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Abstract
We establish a dictionary between group field theory (thus, spin networks and 
random tensors) states and generalized random tensor networks. Then, we use 
this dictionary to compute the Rényi entropy of such states and recover the 
Ryu–Takayanagi formula, in two different cases corresponding to two different 
truncations/approximations, suggested by the established correspondence.
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1. Introduction

Background independent approaches to quantum gravity suggest a picture of the microstruc-
ture of the universe in which continuum spacetime and geometry disappear and are replaced 
by discrete and non-spatiotemporal entities. Among them, loop quantum gravity (LQG) [1–5], 
the modern incarnation of the canonical quantization programme for the gravitational field, 
together with its covariant counterpart (spin foam models), and group field theory (GFT) 
[6–9], a closely related formalism sharing the same type of fundamental degrees of freedom, 
identify this microstructure with (superpositions of) spin networks, which are graphs labeled 
by group-theoretic data. More precisely, in GFT models of quantum gravity spin network 
states arise as many-body states in a 2nd quantised context, whose kinematics and dynamics 
are governed by a quantum field theory over a group manifold with quanta corre sponding to 
tensor maps associated to nodes of the spin network graphs. Random combinatorial structures, 
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corresponding both to the elementary building blocks of quantum spacetime and to their inter-
action processes, become central. The same is true in the related context of random tensor 
models [10–12], which, for our present purposes can be seen as a simplified version of GFTs, 
stripped down of the group-theoretic data, leaving only the combinatorial aspects. Indeed, the 
random tensors can be understood as the GFT fields considered for the special case of a finite 
group. For a more detailed account of these three quantum gravity formalisms, and for the 
many results obtained, we refer to the cited literature. In the following, we will provide more 
precise definitions of their main ingredients.

Tensor networks, in recent years, have attracted a lot of attention as powerful quantum 
information tools in the context of condensed matter and, more generally, quantum many-body 
systems (including quantum field theory). For recent reviews, see [13, 14]. Also in this case, 
we will give precise definitions in the following. Here it suffices to say that tensor networks 
encode the entanglement properties of many-body systems in their combinatorial structure, in 
which tensors are connected along a network pattern and identify (the coefficients, in a given 
basis, of the wave function corresponding to) quantum states of the given system. Born as 
convenient mathematical tools for numerical evaluations of many-body wavefunctions, which 
become translatable into graphical manipulations, tensor network techniques have found an 
amazing number of applications: from the classification of exotic phases of quantum matter 
(e.g. topological order) [15, 16] to new formulation of the non-perturbative renormalization of 
interacting quantum field theories [17–19], down to realizations of the AdS/CFT correspond-
ence [20–23].

Despite their disparate origin, it should be clear already from our sketchy description that 
the type of mathematical structures identified by quantum gravity approaches and used in the 
theory of tensor networks are very similar. And consequently, it is very natural to try to put 
the two frameworks in more direct contact. This is the main goal of the present article. Indeed, 
the structural similarity had been noted before [24–27], and also exploited in the context of 
renormalization of spin foam models treated as lattice gauge theories [28–31]. The last set 
of works, in particular, has already shown how fruitful tensor network techniques can be for 
quantum gravity models.

In our case, the interest in connecting spin network states and tensor networks, specificly 
focusses on the possibility to exploit tensor network representation schemes to extract infor-
mation about the entanglement entropy encoded in spin network states and to investigate the 
holographic paradigm in the background independent context.

Along these lines, a particularly interesting scenario is provided by the statistical descrip-
tion of the holographic properties of networks of random tensors. In [23], the computation 
of typical Rényi entropies and other quantities of interest in the corresponding tensor net-
work states are mapped to the evaluation of partition functions of classical statistical models, 
namely generalized Ising models with boundary pinning fields and the minimal surfaces of 
Ryu–Takayanagi (RT) appear as domain walls. In particular, in the limit of large tensor indices 
dimension these statistical models experience a long-range ordered phase, and the entropies 
of a boundary region can be directly related to the energy of a domain wall between different 
domains of the order parameter. The main result in [23] defines a generalized form of ten-
sor network bulk-boundary correspondence which could be useful for extending holographic 
duality beyond AdS/CFT.

In this sense, in our work, we shall use the given dictionary between GFTs and tensor net-
works to investigate the statistical holographic behaviour of the random tensor network (RTN) 
states, in the combinatorial and background independent description of simplicial geometries 
in the non perturbative quantum gravity setting. Thus we show how the general RT picture 
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seems to be realised also in our background independent context, not relying directly on CFT 
features.

Before we start presenting our results, we want to offer some motivations for our work, 
both from the quantum gravity perspective and from the tensor network side.

From the quantum gravity point of view, the general motivation is clear. Tensor networks 
provide a host of tools and results that could find useful application in quantum gravity; in 
particular they may become central tools in the renormalization analysis of GFT models  
[32–37], in addition to their mentioned role in the renormalization analysis of spin foams 
models [38–40]. And such renormalization analyses are, in turn, the main avenue for solving 
the crucial problem of the continuum limit in such formalism.

More specifically, tensor networks are very effective in taking into account and control-
ling the entanglement properties of quantum states in many-body systems. This is exactly the 
language in which GFT deals with quantum gravity states; moreover, in GFT, the very con-
nectivity of spin network states, encoded in the links of the underlying graphs, is associated 
with entanglement between the fundamental quanta constituting them (associated to nodes) 
[41]. One example of this type of application, as we show in this paper, is the computation of 
entanglement entropy in spin network states and relate LQG with holography, which was also 
the subject of a number of other works in the LQG/GFT literature [27, 42–55].

Further, the identification of the true (interacting) vacuum state of a quantum gravity the-
ory, in absence of any space-time background or preferred notions of energy, is a difficult mat-
ter even at the purely conceptual level, leaving aside the formidable technical challenges. One 
possible criterion, suited to this context, is to look for states which maximize entanglement, 
by some measure (e.g. entanglement entropy). In this respect, to reformulate the kinematics 
and dynamics of GFT and LQG states in terms of tensor networks, and to do the same for their 
renormalization, seems a promising strategy.

Finally, recent results in the application of tensor networks to AdS/CFT [21–23] suggest 
that this application would be fruitful even within the conventional perspective of canonical 
quantum gravity (including LQG). From this perspective, in fact, the task of quantum gravity 
is the construction of the space of quantum states of the gravitational field which satisfy the 
(quantum counterpart of the) Hamiltonian constraint encoding the dynamics of quantised GR. 
A number of results in AdS/CFT suggest that a static AdS space-time, which we expect to be 
one such state, at the quantum level, satisfies the Ryu–Takayanagi (RT) formula [20] for the 
entanglement entropy, which is very efficiently computed (as we also show in this paper) via 
random tensor network techniques [23]. One is led to conjecture that this may be a general 
properties of physically interesting quantum states of the gravitational field, and so far no 
counterexample to this conjecture has been found. This prompts the search, by the same tech-
niques, for similar states in canonical quantum gravity.

From the perspective of the theory of tensor networks, one general good point of dwelling 
into the correspondence with quantum gravity states should also be obvious. This identifies a 
new domain of applications, of truly fundamental nature, for techniques and ideas which have 
already proven powerful in others. Indeed, we expect that a number of key results obtained 
via tensor network techniques, most notably holographic mappings and indications of new 
topological phases in many-body systems, can be reproduced in this new context, with deep 
implications. In perspective, it is here that one will be able to test the suggestion that quantum 
information has a truly foundational role to play in our understanding of physical reality.

More practically, a number of techniques have been developed, and many results obtained, 
concerning the dynamics of GFT and spin-network states, also thanks to the many related 
developments in the theory of random tensors, and our dictionary proves that the GFT formal-
ism provides a natural definition of the dynamics of random tensor networks. Specifically, it 
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means that the many results in GFT can help dealing with general (non-Gaussian) probability 
distributions over random tensor networks, as well as offering new takes on more standard 
problems, like entropy calculations, in tensor network theory. In fact, we offer some examples 
of these applications in the following.

In this paper, we do not target the more ambitious objective of a calculation of the RT 
formula for the entanglement entropy in the full quantum gravity formalism of group field 
theory. Having established the general dictionary between group field theory states and (gen-
eralized) random tensor networks, we content ourselves with reproducing the RT formula, 
along the lines of the derivation given in [23] in two new cases: for group field theory states 
corresponding to generalized tensor networks, but only using a group field theory dynam-
ics in the simplest approximation and dealing only with averages over the tensor functions 
associated to the network nodes, rather than treating the full tensor network as a group field 
theory observable; for the simple truncation of group field theory states corresponding to spin 
networks with fixed spin labels. We leave a more complete and comprehensive analysis for 
forthcoming work.

The paper is organized as follows. In the next section, we summarize the basic elements of 
spin network states and of their embedding in the GFT formalism, as well as the definition of 
tensor networks. Having done so, we define the precise correspondence between GFT states 
and tensor networks, showing how the first generalizes and provides a Fock space setting 
for the second. In the following section, we derive the Nth Rényi entropy using GFT tech-
niques, in the group representation and for a generalized tensor network, but without taking 
advantage of the full GFT formalism; next, we compute the same Rényi entropy and derive 
the RT formula from a purely spin-network perspective, seen as a truncation of more general 
GFT states. This is meant to be a clear example of how the same problem can be fruitfully 
approached from both sides of the correspondence. Finally, in the last section, we discuss one 
key universality result from the theory of random tensors, which extends to GFTs, and which 
could have direct impact on the applications of random tensor networks. We end up with a 
summary of our results.

2. Group field theory and tensor networks

A d-dimensional GFT is a combinatorially non-local field theory living on (d copies of) a 
group manifold [6–9]. Due to the defining combinatorial structure, the Feynman diagrams F  
of the theory are dual to cellular complexes, and the perturbative expansion of the quantum 
dynamics defines a sum over random lattices of (a prior) arbitrary topology. A similar lat-
tice interpretation can be given to the quantum states of the theory. For GFT models where 
appropriate group theoretic data are used and specific properties are imposed on the states 
and quantum amplitudes, the same lattice structures can be understood in terms of simplicial 
geometries. The associated many-body description of such lattice states can be given in terms 
of a tensor network decomposition. The corresponding (generalized) tensor networks are thus 
provided with a field theoretic formulation and a quantum dynamics (and, in specific models, 
with additional symmetries). In this section, after a brief introduction to the GFT formalism, 
we detail this correspondence between GFT states and (generalized) tensor networks.

2.1. Group field theory

Let G denote an arbitrary semi-simple Lie group; in the following, we assume for simplicity 
that G is compact, but the framework can easily be generalized to the non-compact case. A 
group field ϕ is a complex function defined on a number of copies of the group manifold G:
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ϕ : Gd → C

gi �→ ϕ(gi)
 (1)

where we use the shorthand notation gi for the set of d group elements {g1, g2, · · · , gd}.
The GFT field can be also seen as an infinite-dimensional tensor, transforming under the 

action of some (unitary) group U×d, as:

ϕ(g1, .., gd) →
∫
[dgi]U(g′

1, g1) · · ·U(g′d, gd)ϕ(g1, ..., gd),

and

ϕ∗(g1, .., gd) →
∫
[dgi]U∗(g1, g′1) · · ·U∗(gd, g′d)ϕ

∗(g1, ..., gd)

for
∫

dgi U(g′i , gi)
∗U(gi, g̃i) = δ(g′

i , g̃i).
 

(2)

This requires the d arguments of the GFT field to be labeled and ordered. We will see in 
the following how one can decompose the same field into finite-dimensional tensors; in this 
finite-dimensional case, the correspondence with tensor network formalism will be evident, 
and it will also be evident then in which sense GFTs provide a generalization of it.

The GFT dynamics is defined by an action, at the classical level, and a partition function 
at the quantum level. The combinatorial structure of the pairing of field arguments in the GFT 
interactions is part of the definition of a GFT model. An interesting class of models [6–12] is 
defined by the requirement that the interaction monomials are tensor invariants, i.e. that GFT 
fields are convoluted in such a way as to produce an invariant under the above mentioned 
(unitary) transformations1.

Another class of GFT models is instead based on the requirement that the Feynman dia-
grams of the theory are simplicial complexes, which in turn requires the interaction kernels to 
have the combinatorial structure of d-simplices. This class of models is also the one on which 
model building for 4d quantum gravity has focused on, producing models whose Feynman 
amplitudes have the form of simplicial gravity path integrals and spin foam models [6–9], and, 
more generally, lattice gauge theories. This involves an additional symmetry requirements on 
the GFT fields and interactions, which will play a crucial role in the following.

In this simplicial case, the GFT action has the general form

Sd[ϕ] =
1
2

∫
dgidg′i ϕ(gi)K(gig′−1

i )ϕ(g′
i)

+
λ

d + 1

∫ d+1∏
i�=j=1

dgij V(gijg′−1
ji )ϕ(g1j) · · ·ϕ(gd+1j),

 

(3)

where dgi is an invariant measure on G and we use the notation ϕ(g1j) = ϕ(g12, · · · , g1d+1). 
K is the kinetic kernel, V  the interaction kernel, λ a coupling constant for the d  +  1-degree 
homogeneous interaction. The two kernels satisfy the invariance properties

1 Such invariants are in one to one correspondence with colored d-graphs B constructed as follows: for each GFT 
field (resp. its complex conjugate) draw a white (resp. black) node with d outgoing links each labeled by d different 
colors, then connect all links in such a way that a white (resp. black) node is always connected to a black (resp. 
white) node and that only links with the same color can be connected.

G Chirco et alClass. Quantum Grav. 35 (2018) 115011
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K(h gig′−1
i h′) = K(gig′i),

V(hi gijg′−1
ji , h−1

j ) = V(gijg′−1
ji ) ∀h, h′, hi ∈ G.

 (4)

This implies that the action is invariant under the gauge transformations δϕ(gi) = ϕ̃(gi), 
where ϕ̃ is any function satisfying

∫

G
dh ϕ̃(hg1, · · · , hgd) = 0. (5)

This symmetry is gauge fixed if one restricts the field ϕ to satisfy

ϕ(hgi) = ϕ(gi). (6)

The action is also invariant under the global symmetry

ϕ(g1, · · · , gd) → ϕ(g1h, · · · , gdh). (7)

GFT’s Feynman diagrams define cellular complexes F  weighted by amplitudes assigned 
to the faces, edges and vertices of the dual two-skeleton of a chosen triangulation of a d 
dimensional topological spacetime MF . As mentioned, their Feynman diagram evaluations 
reproduce the associated amplitudes of a spin foam model, or, in different variables, of a sim-
plicial gravity path integral [56–58], providing a generalisation of the lattice formulation of 
gravity à la Regge, with an accompanying sum over lattices, generalising matrix models for 
2d gravity to any dimension [6–12].

Let us give some more detail on the construction, to clarify the above points. A specific 
theory, with a specific related Feynman cellular complex, is completely defined by the choice 
of the kernels. Lets consider the simplest case, consisting in the choice

K(gi, g′i) =
∫

G
dh

∏
i

δ(gig′−1
i h), (8)

V(gijg′−1
ji ) =

∫

G

∏
i

dhi

∏
i<j

δ(hi gijg′−1
ji , h−1

j ) (9)

where δ(·) is the delta function on G and the integrals ensure the gauge invariance defined in 
(5), and let us restrict to the case of dimension d  =  3. To keep track of the combinatorics of 
field arguments in the kernels, it is useful to represent the Feynman diagram as a stranded 
graph. The field ϕ has three arguments, so each edge of a Feynman diagram comprises three 
strands running parallel to it. Four edges meet at each vertex and the form of the interaction V  
in (9) forces the strands to recombine as in figure 1.

The three strands running along the edges can be understood to be dual to a triangle and the 
propagator K gives a prescription for the gluing of two triangles. At the vertex, four triangles 
meet and their gluing via V  form a tetrahedron. With this interpretation the Feynman diagram 
of a GFT is clearly dual to a triangulated 3d simplicial complex (which will be generically a 
singular pseudo-manifold) and this is true in any dimension [59–61].

The quantum states of the theory can be given a similar combinatorial characterization 
in terms of graphs and dual cellular complexes, as it should be already intuitive in the above 
example, in which GFT fields themselves are associated to triangles. We will not detail this 
aspect of the formalism.

G Chirco et alClass. Quantum Grav. 35 (2018) 115011
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2.2. Fourier modes of the group field as tensor fields

As a function on a group G, the field ϕ can be decomposed in terms of unitary irreducible 

representations (ρ, Vρ) of G using the Peter–Weyl theorem, L2(G) �
⊕

ρ Vρ ⊗ V∗ρ, giving

ϕ(g) =
∑
ρ

dρTr[ϕ̂ab ρ
ab(g)]. (10)

Here, dρ ∈ N is the dimension of the representation ρ : G → Aut(Vρ), the indices 
a, b = 1, . . . , dρ are matrix indices associated to the matrix ρ(g) representing the group ele-
ment g, and ϕ̂ρ ∈ Vρ ⊗ V∗ρ � End(Vρ) is the matrix Fourier coefficient of the function ϕ. In 
other words, each ϕ̂ρ is a rank dρ = N  matrix.

Let us consider, as a specific example, the same decomposition for the case of d  =  3, with 
G = SU(2). The unitary irreps of SU(2), V j, are labeled by the spin j ∈ N/2. Using the right 
invariance property of the field, one obtains the following decomposition

ϕ(g1, g2, g3) =
∑
{ j}

Tr

[
ϕ{ j}

m1,m2,m3

(∏
i

√
dji D

ji
mi,ni

(gi)

)
ī{ j}
n1,n2,n3

]
 (11)

where dj is the dimension, D j(g) ∈ End(V j) the group matrix element and 
i{ j}
n1,n2,n3 ∈ HomG(V j1 ⊗ V j2 ⊗ V j3 , C) is the three-valent intertwiner operator (related to the 

Clebsch–Gordan map Ψ j3
j1j2 : V j1 ⊗ V j2 → V j3). We used the shorthand notation { j } for the 

set of spin labels ( j1, j2, j3).
The fields ϕ{ j}

m1,m2,m3 result from the contraction of the Fourier transformed GFT fields ϕ̂{ j} 
with the intertwiner tensor imposing the gauge symmetry at the vertex2.

ϕ
{ j}
{m} =

∑
{k}

ϕ̂
{ j}
{m};{k} i{k}

{ j}

∏
i

√
dji . (12)

Figure 1. Correspondence between Feynman diagram and triangulation: Each strand 
of the graph forms a closed loop which can be interpreted as the boundary of a 2d 
disk. These data are enough to reconstruct a topological 2d complex F , the vertices 
and edges of this complex correspond to vertices and edges or the Feynman graph, the 
boundary of the faces of F  correspond to the strands of the Feynman graph.

2 This is the standard factorization of a symmetric tensor into a degeneracy tensor with all the degrees of  
freedom and a structural tensors (the Clebsch–Gordan coefficients) completely determined by the symmetry group 
G (Wigner–Eckart theorem) [25].

G Chirco et alClass. Quantum Grav. 35 (2018) 115011
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The Fourier transformed fields depend on the (discrete) representation space labels of the 
Lie group in question. Thus, generically Fourier transformed GFT fields are tensors of some 
rank d, ϕ{mj} with discrete indices �mj = {m1, . . . , md}3.

In (11), such tensors are contracted with the spin network basis tensors

S{ j}
{m} =

(∏
i

√
dji D

ji
mi,ni

(gi)

)
ī{ j}
{n}, (13)

encoding the properties of the vertex of the spin network graph dual to the (d-1)-dimensional 
triangulation that can be associated to the GFT states.

2.3. Group field single particle states

Functions ϕ(gi) can also be understood as single particle wave functions for quanta corre-
sponding to single open vertices of a spin network graph (in fact, they also label coherent 
states of the GFT field operator, which define the simplest condensate states of the theory  
[55, 62, 63]).

Let us define these ‘single-particle’ quantum states as

|ϕ〉 =
∫

Gd
dgi ϕ(gi) |gi〉 (14)

where dgi ≡ dg1dg2 . . . dgd  is the Haar measure on the group manifold Gd, invariant under 
the gauge transformation, and the vectors |g1〉 . . . |gd〉 provide a basis on the respective infinite 
dimensional spaces H � L2[G].

The single particle state |ϕ〉 is then defined in H⊗d . Moreover we require |ϕ〉 to be nor-
malized (this is of course not the case for the classical GFT fields or the GFT condensate 
wavefunctions):

〈ϕ|ϕ〉 =
∫

dgi ϕ(gi)ϕ(gi) = 1. (15)

Considering the case of G = SU(2), we can decompose the basis |g〉 into the unitary irreduc-
ible representation of SU(2) as

|g〉 ≡
∑
j,m,n

√
djD

j
mn(g)

∣∣j, n, m†〉
 (16)

and viceversa

∣∣j, n, m†〉 =

∫

SU(2)
dg
√

djD j
mn(g) |g〉 . (17)

In particular, the tensor decomposition given in (11) holds at the quantum level, hence defin-

ing the quantum fields ϕ{ j}
m1,m2,m3 as actual tensors states.

Tensors in (13) defines the SU(2)-invariant single vertex spin network wave functions (in 
group representation)

ψχ(gi) = 〈χ|gi〉 =

(∏
i

√
dji D

ji
mi,ni

(gi)

)
ī{ j}
{n}. (18)

3 To regularize some quantities, especially at the dynamical level, it may be necessary to impose a (large) cut-off N 
in the range of the representation indices.

G Chirco et alClass. Quantum Grav. 35 (2018) 115011
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The basis vector |χ〉 = |j, m, i〉 denotes the standard SU(2) spin network basis (labelled by spins 
and angular momentum projections associated to their d open edges, and intertwiner quantum 
numbers).

2.4. Many-body description and tensor network states

We now describe the quantum states of the formalism, emphasizing their many-body struc-
ture, following [64].

Consider a d-valent graph formed by V disconnected components, each corresponding to a 
single gauge invariant d-valent vertex and d 1-valent vertices, thus having d edges4. We refer 
to this type of disconnected components as open spin network vertices.

To such a graph we can associate a generic wavefunction given by a function of d × V  
group elements,

Φ(gi
a) = Φ(g1

1, ..., gd
1, g1

2, ..., gd
2, · · · , g1

V , ..., gd
V) (19)

defined on the group space Gd×V/GV  (V copies of Gd, quotiented by the isotropy group of 
the single particle function ϕ(v)(gi) at the each vertex); here the index a runs over the set of 
vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living on 
the group manifold Gd, and having as classical phase space (T ∗G)d  (which is also the classi-
cal phase space of a single open spin network vertex or polyhedron).

Accordingly, a state |Φ〉 ∈ HV � L2[Gd×V/GV ] can be conveniently decomposed into prod-
ucts of single-particle (single-vertex) states,

Φ(ga
i ) = 〈ga

i |Φ〉 =
∑

χi,i=1...V

ϕχ1...χV ψχ1(gi) · · ·ψχV (gi). (20)

While the above decomposition is completely general, a special class of states can be con-
structed in direct association with a graph or network Γ. The association works as follows. 
Start from the d-valent graph with V  disconnected components (open spin network vertices) to 
which a generic V-body state of the theory is associated. A partially connected d-valent graph 
can be constructed by choosing at least one edge i in a vertex a and gluing it to one edge j of 
the vertex b, i.e. joining the two edges along their 1-valent vertices. The final graph will be 
fully connected if all edges have been glued. Each pair of glued edges {ai, bj} will identify a 
link L of the resulting (partially) connected graph. In the spin representation, i.e. in terms of 
the basis of functions ψχ1(gi) · · ·ψχV (gi), the gluing is implemented by the identification of 
the spin labels jai  and jbj  associated to the two edges being glued and by the contraction of the 
corresponding vector indices ma

i  and mb
j . In other words, the corresponding wave functions for 

closed graphs can be decomposed in a basis of closed spin network wave functions, obtained 
from the general product basis by means of the same contractions:

ΦΓ(ga
i ) = 〈ga

i |ΦΓ〉 =
∑

χa,a=1...V

Φ
j1i ...jVi
Γ

[(∏
L∈Γ

δjai ,jbj
δma

i ,mb
j

)
ψχ1(gi) · · ·ψχV (gi)

]

 

(21)

4 One could work instead with the larger Hilbert spaces of non-gauge invariant states L2[Gd×V ] without imposing 
any gauge symmetry at the vertices of spin network graphs, and consider this condition as part of the dynamics. The 
above construction would proceed identically, with the same final result, but with the basis of single-vertex states 
now given by the above functions without the contraction of representation function with a G-intertwiner.
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where the coefficients of the wave function can in turn be understood as the resulting of 
considering generic coefficients ϕχ1...χV  and contracting them with some choice of functions 

M
jai jbj

na
i nb

j
δjai ,jbj

:

Φ
j1i ...jVi
Γ = ϕχ1...χV

(∏
L∈Γ

δjai ,jbj
M

jai jbj
na

i ,nb
j

)
, (22)

where the contraction is left implicit.
For fixed { j }, each resulting contraction scheme of tensors (each identified by a set of 

labels χ) defines a tensor network state.
In the group representation, the gluing amounts to considering wave functions with a spe-

cific symmetry under simultaneous group translation of the arguments associated to the edges 
being glued:

ΦΓ(gi
a) = ΦΓ(g1

1, ..., gd
1hd1

1V , g1
2, ..., gd

2, · · · , g1
Vhd1

1V , ..., gd
V). (23)

In the end, given a tensor network with graph Γ, the Φ j1i ...jVi  defined above will contain all the 
information about the combinatorics of the quantum geometry state.
A further special case corresponds to those states for which the coefficients ϕχ1...χV  them-
selves have a product form, i.e. can be decomposed in terms of tensors. In this case, as it is 
for the spin network wave functions, the coefficients Φ j1i ...jVi  can be obtained as a tensor trace

Φ j1i ...jVi = Tr[
⊗

L

M
⊗

v

ϕ
{ j} (v)
{m} ], (24)

again, in the case of fully connected graphs Γ (otherwise, some angular momentum labels will 
remain on the left had side, corresponding to the edges that have not been glued). In lattice 
theory, we would say that the network Γ (fixed { j }) provides a tensor network decomposition 
of the tensor state Φ j1i ...jVi .

The equivalence of a special class of GFT states with the lattice tensor network states, and 
the sense in which GFT states generalise them, can be further elucidated by the following 
example.

2.5. Link state as a gluing operation

A tensor T̂  is a multidimensional array of complex numbers T̂λ1,...,λd ∈ C. The rank of tensor 
T̂  is the number d of indices. The size of an index λ, denoted d|λ|, is the number of values that 
the index λ ∈ N takes [65].

Analogously, at the quantum level, to each leg of the tensor one associates a Hermitian inner 
product space HD, with dimension D given by the size of the indices λ ∈ {1, 2, ..., d|λ| = D}. 
Given an orthonormal basis |λ〉, in HD, a covariant tensor of rank d is a multilinear form on the 
Hilbert space of the vertex T : H⊗d

D → C. Hence a tensor state is written as

|T〉 =
∑

λ1,...λd

T̂λ1···λd |λ1〉 ⊗ · · · ⊗ |λd〉 (25)

where T̂λ1···λd ≡ T(λ1, . . . ,λd) denote the components in the canonical dual tensor product 
basis.

A tensor network is generally given by a set of d-valent vertices v, corresponding to rank 
d tensors. In particular, a state corresponding to a set of unconnected vertices is written as a 
tensor product of individual vertex states
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11

|TN 〉 ≡
⊗

n

|Tn〉 . (26)

Individual vertex states are glued by links. To each end of a link we associate a Hilbert 
space HD. The Hilbert space of the link � is then H� = H⊗2

D  and a link state can be written as

|M〉 = Mλ1λ2 |λ1〉 ⊗ |λ2〉 (27)

where we choose to take the link states |M〉 to be generically entangled5. In general, the entan-
glement of the links will encode the information on the connectivity of the graph. Two nodes 
are connected if their corresponding states contract with a link state,

T̂12 ≡ 〈M| |T1〉 |T2〉 = T(1)
λ1···λa···λv

Mλaλb T(2)
λ′

1···λb···λ′
u

v⊗
i�=a

|λi〉 ⊗
u⊗

j�=b

|λ′
i〉 . (29)

Notice that if |M〉 was a non-entangled state, the connection would be trivial, i.e. the two nodes 
would be practically disconnected and the corresponding state could be written as a tensor 
product of two states,

T̂12 = T(1)
λaλ1···λv

Aλa

v⊗
i=1

|λi〉 ⊗ Bλb T(2)
λbλ′

1···λ′
u

u⊗
j=1

|λ′
i〉

= |T ′
1〉 ⊗ |T ′

2〉 .

 (30)

Then given a network N  with N nodes and L links, the corresponding state is

|ΨN 〉 ≡
L⊗
�

〈M�|
N⊗
n

|Tn〉 . (31)

Because all links are contracted with nodes, |ΨN 〉 is then in the Hilbert space associated to the 
boundary links of the network, which is denoted as H∂N . |ΨN 〉 is a state in H∂N .

The above structure can be identified also for the special GFT states mentioned at the end 
of the previous subsection, which are formed by generalised L2(Gd) functions associated to 
the nodes of the network. In this case, the analogous of the generic link state in (27), which is 
also the group counterpart of the gluing operators associated in the spin representation to the 
matrices M, can be defined in as the convolution functional

〈Mg� | ≡
∫

dg1dg2 M(g†1g�g2) 〈g1| ⊗ 〈g2| ∈ H∗⊗2, (32)

where the functions M(g) are assumed to be invariant under conjugation M(g)  =  M(hgh−1). 
When a link � connects two nodes, say a and b, the corresponding state 〈Mg� | contracts with 
states |ϕa〉 and |ϕb〉

〈Mg� | |ϕa〉 |ϕb〉 =
∫

dg1dg2dga
i dgb

i M(g†1g�g2) ϕa(g1, ga
i )ϕb(g2, gb

i ) |ga
i 〉 |gb

i 〉,
 

(33)

5 One can observe it by defining a density matrix ρM ≡ |M〉 〈M| and tracing out one of the Hilbert space, without 
losing generality, tracing out HD of |λ2〉, then computing the von Neumann entropy of the reduced density matrix 
ρ1 ≡ Tr2ρM = M†M . The entropy S = Trρ1 ln ρ1 is non-zero unless Mλ1λ2 can split as Mλ1λ2 = Aλ1 Bλ2 . For sim-
plicity, in the next sections we will often assume that the link state is maximally entangled, i.e.

|M〉 = 1√
D
δλ1λ2 |λ1〉 ⊗ |λ2〉 . (28)

G Chirco et alClass. Quantum Grav. 35 (2018) 115011



12

where we have singled out, among the arguments of the vertex wave functions ϕ the ones 
affected by the gluing operation. In these terms, the open d-valent tensor network graph Γ with 
V  vertices, can be written as

|Φg�
Γ 〉 ≡

⊗
�∈Γ

〈Mg� |
V⊗
n

|ϕn〉 =
∫

dg∂ ΦΓ(g�, g∂) |g∂〉 (34)

where the {g∂} denote the group elements on the open links.
The role of the link state in tensor network, thus, is naturally generalised by the convolu-

tion function, defined for the group field variables. This is due to the fact that the group fields 
ϕ(gi) on Gd can be interpreted as rank d tensors, with indices spanning the group space G, and 
associated Hilbert space (for each index) being L2(G)6. The multiparticle state given in (23) 
can then be interpreted as a tensor state with indices g∂ and rank given by the number of open 
links of the spin network graph.

2.6. Link function in spin decomposition

As showed in section 2.4, many-body state can also be decomposed into spin representations. 
Suppose M(g†1g�g2) can be written as

M(g†1g�g2) =
∑
jmn

djM j
mnD j

mn(g
†
1g�g2). (37)

Then, as a simple example, the state 〈Mg� | |ϕa〉 |ϕb〉 can be written in terms of ϕj
kn, im and 

M j
mn as7

〈Mg� | |ϕa〉 |ϕb〉 =
∫

dg1dg2dga
i dgb

i M(g†1g�g2)ϕa(g1, ga
i )ϕb(g2, gb

i ) |ga
i 〉 |gb

i 〉

=
∑

jmnklpq

∑
iaib

[ia]p[ϕa]
jja
pnanM j

nm[ib]q[ϕb]
jjb
qmb(−m)(−)m |jb, mb〉 |ja, na〉 [ia]kakD j

kl(g�)[ib]lb(−l)

× (−)l |ja, k†
a〉|jb, l†b〉.

 (38)

6 The case of ordinary, finite-dimensional tensors is obtained if we pass from a Lie group to a discrete group. Let us 
consider, as a basic example, the case of a field defined on the discrete nth cyclic group Zn. Given the nonempty set

X = {�λ |�λ = (λ1, . . . ,λd), λk ∈ Zn}, (35)
the field ϕ : X → R (or C) is a real or complex valued function on X and we indicate by

ϕ�λ ≡ ϕ(�λ), (36)

the value of ϕ on the set of d elements �λ. The function ϕ�λ can be interpreted as a tensor with d discrete indices 
ϕλ1,...,λd , where λ ∈ {1, 2, . . . , | dim(Zn)|}.
7 Notice that we are introducing the bold font for vectorial quantities, in order to shorten the notation in spin  
representation.
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Graphically, the last line can be presented as

 

(39)

From the graphic equation, one can immediately observe that the upper part is an open tensor 
network 

∣∣Φji〉, given by the tensor trace of a collection of tensors

φ ji
m ≡

∑
n

inϕ j
nm (40)

for each node and matrices M j
mn for each link.

2.7. Dictionary

We summarize the established dictionary between group field theory states and generalized 
random tensor networks in terms of two synthetic tables. The correspondence between group 
field theory and tensor network description is summarized in table A:

Table A Group fields Tensors

Group basis |gi 〉 ∈ H � L2[G] |λi〉, λi = 1, . . . , D 
in HD

Index basis

One particle state |ϕ〉 =
∫

Gd dgi ϕ(gi) |gi〉 |Tn〉 =
∑

{λi} T{λi}

|λi〉 ∈ Hn = H⊗d
D

Tensor state

Gluing functional 〈Mg� | =
∫

dg1dg2 M(g†1g�g2) 
〈g1| 〈g2| ∈ H∗⊗2

|M〉 = Mλ1λ2 |λ1〉
⊗ |λ2〉 ∈ H� = H⊗2

D

Link state

Multiparticle State |ΦΓ〉 ∈ HV � L2[Gd×V/GV ] |ΨN 〉 Tensor network state

Product state  
convolution

|Φg�
Γ 〉 ≡

⊗
�∈Γ 〈Mg� |

⊗V
n |ϕn〉

=
∫

dg∂ ΦΓ(g�, g∂) |g∂〉
|ΨN 〉 ≡

⊗L
� 〈M�|⊗N

n |Tn〉 ∈ H∂N

Tensor network  
decomposition

Randomness 1
Z dν(ϕ) Field theory  
probability measure

TU
µ ≡ (UT0)µT0

µ ≡
vT0

λ1···λd
∈ HT ,

U ∈ U(dim(HT))

Random tensor state

The generalisation of tensor networks in terms of GFT states is evident in the spin-j decom-

position of the latter ϕ(gi) =
∑

j Tr[ϕ j
{m}

(∏
i

√
dji D

ji
mi,ni

(gi)
)

ī j
{n} ].

Once we turn off the sum over all possible js, fix the representation labels and ask them to 

be equal, generically Fourier transformed GFT fields ϕ j
{m}, are tensors of single rank d, with 
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discrete indices mi = {m1, . . . , md} spanning a finite dimensional space. The equivalence is 
summarized in table B:

Table B GFT network Spin tensor network Tensor network

Node ϕ(�g) ≡ ϕ(g1, g2, g3, g4) ϕ j
{m} ∝

∑
{k} ϕ̂

j
{m}{k} ij{k} T{µ}

Link M(g†1g�g2) M j
mn

Mλ1λ2

Sym ϕ(h�g) = ϕ(�g) ∏v
s D j

msm′
s
(g)iim′

1···m′
v
= iim1···mv

∏v
s Uµsµ′

s
Tµ′

1···µ′
v
= Tµ1···µv

State |Φg�
Γ 〉 ≡

⊗
� 〈Mg� |

⊗
n |ψn〉 |Ψji

Γ〉 ≡
⊗

�〈M j� |
⊗

n |φ jnin
n 〉 |ΨN 〉 ≡

⊗L
� 〈M�|

⊗N
n |Tn〉

Indices gi ∈ G, |gi 〉 ∈ H � L2[G] mi ∈ Hj, SU(2) spin-j irrep. µi ∈ Zn, nth cyclic group
dim ∞ dimHj = 2j + 1 dimZn = n

In the following sections, with the longer-term goal of a full understanding and computa-
tion of the Ryu–Takayanagi (RT) formula [20] in the field-theoretic GFT context, we are 
going to use the inputs provided by the established dictionary to investigate the holographic 
RT formula for the case of networks of combinatorial tensor group fields described by means 
of the GFT formalism and spin network techniques, along the lines proposed for the case of 
random tensor networks by [23].

In the tensor network generalisation of the gauge gravity duality [21], the RT formula strongly 
supports a general relation between entanglement and geometry, in turn leading to the sugges-
tion that the whole of spacetime geometry can be understood as emergent from (quantum infor-
mation-theoretic) properties of non-spatiotemporal quantum building blocks. Of course, this last 
suggestion has a life on its own and it has been brought forward in many different contexts [63, 
66–73]. In this sense, our work provides further steps towards the calcul ation of the RT formula 
within a complete quantum gravity setting, a concrete and general indication of the holographic 
character of gravity, which goes beyond the AdS/CFT gauge gravity duality framework.

3. Ryu–Takayanagi formula for a GFT tensor networks

The starting point of our analysis is the state |ΨΓ〉, corresponding to an open network graph 
where each node is dressed with a group field generalised tensor. Because of the field theo-
retic description, we can see the network as a random tensor network and use the established 
correspondence to apply standard path integral formalism to evaluate the expectation values 
of entropies and other tensor observables. In particular, then, our goal consists in investigate 
the holographic entanglement properties of the GFT network by means of techniques recently 
applied to the study of the holographic behaviour for random tensor networks [23], building 
on the dictionary we have established between the two languages. This calculation is not in the 
full GFT setup, i.e. the state |ΨΓ〉 is not treated, in the calculation of the averaging over random 
(generalised) tensors, as an n-point function of a given GFT. This more complete calculation 
is postponed to a future analysis. Still, we apply several techniques from GFT and generalized 
the calculations in [23] based on our dictionary:

 1.  Tensors are generalized to group fields, from a finite dimensional object to a square inte-
grable L2 function, mapping from group manifolds to the complex numbers C.

 2.  A gauge symmetry of the group field associated to each vertex as a vertex wave function 
is introduced in order to fit our setup more to the context of the quantum gravity theory.

 3.  The average over the N-replica of the wave functions (generalised tensors) associated to 
each network vertex is reinterpreted as a N-point correlation function of a (simple) GFT 
model, which turns the averaged Rényi entropy into an amplitude in GFT.
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The last point can be seen as an approximation of a more complete calculation in which the 
(average over the) whole tensor network is understood as a GFT N-point function, and com-
puted as such. This more complete calculation based on the full GFT setup is being explored 
[75]. We believe that the leading term of the entropy, at least for the entanglement entropy, 
would not be changed.

Given our tensor network state, |ΨN 〉 ≡
⊗L

� 〈M�|
⊗N

n |Tn〉 ∈ H∂N , we start by consider-
ing a bipartition of the boundary Hilbert space,

Figure 2. A tensor network Γ is a set of tensors whose indices are contracted according 
to a network pattern. A network pattern can be always represented as a graph, given by 
a set of nodes (n) and links (�) connecting nodes. A link is called an internal link when 
it connects two different nodes; while it is called a boundary link when it connects only 
one node. The number of links that connect to a node is called the valence of the node.

Figure 3. Boundary ∂N  of network N  divided into two parts A and B.
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H∂N = HA ⊗ HB (41)

associated to the definition of two— a priori non adjacent—subregions A and B of the bound-
ary (see figure 3).

A measure of the entanglement between the two subsystems is given by the von Neumann 
entropy of the reduced density matrix of the subsystem, either A or B, defined by partial tracing 
over the full system Hilbert space. Focussing on subsystem A, for ρ ≡ |ΨN 〉 〈ΨN |, we have

ρA = TrB(ρ), (42)

and the entanglement entropy between A and B is given by the von Neumann entropy

SEE(A) = −Tr[ ρ̂A ln ρ̂A ], (43)

where now

ρ̂A ≡ ρA

Trρ (44)

is the normalized reduced density matrix.
In order to calculate SEE(A), due to the technical difficulty in computing the von Neumann 

entropy, we need to make use of the standard replica trick. Contracting N copies of the reduced den-
sity matrix ρA and taking the logarithm of the trace of ρN

A , one obtains the Nth-order Rényi entropy

SN(A) = − 1
N − 1

lnTrρ̂N
A . (45)

The above formula is easier to compute and coincides with the von Neumann entropy of 
region A in the limit N → 1

SEE(A) = lim
N→1

SN(A). (46)

3.1. Nth Rényi entropy for a GFT random tensor network

We focus now on the case of the Nth Rényi entropy for a bipartite GFT state |ΨΓ〉 with support 
on a generic open graph Γ. We divide the boundary ∂Γ of the graph Γ(VΓ, LΓ, L∂Γ), with VΓ 
nodes, LΓ internal links and L∂Γ boundary links, into two parts, called A and B. The Nth Rényi 
entropy between A and B is given by

e(1−N)SN =
ZN

ZN
0

 (47)

with ZN
0 ≡ (Trρ)N, ZN ≡ TrρN

A = Tr[ρ⊗NP(π0
A; N, d)] and the network density matrix ρ 

defined as

ρ = |ΨΓ〉 〈ΨΓ| = Tr�

[⊗
�

|M�〉 〈M�|
⊗

n

|ψn〉 〈ψn|

]
≡ Tr�

[⊗
�

ρ�
⊗

n

ρn

]
.

 

(48)

Here, for convenience, we use the equivalence of the trace of the reduced density with the 
result of the trace over the action of the permutation operator P(π0

A; N, d) on the full ρN 8, for

8 For N  =  2, e.g. the cyclic group Sn only has two elements: the identity 1 and swap operator F, so that P(π0
A; 2, d) ≡ 

F(A). Then, Z2 = Tr[ρ⊗2F(A)] = ρA1A1B1B1
ρA2A2B2B2

F
(A)
A1A1A2A2

1
(B)
B1B1B2B2

 and Z2
0 = Tr[ρ⊗2] = ρA1A1B1B1

ρA2A2B2B2
1
(A)
A1A1A2A2

 
1
(B)
B1B1B2B2

.
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P(π0
A; N, d) =

N∏
s=1

δ
µ
([s+1]D)

A µ
(s)
A

 (49)

with d is the dimension of the Hilbert space in the same region A.
Given the random nature of the tensor network, we look for the typical value of the entropy. 

Analogously to the case considered in [23], the variables ZN and Z0 are easier to average than 
the entropy, since they are quadratic functions of the network density matrix ff. In particular, 
the entropy average can be expanded in powers of the fluctuations δZN = ZN − E(ZN) and 
δZN

0 = ZN
0 − E(ZN

0 ), so that

E(SN(A)) = −E

(
log

E(ZN) + δZN

E(ZN
0 ) + δZN

0

)

= − log
E(ZN)

E(ZN
0 )

+ fluctuations.
 (50)

As showed in [23], for large enough bond dimensions D, as a direct consequence of the con-
centration of measure phenomenon [74], the statistical fluctuations around the average value 
are exponentially suppressed. Therefore, it is possible to approximate the entropy with high 
probability by the averages of ZN and ZN

0 ,

e(1−N)E(SN) � E(TrρN
A )

E(Trρ)N =
ETr[ρ⊗NP(π0

A; N, d)]
E(Trρ)N

=
Tr

[⊗
� ρ

N
�

⊗
n E(ρN

n )P(π
0
A; N, d)

]

Tr
[⊗

� ρ
N
�

⊗
n E(ρN

n )
] .

 

(51)

In order to get the typical Rényi entropy one needs then to compute E(ZN) and E(ZN
0 ) 

separately. The average over the tensor fields can be carried out before taking the partial trace, 
since the latter is a linear operation. Therefore, the key step consists in computing the quantity

E(ρN
n ) = E[(|ψn〉 〈ψn|)N ] = E

[(∫ N∏
a

dgadga ψn(ga)ψn(ga) |ga〉
〈
ga
∣∣
)]

,

 (52)
hence, eventually, the expectation value of N copies of the network wavefunction,

E

[
N∏
a

ψn(ga)ψn(ga)

]
, (53)

where dg ≡
∏

i dgi, ψ(g) ≡ ψ(g1, · · · , g4) and g  is independent from g, which denotes the 
arguments of ψ.

Now, we define the averaging operation E[· · · ] via the path integral of a generic group field 
theory model

E
[

f [ψ,ψ]
]
≡

∫
[Dψ][Dψ] f [ψ,ψ] e−S[ψ,ψ] (54)

where S[ψ,ψ] is the action of the given model of interest,

S[ψ,ψ] =
∫

dgdg ψ(g)K(g, g)ψ(g) + λSint[ψ,ψ] + cc, (55)
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the first term on the right hand side defining the kinetic term of the model. In the following 
calculation, we consider the particular case where

K(g, g) = δ(g†g), (56)

which thus implies a free part of the action of the simple form9

S0[ψ,ψ] =
∫

dg ψ(g)ψ(g). (57)

We further assume that the coupling constant λ is much smaller than 1, so the path integral 
E
[

f [ψ,ψ]
]
 can be perturbatively expanded in powers of λ

E
[

f [ψ,ψ]
]
=

∫
[Dψ][Dψ] f [ψ,ψ] e−S0[ψ,ψ]

(
1 + λSint[ψ,ψ] +O(λ2)

)

≡ E0
[

f [ψ,ψ]
]
+O(λ).

 

(58)

This is the regime of validity of the so-called spin foam expansion, seen from within the 
GFT formalism [6–9]. In the following calculation, we will only focus on the leading term 
E0

[
f [ψ,ψ]

]
10.

Because of the gauge symmetry ψ(hg) = ψ(g), the gauge equivalent paths in the above 
path integral have to be removed (via gauge fixing). In order to do so, we first introduce the 
following notation: if g = (g1, g2, g3, g4), then

[g] ≡ g−1
1 g = (1, g−1

1 g2, g−1
1 g3, g−1

1 g4). (59)

Then, we insert the delta functional δ[ψ(g)− ψ([g])] constraint into the path integral, so that 
the average becomes

E0
[

f [ψ,ψ]
]
≡

∫
[Dψ][Dψ] f [ψ,ψ] δ[ψ(g)− ψ([g])] e−

∫
dg ψ(g)ψ(g). (60)

Since this equation is simply the expectation value of f [ψ,ψ] in the free group field theory, we 
can immediately give the expectation value of (53) via Wick theorem:

E0

[
N∏
a

ψ(ga)ψ(ga)

]
= C

∑
π∈SN

N∏
a

δ
(
[ga][gπ(a)]

†
)

= C
∑
π∈SN

∫ N∏
a

dha

N∏
a

δ
(

hagagπ(a)
†
)

,

 

(61)

where g  is independent from g, δ([g][g]†) ≡
∏4

s=2 δ
(

g†
1gsgs

†g1

)
 and δ

(
hgg

)
≡

∏4
s=1 δ

(
hgsgs

†).
In the second equality, we re-introduce the gauge symmetry by inserting integrals of 

ha ∈ SU(2), N = 1, 2, · · ·N  into the delta functions such that gsa on each leg of the node are 
on an equal footing, unlike g1 = 1 in the gauge fixing procedure. So in the following calcul-
ation, the network is without gauge fixing, i.e. all integrals of g have to be performed.

Denote now 
∏N

a δ
(

hagagπ(a)
†
)
 as

9 Notice that several GFT models of quantum gravity [6–9] can be put in this form.
10 This, in turn, means that, from the point of view of the quantum gravity model, tthe quantum gravity dynamics is 
imposed only to the extent in which it is captured by the kinetic term in the GFT action.
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Ph(π) ≡
N∏
a

δ
(

hagagπ(a)
†
)
=

4∏
s=1

N∏
a

δ
(

hagsagsπ(a)
†
)
≡

4∏
s

Ps
h(π), (62)

where h denotes the set of ha, a = 1, · · · , N . When ha = 1 for all a from 1 to N,

P1(π) =

N∏
a

δ
(

gagπ(a)
†
)
= P(π; N, D4) =

4∏
s

Ps(π; N, D4) (63)

where P(π; N, D4) and Ps(π; N, D4) are the representations of π ∈ SN  on H⊗4 and H, 
respectively.

Then, ZN and ZN
0  become

ZN ≈ CVΓ

∑
πn∈SN

∫ ∏
n

dhn Tr

[⊗
�

ρN
�

⊗
n

Phn(πn)P(π
0
A; N, d)

]

≡ CVΓ

∑
πn∈SN

∫ ∏
n

dhn NA(hn,πn)

 

(64)

ZN
0 = CVΓ

∑
πn∈SN

∫ ∏
n

dhn Tr

[⊗
�

ρN
�

⊗
n

Phn(πn)

]

≡ CVΓ

∑
πn∈SN

∫ ∏
n

dhn N0(hn,πn),

 

(65)

which means that ZN and ZN
0  correspond to summations of the networks NA(hn,πn) and 

N0(hn,πn) where at each node n we have a contribution Phn(πn) and at each link � we have a 
contribution ρN

� . The only difference between these two networks is the boundary condition: 
where ZN is defined with P(π0

A; N, d) on A of ∂Γ and P(1; N, d) on A  of ∂Γ, and ZN
0  is defined 

with P(1; N, d) for all boundary region ∂Γ.
Since at each node Phn(πn) is decoupled among the incident legs, because of (62), the value 

of the networks NA(hn,πn) and N0(hn,πn) can be written as products factorised over links:

NA(hn,πn) =
∏
�∈Γ

L�(πn,πn′ ; hn, hn′)
∏
�∈A

L�(πn,π0
A; hn)

∏

�∈A

L�(πn,1; hn)

 (66)

N0(hn,πn) =
∏
�∈Γ

L�(πn,πn′ ; hn, hn′)
∏
�∈∂Γ

L�(πn,1; hn). (67)

Figure 4. L(π,π′, h, h′).
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Because the L� on the boundary are special cases of the L� in the graph Γ, it is enough to 
calculate the L� on the internal links. In general, L(π,π′, h, h′) can be written as a trace of a 
modified representation of a permutation group element � ≡ (π′)−1π as

L(π,π′; h, h′) = Tr
[
Ph(π)ρ

N
� Ph′(π)

]
= Tr

[
PH

(
(π′)−1π

)]
≡ Tr [PH (�)] ,

 
(68)

where

H =

{
Ha

∣∣ Ha ≡
(

h′�(a)

)†
ha, ∀a = 1, · · · , N

}
. (69)

When π = π′, we have � = 1 and H = (h′)†h, and then

L(π,π; h, h′) = Tr
[
Ph(π)ρ

N
� Ph′(π)

]
= Tr

[
P(h′)†h (1)

]
 (70)

Figure 5. L(π,π, h, h′).

Figure 6. An example of pattern.
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=

N∏
a

∫
dgadg′

adgπ(a)dg′
π(a) δ

(
hagagπ(a)

†
)
δ
(

gπ(a)g′π(a)
†
)

× δ
(

h′
ag′ag′

π(a)
†
)
δ
(
g′

ag†a
)

=

N∏
a

δ
(
(h′a)

†ha
)
=

N∏
a

δ (Ha) .

 

(71)

The above equation can be depicted graphically as in figure 5
When π �= π′, we have

L(π,π′; h, h′) = Tr [PH (�)] . (72)

In order to perform the computation, it is necessary to use some facts about the permutation 
group SN , which we recall briefly, before proceeding.

 •  Any element � ∈ SN can be expressed as the product of disjoint cycles Ci

� ≡
χ(�)∏

i

Ci (73)

  where 1 � χ(�) � N  is the number of cycles in ϖ, which is 1 when ϖ is a 1-cycle and 
is N only when � = 1. For instance, the permutation � = {3241} can be expressed as a 
product of two cycles (134)(2), in which �(1) = 3,�(3) = 4,�(4) = 1 and �(2) = 2. 
(132) is a 3-cycle, because there are three elements in the cycle. We denote the number 
of elements in the cycle Ci  as ri, which is also called the length of the cycle. We also have ∑

i ri = N . Although the cycles Ci  commute with each other, we order the cycles such 
that

1 � · · · � ri � ri+1 � · · · � N. (74)

  We denote ai
k , where k is from 1 to ri, the elements of Ci , and then we furthermore assume 

that

�(ai
k) = ai

[k]ri+1. (75)

  Thus, the cycle can be written as

Ci =
(
ai

1ai
2 · · · ai

ri

)
. (76)

 •  The trace of PH (�) can be expressed as the product of the traces of the individual cycles 
Ci

Figure 7. The networks in which the boundaries are coarse-grained into nodes.
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Tr [PH (�)] =
∏

i

Tr [PH (Ci)] . (77)

  Using the definition of PH, one can immediately obtain the trace of the cycle Ci  as

Tr [PH (Ci)] =

∫ ri∏
k=1

dgai
k
δ

(
Hai

k
gai

k
g†ai

[k]ri +1

)
= δ



←−ri∏
k=1

Hai
k


 , (78)

  where ←−ri∏
k=1

Hai
k
≡ Hai

ri
· · ·Hai

2
Hai

1
. (79)

  Then the trace of PH (�) is

L(π,π′; h, h′) = Tr [PH (�)] =

χ(�)∏
i

δ



←−ri∏
k=1

Hai
k


 . (80)

 •  On the boundary of N0 and B of NA, L(π,1; h) is a very special case of L(π,π′; h, h′) 
where π′ = 1 and h′ = 1

L(π,1; h) ≡ L(π,1; h,1) = Tr [Ph (π)] =

χ(π)∏
i

δ



←−ri∏
k=1

hai
k


 . (81)

  On the boudnary A of NA, L(π,π0
A; h) corresponds also to a special case of L(π,π′; h, h′), 

where h′ = 1 and π′ = π0
A = C0, which is the N-cycle that for any integer k from 1 to N, 

C0(k) = [k]N + 1

L(π,π0
A; h) ≡ L(π, C0; h,1) = Tr

[
Ph

(
C−1

0 π
)]

=

χ(C−1
0 π)∏
i

δ



←−ri∏
k=1

hai
k


 . (82)

Altogether, for a given network N (hn,πn), defining the new variables � ≡ (π′)−1π and H 
given by (69) for each link, the corresponding link value is a product of χ(�) delta function

L(π,π′; h, h′) ≡ L(�; H) = Tr [PH (�)] =

χ(�)∏
i

δ



←−ri∏
k=1

Hai
k


 . (83)

In particular, when π = π′, the link value L(π,π; h, h′) is given by a product of N delta func-
tions as shown in (70) and we re-present it here

L(π,π; h, h′) =

N∏
a

δ
(
(h′a)

†ha
)
=

N∏
a

δ (Ha) , (84)

which is non-zero only when h = h′.
So in the end the network is divided into several regions, in each of which πn  and hn are the 
same. The links which connect different regions identify boundaries between each pair of 
different regions, called again domain walls. Corresponding to different domain walls and 
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different assignments of permutation groups to each region, we have different patterns for the 
given network. We introduce pattern functions PA(πn) and P0(πn) such that

PA(πn) ≡
∫ ∏

n

dhn NA(hn,πn) (85)

P0(πn) ≡
∫ ∏

n

dhn N0(hn,πn). (86)

Given a set of {πn}, PA(πn) and P0(πn) correspond to a certain network pattern with fixed 
boundary conditions, illustrated in the following figure.

More explicitly,

PA(πn) =

∫ ∏
n

dhn

∏
�∈Γ



χ(��)∏

i

δ



←−ri∏
k=1

H�ai
k




∏

�∈A



χ(C−1

0 πn�)∏
i

δ



←−ri∏
k=1

h�ai
k




∏

�∈A



χ(πn�)∏

i

δ



←−ri∏
k=1

h�ai
k






 (87)

P0(πn) =

∫ ∏
n

dhn

∏
�∈Γ



χ(��)∏

i

δ



←−ri∏
k=1

H�ai
k




 ∏

�∈∂Γ



χ(πn�)∏

i

δ



←−ri∏
k=1

h�ai
k




 .

 

(88)

They are exactly the amplitudes of a topological BF field theory, with given boundary condi-
tion, discretized on a specific 2-complex among the N replica of networks, with each different 
pattern P  corresponding to a different 2-complex. Each edge of the 2-complex is associated 
with a holonomy hna that is on node n and the ath replica. The two ends of the holonomy 
are the vertices of the 2-complex. The hna inside a delta function form a loop holonomy, the 
corre sponding edges of which form the face of the 2-complex. Then ZN and ZN

0  are sum of BF 
amplitudes with different 2-complexes.

ZN ≡ CVΓ

∑
πn∈SN

PA(πn), ZN
0 ≡ CVΓ

∑
πn∈SN

P0(πn). (89)

It is important to notice that this simple form of the various functions entering the calculation 
of the entropy, with the emergence of BF-like amplitudes, is not generic. It follows from the 
choice of GFT kinetic term, from the approximation used in the calculation of expectation 
values (neglecting GFT interactions) and from the special type of tensor network, in GFT 
language, that we have chosen (with simple delta functions associated to the links of the net-
work). More involved, and interesting, cases could be considered.

What we are interested in is the leading term of ZN and ZN
0 , while the dimension D of 

Hilbert space H is much larger than 1. This leads us to seek the most divergent term of PA(πn) 
and P0(πn). In other words, we need to know the degree of divergence of PA(πn) and P0(πn). 
The divergence degree of BF amplitudes discretized on a lattice has been the subject of a 
number of works, both in the spin foam an GFT literature (see for example [76–78]), the most 
complete analysis being [79–81].

Let us first focus on a sub-region R of the network such that πn = π for all nodes n inside 
of R. Suppose that there are Li links inside R and Le links connecting with other regions. Since 
we only consider 4-valent nodes, the number of nodes inside R is

V ≡ 1
4
(2Li + Le) =

Li

2
+

Le

4
. (90)
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A minimum spanning tree (MST) T, which contains #T = V − 1 links, can be found in R.

T ≡ {�|� ∈ MST}. (91)

According to (84), since πn = π, there are N delta functions on each link. The integrals over 
hn would eliminate the (V − 1)N  deltas associated to the MST and leave only one set of N 
integrals over h = {ha} and (Li/2 − Le/4 + 1)N  δ(1)’s. Here we keep indicating the diver-
gent factor as the delta function evaluation originating it, but of course it should be understood 
more properly as a function of the cut-off used to regularize it. The pattern function of region 
R is then

PR(π) ≡
∫ ∏

n∈R

dhn

Li∏
�

N∏
a

δ(H�a)

Le∏
�



χ(��)∏

i

δ



←−ri∏
k=1

H�ai
k






=

∫ ∏
n∈R

dhn

∏
�∈MST

N∏
a

δ(H�a)
∏

�/∈MST

N∏
a

δ(H�a)

Le∏
�



χ(��)∏

i

δ



←−ri∏
k=1

H�ai
k






= [δ(1)](
Li
2 − Le

4 +1)N
∫

dh
Le∏
�



χ(��)∏

i

δ



←−ri∏
k=1

H�ai
k




 .

 

(92)

In the calculation, we have used

∫ ∏
n∈R

dhn

∏
�∈MST

N∏
a

δ(H�a) =

∫
dh (93)

and (hn = h)

∏
�/∈MST

N∏
a

δ(H�a) = [δ(1)](
Li
2 − Le

4 +1)N . (94)

The above calculation shows that we can coarse-grain the region R into one single Le-valent 
node which is colored by π and h.

 (95)
So the degree of divergence in region R is: the number of internal links #i = Li subtracted the 
number of links in the MST #T = V − 1, and then times the number of replica N,

#R = (#i −#T)N = (Li − V + 1)N =

(
Li

2
− Le

4
+ 1

)
N. (96)

Since the boundary condition of N0 is π = 1 and h = 1, the boundary of N0 can be coarse-
grained into a single node with π = 1 and h = 1. The same consideration holds for NA: its 
boundary can be coarse-grained into two nodes, one of which corresponds to A with π = C0, 
h = 1 and the other to B with π = 1 and h = 1. The corresponding closed graphs are denoted 
as Γ0 and ΓAB. A certain pattern P(πn) divides Γ0 and ΓAB into M regions that can be coarse-
grained into M nodes, each of which is colored with permutation group πm and N integrals 
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over hm. Denote the graph with pattern P(πn) as Γ0(πm) and ΓAB(πm), and denote the corre-
sponding coarse-grained graphs as Γc

0(πm) and Γc
AB(πm).

One can show that, for Γ0, the pattern in which all nodes have assigned the same permuta-
tion group π = 1 has the highest degree of divergence #0.

#0 = (#�∈Γ0 −#TΓ0
)N (97)

where #�∈Γ0 is the number of links in graph Γ0. Let us consider a coarse-grained graph 
Γc

0(πm). Denote the number of links in region m, between regions m and m′, and between 
region m and boundary ∂Γ are Lm, Lmm′ and Lm0, respectively. The proof goes as follows:

 1.  The permutation group on links between coarse-grained nodes m and m′ is �mm′ ≡ π−1
m πm′. 

As given by (83), the number of the delta functions on one of the links is the number of 
the disjoint cycles in ϖ, which is χ(�mm′) < N . Since all links between m and m′ are 
identical, having the same link value, which is given by (83), when one integrate over 
hm and hm′, only χ(�mm′) deltas will be eliminated and left with δ(1) to the order of 
χ(�mm′)(Lmm′ − 1) and 2N − χ(�mm′) h integrals. In fact

∫
dhdh′ (Tr [PH (�)])

L
=

∫
dhdh′

χ(�)∏
i


δ



←−ri∏
k=1

Hai
k






L

=

∫
dh

χ(�)∏
i


δ



←−ri∏
k=1

Hai
k

−→ri∏
k=1

H†
ai

k






L−1

= [δ (1)]
χ(�)(L−1)

∫
dh.

 

(98)

 2.  MST can be chosen for Γ0(πm), Γc
0(πm) and M regions. It is obvious that, given a MST Tm 

for each of the M regions and a MST TΓc
0(πm) for Γc

0(πm), rooting from the coarse-grained 
boundary node ∂Γ, a MST TΓ0(πm) of Γ0(πm) can be constructed.

TΓ0(πm) =

M⋃
m

Tm ∪ TΓc
0(πm). (99)

  The number of branches of the trees is

#TΓ0(πm)
=

M∑
m

#Tm +#TΓ0(πm)
. (100)

 3.  The degree of divergence of region m is given by (96)

#m = (Lm −#Tm)N. (101)

  Similarly, for the divergence degree #Γc
0(1)

 of the pattern where all coarse-grained nodes 
have the same permutation πm = 1 is

#Γc
0(1)

=


 ∑

0�m<m′�M

Lmm′ −#TΓc
0(πm)


N. (102)

  The degree of divergence of Γc
0(πm) is smaller than #Γc

0(1)
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#Γc
0(πm) < #Γc

0(1)
. (103)

  This is because, after evaluating the delta functions on the MST Γc
0(πm) in accordance 

with (98), there are still MN −
∑

(mm′)∈TΓc
0(πm)

χ(�mm′) integrals over h. Performing 
these integrals makes the degree of divergence of Γc

0(πm) not bigger than the following 
quantity

#Γc
0(πm) �

∑
0�m<m′�M

Lmm′χ(�mm′)−
∑

(mm′)∈TΓc
0(πm)

χ(�mm′)
 (104)

=
∑

(mm′)/∈TΓc
0(πm)

Lmm′χ(�mm′)
 (105)

  

+
∑

(mm′)∈TΓc
0(πm)

(Lmm′ − 1)χ(�mm′)
 (106)

  which is definitely smaller than #Γ0(1) because χ(�mm′) < N .
 4.  So the divergence degree of Γ0(πm) is smaller than the divergence degree #0 for the 

pattern where all nodes have the same permutation.

#Γ0(πm) = #Γc
0(πm) +

M∑
m

#m < #Γc
0(1)

+
M∑
m

#m = (#�∈Γ0 −#TΓ0
)N = #0.

 

(107)

  The leading term of ZN
0  is P0(1), whose divergence degree is #0.

ZN
0 = CVΓ [δ(1)]#0

[
1 +O(δ−1(1)) +O(λ)

]
. (108)

For ZN, since the boundary is separated into two parts, the most divergent pattern PA(πn) is 
the one such that its corresponding coarse-grained graph has only two coarse-grained nodes A 
and B, which are connected by the minimum number of links min(#�∈∂AB), whose divergence 
degree is

#AB = #A +#B +min(#�∈∂AB)

= (#�∈ΓAB −min(#�∈∂AB)−#TA −#TB)N +min(#�∈∂AB)

= (#�∈ΓAB −#TA −#TB)N + (1 − N)min(#�∈∂AB)

= #0 + (1 − N)min(#�∈∂AB)

 

(109)

where the second equality is in terms of (96) and the forth equality is because #�∈ΓAB = #�∈Γ0 
and #TA +#TB = #TΓ0

11.
Let us consider a graph ΓAB(πm) and its corresponding coarse-grained graph Γc

AB(πm). The 
divergence degree of ΓAB(πm) is given as

11 Since the boundary is coarse-grained into two nodes in ΓAB, there are one more node in ΓAB than in Γ0,

VΓAB = VΓ0 + 1. (110)

Thus the number of the branches of the MST in A and B is equal to the number of the MST branches in Γ0

#A +#B = (VA − 1)− (VB − 1) = VΓAB − 2 = VΓ0 − 1 = #TΓ0
. (111)
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#ΓAB(πm) = #Γc
AB(πm) +

∑
m={1,···M,A,B}

#m (112)

where #m is given by (96)

#m = (Lm −#Tm)N. (113)

Adapting the same argument as for ZN
0 , because of the integral over hn, #Γc

AB(πm) should not 
be bigger than the following quantity

#Γc
AB(πm) �

∑
(mm′)/∈TA

Γc
AB(πm)

,TB
Γc

AB(πm)

Lmm′χ(�mm′)

+
∑

(mm′)∈TA
Γc

AB(πm)
or TB

Γc
AB(πm)

(Lmm′ − 1)χ(�mm′)

 

(114)

where we assume m < m′ in order to avoid double counting, and TA
Γc

AB(πm)
 and TB

Γc
AB(πm)

 are 
the MST rooting from coarse-grained nodes A and B, respectively. The right hand side of the 
above formula corresponds to the divergence degree of pattern PA(πm) on a graph Γc

AB(πm) 

with all hn = 1, which differs from Γc
AB(πm) by TA

Γc
AB(πm)

 and TB
Γc

AB(πm)
, i.e.

Γc
AB(πm) ≡ Γc

AB(πm) \ {TA
Γc

AB(πm)
, TB

Γc
AB(πm)

}. (115)

As presented in section 2, the major difference between [23, 27] and our paper is that we are 
considering the gauge transformation hn on each node n. When all hn are set to be the identity, 
our ZN and ZN

0  simplify to the ones in [23, 27] up to overall normalization. In this case, as 
shown in [23, 27], the patterns which gives only one domain wall for ΓAB have higher diver-
gence degree than the divergent degree of multi-domain walls, which in our language means 
that the patterns whose corresponding coarse-grained graph contains only two coarse-grained 
nodes are more divergent than the patterns PA(πm), which give more than two coarse-grained 
nodes. So the divergence degree of the pattern PA(πm) on the graph ΓAB(πm) is not bigger 
than the pattern PA(1, C0). So we have

#ΓAB(πm) = #Γc
AB(πm) +

∑
m={1,···M,A,B}

#m

� #
Γc

AB(πm)
+

∑
m={1,···M,A,B}

#m

� #A +#B +#�∈∂AB = #0 + (1 − N)#�∈∂AB

� #AB = #0 + (1 − N)min(#�∈∂AB).
 

(116)

It follows that the amplitude ZN is

ZN = CVΓ [δ(1)]#0+(1−N)min(#�∈∂AB )
[
1 +O(δ−1(1)) +O(λ)

]
. (117)

Finally, the Nth order Rényi entropy SN is then:

e(1−N)SN =
ZN

ZN
0

= [δ(1)](1−N)min(#�∈∂AB )
[
1 +O(δ−1(1)) +O(λ)

]
. (118)

When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the entan-
glement entropy SEE is therefore

SEE = min(#�∈∂AB) ln δ(1), (119)
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which can be understood a the discrete tensor network analogue of the Ryu–Takayanagi form-
ula in a GFT context.

Before moving on to a different derivation of the same result, we want to clarify the inter-
pretation of this calculation.

The definition of the expectation value (54) in the GFT language shows that the expo-
nential of SN can be interpreted as a GFT 2N-point function, at least within the limits of the 
approximation made, focusing on the average over group field functions at each node, with-
out recasting the whole generalized tensor network as a GFT correlation function. As shown 
in previous sections, the GFT amplitudes can in turn be written, by standard perturbative 
expansion, as a sum of Feynman amplitudes associated to Feynman diagrams, each of which 
corresponds to a different discretized ‘space-time’ with fixed boundary, with the Feynman 
amplitude defining (for quantum gravity models) a lattice path integral for gravity discretised 
on the corresponding cellular complex. This allows a tentative (and partial) interpretation of 
the entropy formula we have derived, in geometric spatiotemporal terms. It implies, in fact, 
that, in the calculation of the entropy, not only the information of a time-slice of a space-time 
is considered, as encoded in a given network, but also its full quantum dynamics. This, at least, 
is true when the complete GFT partition function (for quantum gravity models) is employed 
in the computation of the entropy. The leading term, the free GFT amplitude, captures only a 
sector of that full quantum dynamics. With the specific (trivial) choice of kinetic term we have 
used, the quantum dynamics can at best correspond to (summing over) static space-times. 
When N goes to 1, in particular, the amplitude becomes the trivial propagation of GFT states, 
with any given network propagating to itself. This corresponds exactly to the context (static 
space-time) in which the Ryu–Takayanagi formula is usually derived. In other words, our 
calculation provides a realization of the Ryu–Takayanagi formula, at least in one extremely 
simple case, within the full dynamics of a non-perturbative approach to quantum gravity, the 
group field theory formalism, which can also be seen as a different definition of loop quantum 
gravity. Our result also shows that the same formalism allows to compute non-perturbative 
quantum gravity corrections to the Ryu–Takayanagi formula, by including the contributions 
from the GFT interaction term into the amplitude (as well as considering different choices for 
the GFT kinetic term).

4. Ryu–Takayanagi formula for spin-network states

We want now to perform a similar calculation of the Ryu–Takanayagi entropy using a differ-
ent truncation of a generic GFT state, reformulated as a tensor network. We use a given linear 
combination of spin networks, corresponding to a specific assignment of spins to the links of 
the network, and thus to the tensors associated to its nodes.
As presented in section 2, the spin representation of a GFT network is spin-network, in which 
each node is colored by a tensor φji

m

φji
m =

∑
p

ipψj
pm,

∣∣φji〉 =
∑

m

φji
m |j, m〉 ∈

⊗
�

Hj� (120)

and each link is colored by matrix M j
mm′

∣∣M j〉 =
∑
mm′

M j
mm′ |j, m〉 ⊗ |j, m′〉 ∈ H⊗2

j , (121)

where Hj  is the spin-j irreducible representation of SU(2).
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A spin-network has a clear geometric interpretation. The graph Γ is the dual of a 3d cellular 
complex. When all nodes are 4-valent, the graph is dual to a 3d simplicial complex. Each node 
is dual to a tetrahedron and each link is dual to a triangle. The area of the triangle is given by 
the spin-j irreducible representation associated with the dual link of the triangle. More pre-
cisely, the area A� is

A� = 8πγ
√

j�( j� + 1)�2
p, (122)

where Γ is the Barbero–Immirzi parameter and �p is the Planck length (while this results fol-
lows both from a canonical quantization of General Relativity in the continuum, and from the 
geometric quantization of simplicial geometries, the identification of the length scale with the 
Planck length is, of course, natural from the first perspective only).

A detailed analysis (see e.g. [82–84]) shows that the semi-classical regime of loop quantum 
gravity states, in which the Regge–Einstein gravity can be recovered, at least at the kinemati-
cal level, in the sense of approximating smooth geometries with simplicial ones, is at a scale 
intermediate between the Planck scale �p and the average background curvature scale LΛ, 
which means that if we are working on this regime, area A� of the triangle should be

�2
p � A� � L2

Λ. (123)

Together with the relation A�/L2
Λ ∼ γ−1j1/2 � 1 uncovered in [82], the above regime is 

equivalent to

1
j
� γ � 1

j1/2 . (124)

In a semi-classical regime, then, one has A� ≈ γj��2
p.

In [51], a special choice of M j
mm′

M j
mm′ = 〈j, m| n†e−πγLz− exp(1−2πγLz)

4πγ n′ |j, m′〉 (125)

has been considered, with the property that the leading order of the entanglement entropy 
between the two Hj  on a link is proportional to the same area A� ≈ γj��2

p in the semi-classical 
regime. In (125), n and n′ are SU(2) elements; Lz is the SU(2) generator in z-axis. We use the 
same choice for M j

mm′ in our calculation to obtain the Ryu–Takayanagi formula.
Considering the same graph Γ as in the previous subsection, the spin-network state 

∣∣Ψji〉 
and its corresponding density matrix ρ are given as

∣∣∣Ψji
Γ

〉
≡

⊗
�

〈
M j�

∣∣⊗
n

∣∣φ jnin
n

〉
, ρ ≡

∣∣∣Ψji
Γ

〉〈
Ψji

Γ

∣∣∣ . (126)

Just as in the previous calculation, we divide boundary ∂Γ into two parts A and B. The Nth 
Rényi entropy is

e(1−N)SN =
ZN

ZN
0

=
ETr[ρ⊗NP(π0

A; N, d)]
E(Trρ)N =

Tr
[⊗

� ρ
N
�

⊗
n E(ρN

n )P(π
0
A; N, d)

]

Tr
[⊗

� ρ
N
�

⊗
n E(ρN

n )
] .

 

(127)

The first key step is to calculate E(ρN
n ). Because the gauge symmetry is already encoded in 

the intertwiner i for φji
m, φji

m is not a gauge symmetric tensor, which is in the invariant space of 
H⊗4 as introduced in section 2, but rather an ordinary tensor in ⊗�Hj�. So the averge over ρN

n  
can be performed in the same way as the one shown in [51]:
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E(ρN
n ) ≡

∫
dφjif (φji)

(∣∣φji〉 〈φji∣∣)⊗N ≡
∫

U(D)

dUf (φji)
(

U
∣∣∣φji

0

〉〈
φji

0

∣∣∣U†
)⊗N

,

 

(128)

where f (φji) is a distribution of φji  and U is the group element in the unitary group U(D), in 
which D =

∏
�∈n dj�. f (φji) is invariant under the transformation of U(D) and in our following 

calculation we focus on either the uniform or the Gaussian distribution, which keep the main 
calculation unchanged up to an overall normalization that will be canceled in the final result.

Because of Schur’s lemma, E(ρN
n ) is the invariant tensor in (⊗�Hj�)

⊗N , which can be writ-
ten as a sum of permutations

E(ρN
n ) = C

∑
πn∈SN

P(πn; N, D) = C
∑

πn∈SN

∏
�∈n

P(πn; N, dj�) (129)

where C is an normalization factor which depends on the distribution. Then ZN and ZN
0  can be 

written as a sum of different patterns P(πn)

ZN = CVΓ

∑
πn∈SN

PA(πn), ZN
0 = CVΓ

∑
πn∈SN

P0(πn) (130)

where # is the number of nodes in Γ. PA(πn) and P0(πn) can be written as products of link 
values L(πn,π′

n)

PA(πn) =
∏
�∈Γ

L�(πn,πn′)
∏
�∈A

L�(πn,π0
A)

∏
�∈B

L�(πn,1) (131)

P0(πn) =
∏
�∈Γ

L�(πn,πn′)
∏
�∈∂Γ

L�(πn,1) (132)

where L�(π,π′) is defined as

L�(π,π′) ≡ Tr[P(π; N, dj�)ρ
N
� P(π

′; N, dj�)]. (133)

Suppose � ≡ (π′)−1π =
∏

i Ci, where Ci  is an ri-cycle, and impose (125) into (133). 
L(π,π′) becomes

L(π,π′) =

χ(�)∏
i=1

χj

(
e−ri2πγLz−ri

exp(1−2πγLz)
2πγ

)
. (134)

In the semi-classical regime (124), the leading contribution of L(π,π′) is obtained as

L(π,π′) ≈
χ(�)∏
i=1

1
ri

e−1+(1−ri)2πγj−ri
exp(1−2πγj)

2πγ

= e−χ(�)+(χ(�)−N)2πγj−N exp(1−2πγj)
2πγ

χ(�)∏
i=1

1
ri

.

 

(135)

A detailed calculation from (134) to (135) can be found in the appendix. When � = 1, i.e. 
π = π′ and χ(�) = N , L(π,π) is then

L(π,π) ≈ e−N−N exp(1−2πγj)
2πγ . (136)

It is straightforward to check that L(π,π) � L(π1,π2). In fact, because the sum of ri equals to 
N, L(π,π) can be rewritten as
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L(π,π) =
χ(�)∏
i=1

e−ri−ri
exp(1−2πγj)

2πγ . (137)

Then the ratio between L(π1,π2) and L(π,π) is

L(π1,π2)

L(π,π)
=

χ(�)∏
i=1

e−1+(1−ri)2πγj−ri
exp(1−2πγj)

2πγ

rie−ri−ri
exp(1−2πγj)

2πγ

=

χ(�)∏
i=1

e(1−ri)(2πγj−1)

ri
� 1.

 (138)
The last inequality holds because ri � 1 and in the regime (124) γj � 1. The equality holds if 
and only if π1 = π2.
If we assume that all j� are in the same order of magnitude, because of (138), one can observe 
immediately that the leading term of ZN

0  is P0(1), i.e. the permutation group for all nodes is 
πn = 1. Suppose there are Li internal links and Le external links in Γ, then

ZN
0 ≈ CVΓ

∏
�

e−N−N exp(1−2πγj�)
2πγ . (139)

The Nth order Rényi entropy becomes

e(1−N)SN =
ZN

ZN
0

≈
∑
πn

∏
�

χ(��)∏
i

e(1−ri)(2πγj−1)

ri
. (140)

As shown in [27], in order for the single domain wall pattern to contribute the most to the 
Rényi entropy, when three domain walls intersect, they should satisfy

χ(�1)∏
i

e(1−ri)(2πγj−1)

ri
�

χ(�2)∏
i

e(1−ri)(2πγj−1)

ri

χ(�3)∏
i

e(1−ri)(2πγj−1)

ri
, (141)

where �1�2�3 = 1. The above inequality can be simplified to

e[C(�2)+C(�3)−C(�1)](2πγj−1)
∏χ(�2)

i ri
∏χ(�3)

i ri∏χ(�1)
i ri

� 1, (142)

where C(�) is the Cayley weight of a permutation ϖ which satisfies the triangular inequality 
C(�1�2) � C(�1) + C(�2). In general, when C(�1) < C(�2) + C(�3), the above inequal-
ity is satisfied because when γj � 1 the exponential part of the inequality dominant. When 
C(�1) = C(�2) + C(�3), one can check that the inequality is satisfied at least for N � 312. 
Since we are only interested in the entropy while taking the limit N → 1, this inequality is 
well satisfied. The Rényi entropy SN for small N is given as

12 Using the geometric inequality, the left hand side of the above inequality becomes

∏χ(�2)
i ri

∏χ(�3)
i ri∏χ(�1)

i ri

�
(C(�2) + 1)(C(�1)− C(�2) + 1)(

N
N−C(�1)

)N−C(�1)

� (C(�1) + 1)
(

N − C(�1)

N

)N−C(�1)

.

 

(143)

This simplification is very rough since one has to keep N
N−C(�1)

 to be integer. Even in this approximate situation, 

we could find that it is bigger than 1 when N is a bit smaller than 3.
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e(1−N)SN ≈
∏
�∈∂AB

exp ((1 − N)(2πγj� − 1)− lnN) . (144)

When N goes to zero, we have

SEE ≈
∑
�∈∂AB

[
2πγj� − 1 − lim

N→1

lnN
1 − N

]
=

A∂AB

4�2
p

, (145)

which is exactly the Ryu–Takayanagi formula. Comparing with the calculation in [27], we 
both reproduce the Ryu–Takayanagi formula from the spin-network state in the semi-classical 
regime (123) of loop quantum gravity and GFT states. This gives further support to the expec-
tation that a classical gravitational theory can be recovered in this formalism. Differently from 
[27], however, our result directly relies on the fundamental degrees of freedom of the theory.

5. Randomness and universality

The dictionary we have established between GFT states and (generalized) random tensor net-
works suggest the potential for useful cross-over of results across these two research areas. 
In particular, one can already envisage a direct application of results concerning the quantum 
dynamics of GFT models and the statistical properties of random tensor models to problems 
in statistical mechanics and condensed matter that can be formulated in terms of random ten-
sor networks.

Indeed, our path integral analysis generalises the statistical derivation given in [23], where 
the random character of the tensors allowed to map the computation of typical Rényi entropies 
to the evaluation of partition functions of generalized Ising models with inverse temperature 
β ∝ logD, D being the dimension of each leg of each tensor in the network. Interestingly, in 
the original work, the form of the averaged entropies was derived only in the large D limit, 
where the fluctuations of the partition functions are effectively suppressed. In the large D (low 
temperature) limit, corresponding to the long-range ordered phase for the Ising models, the 
entropies of a boundary region can be directly related to the energy of a domain wall between 
different domains of the order parameter: the Ising action can be estimated by the lowest 
energy configuration and the minimal energy condition of the domain wall naturally leads to 
the RT formula.

One set of results that appears immediately useful in this context concerns universality 
properties of probability distributions over random tensors, in the limit of large D [85]. They 
represent a generalization to tensor distributions of the central limit theorem for ordinary 
probability distributions.

Indeed, a recently proved universality theorem for random tensor fields [85] states that a 
rank-d random tensor whose entries are Nd independent, identically distributed, complex ran-
dom variables, and whose distribution is a trace invariant (of the type defining the interactions 
of tensorial GFTs as well), converges in distribution in the large D limit to the distributional 
limit of a Gaussian tensor model, namely a Gaussian tensor field theory. This is already quite 
remarkable. However, a second, stronger, universality result [85] states that under only the 
assumption that the joint probability distribution of tensor entries is invariant, assuming that 
the cumulants of this invariant distribution are uniformly bounded, the large D limit the tensor 
distribution again converges to the distributional limit of a Gaussian tensor model.

We expect these theorems to have direct applicability to random tensor networks, and even 
to the generalized class corresponding to the infinite dimensional group fields, where the large 
D limit refers to the regime in which any UV cut-off on group representations is removed.
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The key point to be careful about is that such theorems generally apply to distributions 
of invariant tensor observables, constructed out of trace (bubble) invariants for bipartite 
d-colored graphs [10]. Therefore, it does not directly apply to simple products of tensors as we 
have dealt with in this paper. However, one may wonder how much of such universal behavior 
survives for generic graphs when distributions of generic tensor observable are considered, 
e.g. including polynomials made by contractions of tensors which leave some indices free, as 
for the case of a contracted tensor network state associated to an open graph.

Intuitively, if one randomizes tensors at the nodes independently of contractions, one can 
still rely on such results, to some extent, but the conclusions become much less solid, because 
contractions do affect the scaling of the tensors. Much more solid would be to treat the whole 
tensor network as an observable in a random tensor or GFT model; then, for tensor networks 
associated to d-colored graphs (trace invariants), the universality theorems would apply, 
thereby indicating a new direction for further characterizations of the tensor network states. 
We postpone this type of evaluations to future work, alongside the complete reformulation of 
tensor network states and their statistical average within the 2nd quantized GFT framework.

6. Conclusions

Let us summarize our results in this paper. We have established a precise dictionary between 
GFT states and (generalized) random tensor networks. This dictionary also implies, under dif-
ferent restrictions on the GFT states, a correspondence between LQG spin network states and 
tensor networks, and a correspondence between random tensors models and tensor networks. 
Next, we have computed the Rényi entropy and derived the RT entropy formula, for GFT 
and spin network techniques, first using a simple approximation to a complete definition of a 
random tensor network evaluation seen as a GFT correlation function, but still using a truly 
generalized tensor network seen as a GFT state, and then considering directly a spin network 
state as a random tensor network. This elucidates further the correspondence and its poten-
tial. Finally, we have discussed how universality theorems for random tensor models can be 
applied to tensor network states, as a first example of application of results from the theory of 
random tensors and GFT to tensor networks. We are convinced that these results can be just 
the beginning of many further developments, made possible by the fertile meeting between 
tensor networks and fundamental quantum gravity, along the lines we have established.
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Appendix. From (134) to (135)

In this appendix we perform the calculation from (134) to (135). L(π,π′) is given by (134). 
Let us denote 2πγ  as c for simplicity, then L(π,π′) can be written as

L(π,π′) =

χ(�)∏
i=1

χj

(
e−ricLz−ri

exp(1−cLz)
c

)
≡

χ(�)∏
i=1

Iri (A.1)

Ir can be written in terms of SU(2) coherent state as
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Ir = dj

∫
dn〈 j, j|n†e−rcLz−r exp(1−cLz)

c n|j, j〉

= dj

∞∑
k

(−)
k rkek

k!ck

∫
dn〈 j, j|n†e−(r+k)cLz n|j, j〉

 
(A.2)

≡ dj

∞∑
k

(−)
k rkek

k!ck

∫
dn eS(k)

r ≡ dj

∫
dn eSr (A.3)

where Sr is the total action and S(k)
r ≡ 2j ln〈↑ |n†e−c(r+k)Lz n| ↑〉 and |↑〉 ≡

∣∣ 1
2 , 1

2

〉
. In the semi-

classical regime of loop gravity, i.e. the large spin-j regime, the leading contribution of Ir is 
from the critical point of S(k)

r , which is the solutions of the equations of motion

δnS(k)
r = 0 ⇒ n†e−c(r+k)Lz n = e−αLz . (A.4)

One can obtain the solutions

n†Lzn = ±Lz, α± = ±c (r + k) . (A.5)

Bring the solutions back to Ir, we can get

Ir ∼ dj

∑
ε=±

eSεr0√
detHε

r

≡
∑
ε=±

Iεr (A.6)

where Sε
r0 is the total action Sr on the critical point

Sε
r0 ≡ −εrcj − r

exp (1 − εcj)
γ

 (A.7)

and Hε
r  is the Hessian matrix of Sr

Hε
r ≡ 1

2
δ2

nSr|ε. (A.8)

After perform the second derivation on Sr, one can obtain

detHε = 4j2r2 (−c + exp (1 − εcj))2 . (A.9)

In the semi-classical and low energy limit

detHε ∼ 4j2N2 exp 2 (1 − εcj) . (A.10)

Then Iεr  becomes

Iεr ∼
exp

(
−1 + εcj(1 − r)− r exp(1−εcj)

c

)

r
. (A.11)

One can observe that I+r � I−r  since when ε = −, in the large spin regime I−r  goes to zero. Ir 
thus becomes I+r , which is one of the term in the product of (135).

Ir ≈ I+r =
exp

(
−1 + cj(1 − r)− r exp(1−cj)

c

)

r
. (A.12)
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