 1, · · · , N

}
(4.22)

.

Figure 7. L(π, π′,h,h′)

When π = π′, we have $ = 1 and H = (h′)†h, and then

L(π, π; h,h′) = Tr
[
Ph(π)ρN` Ph′(π)

]
= Tr

[
P(h′)†h (1)

]
(4.23)

=

N∏
a

∫
dgadg

′
adgπ(a)dg

′
π(a) δ

(
hagagπ(a)

†
)
δ
(
gπ(a)g

′
π(a)
†
)
×

×δ
(
h′ag
′
ag
′
π(a)
†
)
δ
(
g′ag
†
a

)
=

N∏
a

δ
(

(h′a)
†ha

)
=

N∏
a

δ (Ha) , (4.24)

The above equation can be depicted graphically as in Fig.8

Figure 8. L(π, π,h,h′)

When π 6= π′, we have

L(π, π′; h,h′) = Tr [PH ($)] . (4.25)

In order to perform the computation, it is necessary to use some facts about the permuta-

tion group SN , which we recall briefly, before proceeding.

• Any element $ ∈ SN can be expressed as the product of disjoint cycles Ci

$ ≡
χ($)∏
i

Ci (4.26)

where 1 ≤ χ($) ≤ N is the number of cycles in $, which is 1 when $ is a 1-cycle

and is N only when $ = 1. For instance, the permutation $ = {3241} can be
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expressed as a product of two cycles (134)(2), in which $(1) = 3, $(3) = 4, $(4) = 1

and $(2) = 2. (132) is a 3-cycle, because there are three elements in the cycle. We

denote the number of elements in the cycle Ci as ri, which is also called the length

of the cycle. We also have
∑

i ri = N . Although the cycles Ci commute with each

other, we order the cycles such that

1 ≤ · · · ≤ ri ≤ ri+1 ≤ · · · ≤ N . (4.27)

We denote aik, where k is from 1 to ri, the elements of Ci, and then we furthermore

assume that

$(aik) = ai[k]ri+1 . (4.28)

Thus, the cycle can be written as

Ci =
(
ai1a

i
2 · · · airi

)
. (4.29)

• The trace of PH ($) can be expressed as the product of the traces of the individual

cycles Ci
Tr [PH ($)] =

∏
i

Tr [PH (Ci)] . (4.30)

Using the definition of PH, one can immediately obtain the trace of the cycle Ci as

Tr [PH (Ci)] =

∫ ri∏
k=1

dgaik
δ

(
Haik

gaik
g†
ai

[k]ri+1

)
= δ

←−ri∏
k=1

Haik

 , (4.31)

where ←−
ri∏
k=1

Haik
≡ Hairi

· · ·Hai2
Hai1

. (4.32)

Then the trace of PH ($) is

L(π, π′; h,h′) = Tr [PH ($)] =

χ($)∏
i

δ

←−ri∏
k=1

Haik

 . (4.33)

• On the boundary of N0 and B of NA, L(π,1; h) is a very special case of L(π, π′; h,h′)

where π′ = 1 and h′ = 1

L(π,1; h) ≡ L(π,1; h,1) = Tr [Ph (π)] =

χ(π)∏
i

δ

←−ri∏
k=1

haik

 (4.34)

On the boudnaryA ofNA, L(π, π0
A; h) corresponds also to a special case of L(π, π′; h,h′),

where h′ = 1 and π′ = π0
A = C0, which is the N -cycle that for any integer k from 1

to N , C0(k) = [k]N + 1

L(π, π0
A; h) ≡ L(π, C0; h,1) = Tr

[
Ph

(
C−1

0 π
)]

=

χ(C−1
0 π)∏
i

δ

←−ri∏
k=1

haik

 . (4.35)
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Figure 9. An example of pattern

Altogether, for a given network N (hn,πn), defining the new variables $ ≡ (π′)−1π and

H given by (4.22) for each link, the corresponding link value is a product of χ($) delta

function

L(π, π′; h,h′) ≡ L($; H) = Tr [PH ($)] =

χ($)∏
i

δ

←−ri∏
k=1

Haik

 (4.36)

In particular, when π = π′, the link value L(π, π; h,h′) is given by a product of N delta

functions as shown in (4.23) and we re-present it here

L(π, π; h,h′) =
N∏
a

δ
(

(h′a)
†ha

)
=

N∏
a

δ (Ha) , (4.37)

which is non-zero only when h = h′.

So in the end the network is divided into several regions, in each of which πn and hn are

the same. The links which connect different regions identify boundaries between each pair

of different regions, called again domain walls. Corresponding to different domain walls

and different assignments of permutation groups to each region, we have different patterns

for the given network. We introduce pattern functions PA(πn) and P0(πn) such that

PA(πn) ≡
∫ ∏

n

dhn NA(hn,πn) (4.38)

P0(πn) ≡
∫ ∏

n

dhn N0(hn,πn) . (4.39)

Given a set of {πn}, PA(πn) and P0(πn) correspond to a certain network pattern with

fixed boundary conditions, illustrated in the following figure.

More explicitly,

PA(πn) =

∫ ∏
n

dhn
∏
`∈Γ

χ($`)∏
i

δ

←−ri∏
k=1

H`aik

∏
`∈A

χ(C−1
0 πn`)∏
i

δ

←−ri∏
k=1

h`aik

∏
`∈A

χ(πn`)∏
i

δ

←−ri∏
k=1

h`aik


(4.40)

P0(πn) =

∫ ∏
n

dhn
∏
`∈Γ

χ($`)∏
i

δ

←−ri∏
k=1

H`aik

 ∏
`∈∂Γ

χ(πn`)∏
i

δ

←−ri∏
k=1

h`aik

 (4.41)
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They are exactly the amplitudes of a topological BF field theory, with given boundary

condition, discretized on a specific 2-complex among the N replica of networks, with each

different pattern P corresponding to a different 2-complex. Each edge of the 2-complex is

associated with a holonomy hna that is on node n and the ath replica. The two ends of the

holonomy are the vertices of the 2-complex. The hna inside a delta function form a loop

holonomy, the corresponding edges of which form the face of the 2-complex. Then ZN and

ZN0 are sum of BF amplitudes with different 2-complexes.

ZN ≡ CVΓ
∑

πn∈SN

PA(πn), ZN0 ≡ CVΓ
∑

πn∈SN

P0(πn) (4.42)

It is important to notice that this simple form of the various functions entering the calcu-

lation of the entropy, with the emergence of BF-like amplitudes, is not generic. It follows

from the choice of GFT kinetic term, from the approximation used in the calculation of

expectation values (neglecting GFT interactions) and from the special type of tensor net-

work, in GFT language, that we have chosen (with simple delta functions associated to the

links of the network). More involved, and interesting, cases could be considered.

What we are interested in is the leading term of ZN and ZN0 , while the dimension D of

Hilbert space H is much larger than 1. This leads us to seek the most divergent term of

PA(πn) and P0(πn). In other words, we need to know the degree of divergence of PA(πn)

and P0(πn). The divergence degree of BF amplitudes discretized on a lattice has been the

subject of a number of works, both in the spin foam an GFT literature (see for example

[78–80]), the most complete analysis being [81–83].

Let us first focus on a sub-region R of the network such that πn = π for all nodes n inside

of R. Suppose that there are Li links inside R and Le links connecting with other regions.

Since we only consider 4-valent nodes, the number of nodes inside R is

V ≡ 1

4
(2Li + Le) =

Li
2

+
Le
4

(4.43)

A minimum spanning tree (MST) T , which contains #T = V − 1 links, can be found in R.

T ≡ {`|` ∈ MST} (4.44)

According to (4.37), since πn = π, there are N delta functions on each link. The integrals

over hn would eliminate the (V − 1)N deltas associated to the MST and leave only one set

of N integrals over h = {ha} and (Li/2− Le/4 + 1)N δ(1)’s. Here we keep indicating the

divergent factor as the delta function evaluation originating it, but of course it should be

understood more properly as a function of the cut-off used to regularize it. The pattern
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function of region R is then

PR(π) ≡
∫ ∏

n∈R
dhn

Li∏
`

N∏
a

δ(H`a)

Le∏
`

χ($`)∏
i

δ

←−ri∏
k=1

H`aik


=

∫ ∏
n∈R

dhn
∏

`∈MST

N∏
a

δ(H`a)
∏

`/∈MST

N∏
a

δ(H`a)

Le∏
`

χ($`)∏
i

δ

←−ri∏
k=1

H`aik


= [δ(1)]

(
Li
2
−Le

4
+1
)
N
∫

dh

Le∏
`

χ($`)∏
i

δ

←−ri∏
k=1

H`aik

 . (4.45)

In the calculation, we have used∫ ∏
n∈R

dhn
∏

`∈MST

N∏
a

δ(H`a) =

∫
dh (4.46)

and (hn = h) ∏
`/∈MST

N∏
a

δ(H`a) = [δ(1)]

(
Li
2
−Le

4
+1
)
N

. (4.47)

The above calculation shows that we can coarse-grain the region R into one single Le-valent

node which is colored by π and h.

∫ ∏
n∈R

dhn =

∫ ∏
n∈R

dhn =

∫
dh [δ(1)]

(
Li
2
−Le

4
+1
)
N

(4.48)

So the degree of divergence in region R is: the number of internal links #i = Li subtracted

the number of links in the MST #T = V − 1, and then times the number of replica N ,

#R = (#i −#T )N = (Li − V + 1)N =

(
Li
2
− Le

4
+ 1

)
N . (4.49)

Since the boundary condition of N0 is π = 1 and h = 1, the boundary of N0 can be

coarse-grained into a single node with π = 1 and h = 1. The same consideration holds

for NA: its boundary can be coarse-grained into two nodes, one of which corresponds to A

with π = C0, h = 1 and the other to B with π = 1 and h = 1. The corresponding closed

graphs are denoted as Γ0 and ΓAB. A certain pattern P(πn) divides Γ0 and ΓAB into M

regions that can be coarse-grained into M nodes, each of which is colored with permutation

group πm and N integrals over hm. Denote the graph with pattern P(πn) as Γ0(πm) and

ΓAB(πm), and denote the corresponding coarse-grained graphs as Γc0(πm) and ΓcAB(πm).

One can show that, for Γ0, the pattern in which all nodes have assigned the same permu-

tation group π = 1 has the highest degree of divergence #0.

#0 = (#`∈Γ0 −#TΓ0
)N (4.50)
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Figure 10. The networks in which the boundaries are coarse-grained into nodes.

where #`∈Γ0 is the number of links in graph Γ0. Let us consider a coarse-grained graph

Γc0(πm). Denote the number of links in region m, between regions m and m′, and between

region m and boundary ∂Γ are Lm, Lmm′ and Lm0, respectively. The proof goes as follows:

1. The permutation group on links between coarse-grained nodes m and m′ is $mm′ ≡
π−1
m πm′ . As given by (4.36), the number of the delta functions on one of the links

is the number of the disjoint cycles in $, which is χ($mm′) < N . Since all links

between m and m′ are identical, having the same link value, which is given by (4.36),

when one integrate over hm and hm′ , only χ($mm′) deltas will be eliminated and left

with δ(1) to the order of χ($mm′)(Lmm′ − 1) and 2N −χ($mm′) h integrals. In fact∫
dhdh′ (Tr [PH ($)])L =

∫
dhdh′

χ($)∏
i

δ
←−ri∏
k=1

Haik

L

=

∫
dh

χ($)∏
i

δ
←−ri∏
k=1

Haik

−→
ri∏
k=1

H†
aik

L−1

= [δ (1)]χ($)(L−1)
∫

dh (4.51)

2. MST can be chosen for Γ0(πm), Γc0(πm) and M regions. It is obvious that, given a

MST Tm for each of the M regions and a MST TΓc0(πm) for Γc0(πm), rooting from the

coarse-grained boundary node ∂Γ, a MST TΓ0(πm) of Γ0(πm) can be constructed.

TΓ0(πm) =
M⋃
m

Tm ∪ TΓc0(πm) (4.52)

The number of branches of the trees is

#TΓ0(πm)
=

M∑
m

#Tm + #TΓ0(πm)
(4.53)

3. The degree of divergence of region m is given by (4.49)

#m = (Lm −#Tm)N (4.54)

Similarly, for the divergence degree #Γc0(1) of the pattern where all coarse-grained

nodes have the same permutation πm = 1 is

#Γc0(1) =

 ∑
0≤m<m′≤M

Lmm′ −#TΓc0(πm)

N (4.55)
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The degree of divergence of Γc0(πm) is smaller than #Γc0(1)

#Γc0(πm) < #Γc0(1) (4.56)

This is because, after evaluating the delta functions on the MST Γc0(πm) in accor-

dance with (4.51), there are still MN −
∑

(mm′)∈TΓc0(πm)
χ($mm′) integrals over h.

Performing these integrals makes the degree of divergence of Γc0(πm) not bigger than

the following quantity

#Γc0(πm) ≤
∑

0≤m<m′≤M
Lmm′χ($mm′)−

∑
(mm′)∈TΓc0(πm)

χ($mm′) (4.57)

=
∑

(mm′)/∈TΓc0(πm)

Lmm′χ($mm′) (4.58)

+
∑

(mm′)∈TΓc0(πm)

(Lmm′ − 1)χ($mm′) (4.59)

which is definitely smaller than #Γ0(1) because χ($mm′) < N .

4. So the divergence degree of Γ0(πm) is smaller than the divergence degree #0 for the

pattern where all nodes have the same permutation.

#Γ0(πm) = #Γc0(πm) +
M∑
m

#m < #Γc0(1) +
M∑
m

#m = (#`∈Γ0 −#TΓ0
)N = #0 (4.60)

The leading term of ZN0 is P0(1), whose divergence degree is #0.

ZN0 = CVΓ [δ(1)]#0
[
1 +O(δ−1(1)) +O(λ)

]
. (4.61)

For ZN , since the boundary is separated into two parts, the most divergent pattern PA(πn)

is the one such that its corresponding coarse-grained graph has only two coarse-grained

nodes A and B, which are connected by the minimum number of links min(#`∈∂AB ), whose

divergence degree is

#AB = #A + #B + min(#`∈∂AB )

= (#`∈ΓAB −min(#`∈∂AB )−#TA −#TB )N + min(#`∈∂AB )

= (#`∈ΓAB −#TA −#TB )N + (1−N) min(#`∈∂AB )

= #0 + (1−N) min(#`∈∂AB ) (4.62)

where the second equality is in terms of (4.49) and the forth equality is because #`∈ΓAB =

#`∈Γ0 and #TA + #TB = #TΓ0

12.

12Since the boundary is coarse-grained into two nodes in ΓAB , there are one more node in ΓAB than in

Γ0,

VΓAB = VΓ0 + 1 (4.63)

Thus the number of the branches of the MST in A and B is equal to the number of the MST branches in

Γ0

#A + #B = (VA − 1)− (VB − 1) = VΓAB − 2 = VΓ0 − 1 = #TΓ0
. (4.64)
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Let us consider a graph ΓAB(πm) and its corresponding coarse-grained graph ΓcAB(πm).

The divergence degree of ΓAB(πm) is given as

#ΓAB(πm) = #ΓcAB(πm) +
∑

m={1,···M,A,B}

#m (4.65)

where #m is given by (4.49)

#m = (Lm −#Tm)N (4.66)

Adapting the same argument as for ZN0 , because of the integral over hn, #ΓcAB(πm) should

not be bigger than the following quantity

#ΓcAB(πm) ≤
∑

(mm′)/∈TA
Γc
AB

(πm)
,TB

Γc
AB

(πm)

Lmm′χ($mm′)

+
∑

(mm′)∈TA
Γc
AB

(πm)
or TB

Γc
AB

(πm)

(Lmm′ − 1)χ($mm′) (4.67)

where we assume m < m′ in order to avoid double counting, and TAΓcAB(πm) and TBΓcAB(πm)

are the MST rooting from coarse-grained nodes A and B, respectively. The right hand side

of the above formula corresponds to the divergence degree of pattern PA(πm) on a graph

ΓcAB(πm) with all hn = 1, which differs from ΓcAB(πm) by TAΓcAB(πm) and TBΓcAB(πm), i.e.

ΓcAB(πm) ≡ ΓcAB(πm) \ {TAΓcAB(πm), T
B
ΓcAB(πm)} (4.68)

As presented in section 2, the major difference between [23, 27] and our paper is that we

are considering the gauge transformation hn on each node n. When all hn are set to be

the identity, our ZN and ZN0 simplify to the ones in [23, 27] up to overall normalization.

In this case, as shown in [23, 27], the patterns which gives only one domain wall for ΓAB
have higher divergence degree than the divergent degree of multi-domain walls, which in

our language means that the patterns whose corresponding coarse-grained graph contains

only two coarse-grained nodes are more divergent than the patterns PA(πm), which give

more than two coarse-grained nodes. So the divergence degree of the pattern PA(πm) on

the graph ΓAB(πm) is not bigger than the pattern PA(1, C0). So we have

#ΓAB(πm) = #ΓcAB(πm) +
∑

m={1,···M,A,B}

#m

≤ #
ΓcAB(πm)

+
∑

m={1,···M,A,B}

#m

≤ #A + #B + #`∈∂AB = #0 + (1−N)#`∈∂AB

≤ #AB = #0 + (1−N) min(#`∈∂AB ) (4.69)

It follows that the amplitude ZN is

ZN = CVΓ [δ(1)]#0+(1−N) min(#`∈∂AB )
[
1 +O(δ−1(1)) +O(λ)

]
. (4.70)
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Finally, the Nth order Rényi entropy SN is then:

e(1−N)SN =
ZN

ZN0
= [δ(1)](1−N) min(#`∈∂AB )

[
1 +O(δ−1(1)) +O(λ)

]
. (4.71)

When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the

entanglement entropy SEE is therefore

SEE = min(#`∈∂AB ) ln δ(1) , (4.72)

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the same

interpretation for the area of the minimal surface that we have mentioned in the previous

section, concerning the tensor network techniques.

Before moving on to a different derivation of the same result, we want to clarify the inter-

pretation of this calculation.

The definition of the expectation value (4.5) in the GFT language shows that the expo-

nential of SN can be interpreted as a GFT 2N -point function, at least within the limits of

the approximation made, focusing on the average over group field functions at each node,

without recasting the whole generalized tensor network as a GFT correlation function. As

shown in previous sections, the GFT amplitudes can in turn be written, by standard per-

turbative expansion, as a sum of Feynman amplitudes associated to Feynman diagrams,

each of which corresponds to a different discretized “space-time”with fixed boundary, with

the Feynman amplitude defining (for quantum gravity models) a lattice path integral for

gravity discretised on the corresponding cellular complex. This allows a tentative (and par-

tial) interpretation of the entropy formula we have derived, in geometric spatiotemporal

terms. It implies, in fact, that, in the calculation of the entropy, not only the information

of a time-slice of a space-time is considered, as encoded in a given network, but also its

full quantum dynamics. This, at least, is true when the complete GFT partition function

(for quantum gravity models) is employed in the computation of the entropy. The leading

term, the free GFT amplitude, captures only a sector of that full quantum dynamics. With

the specific (trivial) choice of kinetic term we have used, the quantum dynamics can at

best correspond to (summing over) static space-times. When N goes to 1, in particular,

the amplitude becomes the trivial propagation of GFT states, with any given network

propagating to itself. This corresponds exactly to the context (static space-time) in which

the Ryu-Takayanagi formula is usually derived. In other words, our calculation provides a

realization of the Ryu-Takayanagi formula, at least in one extremely simple case, within the

full dynamics of a non-perturbative approach to quantum gravity, the group field theory

formalism, which can also be seen as a different definition of loop quantum gravity. Our

result also shows that the same formalism allows to compute non-perturbative quantum

gravity corrections to the Ryu-Takayanagi formula, by including the contributions from

the GFT interaction term into the amplitude (as well as considering different choices for

the GFT kinetic term).
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4.2 Rényi Entropy from Spin-Networks

We now perform a similar calculation of the Ryu-Takanayagi entropy using a different

truncation of a generic GFT state, reformulated as a tensor network. We use a given linear

combination of spin networks, corresponding to a specific assignment of spins to the links

of the network, and thus to the tensors associated to its nodes.

As presented in Section 2, the spin representation of a GFT network is spin-network, in

which each node is colored by a tensor φjim

φjim =
∑
p

ipψ
j
pm,

∣∣∣φji〉 =
∑
m

φjim |j,m〉 ∈
⊗
`

Hj` (4.73)

and each link is colored by matrix M j
mm′∣∣M j

〉
=
∑
mm′

M j
mm′ |j,m〉 ⊗

∣∣j,m′〉 ∈ H⊗2
j , (4.74)

where Hj is the spin-j irreducible representation of SU(2).

A spin-network has a clear geometric interpretation. The graph Γ is the dual of a 3d cellular

complex. When all nodes are 4-valent, the graph is dual to a 3d simplicial complex. Each

node is dual to a tetrahedron and each link is dual to a triangle. The area of the triangle is

given by the spin-j irreducible representation associated with the dual link of the triangle.

More precisely, the area A` is

A` = 8πγ
√
j`(j` + 1)`2p , (4.75)

where Γ is the Barbero-Immirzi parameter and `p is the Planck length (while this results

follows both from a canonical quantization of General Relativity in the continuum, and

from the geometric quantization of simplicial geometries, the identification of the length

scale with the Planck length is, of course, natural from the first perspective only).

A detailed analysis (see e.g. [84–86]) shows that the semi-classical regime of loop

quantum gravity states, in which the Regge-Einstein gravity can be recovered, at least

at the kinematical level, in the sense of approximating smooth geometries with simplicial

ones, is at a scale intermediate between the Planck scale `p and the average background

curvature scale LΛ, which means that if we are working on this regime, area A` of the

triangle should be

`2p � A` � L2
Λ (4.76)

Together with the relation A`/L2
Λ ∼ γ−1j1/2 � 1 uncovered in [84], the above regime is

equivalent to
1

j
� γ � 1

j1/2
(4.77)

In a semi-classical regime, then, one has A` ≈ γj``2p.
In [51], a special choice of M j

mm′

M j
mm′ = 〈j,m|n†e−πγLz−

exp(1−2πγLz)
4πγ n′

∣∣j,m′〉 (4.78)
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has been considered, with the property that the leading order of the entanglement entropy

between the two Hj on a link is proportional to the same area A` ≈ γj``
2
p in the semi-

classical regime. In (4.78), n and n′ are SU(2) elements; Lz is the SU(2) generator in

z-axis. We use the same choice for M j
mm′ in our calculation to obtain the Ryu-Takayanaki

formula.

Considering the same graph Γ as in the previous subsection, the spin-network state
∣∣Ψji

〉
and its corresponding density matrix ρ are given as∣∣∣Ψji

Γ

〉
≡
⊗
`

〈
M j`

∣∣⊗
n

∣∣∣φ jnin
n

〉
, ρ ≡

∣∣∣Ψji
Γ

〉〈
Ψji

Γ

∣∣∣ . (4.79)

Just as in the previous calculation, we divide boundary ∂Γ into two parts A and B. The

Nth Rényi entropy is

e(1−N)SN =
ZN

ZN0
=

ETr[ρ⊗NP(π0
A;N, d)]

E(Trρ)N
=

Tr
[⊗

` ρ
N
`

⊗
n E(ρNn )P(π0

A;N, d)
]

Tr
[⊗

` ρ
N
`

⊗
n E(ρNn )

] .

(4.80)

The first key step is to calculate E(ρNn ). Because the gauge symmetry is already encoded

in the intertwiner i for φjim, φjim is not a gauge symmetric tensor, which is in the invariant

space of H⊗4 as introduced in Section 2, but rather an ordinary tensor in ⊗`Hj` . So the

averge over ρNn can be performed in the same way as the one shown in [51]:

E(ρNn ) ≡
∫

dφjif(φji)
(∣∣∣φji〉〈φji∣∣∣)⊗N ≡ ∫

U(D)
dUf(φji)

(
U
∣∣∣φji0 〉〈φji0 ∣∣∣U †)⊗N ,

(4.81)

where f(φji) is a distribution of φji and U is the group element in the unitary group U(D),

in which D =
∏
`∈n dj` . f(φji) is invariant under the transformation of U(D) and in our

following calculation we focus on either the uniform or the Gaussian distribution, which

keep the main calculation unchanged up to an overall normalization that will be canceled

in the final result.

Because of Schur’s lemma, E(ρNn ) is the invariant tensor in (⊗`Hj`)
⊗N , which can be written

as a sum of permutations

E(ρNn ) = C
∑

πn∈SN

P(πn;N,D) = C
∑

πn∈SN

∏
`∈n
P(πn;N, dj`) (4.82)

where C is an normalization factor which depends on the distribution. Then ZN and ZN0
can be written as a sum of different patterns P(πn)

ZN = CVΓ
∑

πn∈SN

PA(πn), ZN0 = CVΓ
∑

πn∈SN

P0(πn) (4.83)

where # is the number of nodes in Γ. PA(πn) and P0(πn) can be written as products of

link values L(πn, π
′
n)

PA(πn) =
∏
`∈Γ

L`(πn, πn′)
∏
`∈A
L`(πn, π0

A)
∏
`∈B
L`(πn,1) (4.84)
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P0(πn) =
∏
`∈Γ

L`(πn, πn′)
∏
`∈∂Γ

L`(πn,1) (4.85)

where L`(π, π′) is defined as

L`(π, π′) ≡ Tr[P(π;N, dj`)ρ
N
` P(π′;N, dj`)] (4.86)

Suppose $ ≡ (π′)−1π =
∏
i Ci, where Ci is an ri-cycle, and impose (4.78) into (4.86).

L(π, π′) becomes

L(π, π′) =

χ($)∏
i=1

χj

(
e
−ri2πγLz−ri exp(1−2πγLz)

2πγ

)
(4.87)

In the semi-classical regime (4.77), the leading contribution of L(π, π′) is obtained as

L(π, π′) ≈
χ($)∏
i=1

1

ri
e
−1+(1−ri)2πγj−ri exp(1−2πγj)

2πγ

= e
−χ($)+(χ($)−N)2πγj−N exp(1−2πγj)

2πγ

χ($)∏
i=1

1

ri
(4.88)

A detailed calculation from (4.87) to (4.88) can be found in the appendix. When $ = 1,

i.e. π = π′ and χ($) = N , L(π, π) is then

L(π, π) ≈ e
−N−N exp(1−2πγj)

2πγ (4.89)

It is straightforward to check that L(π, π) ≥ L(π1, π2). In fact because the sum of ri equals

to N , L(π, π) can be rewritten as

L(π, π) =

χ($)∏
i=1

e
−ri−ri exp(1−2πγj)

2πγ (4.90)

Then the ratio between L(π1, π2) and L(π, π) is

L(π1, π2)

L(π, π)
=

χ($)∏
i=1

e
−1+(1−ri)2πγj−ri exp(1−2πγj)

2πγ

rie
−ri−ri exp(1−2πγj)

2πγ

=

χ($)∏
i=1

e(1−ri)(2πγj−1)

ri
≤ 1 . (4.91)

The last inequality holds because ri ≥ 1 and in the regime (4.77) γj � 1. The equality

holds if and only if π1 = π2.

If we assume that all j` are in the same order of magnitude, because of (4.91), one can

observe immediately that the leading term of ZN0 is P0(1), i.e. the permutation group for

all nodes is πn = 1. Suppose there are Li internal links and Le external links in Γ, then

ZN0 ≈ CVΓ
∏
`

e
−N−N exp(1−2πγj`)

2πγ . (4.92)

The Nth order Rényi entropy becomes

e(1−N)SN =
ZN

ZN0
≈
∑
πn

∏
`

χ($`)∏
i

e(1−ri)(2πγj−1)

ri
. (4.93)
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As shown in [27], in order for the single domain wall pattern to contribute the most to the

Rényi entropy, when three domain walls intersect, they should satisfy

χ($1)∏
i

e(1−ri)(2πγj−1)

ri
≥

χ($2)∏
i

e(1−ri)(2πγj−1)

ri

χ($3)∏
i

e(1−ri)(2πγj−1)

ri
, (4.94)

where $1$2$3 = 1. The above inequality can be simplified to

e[C($2)+C($3)−C($1)](2πγj−1)

∏χ($2)
i ri

∏χ($3)
i ri∏χ($1)

i ri
≥ 1 , (4.95)

where C($) is the Cayley weight of a permutation $ which satisfies the triangular in-

equality C($1$2) ≤ C($1) + C($2). In general, when C($1) < C($2) + C($3), the

above inequality is satisfied because when γj � 1 the exponential part of the inequality

dominant. When C($1) = C($2) + C($3), one can check that the inequality is satisfied

at least for N ≤ 313. Since we are only interested in the entropy while taking the limit

N → 1, this inequality is well satisfied. The Rényi entropy SN for small N is given as

e(1−N)SN ≈
∏

`∈∂AB

exp ((1−N)(2πγj` − 1)− lnN) . (4.97)

When N goes to zero, we have

SEE ≈
∑
`∈∂AB

[
2πγj` − 1− lim

N→1

lnN

1−N

]
=
A∂AB
4`2p

, (4.98)

which is exactly the Ryu-Takayanagi formula. Comparing with the calculation in [27],

we both reproduce the Ryu-Takayanagi formula from the spin-network state in the semi-

classical regime 4.2 of loop quantum gravity and GFT states. This gives further support

to the expectation that a classical gravitational theory can be recovered in this formalism.

Differently from [27], however, our result directly relies on the fundamental degrees of

freedom of the theory.

5 Randomness and Universality

The dictionary we have established between GFT states and (generalized) random tensor

networks suggest the potential for useful cross-over of results across these two research

13Using the geometric inequality, the left hand side of the above inequality becomes∏χ($2)
i ri

∏χ($3)
i ri∏χ($1)

i ri
≥ (C($2) + 1)(C($1)− C($2) + 1)(

N
N−C($1)

)N−C($1)

≥ (C($1) + 1)

(
N − C($1)

N

)N−C($1)

(4.96)

This simplification is very rough since one has to keep N
N−C($1)

to be integer. Even in this approximate

situation, we could find that it is bigger than 1 when N is a bit smaller than 3.
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areas. In particular, one can already envisage a direct application of results concerning the

quantum dynamics of GFT models and the statistical properties of random tensor models

to problems in statistical mechanics and condensed matter that can be formulated in terms

of random tensor networks.

Indeed, our path integral analysis generalises the statistical derivation given in [23],

where the random character of the tensors allowed to map the computation of typical Rényi

entropies to the evaluation of partition functions of generalized Ising models with inverse

temperature β ∝ logD, D being the dimension of each leg of each tensor in the network.

Interestingly, in the original work, the form of the averaged entropies was derived only in the

large D limit, where the fluctuations of the partition functions are effectively suppressed.

In the large D (low temperature) limit, corresponding to the long-range ordered phase for

the Ising models, the entropies of a boundary region can be directly related to the energy

of a domain wall between different domains of the order parameter: the Ising action can

be estimated by the lowest energy configuration and the minimal energy condition of the

domain wall naturally leads to the RT formula.

One set of results that appears immediately useful in this context concerns universality

properties of probability distributions over random tensors, in the limit of large D [87].

They represent a generalization to tensor distributions of the central limit theorem for

ordinary probability distributions.

Indeed, a recently proved universality theorem for random tensor fields [87] states

that a rank-d random tensor whose entries are Nd independent, identically distributed,

complex random variables, and whose distribution is a trace invariant (of the type defining

the interactions of tensorial GFTs as well), converges in distribution in the large D limit

to the distributional limit of a Gaussian tensor model, namely a Gaussian tensor field

theory. This is already quite remarkable. However, a second, stronger, universality result

[87] states that under only the assumption that the joint probability distribution of tensor

entries is invariant, assuming that the cumulants of this invariant distribution are uniformly

bounded, the large D limit the tensor distribution again converges to the distributional

limit of a Gaussian tensor model.

We expect these theorems to have direct applicability to random tensor networks, and

even to the generalized class corresponding to the infinite dimensional group fields, where

the large D limit refers to the regime in which any UV cut-off on group representations is

removed.

The key point to be careful about is that such theorems generally apply to distributions

of invariant tensor observables, constructed out of trace (bubble) invariants for bipartite

d-colored graphs [10]. Therefore, it does not directly apply to simple products of tensors

as we have dealt with in this paper. However, one may wonder how much of such universal

behavior survives for generic graphs when distributions of generic tensor observable are

considered, e.g. including polynomials made by contractions of tensors which leave some

indices free, as for the case of a contracted tensor network state associated to an open

graph.

Intuitively, if one randomizes tensors at the nodes independently of contractions, one

can still rely on such results, to some extent, but the conclusions become much less solid,
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because contractions do affect the scaling of the tensors. Much more solid would be to treat

the whole tensor network as an observable in a random tensor or GFT model; then, for

tensor networks associated to d-colored graphs (trace invariants), the universality theorems

would apply, thereby indicating a new direction for further characterizations of the tensor

network states. We postpone this type of evaluations to future work, alongside the complete

reformulation of tensor network states and their statistical average within the 2nd quantized

GFT framework.

6 Conclusions

Let us summarize our results in this paper. We have established a precise dictionary be-

tween GFT states and (generalized) random tensor networks. This dictionary also implies,

under different restrictions on the GFT states, a correspondence between LQG spin net-

work states and tensor networks, and a correspondence between random tensors models

and tensor networks. Next, we have computed the Rényi entropy and derived the RT en-

tropy formula, for random tensor networks with an additional gauge invariance property,

as suggested by the correspondence with GFT. We have then computed the same quantity

using directly GFT and spin network techniques, first using a simple approximation to

a complete definition of a random tensor network evaluation seen as a GFT correlation

function, but still using a truly generalized tensor network seen as a GFT state, and then

considering directly a spin network state as a random tensor network. This elucidates

further the correspondence and its potential. Finally, we have discussed how universality

theorems for random tensors can be applied to tensor network states, as a first example of

application of results from the theory of random tensors and GFT to tensor networks. We

are convinced that these results can be just the beginning of many further developments,

made possible by the fertile meeting between tensor networks and fundamental quantum

gravity, along the lines we have established.
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A Average over the random tensor

Let us first consider the case without the gauge symmetry (2.44). Given a graph with only

one node. The corresponding density matrix is

ρµµ ≡ TµTµ (A.1)

Consider n copies of the density matrix ρ⊗n. If T is uniformly distributed, then the average

ρ⊗n over T is

ET (ρ⊗n) ≡
∫

U(Dv)
dU

n∏
s=1

(UT 0)µ(s)(UT 0)µ̄(s) (A.2)
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Because of the Schur’s lemma, since HDv is the irrep of U(Dv), the result of the average is

the identity matrix on the symmetric subspace of H⊗nDv . When Trρ = 1, the result is

ET (ρ⊗n) =
1

Dv[n]

∑
π∈Sn

n∏
s=1

δµ(s)µ(π(s)) (A.3)

≡ 1

Dv[n]

∑
π∈Sn

P(π;n,Dv)

where

Dv[n] ≡ Dv(Dv + 1) · · · (Dv + n− 1) (A.4)

Sn is the symmetric group on n objects and

P(π;n,Dv) ≡
n∏
s=1

δµ(s)µ(π(s)) (A.5)

which is the representation matrix of π ∈ Sn on H⊗nDv . Using the gauge (2.42) or (2.49), we

can get the relation between representations on HDv and H⊗vD

δµ(s)µ(π(s)) ≡
v∏
a=1

δ
λ

(s)
a λ

(π(s))
a

(A.6)

Then we have

P(π;n,Dv) =
v∏
a=1

P(πa;n,D) (A.7)

If T is an random Gaussian vector, then the average is

ET (ρ⊗n) ≡
∫
DT e−β|T |

2
n∏
s=1

Tµ(s)Tµ(s) (A.8)

If we ask ET (ρ) = 1/Dv and T = xT̂ , where |T̂ | = 1, then β = Dv and the average ET (ρ⊗n)

becomes ∫
dx |x|2ne−D

v |x|2
∫

dU
n∏
s=1

(UT̂ 0)µ(s)(UT̂ 0)µ(s)

= (Dv)−n
∑
π∈Sn

n∏
s=1

δµ(s)µ(π(s)) (A.9)

Now let us consider the case with symmetry (2.44). The corresponding density matrix

is

ρµµ′ ≡ TµTµ = TµiTµi ≡ ρ̃µiµi (A.10)

The n copies of the density matrix is then written as

ρ⊗n =
n∏
s=1

ρ̃µi(s)µi(s) =
n∏
s=1

Tµi(s)Tµi(s) (A.11)
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If T is uniformly distributed, then the average of ρ⊗n over T is

ET (ρ⊗n) =

∫
U(Dv−1)

dU
n∏
s=1

(UT 0)µi(s)(UT
0)µi(s)

(A.12)

As shown in the first case, the result of the integral is the identity matrix in the symmetric

subspace of H⊗n
Dv−1 .

ET (ρ⊗n) ∝
∑
π∈Sn

n∏
s=1

δµi(s)µi(π(s))
(A.13)

≡
∑
π∈Sn

P{i(s)}{i(s)}(π;n,Dv−1)

The normalization will be calculated in the next subsection. P{i(s)}{i(s)}(π;n,Dv−1) is the

representation matrix of π ∈ Sn on H⊗n
Dv−1 with a set of {i(s)}{i(s)}. Similarly, when Tµ

is a Gaussian vector, the result of the average is the same as the above equation up to a

normalization.

By using the gauge (2.49), one can show the relation between representations µi and

λa. Because of (2.49), δµi(s)µi(s′) is not zero only when

[λa(s)− i(s)]D = [λa(s
′)− i(s′)]D (A.14)

because of the modular rules (2.46), the above equation can be rewritten as

[λa(s)− λa(s′)]D = [i(s)− i(s′)]D (A.15)

If [i(s)− i(s′)]D = ` ∈ Z/D, then

δµi(s)µi(s′) =

v∏
a=1

δ[λa(s)−λa(s′)]D,`
=

v∏
a=1

δ[λa(s)−`]D,λa(s′) (A.16)

One of the observation is that ` is a uniform shift for all legs of each node as long as the

step [i(s)− i(s′)]D = ` is fixed.

At the end of this subsection, let us define the trace on a tensor T{µ(s)}{µ(s)}. The trace

is given as

TrT = T{µ(s)}{µ(s)}

n∏
s=1

δµ(s)µ(s) (A.17)

With the symmetry (2.44),

TrT =
∑
{i(s)}
{i(s)}

T{µi(s)}{µi(s)}
n∏
s=1

δµi(s)µi(s)δi(s)i(s) (A.18)

The definition will be used in the following text.
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B Structure of the matrix of ET (ρ⊗n)

In this subsection we will analysis the structure of the matrix in (A.13), i.e. the structure

of

M ≡
∑
π∈Sn

n∏
s=1

δµi(s)µi(π(s))
=
∑
π∈Sn

P{i(s)}{i(s)}(π;n,Dv−1) (B.1)

The sum over P(π;n,Dv−1) is proportional to the projector operator Pn,D
v−1

sym which projects

vectors in H⊗n
Dv−1 into its symmetric subspace.

Pn,D
v−1

sym =
1

n!

∑
π∈Sn

P(π;n,Dv−1) (B.2)

Given a set of {i(s)} = {i(1), i(2), · · · , i(n)} and {i(s)} = {i(1), i(2), · · · , i(n)} where i(s)

and i(s) are from 0 to D − 1, there is a projector Pn,D
v−1

sym , which is a D(v−1)n×D(v−1)n

matrix. Write (A.13) as a matrix, with {i(s)} labeling its rows and {i(s)} labels its columns:

M = n!


P
n,Dv−1

sym · · · Pn,D
v−1

sym

...
. . .

...

P
n,Dv−1

sym · · · Pn,D
v−1

sym

 (B.3)

This matrix is a Dn×Dn block matrix.

The trace of M is

TrM =
∑
{i(s)}
{i(s)}

∑
π∈Sn

n∏
s=1

δµi(s)µi(π(s))
δµi(s)µi(s)δi(s)i(s)

=
∑
{i(s)}

∑
π∈Sn

n∏
s=1

δµi(s)µi(π(s))
δµi(s)µi(s)

=
∑
{i(s)}

∑
π∈Sn

n∏
s=1

δµi(s)µi(π(s))

=
∑
{i(s)}

n! TrPn,D
v−1

sym

= DnDv−1[n] (B.4)

where we use the trace of the projector Pnsym

TrPn,D
v−1

sym =

(
Dv−1 + n− 1

n

)
(B.5)
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The matrix M can be written as a sum of matrices

M =
∑
π∈Sn

n∏
s=1

δµi(s)µi(π(s))
(B.6)

=
∑
{m(s)}

∑
π∈Sn

n∏
s=1

δµ[i(s)−m(s)]D
µi(π(s))

δi(s)i(π(s))

=
∑
{m(s)}

∑
π∈Sn

n∏
s=1

δ[µ(s)−m(s)Dv−1]Dv ,µ
(π(s)) (B.7)

=
∑
{m(s)}

∑
π∈Sn

n∏
s=1

v∏
a=1

δ[λa(s)−m(s)]D,λa(π(s)) (B.8)

Let us define a class of new matrices P(π){m(s)} as

P(π){m(s)} ≡
n∏
s=1

v∏
a=1

δ[λa(s)−m(s)]D,λa(π(s)) (B.9)

=

n∏
s=1

δ[µ(s)−m(s)Dv−1]Dv ,µ
(π(s))

Then matrix M becomes

M =
∑
{m(s)}

∑
π∈Sn

P(π){m(s)} (B.10)

When m(s) = 0 for all s, P(π){0} = P(π;n,Dv), the representation matrix of π ∈ Sn on

H⊗nDv .

C From (4.87) to (4.88)

In this appendix we perform the calculation from (4.87) to (4.88). L(π, π′) is given by

(4.87). Let us denote 2πγ as c for simplicity, then L(π, π′) can be written as

L(π, π′) =

χ($)∏
i=1

χj

(
e−ricLz−ri

exp(1−cLz)
c

)
≡

χ($)∏
i=1

Iri (C.1)

Ir can be written in terms of SU(2) coherent state as

Ir = dj

∫
dn〈j, j|n†e−rcLz−r

exp(1−cLz)
c n|j, j〉

= dj

∞∑
k

(−)k rkek

k!ck

∫
dn〈j, j|n†e−(r+k)cLzn|j, j〉 (C.2)

≡ dj

∞∑
k

(−)k rkek

k!ck

∫
dn eS

(k)
r ≡ dj

∫
dn eSr (C.3)
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where Sr is the total action and S
(k)
r ≡ 2j ln〈↑ |n†e−c(r+k)Lzn| ↑〉 and |↑〉 ≡

∣∣1
2 ,

1
2

〉
. In the

semi-classical regime of loop gravity, i.e. the large spin-j regime, the leading contribution

of Ir is from the critical point of S
(k)
r , which is the solutions of the equations of motion

δnS
(k)
r = 0 ⇒ n†e−c(r+k)Lzn = e−αLz (C.4)

One can obtain the solutions

n†Lzn = ±Lz, α± = ±c (r + k) (C.5)

Bring the solutions back to Ir, we can get

Ir ∼ dj
∑
ε=±

eS
ε
r0√

detHε
r

≡
∑
ε=±

Iεr (C.6)

where Sεr0 is the total action Sr on the critical point

Sεr0 ≡ −εrcj − r
exp (1− εcj)

γ
(C.7)

and Hε
r is the Hessian matrix of Sr

Hε
r ≡

1

2
δ2
nSr|ε (C.8)

After perform the second derivation on Sr, one can obtain

detHε = 4j2r2 (−c+ exp (1− εcj))2 (C.9)

In the semi-classical and low energy limit

detHε ∼ 4j2N2 exp 2 (1− εcj) (C.10)

Then Iεr becomes

Iεr ∼
exp

(
−1 + εcj(1− r)− r exp(1−εcj)

c

)
r

(C.11)

One can observe that I+
r � I−r since when ε = −, in the large spin regime I−r goes to zero.

Ir thus becomes I+
r , which is one of the term in the product of (4.88).

Ir ≈ I+
r =

exp
(
−1 + cj(1− r)− r exp(1−cj)

c

)
r

(C.12)
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