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Abstract: The thesis at hand is dealing with two di�erent experiments on dimers,
water (H2O)2 and Neon dimers Ne2 speci�cally. The �rst part focuses on the de-
sign and construction of an in-vacuum water cluster source, which operates on
the principle of supersonic gas expansion. A subsequent commissioning was done
to characterize and optimize the performance of the source with respect to the
demanded parameters, especially the water dimer yield. Upcoming experiments
on proton transfer dynamics in water dimers will employ the developed cluster
source.
In the second part, an experiment on the resonance-enhanced Interatomic Coulom-
bic Decay (ICD) is presented. It was carried out at the Free-Electron Laser in
Hamburg (FLASH), providing high intensities and photon energies in the extreme
ultraviolet regime (XUV). By employing the wavelength tunability of FLASH2,
we observed an enhancement of ICD, by scanning the Ne+(2p)−1 → Ne+(2s)−1

resonance at 26.9 eV (46.1 nm). The resulting Ne++Ne+ fragments were measured
with a Reaction Microscope in coincidence.

Zusammenfassung: In dieser Arbeit werden zwei Experimente mit Bezug auf
Wasser- (H2O)2 bzw. Neondimere (Ne2) vorgestellt. Der erste Teil konzentriert
sich auf die Planung und Konstruktion einer in Vakuum Wasserclusterquelle.
Diese erlaubt eine e�ziente Erzeugung von Gasjets, basierend auf dem Prinzip der
Überschallexpansion. Bei der folgenden Inbetriebnahme wurde die Düse charak-
terisiert und auf die Wasserdimerausbeute optimiert. Die Clusterquelle wird
bei Experimenten zur Protonentransferdynamik und Abregungsmechanismen in
Wasserdimeren zum Einsatz kommen.
Im zweiten Teil der Arbeit wird die resonante Erhöhung des Interatomic Coulombic
Decay (ICD) in Ne2 experimentell nachgewiesen. Das Experiment wurde am Freie-
Elektronen-Laser in Hamburg (FLASH) durchgeführt. Dieser stellt hohe Photo-
nenintensitäten und Photonenenergien im extrem ultravioletten Bereich (XUV)
zur Verfügung. Unter Ausnutzung der durchstimmbaren Photonenwellenlänge von
FLASH2, wurde eine Erhöhung des ICD im Bereich der Ne+(2p)−1 → Ne+(2s)−1

Resonanz gefunden. Als Signatur des ICD Prozesses wurden die Ne++Ne+ Frag-
mente mit einem Reaktionsmikroskop in Koinzidenz gemessen.
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1 Introduction

Atomic and molecular clusters play a crucial role to bridge the gap between small
quantum systems and bulk matter. The �rst is using approaches starting from the
single particle picture. Common workhorses to obtain larger structures are linear
combinations of single particle properties, such as electron wave functions. On
the other end of the scale, one makes use of collective many-electron phenomena.
Cluster physics is in between these two domains and tries to describe the transi-
tion from quantum level to macroscopic scale. The huge potential in exploiting
the nanoscale regime was pointed out by Richard Feynman, almost 60 years ago
in his lecture �There's plenty room at the bottom� [1]. As foreseen by the out-
standing physicist, research on nanoscale objects is still up-to-date and requires
further investigation. Although the topic of cluster physics also compromises large
compounds of atoms or molecules, the following considerations restrain to dimers.
These are the most simple representatives, which allow to investigate fundamental
processes on an atomic scale. The focus will be put on the dynamics within these
small structures.
There is a natural time scale of molecular motion, which is the femtosecond
(10−15 s) Ref. [2]. The relaxation mechanism this thesis is dealing with, takes place
on this femtosecond timescale. Weakly bound systems can decay via the so-called
�Interatomic� or �Intermolecular Coulombic Decay (ICD)�. ICD was �rst predicted
by L.S. Cederbaum et al. in 1997 Ref. [3]. It is a general mechanism based on the
electron correlation of weakly bound, neighboring atoms or molecules and can,
under certain circumstances, dominate Auger decay. This is chie�y attributed to
the comparatively short timescale (≈ fs) on which ICD takes place. ICD was �rst
experimentally con�rmed in 2003 in large Neon clusters [4].
Since then, ICD could be identi�ed in many di�erent systems1. Besides the fun-
damental knowledge gained on electron dynamics, the general appearance of the
mechanism can also lead to connections with other disciplines, such as biology and
medicine. A paper on DNA strand breaks, induced by low energy electrons (≈
3 eV�20 eV) [7], could provide such a connection. ICD in water clusters serves as

1water [5], noble gas [4], noble gas/alkali metal [6]



1 Introduction

a source of electrons in the mentioned energy range and could, if extended to bio-
logically relevant systems, trigger capital damage in malign tissue. The presented
resonance-enhanced ICD may lead to an experimental scheme to control ICD.
Even tough water is one of the most investigated molecules, there is little know-
ledge about the dynamics of structural rearrangements. Again, these dynamics
take place on the femtosecond time scale, which got accessible during the last years.
A well-established technique to investigate molecule dynamics, is the pump-probe
scheme Ref. [2]. A �rst laser pulse (pump) initiates a dynamic process (vibration,
dissociation, rearrangement etc.) in the molecule, while a second, time-delayed
pulse �probes� the system at later times. The probe pulse often leads to a fragmen-
tation of the system. By measuring the momenta of the fragments, the structure
at times of probe pulse incidence can be deduced. For a �xed delay between pump
and probe pulse a single �nal con�guration is obtained. If however, di�erent delays
are scanned, one gains information on the dynamics of the considered process.
This thesis concentrates on the target production for an experiment on the dy-
namics of proton transfer through a hydrogen bond. In order to show the proton
dynamics, we chose the water dimer (H2O)2, as it is the smallest system in pure
water clusters where this process takes place.
A �rst pump pulse ionizes one water molecule H2O+-H2O and triggers the proton
transfer. An intermediate complex HO -H2O+ is formed and subsequently ionized
by the delayed probe pulse to obtain HO+-H3O+ (see �gure 1.1). The delay-
dependent yield of HO+ and H3O+ can be used to determine the proton transfer
time.

Figure 1.1: Pump-probe scheme of the proposed experiment: (a) the pump pulse
ionizes one water molecule and triggers the proton transfer. (b) An

intermediate complex HO -H3O
+ is formed and subsequently ionized (c) by the

delayed probe pulse (�gure from Ref. [8]).
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1 Introduction

The �rst part of this work is concentrating on the formation and production of
water clusters and technical issues one encounters in building a cluster source. In
the following commissioning, di�erent carrier gases were used to optimize the wa-
ter dimer yield.
The second part (section 4-7) will be about electron dynamics in weakly bound
Neon dimers. After the theoretical part on light/atom interaction and the experi-
mental setup, the acquired data is analyzed. Energy and intensity dependence of
the resonance-enhanced ICD is considered in particular.

12



2 Cluster Formation

The term �Cluster� is generally used, if many entities act as a collective, or show
properties which are di�erent from the mere sum of its parts. In physics, one is
referring to a limited amount of particles which are bound to each other. The
concept of clusters found its way into several physical disciplines. There is parti-
cle physics [9], astrophysics [10] and cluster physics itself, which is dealing with
compounds of atoms and/or molecules.
Clusters can be categorized to systematically relate properties. First, one can
distinguish between pure clusters, i.e. composites of just one atom species, and
mixed clusters. As the di�erent atoms vary in size, the buildup can di�er dras-
tically from a homogeneous one. Moreover di�erences in the electronic structure
can alter cluster properties e.g. heat capacity [11].
Another important characteristic is the number of entities which form the object.
Size e�ects however, can change for di�erent species, so there is no consistent la-
beling to group clusters according to their atomic count. To get a rough idea of
the di�erent regime, one can use the scales:
�micro� < 20 parts, �small� < 100 parts, and �large� > 100 parts.

In addition, the type of bond between the constituents is a crucial characteristic
for a cluster. The most important bonds are: metallic, ionic, covalent, Van-der-
Waals and Hydrogen bond.
A prerequisite for stable clusters is that the binding energy is larger than the
thermal energy kBT . Therefore metallic and ionic clusters are more abundant in
nature compared to e.g. Van-der-Waals bound ones (see table 2.1).

Bond type ionic covalent metallic Hydrogen bond Van-der-Waals
NaCl C (diamond) Lithium in water Neon

Binding energy [eV] 8.15 7.4 1.63 0.2 0.003

Table 2.1: Exemplary binding energies. via [12, 13]



2 Cluster Formation

Figure 2.1: Abundance spectrum of Xenon clusters. The drop after a certain
count of constituents indicates a closed shell. Adding an additional atom to an

empty shell is unfavorable. [15]

For calculations in condensed matter physics, one usually assumes the material to
be in�nitely extended. This approximation allows to concentrate on bulk e�ects,
rather than surface e�ects. However, this approximation is getting worse with
decreasing size of the considered object, i.e. this has to be taken into account
when dealing with clusters. In general, surface atoms are energetically less favored,
because there are no binding partners at the edge of the object. During the
statistical process of formation ([14], sec. 2.8), binding energy is minimized. In
other words, the number of surface atoms is minimized. In �rst order, this is a
geometrical issue and leads forcibly to spherically shaped objects where the ratio
R of surface to bulk is minimal. This ratio is getting crucial for small objects. In
macroscopic samples, surface atoms can be neglected, while for compounds of just
a few atoms surface is dominating. If one assumes a sphere, the size dependent
ratio R is given by:

R =
A

V
=

4πr2

4
3
πr3
∝ 1

r
. (2.1)

As the building blocks are rigid atoms, there are speci�c ways to arrange them.
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2 Cluster Formation

Figure 2.2: Abundance spectrum of potassium clusters. The atomic counts for
electronic shell closings are more abundant than for other cluster sizes [19]

The icosahedral structure plays a prominent role for rare-gas clusters. In these
clusters, electronic e�ects are suppressed and forces are non-directional [16]. The
icosahedral shape causes tension between adjacent atoms and layers, because it
has no long-range translational symmetry [17] as for example the fcc (�face cen-
tered cubic�) lattice. However, the gains in surface optimizations overcompensate
the induced tensions for objects in the cluster regime. The smallest icosahedron
comprises 13 atoms. One atom is found in the center, surrounded by the equally
distributed remaining 12 atoms. (see �gure 2.3)
Adding an additional atom to this structure is energetically unfavored. In analogy
to electron shells in atoms, one uses the term �shell� for a certain count of atoms,
which brings a notable stability with it. The next �lled up shell is found for an
atomic count of 55, followed by 147 and so on. This geometric packing was �rst
depicted by Mackay, who also came up with a formula to calculate the total atomic
count N , or �geometrical magic numbers�, within n icosahedral shells, [18]

N =
10

3
n3 + 5n2 +

11

3
n+ 1 . (2.2)

The direct e�ect of this principle can be found in an abundance spectrum of rare
gas clusters (�gure 2.1). The more stable an object, the higher is its abundance.
There is a drop in the spectrum after closing a shell, because the added atom is
exposed and easily split o�. The other peaks, which are not explained by equation
2.2, belong to atomic counts where subshells are �lled.
Besides the geometrical e�ect of packing a cluster, there is also an electronic e�ect
which comes into play. It is most pronounced for alkali metals, exhibiting a single
valence s-electron. This electron can be considered as almost free, meaning it is
assumed to be equally distributed over the entire cluster. In analogous manner

15



2 Cluster Formation

to the energy levels of an atom, the almost free electrons of the cluster, occupy
certain energy states. The �lling of shells obeys therefore the Pauli principle. If
one assumes the most simple potential, a spherical square well, with principal
quantum number n and angular momenta s ,p, d,... the ordering of level is 1s, 1p,
1d, 2s, 1f, 2p, 1g, 2d, 3s, 1h etc. This corresponds to shell closings at N= 2, 8, 18,
20, 34, 40, 58, 68, 70, 92, etc. [19, 20]

Figure 2.3: a) The stepwise buildup from a dimer to the icosahedral structure.
b) The �rst Mackay icosahedra, leading to the magic numbers. Taken from

Ref. [17].
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2 Cluster Formation

2.1 Supersonic Expansion

Noble gas clusters are bound via the Van-der-Waals force. The binding energies of
about 20 meV =̂−40 ◦C are small compared to room temperature thermal energy.
Therefore no noble gas clusters are formed at standard conditions1. Consequently
one needs to cool down the target, in order to produce clusters.
In the presented experiments, supersonic gas expansion is used to achieve this cool-
ing. The process sets in, if gas �ows from a high pressure region, through a small
nozzle, into a low pressure region. The process can be assumed to be isentropic,
as friction and heat conduction can be neglected [22]. The entropy of the gas is
constant and with it the density of states. The spatial density however, decreases
during the expansion into the low pressure region and consequently the density
in momentum space has to increase. This increase is equivalent to a decrease in
temperature. The thermal energy is converted into directed kinetic energy along
the expanding direction. The particles gain supersonic velocity and the emerging
beam has low divergence.
The supersonic expansion starts at a certain threshold, if the ratio of stagnation
pressure p0 and expansion chamber pressure pa is large enough ([22] p.85):

p0
pa
≥
(
κ+ 1

2

) κ
κ−1

(2.3)

Where κ is the ratio of the speci�c heats κ = Cp
CV

of the used gas. The indices p
and V stand for constant pressure and constant volume respectively.
The following explanation of the supersonic expansion process is analog to ([22]
p.105f), where even more details are given.
If the condition of large pressure ratios (eq. 2.3) is ful�lled, the pressure at the
nozzle exit becomes independent of the backing pressure and is given by

pbacking = p0

(
1

2
(κ+ 1)

) κ
κ−1

. (2.4)

As the pressure at the nozzle exit is higher than the ambient pressure, the gas is
said to be �underexpanded�. As a result, the gas expands even further. Because
the �ow is supersonic, it can't �sense� the downstream boundary conditions and
overexpands to pressures lower than pa. This region is called zone of silence, as
velocities are the largest and interactions reduced. The jet gets compressed by
shock waves at the jet boundary, which is called barrel shock. These shock waves
decrease the cross sectional area of the expansion and the �ow cone closes up. At
1Standard temperature and pressure (STP) [21]: T = 273.15 K, p = 105 Pa
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2 Cluster Formation

the point where all re�ected compression shock waves intersect, the �Mach disk� is
formed. It marks, like the barrel shock, a region of large temperature and density
gradients.
At larger distances than the Mach disk, pressure and gas density decrease drasti-
cally, so the gas dynamic treatment is no longer valid. The molecular regime of
the background is entered, where single particle properties are used to describe
the gas behavior.

In order to create a cool gas jet

Figure 2.4: Supersonic expansion [23]

with a narrow velocity distribution,
one needs to extract the target mole-
cules before the expansion zone
breaks o�. A so called �skimmer�
is placed co-axial to the nozzle and
extends into the zone of silence. In
this manner, just the molecules with
the desired properties �nd its way
to the interaction region.
There is an experimental relation
for the distance xm of the Mach
disk to the nozzle,

xm = 0.67 d

√
p0
pa
, (2.5)

with d representing the nozzle diameter. It has been con�rmed in a wide range of
pressure ratios [24].
To get an idea of the process dimension, we use typical values of a measurement:
d = 30 µm, p0 = 1000 mbar and pa = 3× 10−4 mbar. In this constellation the
Mach disk is located at: xm = 3.7 cm. In Ref. [24] Tejeda et al. give a rough
estimation for the Mach disk diameter: D = 0.5xm.

2.1.1 Scaling Law

There is no rigorous theory to describe the process of clustering. Hagena et al.

introduced though a semi-empirical approach and a scaling law [25]. This in-
cludes expansion conditions, simple kinetic considerations and many experimental

18



2 Cluster Formation

validations. The heart of the description is the dimensionless scaling parameter
Γ. It contains both expansion related quantities denoted by the index 0 and gas
associated characteristics, indexed by 'ch':

Γ∗ =
n0d

q Tα0
rαch T

α
ch

=
p0d

q Tα−10

kBr
q−3
ch Tαch

(0 < q ≤ 1) (2.6)

Where q is an empirically determined value and α = 1
2

(
q f−2

2
− f

)
with f being

the energetically active degrees of freedom. The variable d is the nozzle diameter.
The characteristic temperature is denoted by Tch = ε/kB, using the intermolecular
well depth ε 2 [22]. The characteristic size rch is determined via the atomic mass

M and the density ρ of the solid: rch =
(
M
ρ

) 1
3
.

Employing the scaling parameter Γ∗ from equation 2.6, Hagena also states an
average clustersize 〈N〉 by using another two free parameters D and a:

〈N〉 = D

(
Γ∗

1000

)a
(2.7)

The relations 2.6 and 2.7 were �rst introduced for rare gas clusters and later ex-
tended to metal vapors ([22] sec. 3.9.2). The value of Γ∗ gives information on the
degree of clustering. In general, one can assume, that for Γ∗ < 200 there is no
clustering, while clusters of more than a hundred constituents are found beyond
Γ∗ > 1000. [25].

For our considerations, the work of C. Boppert et al. on size distributions of water
clusters is very helpful. Based on the introduced scaling law, they extracted the
free parameters q,D and a by �tting experimental data. However, these relations
are set up and validated for clusters with 〈N〉 > 10, so our conclusions on smaller
clusters, especially on dimers, should be handled with care.
For water, the following parameters were determined or looked-up from Boppert
et al. [26]:

2If under standard conditions (STP) solid, one uses instead: Tch = ∆h0/kB , where ∆h0 is the
sublimation enthalpy at 0 K
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2 Cluster Formation

Parameters of Water

obtained from Fit inherent Properties

D 11.60 DOF f 6
q 0.634 rch 3.19Å
a 1.886 Tch 5684 K

Table 2.2: D, q, and a are introduced to de�ne the scaling parameter Γ∗ in eq.
2.6 and the average cluster size 〈N〉 in eq. 2.7. Characteristic values are

de�ned subsequent to eq. 2.6. Taken from Ref. [26]

In our experiment, we are evaporating water and measure when the sample is
thermalized. Therefore, the stagnation properties p0 and T0 are directly connected
via the vapor pressure relation. The Antoine equation approximates this relation
for certain temperature ranges [27]:

log10 p0 = A− B

T0 + C
p[bar], T [K] (2.8)

Temperature [K] A B C

273 � 303 5.40221 1838.675 -31.737
304 � 333 5.20389 1733.926 -39.485
334 � 363 5.0768 1659.793 -45.854
344 � 373 5.08354 1663.125 -45.622
379 � 573 3.55959 643.748 -198.043

Table 2.3: Antoine Parameters listed in the NIST webbook [27] determined in
[28, 29]

Inserting the parameters of table 2.2 and 2.3 in the merged equations 2.6, 2.7 and
2.8, we can solve for the temperature T0 at chosen nozzle diameters d, to obtain a
mean cluster size 〈N〉:

〈N〉 (T0) = D

(
10

A− B
T0+C dq T q−4

0 100

kB r
q−3
ch T q−3ch

)a

(2.9)
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The chosen dimensions are close to experimental conditions in section 3.2. If using
a larger nozzle, one needs to decrease the temperature, in order to keep the same
average cluster size. On the other hand, if one employs the same nozzle, but wants
to increase the cluster size, one has to heat.

〈N〉 ø Nozzle d [µm] Temperature [K]

2 30 86.7 ◦C
2 50 76.1 ◦C
5 50 92.3 ◦C

Table 2.4: Example relations for the water cluster equation 2.9

2.1.2 Carrier and Seeding Gases

Clustering can be enhanced by admixing carrier gases to the target gas, water vapor
in our case. In this operation one speaks of a seeded source. Usually noble gases
are co-expanded with the target molecules and carry o� the heat of condensation.
In fact, the noble gas atoms stabilize the growing clusters, by cooling them down.
At absent or insu�cient cooling rates, clusters cool themselves by evaporating
constituents.
There is an optimal partial pressure pc for the carrier gas. For low pc, the collision
rate between the noble gas and the clusters is insu�cient for cooling. For large
partial pressures pc, collisions between target molecules decrease, so the cluster
growth is hindered [14].

2.2 Neon Dimer

Under standard conditions, noble gases show no tendency for clustering or binding,
as kinetic energies are relatively large. They have closed electron shells, which
corresponds to an energetically favored state. Van-der-Waals forces induce dipoles
which generate a weak attraction between the atoms. The binding energy of a
Neon dimer is E = 3.6 meV [13]. In terms of temperature this is about 42 K, thus
stable Neon dimers must be at least of this temperature.
In nature, atoms of the same element can have di�erent atomic masses, these
are called isotopes. They have the same proton count, but a di�ering number of
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neutrons. For Neon there are three stable isotopes with di�erent abundances (see
table 2.5). Due to the low occurrence of some isotope combinations, just two types
of dimers are relevant for our experiment, Ne20 -Ne20 and Ne20 �Ne22.

Isotope Mass [u] relative Abundance

Ne20 19.992 435 90.48 %
Ne21 20.993 843 0.27 %
Ne22 21.991 383 9.25 %

Ne20 �Ne20 39.98487 81.87 %
Ne20 �Ne21 40.986278 0.49 %
Ne20 �Ne22 41.983818 16.74 %
Ne22 �Ne21 42.985226 0.04 %
Ne22 �Ne22 43.982766 0.85 %
Ne21 �Ne21 41.987686 0.0007 %

Table 2.5: Natural Abundance of Neon [30]

22



3 Construction and Characterization of a

Water Cluster Source

3.1 Setup of the Waterjet

In future experiments at FLASH, clusters consisting of water molecules and noble
gas atoms will be at the center of interest. Moreover proton dynamics in water
dimers will be investigated. To provide these kinds of targets, a home-built jet
source was designed and tested in the course of this master thesis.
Pure noble gas jets are widely used and come along without sophisticated engi-
neering. They are already in gas phase under standard conditions and can be used
with a gas bottle. The required backing pressure can be adjusted with a pressure
regulating valve and the gas expands in the vacuum through a micrometer sized
nozzle (≈ 5 µm− 50 µm). However, for producing a water vapor jet, one is facing
additional challenges.
Before the expansion through the nozzle, the water has to be brought into gas
phase. A previous approach was a so-called �bubbler� outside the vacuum. Water
is heated up in a sealed vessel until evaporation starts. The steam is then guided in
a pipe to the nozzle, where the expansion takes place. There are several bene�ts:
As there are no spatial limitations on the water reservoir, re�lling is simple and
there is no danger of spilling liquid water into the jet chamber. There is however
freezing and condensation, which turns out to be problematic during operation.
The steam carrying tube has to be heated to prevent condensation. For safe use,
one even needs a temperature gradient between bubbler and nozzle. This condition
is di�cult to ensure in practice. Condensed water easily clogs the small pinhole
and delays the entire experiment.
To overcome these adversities, a di�erent approach to produce a water vapor jet
is presented in the following. The water reservoir was miniaturized to a minimum
and moved inside the vacuum chamber. In a nutshell, the process of heating and
evaporation was brought as close as possible to the nozzle. The vapor has almost
no distance to cover, minimizing the possibility of condensation and clogging.
The entire jet is made of stainless steel. On the one hand, this gives mechanical
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Figure 3.1: Sketch of the water cluster source

strength, needed for tiny screw threads and to withstand high pressures. On the
other hand, stainless steel has a relatively small thermal conductivity. This is
needed to keep a temperature gradient between reservoir and tip, again to prevent
condensation. The two parts can be heated separately, such that the temperature
pro�le can be regulated. The heatings are made of a special heating wire maintain-
ing its properties up to several hundred degrees Celsius. The electric insulation
around the wire is also temperature resistant up to 180 ◦C.
In order to speed up the heat-up phase, an additional heating rod is built into the
reservoir. The heating rod is welded into the back lid of the reservoir, extending
into the volume. (see �gure 3.1)
The conical tip has a tapered hole, where the vapor is guided to the nozzle. The
shape is chosen for several reasons. First the decreasing material thickness sup-
ports the temperature gradient. Secondly, if droplets form within the tip, they will
slide away from the nozzle due to gravity. Additionally, the tip contains a sintered
stainless steel �lter at the beginning of the hole. With a chosen pore size of 5 µm

the �lter stops even small particles from reaching and clogging the nozzle. The
�lter ring and the platinum nozzle are sealed up with a thin lead ring, instead of
the frequently used Indium. Lead melts at 327.5 ◦C, which is far away from the
applied temperatures and is soft enough to get squeezed by the pressure plate, to
seal properly.
The entire tip can be detached to access the �lter and its sealing. To keep the
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system enclosed, an O-ring gasket is used between the reservoir and the tip.

Three Swagelok tubes at di�erent heights are welded in the back lid of the reservoir.
They are the only connections to the outside of the jet chamber, besides the wiring.
Two of the 3 mm tubes are used for re�lling the water reservoir, while the other is
used for gas injection.
One of the re�lling tubes is placed on the bottom of the reservoir and the other
is just below the opening in the dividing wall. The idea is to pump in water at
the lower ori�ce, while sucking on the upper one. If this upper ori�ce sucks in
water, the reservoir is �lled up to the maximum level. The �lling process has to
be repeated in given periods depending on the water volume in the beginning, the
nozzle size and the applied temperature (see section 3.2). A continuous re�lling
scheme is impractical for experimenting, as steady conditions are needed.

Figure 3.2: Water jet mounted on XYZ-Manipulator: The red windings are the
heating wires. The pressure plate marks the end of the tip, �xing the platinum

nozzle. Two Pt100 elements are clamped onto the tip.
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The third tube is connected to a gas bottle. This allows to run the source in three
di�erent modes: A pure noble gas jet, a pure water vapor jet and a water vapor jet
with admixed carrier gas. The latter mode permits to produce clusters consisting
of noble gas atoms and water molecules.
The temperature measurement is done with Pt100 elements. This is a resistance
thermometer, which employs the noble metal Platinum. In a given temperature
range, its electric resistance R scales linearly with temperature T. The known
T (R) dependence is used to deduce the temperature from the ohmic resistance.
Two Pt100 elements are clamped at the very end of the tip, to monitor the crucial
position of expansion. The supersonic expansion cools down the nozzle and freezing
needs to be prevented. Another two elements are clamped at the outside of the
reservoir, where the heating windings end. The second Pt-element at each position
is a spare one.
The entire source is mounted on a XYZ-manipulator, which allows to align it with
the skimmer in µm precision. In order to ensure the necessary rigidity, two steel
beams are supporting the tubings. The wiring inside the jet chamber is connected
to multiple-pin DN16 CF vacuum feed-throughs, mounted on the DN100 CF �ange
of the manipulator. Precisely chosen cable lengths enable to move the source
without any restrictions, while sensitive regions like the skimmer are kept free.

3.2 Heating and Long-Term Test

The design of the presented water jet was started almost from scratch. There
where only a few similar devices to gain some information on dimensioning and
characterization (compare to [31]). One challenge was to estimate the �ow rate
and with that the time the reservoir lasts during an experiment. To get a rough
idea, one can make use of the Hagen-Poiseuille-law. It is applicable for Newtonian
�uids, like water vapor, to calculate the �ow rate V̇ through a long pipe:

V̇ =
∂V

∂t
=
π

8

∆p · r4

η · l
, (3.1)

where η is the dynamic viscosity, r the radius of the pinhole, l the length of the
hole and ∆p the pressure di�erence along the hole.

For our platinum nozzle, the diameter of the pinhole is comparable to the length
of the hole, so the assumption of a long pipe is not given. As the law fails to a
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large extend, we use the Bernoulli principle for an upper estimate of the �ow rate:

∂Vmax

∂t
= πr2

√
2∆p/ρ . (3.2)

In a test run we used a r = 15 µm nozzle, which is about l = 0.1 mm thick.
The plateau temperature is T = 105 ◦C with a corresponding vapor pressure of
p = 1200 hPa. The pressure in the jet chamber was always < 10−3 hPa, so in good
approximation p = ∆p. The dynamic viscosity of water vapor at this temperature
is η = 12.26 µPa s.
Furthermore, we can calculate the vapor density ρ120 ◦C via the ideal gas law, using
MH2O = 18.015 g/mol and R = 8.314 J/(K mol), where V is the volume and m is
the absolute mass:

pV = nRT , (3.3)

pV =
m

M
RT , (3.4)

ρ =
m

V
=
pM

RT
, (3.5)

with the given values: ρ105 ◦C = 0.688 kg/m3.

Inserting the result in equation 3.2 yields:

V̇max ≈ 0.417 m`/s (3.6)

To compare the calculated value with the measured, one needs to know the volume
increase. From liquid water at 20 ◦C to water vapor at 105 ◦C it is:

ρ20 ◦C,l
ρ105 ◦C,g

=
998.2

0.688
≈ 1451 (3.7)

According to the calculation, a reservoir of 20 m` of water should last

t =
20 m`

0.417 m`/s
· 1451 ≈ 19 h (3.8)

In practice, the 20 m` last for 38 h (compare to the plateau region in �gure 3.4).
Here, the upper limit of the �ow through the nozzle was estimated, so a result
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which is o� by factor two is not surprising. Nevertheless, this estimation helped
for dimensioning in the designing phase.

Figure 3.3 shows a test run for di�erent water �llings in the reservoir. The curve
�Jet 1� refers to the pressure in the Jet chamber, where the �rst skimming takes
place. Its trend gives the closest feedback on changes of the �ow rate. In total, the
gas jet is traversing another �ve jet stages. Their pressure trends mainly follow
the dump pressure and will not be considered in the following.
The �dump� is in the very end of the vacuum setup, here the gas jet is dumped into
a turbo molecular pump. If there is a decent pressure increase, one can assume
that a supersonic expansion has taken place and a proper target jet has formed.
Otherwise, the gas e�uses out of the nozzle and is pumped away before the dump
is reached.
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Figure 3.3: Two runs with a 50 µm nozzle, but di�erent �lling volumes. For the
20 m` run, a pre-heated source was used. As a result, the plateau was reached

earlier, even though the larger water amount.

In all cases, water at room temperature and under normal pressure was �lled into
the reservoir. Therefore, curves start from a relatively high level (e.g. �gure 3.3).
In the following pressures go down, as the water is not yet heated up, but the
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pumps still work. If the thermalization of the water jet source is �nished, a steady
vapor �ow rate sets in. This situation refers to a plateau region in pressure. The
duration of this process is crucial for experimenting with the source, because one
needs a stable target jet, by the time the FEL is turned on. Several parameters
have an in�uence on this duration. If for instance, the steel reservoir and tip are
already heated up before re�lling, the plateau region is reached faster. This can be
seen in �gure 3.3, where the run with 20 m` was done with a pre-heated source and
the 5 m` run started at room temperature. The dump plateau settles earlier, even
though a larger water volume needs to be warmed up. In practice, a pre-heated
source is di�cult to handle though. The �rst m` of water entering the reservoir
vaporize immediately. The prompt pressure increase pushes back the plugs of the
syringes, which makes a controlled �lling impossible.
The heatings were set to constant current mode throughout the entire experiment.
Reservoir and tip of the source were kept on 0.4 A and 0.5 A, respectively. The
di�erent currents were used to maintain a temperature gradient from the back
to the tip of the source, in order to prevent condensation. The heat-up period
resembles a limited exponential growth with a single time constant. So it takes
comparatively long to reach its limit. Changing the currents for the heat-up period
and the steady state periods, can signi�cantly shorten the time until the plateau
region sets in. The runs in �gures 3.3 and 3.4 are all done with the constant heat-
up mode, where it takes 4 h�7 h. In �gure 3.5, higher currents for tip 0.8 A and
reservoir 0.6 A were chosen.
When a temperature of about 78 ◦C was reached, the steady state currents (0.4 A

and 0.5 A) were set. In this scheme, the time to reach the plateau could be reduced
to about 2 h. The conservative temperature to change the heating currents was
deliberately chosen, because it was not known how strong the overshooting would
be. It turned out however, to be no problem at all. Steady state temperatures
could be closely approached, even with large currents, reducing the heat-up time
further.
5 m` of water last for about 5 h, where the 20 m` in the second run only last for
about 13 h (�gure 3.4). This is surprising, because one assumes the runtime to
scale linearly with water volume. Especially because the plateau pressures are the
same, which indicates an equal �ow rate.
Unfortunately, one has to assume that the reservoir was not totally empty for the
5 m` run. Measuring routines were just about to establish. The lower �lling tube
is not exactly on the bottom of the reservoir, so the �lling level was wrongly tested.
In the end of the plateau region, the reservoir runs out of water. Low �ll levels
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Figure 3.4: Two runs, each with 20 m` water, but di�erent nozzle diameters.
For the 50 µm measurement, a pre-heated source was used, so the plateau
region settles faster. Currents: 0.4 A at the reservoir and 0.5 A at the tip,

leading to ca. 120 ◦C in steady state.

often involve a jitter in the pressure, before the reservoir is totally empty. An
explanation for this e�ect might be the increasing surface to volume ratio of the
water in the reservoir. The cooling during evaporation has a stronger impact for
low �lling levels, so pressure �uctuations might emerge more easily.
Figure 3.4 demonstrates the e�ect of di�erent nozzle diameters on the �ow rate.
The higher throughput can be seen as larger pressures. There is a strong depen-
dence on the nozzle ori�ce, as expected from equations 3.2 and 3.1. The 13 h

plateau with a 50µm nozzle, is extended to about 38 h employing a 30µm nozzle.
These values would suggest the following empirical nozzle radius dependence:

∂V

∂t
∝ rx → ∆t2

∆t1
=

(
r1
r2

)x
(3.9)

x =
log (∆t2/∆t1)

log (r1/r2)
=

log (13 h/38 h)

log (30 µm/50 µm)
≈ 2.1 (3.10)
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However, this result should be handled with care, as just the plateau times were
taken and the same evaporated volume was assumed. The curve for the 30µm

nozzle �attens not as fast as in the 50µm case, so longer evaporation times should
be assumed. This would lead to a stronger nozzle size dependence.

Figure 3.5 depicts a measurement with Argon as seeding gas. Seeding is a spe-
cial feature of the presented jet source. One important parameter, is the water
evaporation rate under additional pressure, by the Argon gas bottle. As described,
increased heat currents were used during the heat-up period. Therefore the plateau
region settled rather fast.
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Figure 3.5: Single run with 10 m` water and 3 bar Argon for seeding.
Accelerated heat-up period with 0.6 A and 0.8 A for reservoir and tip, in steady
state 0.4 A and 0.5 A. At 22 h the Argon supply was turned o� and at 26.5 h

heatings were switched o�.

The Argon supply was turned o� at the 22 h mark, to �nd out the �lling level in
the reservoir. In the following, pressures dropped and settle for about 4 h on a
di�erent plateau. This suggest that there was still water left, creating the jet from
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22 h�26 h. The subsequent pressure drop indicates an empty reservoir like in the
previous runs. Afterwards, at about 26.5 h, the heatings were turned o�.
Extrapolated from �gure 3.4 with the 30µm nozzle, the 10 m` water should have
lasted for 19 h. Without the 4 h of the ending plateau, one should have a 15 h

plateau, if the Argon would have no e�ect. We �nd however a steady state region
from 2 h�22 h. Therefore 3 bar Argon seeding gas on 105 ◦C hot water, extends the
usable time by about a third.

3.3 Time of Flight (TOF) Spectra

3.3.1 Pure Water

Future experiments at FLASH will involve water dimers (H2O)2 and clusters com-
posed of water and noble gases like Xenon and Neon. The presented jet source
should provide these clusters with maximal yields. Therefore, besides the designing
preconditions, one needs to know the optimal thermodynamic parameters (tem-
perature,pressure, skimmer distance, nozzle diameter etc. [14]) to achieve best
performance.
The following benchmark tests where done with an intense IR laser (800 nm,
I ≈ 10× 1014 W cm−3, rep. rate 3 kHz) and a REMI at MPIK. Due to the high
intensity, the laser ionizes water by strong �eld ionization (Ref. [32]). In this way,
ionization takes place, even if the photon energy (1.55 eV) is below the single
ionization energy threshold of water 12.6 eV [33].
For the test runs in �gure 3.6, a 30µm nozzle, at a distance L = 3.2 mm to the
skimmer, was used. Even though the runs have di�erent statistics, one can clearly
see the in�uence of temperature on clustering.
The most dominant peak at 23 880 ns is the water ion peak H2O+. Starting at this
point, the other peaks can be assigned using equation 7.3. The spikes for small
TOFs arise from H+ ions, which underwent di�erent fragmentation pathways in
strong-�eld ionization and therefore possess di�erent energies. The exact mecha-
nism will not be discussed at this point (see Ref. [32]).
The upper left spectrum in �gure 3.6 has two sharp peaks at around 30 ps. They
correspond to N+

2 and O+
2 , coming from air, which entered during the re�lling

of the water reservoir. These peaks vanish after some time, when the air is dis-
sipated, like in the other spectra. As the O2+ and the O+ peak do not vanish
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Figure 3.6: Time of �ight spectra for a water jet at di�erent reservoir
temperatures. (d = 30 µm, distance skimmer to nozzle L = 3.2 mm )

and appear pronounced, one can conclude them to stem from the target. Both
ions were produced in a fragmentation process, therefore they exhibit large peak
widths.
Besides the water monomer peak, there are two other sharp peaks at TOFs for
20Ne+ and (H2O)+2 , which thus also originate from the supersonic expansion.
Neon is found due to previous noble gas test runs and is not considered in this
section. Larger water oligomers (H2O)+n are not observed as their binding is
weaker than their protonated counterpart H+(H2O)n [34]. These ionic clusters
are called Zundel-like or Eigen-like, because their smallest structure is the Zundel
ion H+(H2O)2 and the Eigen ion H3O+(H2O)3, respectively. The di�erence be-
tween these two formations is their structure. The �rst is proton centered and the
latter centered around a Hydronium ion (Ref. [34]).
Water oligomers di�er just in a single proton mass from the more stable Eigen-
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Figure 3.7: Detailed view on the water spectra. Marked positions are calculated
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+ time of �ight.

type ions and occur at similar time of �ights (see �gure 3.7(a)). If present, their
weaker signal simply vanishes in the broad neighboring peak. Usually, we assume
that an extended peak width is an indication of ions to stem from residual gas.
In the case of the protonated water clusters however, the additional momentum
comes from the protonation itself (eq. 3.11, [35]) and the following fragmentation
(agglomeration) processes (eq. 3.12, [34]).
Equation 3.11 shows the impact of an electron colliding with a water cluster,
becoming a metastable ion and following dissociation into stable products. In
our case, this process is not triggered by an electron, but by absorbing infrared
photons.
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(H2O)n + e→ H+ (H2O)n-1 + OH + 2e (3.11)

H+ (H2O)n + H2O↔ H+ (H2O)n+1 (3.12)

The extended width of the cluster peaks is also caused by evaporation of molecules
from larger clusters. This e�ect was also observed by Hansen et al. in a electron
spray ion source experiment on protonated water clusters [36]. The evaporation
(reaction right to left in eq. 3.12) is driven by infrared photons [37]. At the
lowest temperature of 69 ◦C in �gure 3.6, one could barley see trimers and no
larger clusters. With increasing temperature (and vapor pressure) however, cluster
growth is enhanced. This is consistent with the temperature dependence derived
in section 2.1.1, and shown in table 2.4.

The water dimer yield seems to be not directly connected
Temp. Dimer yield

69 ◦C 0.15 %

88 ◦C 0.19 %

107 ◦C 0.18 %

117 ◦C 0.17 %

Table 3.1: Integrated
peaks:

(H2O)
+
2 /H2O

+

to the growth of the protonated water clusters, as there
is a maximal yield. In relation to the H2O+ peak, we
found a maximal dimer yield of 0.19 %, at 88 ◦C using
an 30µm nozzle (compare table 3.1). In an experiment
on water dimers under similar condition by Jahnke et
al., a �dimer fraction of less than 1 %� [5] was stated. x
xx x xx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx x xx xxx xx x xx x x xx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxxxxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx

3.3.2 Neon Seeding

In section 2.1.2 the positive e�ect of seeding gases on clustering was introduced. In
order to take the most advantage of this technique, we systematically investigated
the in�uence of backing pressure, temperature and rare gas species. In section
3.4 the results of di�erent combinations of these parameters are listed in a table.
Trends and dependencies can easily be deduced.
We focused on maximizing the water dimer yield relative to the water monomer
yield. Moreover, small mixed-clusters of rare gas atoms and water molecules were
of special interest, as there is an experiment already scheduled.
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Figure 3.8: Water spectra without heating in the two upper rows and with
heating in the last row. Neon seeding at di�erent backing pressures.
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Figure 3.8 shows four TOF spectra for di�erent Neon backing pressures. In all
cases no heating was applied. This would be not possible for water only, since the
vapor pressure is not high enough for supersonic expansion to set in. In fact, the
water source was not exactly at room temperature, but at 44 ◦C, which is owed
to a nearby vacuum gauge. To prevent confusion, it should be said, that the two
additional unlabeled peaks in the 1 bar spectrum, originate from air, which pene-
trated the system during re�lling.
By simply comparing the orders of magnitude, one can infer the huge increase of
the dimer yield, compared to section 3.3.1 with pure water. The yield increases
even further with rising backing pressure. At 8 bar backing pressure we found a
water dimer to monomer ratio of 1.9 %. This is an order of magnitude larger than
the best result we obtained without seeding.
As indicated in the 4 bar spectrum, we also produced Neon-water clusters Ne -H2O
in a fraction of 0.51 % of the water monomer. The peak just emerges for larger
backing pressures (qualitatively in �gure 3.8 and quantitatively in section 3.4) In
addition to the pressure dependence, we also checked the in�uence of tempera-
ture. The water reservoir was heated up to 70 ◦C and spectra were taken for two
di�erent backing pressures (see �gure bottom row in �gure 3.8). One could see
just by comparison of the spectra, that the fraction of water monomers, relative
to the Neon monomers, is rising with increasing temperature. This is a reasonable
observation, since the partial pressure of water vapor goes up with temperature.
Another important �nding is the temperature e�ect on the water dimer yield. The
fraction of (H2O)2 at 8 bar goes down by 30 % if the temperature is increased from
44 ◦C to 70 ◦C. For a backing pressure of 4 bar the water dimer yield even decreases
by about 42 %.
The same trend with temperature is found for the Ne -H2O abundance.
The results suggest to use low temperatures and high backing pressures to maxi-
mize the water dimer yield. A spectrum over the entire TOF range can be found
in the Appendix A.2.
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3.3.3 Helium Seeding
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Figure 3.9: Water spectra for di�erent pressures with Helium as carrier gas.
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3 Construction and Characterization of a Water Cluster Source

Helium was also investigated as a carrier gas. It is the lightest element of the noble
gases and stresses the pumping system less than the other noble gases. Therefore,
larger backing pressures can be employed. In �gure 3.9, �ve measurements at room
temperature for di�erent backing pressures are depicted.
A comparison with Neon seeding for same backing pressures shows, that the water
dimer yield (H2O)2 for Helium seeding is lowered. This can be explained with the
larger mass di�erence of He to (H2O)2 than in the case of Neon. The maximum
water dimer yield of 1.07 % is found for 10 bar backing pressure. For larger backing
pressures (14 bar), the dimer yield decreases again (0.77 %). This e�ect is explained
in section 2.1.2 �Carrier Gas�). With increasing backing pressure the cooling rate
increases, but it is getting less probable for two water molecules to collide and
form a dimer. Eventually, at large backing pressures, the reduced collision e�ect
dominates the cooling e�ect and the dimer yield decreases.
There is a narrow peak at time of �ights for m

q
= 40 particles. This is probably

He -(H2O)2, as there are no other reasonable compounds with this mass to charge
ratio. The abundance of He -(H2O)2 also peaks for 10 bar Helium backing pressure.

3.3.4 Argon Seeding

Another carrier gas which was investigated is Argon. It is twice as heavy as Neon,
so one anticipates a di�erent e�ect on clustering. The most abundant Argon atom
40Ar has a very similar mass to the water dimer u = 38. Therefore, collisions are
most e�ective, in terms of kinetic energy transfer. This consideration goes along
with our investigations, as the highest water dimer yields were obtained with Ar-
gon seeding (compare section 3.4).
In �gure 3.10 we employed three di�erent backing pressures without any heat-
ing. In contrast to the previous Neon spectra, doubly charged Argon ions are
found. They emerge due to the lower ionization potential of the singly charged
ion ( Ip(Ne+)=41 eV, Ip(Ar+)=27.6 eV). The lower ionization potentials of Argon
are also the reason why the Argon monomer peak is the most dominant in the
spectrum.
For larger backing pressures, the fraction of water monomers compared to the
40Ar+ ions decreases. While for 1 bar there is about one order of magnitude di�er-
ence, the discrepancy goes up to almost 2 orders of magnitude for 6 bar backing
pressure.
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3 Construction and Characterization of a Water Cluster Source
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Figure 3.10: Argon seeded water spectra, taken at di�erent temperatures and
pressures.

Evaporation from the water surface is hindered, due to the increased Argon backing
pressure. Therefore all water compounds decrease with larger carrier gas pressures.

Even though the 40Ar atom is by far the most dominant
Isotope Abundance

36Ar 0.337 %
38Ar 0.063 %
40Ar 99.6 %

Table 3.2: Natural
Argon abundance

[38]

Isotope of Argon, we have to consider the less abundant
species. Unfortunately the 36Ar+ and the water dimer
(H2O)+2 have the same mass to charge ratio and cannot
be distinguished in the TOF spectrum. For determin-
ing the water dimer yield, one has to take the isotopes
abundance into account (compare table 3.2) and sub-
tract the 36Ar+ contribution to the peak. The corrected
water dimer yields can be found in section 3.4.
The conclusion is again, that for higher backing pres-

sures the formation of water dimers is enhanced. The only limitation to go to even
higher pressures, is the performance of our pumping system. High pressures and
heavy gases cause massive stress on the pumps.
Because of the technical restrictions, we cannot exploit the full clustering en-
hancement of a seeding gas. We would expect, that for rising backing pressures,
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3 Construction and Characterization of a Water Cluster Source

the decreasing water evaporation rate, would eventually lead to a maximum of
the water dimer yield. This simply occurs as it is getting less probable for water
molecules to collide and form a cluster. (see section �Carrier Gas� 2.1.2)
A �rst indication of the described process to set in, might be the lowering gains of
the dimer yield with increasing backing pressure. There is also the ArH2O cluster,
whose yield starts to decrease somewhere between 4 and 6 bar (see section 3.4).

3.3.5 Xenon Seeding

Seeding with Xenon turned out to be the most challenging. The large Xenon atom
gets easily ionized, so the laser intensity has to be reduced, in order to protect the
MCPs from damage. On the contrary one has to make sure, to still ionize water.
Furthermore, the backing pressure has to be reduced drastically, �rst to preserve
the pumps, but also to decrease the Xenon fraction.
The TOF spectrum (�gure 3.11) shows many peaks at the positions of Xe+, Xe2+

and Xe+2 . These are attributed to the seven stable isotopes and the two long lived
isotopes of Xenon. For Xenon dimers there are even more peaks than nine, since
isotopes can pair up in di�erent combinations.
With the chosen set of parameters (0.3 bar backing pressure, no heating, 30µm

nozzle diameter), there were no Xe -H2O clusters. Probably one has to go to
higher backing pressures to produce these compounds. The numerous isotopes are
also a reason for weak signals of the water Xenon dimers.
Despite the small backing pressure, water dimers formed in a considerable fraction
of 4.25 %. For experiments which employ solely water dimers, a Xenon seeding
cannot be recommended. The massive Xe monomer peak saturates detectors and
the forcibly low backing pressures clash with supersonic expansion.
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Figure 3.11: Xenon seeded water spectra, taken at room temperatures.
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3.4 Seeding Results Overview

A list of the results on cluster yields, for di�erent pressures, temperatures and carrier gases.

Yield (relative to H2O+)

Backing Pressure [bar]

1 2 4 6 8 10 14 0.3 0.66 1.05 1.6

Seeding Gas 44 ◦C 44 ◦C 44 ◦C 70 ◦C 44 ◦C 70 ◦C 44 ◦C 70 ◦C 44 ◦C 44 ◦C 44 ◦C 70 ◦C 88 ◦C 107 ◦C 117 ◦C

He (H2O)2 0.44 % 0.83 % 0.99 % 1.07 % 0.77 %

He (H2O)2 0.08 % 0.13 % 0.15 % 0.2 % 0.07 %

Ne (H2O)2 0.56 % 0.76 % 1.24 % 0.72 % 1.9 % 1.32 %

NeH2O 0.11 % 0.21 % 0.51 % 0.2 % 1.31 %

Ar (H2O)2 2.25 % 4.23 % 5.62 %

ArH2O 0.95 % 2.78 % 2.66 %

Xe (H2O)2 4.25 %

Pure Water (H2O)2 0.15 % 0.19 % 0.18 % 0.17 %
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4 Photon-Atom Interaction

In atoms, electrons are bound to the nucleus, consisting of protons and neutrons.
The electrons only occupy distinct states centered on the nucleus, described by a
set of quantum numbers. The principal quantum number n, denotes the electron
shells around the nucleus, which corresponds to a range of binding energy. Within a
shell, electrons are distinguished by their orbital angular momentum ` = 0, 1, 2, ...,
also denoted with s, p, d, ... One is also speaking of subshells, as the electrons have
certain spatial probability densities, corresponding to their angular momentum.
All electrons within a shell n, form a spherical density distribution, reinforcing
to use the term �shell�. The angular momentum ` can have speci�c orientations
relative to a chosen quantization axis: m` = 0,±1,±2, ... for |m`| ≤ `.

continum

E
ne
rg
y

1s

2s
2p

3s
3p

3d
4s

4p
4d

Figure 4.1: Basic energy level scheme in an atom.

Another angular momentum like quantum number is the spin. It is an intrinsic



4 Photon-Atom Interaction

property of particles and also has quantized values. Electrons are spin-1/2 parti-
cles, while photons have spin 1. This is important for photon-induced transitions,
as angular momenta can couple to each other. Further quantum numbers will not
be considered, as they are not playing a decisive role in this context.

4.1 First-Order Dipole Transitions

For a �rst calculation of the interaction between atoms and photons, one com-
monly uses the electric dipole approximation. This is done via time-dependent
perturbation theory in �rst order. Here, the temporal change of the electric �eld
in the electromagnetic wave (or the photon) is considered.
This section and the following are compiled from �Atome, Moleküle und optische
Physik Teil 1� [39] chapter 4.2 and 5.3.
The force on an electron in an oscillatory electric �eld is: F e = −e0E(r, t). The
perturbation energy follows as:

Û(r, t) = r · e0E(r, t) = −D ·E(r, t) , (4.1)

where r is the distance of the electron to the nucleus and D the electric dipole-
moment. The electric �eld E can be written in terms of the polarization vector e
and the �eld amplitude E0:

E(r, t) =
i

2
E0

(
e ei(kr−ωt) − e∗ e−i(kr−ωt)

)
. (4.2)

Typically, the atom is a lot smaller than the wavelength of the photon ratom � λ, so
we can make an expansion in kr � 1. In �rst, order we obtain for the exponential:

Û(r, t) =
i

2
E0e0r

(
e eiωt − e∗ e−iωt

)
, (4.3)

Û(r, t) =
i

2
T0

(
T̂ eiωt − T̂∗ e−iωt

)
. (4.4)

Û(r, t) is the time dependent perturbation of the electron in an E-�eld. Quantities
are merged into a transition amplitude T0 = E0e0 and a transition operator T̂ =

re. The time dependent Hamiltonian Ĥ(t) is a combination of the stationary
Hamiltonian Ĥ0 and the perturbation:

Ĥ(t) = Ĥ0 + Û(r, t) . (4.5)
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4 Photon-Atom Interaction

In order to �nd the transition probability, the time-dependent Schrödinger equa-
tion needs to be solved:[

Ĥ0 + Û(r, t)
]
|Ψ(r, t)〉 = i~

∂

∂t
|Ψ(r, t)〉 . (4.6)

For an ansatz, we make use of solutions of the stationary Schrödinger equation in
0th order, with a �trivial� time dependence:

Ψ
(0)
j (r, t) = ψ(r) e−iωjt , (4.7)

where ~ωj is the energy of the corresponding state |j〉. If all |j〉 form a complete
basis, an exact solution can be given with a summation over the entire set. Addi-
tionally, we need to introduce time-dependent coe�cients cj(t), also called prob-
ability amplitudes. Thus, time dependence prevails, when the absolute square is
taken. The probability to �nd the �nal state |j〉 after time t is: wj(t) = |cj(t)|2.
The ansatz for equation 4.6 follows:

Ψ(r, t) =
∞∑
j=0

cj(t)e
−iωjt ψj(r) =

∞∑
j=0

cj(t)e
−iωjt |j〉 (4.8)

and inserted:

∞∑
j=0

cj(t)e
−iωjt

[
Ĥ0 + Û(r, t)

]
|j〉 = i~

∞∑
j=0

∂cj(t)e
−iωjt

∂t
|j〉 . (4.9)

Quantities which stay una�ected by a particular operator, were moved in front of
it for clari�cation. In the following, we simplify the equation. On the left side,
Ĥ0 |j〉 = Ej is used and the di�erentiation is done on the right:

∞∑
j=0

cj(t)e
−iωjt

[
E0 + Û(r, t)

]
|j〉 = i

∞∑
j=0

[
cj(t)(−i~ωj)e−iωjt + ~e−iωjt

∂cj(t)

∂t

]
|j〉

(4.10)
∞∑
j=0

cj(t)e
−iωjtÛ(r, t) |j〉 = i~

∞∑
j=0

e−iωjt
∂cj(t)

∂t
|j〉 (4.11)

In equation 4.11, two terms cancel out, as i(−i~ωj) = Ej.
A multiplication with 〈b| eiωbt from the left and 〈b|j〉 = δbj give a system of linear

46



4 Photon-Atom Interaction

di�erential equations:

dcb(t)

dt
= − i

~

∞∑
j=0

cj(t) 〈b|Û(r, t)|j〉 ei(ωb−ωj)t . (4.12)

Equation 4.12 is still exactly valid. In practice however, one only can consider a
�nite amount of orders, where the assumption of a small perturbation Ĥ0 � Û(r, t)

can be used. Under this assumption, the initial state amplitude ca remains constant
over time, whereas the other amplitudes |cj(t)| � 1.
To start o� with the system of equations 4.12, the 0th order is inserted: c(0)a (t) = 1

and c(0)j (t) = 0 ∀j 6= a.

|Ψ(r, t)〉 ≈ |a〉 e−iωat → dcb(t)

dt
= − i

~
Ûbae

iωbat (4.13)

cb(t) = − i
~

∫ t

0

Ûba(t
′)eiωbat

′
dt′ (4.14)

Where the abbreviation ωba = ωb−ωa and for the matrix element Ûba = 〈b|U(r, t)|a〉
is used. Inserting equation 4.4 with the analogous Tba leads to:

cb(t) =
T0

2~

∫ (
T̂bae

i(ωba−ω)t′ − T̂∗bae
i(ωba+ω)t

′
)
dt′ , (4.15)

cb(t) =
T0

2~

(
T̂bae

i(ωba−ω)t

i(ωba − ω)
− T̂∗bae

i(ωba+ω)t

i(ωba + ω)

)
. (4.16)

This is the transition amplitude in �rst-order time-dependent perturbation theory.
It comprises some important information for processes we are interested in. The
oscillatory exponential functions give only notably contributions for ωba ± ω = 0.
Otherwise, they will vanish in the limit of large times. Furthermore, at this energy
constellation, the denominators increase contributions drastically.
The �rst term describes the absorption of a photon ~ω, where the energy di�er-
ence of �nal state b and initial state a is positive. The second term is attributed
to stimulated emission, where ωba < ω.
In summary, the frequency (or energy, wavelength) of the incoming photon must
match the energy di�erence in the atom, to drive the transition e�ciently.
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Another result we could gain, is the intensity dependence of the transition proba-
bility:

w
(1)
ba (t) = |cb(t)|2 ∝ |T0|2 ∝ |E0|2 ∝ I . (4.17)

A single photon process scales linearly with intensity.

4.2 Two- and Multi-Photon Excitation

In the previous section 4.1, �rst-order perturbation theory was introduced. The
evaluation showed, that for an e�cient transition, the frequency ω of the incoming
photon, needs to match the corresponding energy di�erence ~ωba between states a
and b, in the atom. Thereby, the required energy is carried by a single photon. In
the following consideration, second-order perturbation theory is applied, leading
to two-photon absorption.
To obtain the second order, we insert the result for the �rst order 4.16 into the
di�erential equation 4.12.

cb(t) =
−iT2

0

4~2

∫
dt
∑
γ

(
T̂bγT̂γa e

i(ωba−2ω)t

ωγa − ω
+

T̂∗bγT̂γa e
iωbat

ωγa − ω
+ Em

)
(4.18)

Emission terms are abbreviated with Em. They are analogous to the shown ab-
sorption terms, but with di�ering signs. The exponent ωba − 2ω shows clearly the
photon absorption. In �rst order, for a single photon (compare eq 4.16), there was
just the single wavelength ω. Now the transition energy of ~ωba is gained by ab-
sorbing two photons, each with half the frequency, compared to the single photon
case. The summation has to be done over all intermediate states |γ〉. In practice,
it is often su�cient to consider the major contributions, to get a decent result.
An interesting relation for the presented data, is the intensity dependence of the
transition probability ω(2)

abs. From equation 4.18 one �nds:

ω
(2)
abs ∝ T4

0 ∝ I2 (4.19)

In a similar way one can show, that the nth order corresponds to an n photon
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process, resulting in a nth power intensity dependence: ω(n)
abs ∝ In.

This relation shows, that for low intensities (I < 1) the single photon absorption is
dominating by far. Higher order processes however get more and more important
with increasing intensity and can eventually dominate lower order processes (for
I ≥ 1).
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5 Interatomic Coulombic Decay (ICD)

5.1 ICD in General

Interatomic or Intermolecular Coulombic Decay is a very e�cient relaxation pro-
cess for atoms and molecules in weakly bound systems (Cederbaum et al. [3]). The
term �Interatomic Coulombic Decay� gives already an idea what kind of physics is
involved. �Interatomic� is the key word, as it distinguishes from other well-known
relaxation and decay mechanisms like Auger decay, radiative decay or autoion-
ization. These processes take place in a single atom or molecule. However for
ICD to happen, the environment of the excited atom is crucial. The excess en-
ergy is released via a neighboring atom, which subsequently undergoes ionization.
The emitted electron is called ICD electron. The second term �Coulombic decay�,
refers to the decay being �eld mediated. Similar to Auger decay, two electrons are
emitted in total. While Auger decay takes place in a single atom or molecule, in
ICD the charge is distributed and both constituents end up singly charged. Due
to the Coulomb force they strongly repel each other and �y apart. This so called
�Coulomb Explosion� can be an indicator for ICD.
A �rst direct evidence for ICD was brought in 2003, in Van-der-Waals bound Neon
dimers [4]. A step by step illustration of the mechanism is shown schematically
in �gure 5.1. The two energy level pictographs next to each other illustrate the
two Neon atoms of the dimer. For a �rst approximation and because of the weak
bond, levels are not shifted, i.e. the constituents can be considered as if they were
unbound.

In the �rst step, a photon of su�cient energy produces an inner-valence vacancy
in one Neon atom. In the depicted case, a 2s electron is brought into the contin-
uum, which requires a minimum energy of 48.46 eV1. During the next step, a 2p
electron �lls the 2s vacancy in the Ne+ ion, releasing the energy of 26.9 eV1. This
energy however is not su�cient to emit a second electron within the same ion, since
ionization potentials are higher (Ip(Ne+) = 41 eV1) compared to a neutral atom.

1NIST Atomic Spectra Database [40]
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Here, the neighboring, neutral Neon atom comes into play. It employs an ioniza-
tion potential of 21.5 eV1, which is low enough for a 2p electron to get emitted.
This electron is called ICD electron, since it was set free due to the inter-atomic
interaction mediated by a virtual photon. Finally, both atoms of the dimer are
singly charged, both exhibiting a 2p vacancy. Consequently, the strong Coulomb
repulsion tears the dimer apart. This is referred to as a Coulomb explosion.

continuum
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Photoelectron

continuum
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continuum

2p
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Figure 5.1: ICD in a Neon-Dimer: Absorbing the photon leaves a inner-valence
vacancy. Subsequently, a 2p electron �lls the 2s vacancy. The released energy
is mediated to the neighboring atom via a virtual photon. 26.9 eV are su�cient
to ionize the neutral atom and an ICD electron is emitted. Finally, the two

ions Coulomb explode.
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5.2 Resonance-Enhanced ICD

In the previous case of ICD, the photon energy was not precisely speci�ed, as it
should be just su�cient for an inner-valence ionization. In this case however, the
2s-2p resonance in Ne+ is used to trigger ICD. In �gure 5.2, the process is illus-
trated schematically, again in a Neon dimer.
A �rst photon ionizes one Ne atom. The ejected electron is a valence electron from
the 2p state. In the following step, the same atom (now ion) absorbs a second pho-
ton. For this absorption to be most e�cient, the photon energy should match the
transition from 2s to 2p (26.9 eV) in the Ne+ ion. In the third step, the Ne+(2s−1)
ion de-excites and the released energy is used to eject a valence electron of the
neutral, neighboring Neon atom. Similar to the conventional ICD, the released
energy is not su�cient to eject an electron in the ion, but to ionize the neutral
neighbor atom.
The radiative decay lifetime of Ne+(2s−1)→Ne+(2p−1) is τrad ≈ 0.14 ns Ref. [41]
and therefore takes place on a much larger timescale than ICD τICD ≈ 150 fs

(Schnorr et al. Ref. [42]). Thus, radiative decay is suppressed under these condi-
tions.
The �nal con�guration is again the 2p outer-valence vacancy of both Neon atoms.
The following Coulomb explosion fragments the molecule.
The chosen photon energy is too small to directly ionize an inner valence electron,
like described in section 5.1. Therefore the probability for ICD to happen drops,
if one detunes the photon energy from resonance. This can be used as a clear
indicator for the resonance-enhanced ICD.
Another decisive di�erence to the process described in section 5.1, is the total
number of involved photons. While in the �rst case ICD is triggered by a single
photon, two photons are needed in the presented resonance-enhanced case. This
distinction will matter, if one investigates the intensity dependence.
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Figure 5.2: Resonance enhanced ICD in Neon-Dimers: There are two photons
absorbed in total. The �rst leads to an emission of a 2p valence electron. The

second photon has the matching energy of 26.9 eV to drive the 2s→ 2p
transition in the Ne+(2p−1) ion. The third row shows how the 2s vacancy is
�lled by a 2p electron of the same ion and the released energy leads to an

emission of an ICD electron in the neighboring atom. Finally, both Ne atoms
are singly charged and Coulomb explode.
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There is a competing mechanism in the Neon dimer (�gure 5.3) [41] for the consid-
ered photon energies. It is also possible for the dimer to absorb two photons, each
ionizing one of the two constituents. The �nal con�guration would be the same
as in the resonant case. The dimer is ionized twice and the two Ne+(2p−1) ions
Coulomb explode. However, there are two signatures to distinguish between the
resonance-enhanced ICD and the competing mechanism. The ICD electron has
always the same kinetic energy, because the de-excitation of the neighboring ion
always releases the same amount of energy. This is at least valid for a short delay
between �rst and second absorption, as then nuclear dynamics can be neglected.
This is di�erent for the competing mechanism, where the photoelectron can have
di�erent kinetic energies, depending on the photon energy.
A second indication is the photon energy dependent Coulomb explosion yield.
While the resonance-enhanced ICD has an increased yield on the resonance, the
yield of the competing mechanism stays constant over the small photon energy
range, as the cross-section does not change too much.

continuum

2p
21eV

2s

1s

Photoelectron

continuum

2p
21eV

2s

1s

Photoelectron

Coulomb explosion

Figure 5.3: Competing mechanism to resonance-enhanced ICD: Each atom of
the dimer absorbs a photon and subsequently emits a photoelectron, resulting in
(Ne+(2p−1))2. Due to the charge repulsion, a Coulomb explosion takes place.
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6 Experimental Setup for the Neon

Measurement

6.1 Overview: Heidelberg Reaction Microscope at

FLASH2

For the presented experiment, we were using a Free-Electron Laser (FEL). In
contrast to conventional lasers, one needs an entire facility to create FEL pulses
(see sec. 6.2). In our case, the experiment was carried out at FLASH2 (Free-
Electron Laser in Hamburg), the extension of FLASH1.
The interface between the FEL facility and the user experiment is an evacuated
beamline (≈ 10−8 � 10−7 mbar). Here, the REMI setup (chapter 6.3) is mounted.
The FEL needs to be in vacuum at all times, since high intensities and photon
energies would lead to immediate absorption in air. In our detection scheme, we
even go to much lower pressures to reduce the background.
Between the last FLASH �ange and the main chamber, the pressure has to be
lowered by about four orders of magnitude. This is done with three di�erential
pumping stages, installed in a beamline before the REMI. Two neighboring stages
are connected with small tubes (ø≈ 1 cm), providing a low conductance, due to
the relatively small cross-sectional area. In this way, larger pressure di�erences
can be sustained with a relatively short beamline. The beamline comprises several
apertures and slits to clip the unfocused FEL and reduce stray light.
The FEL and the gas target jet intersect in the main chamber (see �gure 6.1),
where the detection of fragments takes place. Beamline and jet are therefore
orientated perpendicularly. The gas jet is produced in the so-called �jet chamber�.
For large backing pressures and large nozzles, the pressure here can be relatively
high ≈10−3 mbar. In order to reach as low pressures as in the main chamber,
di�erential pumping is used again. In contrast to the beamline arm, gas is injected
into the system, so turbo molecular pumps are stressed in particular.
On the opposing side of the jet chamber is the so-called �Jet dump�. The main
part of the gas just crosses the main chamber without any interaction. To avoid
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Jet Chamber

FEL Beamline

Jet Dump Mirror Chamber

Main Chamber

~1.2m

Figure 6.1: Experimental Setup at FLASH2

spoiling the vacuum, the jet (ø=1 � 2 mm) passes through a small tube and gets
directly dumped into a turbo molecular pump.
The multilayer mirrors, which focus and back re�ect the FEL, are housed in the
so-called �mirror chamber�. It contains the piezo-driven delay stage of the split
mirror and two goniometers, which rotate the mirror horizontally and vertically.
The equipment in the mirror chamber accumulates a lot of surface, which leads
to increased outgassing. Therefore, these parts are sourced out from the main
chamber.

6.2 Free-Electron Laser - FLASH

The following explanations of FELs are compiled from [43, 44].
Free-electron lasers resemble conventional lasers in some properties, as coherence
and low divergence. This is also the reason why one speaks of a �Laser� (Light
ampli�cation by stimulated emission of radiation), even though there is no stim-
ulated emission involved. The main di�erence is the production of photons. FELs
are based on synchrotron radiation, i.e. light emission of accelerated charged par-
ticles.
A linear accelerator brings electrons to relativistic velocities. Then, they are guided
in bunches into a undulator ( �gure 6.2). This is an alternating arrangement of
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Figure 6.2: FEL principle: Electrons are accelerated to relativistic energies and
pass the undulator. The alternating B-�eld, leads to an oscillating motion of
the electrons. Synchrotron radiation is emitted and generates coherent light
due to the microbunching e�ect. Finally, the electrons are de�ected, but the

photon beam prevails. (�g. from [45])

opposing, strong magnets. The electrons perform a wiggling motion and emit syn-
chrotron radiation, mainly at the turning points where the acceleration is largest.
Photons are emitted in a narrow cone in forward direction, due to the relativistic
electron velocity.
The photon's wavelength λ has a quadratic dependence on the Lorentz factor

γ−1 =
√

1− v2

c2
, with v the electron velocity. Due to relativistic length contrac-

tion, the undulator period λu of the magnets is reduced to λ∗u = λu/γ , in the
rest frame of the electrons. In this frame, the electrons oscillatory frequency is
ν∗ = c/λ∗u = cγ/λu. Looking against the beam in the laboratory frame, an ob-
server will see a Doppler-shifted photon frequency ν = γ(1 + β)ν∗, with β = v

c
.

λ =
λu
γ2

1

1 + β
≈ λu

2γ2
for : v ≈ c (6.1)

Equation 6.1 shows, the larger the electrons velocity, the higher is the photons
energy (the lower is λ). Aiming to produce intense pulses at small wavelengths,
FEL facilities around the world use large accelerators.
During the passage through the undulator, the electron bunch undergoes a process
called microbunching. The electrons move in the generated electromagnetic wave
and arrange in its electric �eld. Depending on the position in the �eld, electrons
are de- or accelerated. Finally the bunch splits up into micro bunches, separated
by half the wavelength of the electromagnetic wave. Within such a �microbunch�,
the electrons move as a collective and act like a single particle with the charge N ·e.
With growing intensity the e�ect gets larger and �nally the FEL's intensity scales
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quadratically with the number of electrons within a microbunch I ∝ N2. This
�microbunching� process is a decisive di�erence to ordinary synchrotron radiation,
where the electrons are uncorrelated and emit their radiation independently. The
autonomous movement results in a linear scaling of the intensity with electron
number N .

In the case of FLASH, the process of microbunching is initiated by spontaneous
emission of undulator radiation, called �self-ampli�ed spontaneous emission� (SASE).
This radiation is ampli�ed in the �rst section of the undulator and serves as a seed-
ing beam in the rest of the undulator.
The stochastic nature of the process leads to �spectrally broad and noisy pulses
with poor temporal coherence� [44]. SASE also leads to changes of these properties
and intensity from pulse to pulse.

6.3 Reaction Microscope

A Reaction Microscope, commonly abbreviated REMI, is the tool of choice for
time-resolved, kinematically complete measurements. Therefore, experiments on
molecule reactions and dynamics can be analyzed in detail. It allows to detect
charged fragments, namely ions and electrons. A time of �ight (TOF) spectrum
can be recorded, which is used to determine mass and charge state of the parti-
cles. In addition to the time information, spatial information is measured. The
combination of these information makes it possible to reconstruct the initial mo-
menta of all involved fragments in coincidence. In the context of REMI usage, one
sometimes refers to COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy
[46]), to describe the applied technique.
Our REMI setup is schematically shown in �gure 6.3. Here, the unfocused FEL is
propagating from the left and passes through the spectrometer. On the opposite
side, the FEL beam gets back re�ected and focused into the interaction region. A
split mirror can be used to create two replica-pulses, which can be delayed with
respect to each other. This allows to perform pump-probe experiments. Perpen-
dicular to the FEL beam, a continuous gas jet crosses. It is chopped and skimmed
such that its radial extent is about or less than 1 mm. In the overlap region of
the gas jet and the FEL, the majority of fragments is created. A homogeneous
electric �eld along the vertical direction, accelerates positive ions to the top and
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negatively charged electrons to the bottom detector. The electric �eld is created
by a spectrometer, which is a stack of equally spaced metal rings, connected via
a chain of resistors. Applying a voltage between the top and bottom ring creates
the desired homogeneous electric �eld.
At the ends of the spectrometer are time and position resolving detectors (�gure
6.4). Each is a combination of microchannel plates (MCP) and delay lines.

Figure 6.3: Our Reaction Microscope: The FEL beam passes through the main
chamber and is back re�ected and focused into the target region, where the gas
jet crosses. The charged fragments are accelerated in an electric �eld towards
the detectors. The �eld is generated by ring electrodes, indicated in silver. The

two red rings symbolize a pair of Helmholtz coils. In their magnetic �eld,
electrons move on spirals and cannot �y o� the detector. (�gure from [44])

One has to make sure, that the reaction products do not �y o� the detector, i.e.
hit the spectrometer rings somewhere before. This can happen because Coulomb
explosions may lead to relatively large radial momenta. To prevent particles from
�ying o� the detector, either the acceleration voltage can be ramped up, or a
homogeneous vertical magnetic �eld is applied. The Lorentz force makes the light
electrons move on spiral trajectories inside the spectrometer, while the heavy ions
are barely a�ected. The �eld is generated by a pair of Helmholtz coils outside the
vacuum, shown red in �gure 6.3.
The entire region within the spectrometer, including the detectors, need to be in
ultra high vacuum (UHV). The high intensity and energetic photons of the FEL,
ionize any kind of residual gas. This complicates measuring, as the detectors have
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dead times and a limited multi-hit capability. If the demanded pressures of about
10−11 mbar should be reached, some e�orts have to be made. One uses vacuum
chambers of annealed steal for low outgassing rates and di�erential pumping with
a three level pump system. The gradient from high to low pressures starts with the
pre-pump, via a compressor pump to tailored turbo molecular pumps. Moreover,
the inside walls of the main chamber are NEG (non-evaporable getter) coated. This
is a special Titanium-Zirconium alloy which adsorbs residual gas molecules [47].
This kind of pumping is referred to as passive pumping. To activate this coating,
one has to heat up the material and with it the entire chamber to about 250 ◦C.
The pros of this technique is the performance and the space-saving assembly. The
inevitable bake-out however, is a massive stress for many parts of the experiment.
Flange connections and weld seams are a likely source of leakage, during this
process.

The Detector

The following information on delay lines and MCPs is mainly taken from [44,
48]. Charged particles �rst impinge onto the MCP and initiate an electron cloud,
bursting out on the other side. As described in the name �microchannel plate�,
the 1 mm thick disc has many micrometer-sized capillaries (�gure 6.4(a)). Each
of these channels is an individual electron multiplier. A high voltage of about
1 kV is applied between front and back side, in order to accelerate secondary
electrons. These electrons hit the channel wall again and even more electrons are
emitted. This avalanche can amplify the original signal by a factor of 104. The
inner surface of each capillary is coated with a semiconductor material, exhibiting
a low workfunction. The workfunction is the minimum energy which is required
to remove an electron of the material. This facilitates the production of secondary
electrons and therefore increases ampli�cation. The resulting voltage drop is used
as the timing signal for particles time of �ight. The other timing signal for the
TOF, is an external FEL trigger.

TOF = tMCP − ttrigger (6.2)

The electron cloud leaves a local positive charge in the MCP, which weakens the
electric �eld intensity in the channel. Its ampli�cation ability is hindered until the
charge is neutralized by the so-called strip current. Due to the high resistance of
an MCP (commonly lead glas), the strip current is small and takes some time for
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the neutralization. This period is called dead time, because the channel is inactive
until the strip current has vanished. Particles impinging into the channel within
this time cannot initiate an electron avalanche, i.e. they are not detected.

(a) Microchannel plate: Gives the time in-
formation and ampli�es the signal. Accel-
erates secondary electrons to set o� an elec-
tron avalanche.

(b) Delay line: Gives spatial information.
The MCP electron cloud kicks o� a voltage
pulse, propagating to the wire endings. The
spot of impact is deducted from the run-
time di�erences.

Figure 6.4: Detector components: Fragments hit the MCP and create an
electron cloud, which impinges on the delay line wires.(�gure taken from [49])

�Saturation� of the detector sets in, if the rate of impinging particles reaches a
critical value, where the ampli�cation drops drastically. This is a MCP speci�c
threshold and typically found when the output current, quanti�ed by the emitted
electron cloud, reaches 5 % to 6 % of the strip current. An exemplary ampli�cation
curve of a MCP can be found in the appendix A.3.
The spatially sensitive part is the delay line or anode. It is mounted just behind
the MCP, so the electron cloud directly impinges onto the delay line wire. In
this manner, the signal is as sharp as possible. Practically, the delay line is one
long copper wire, wrapped in non-touching loops (�gure 6.4(b)). It is held on a
positive potential, thus the name anode, so the electron cloud causes a voltage
drop. The drop propagates to both ends of the wire, where the signal is recorded.
Since the wire length is constant, both run times t1 and t2 add up to a constant
total runtime. In this way, pulses of the same event can be matched, even though
other signals may be found within the same time window. The multi-hit capability
is based on this principle. Contrariwise, one can determine the impact position
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from the runtime di�erence. Using a second delay line wire, which is orientated
perpendicular to the �rst, enables to detect particles in two dimensions.
Similar to the MCP, there are limitations to the multi-hit capability. Only about
2 to 3 events within the propagation time of the signal can be measured (about
8 ns in this case [44]).
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ICD

The goal of the experiment at FLASH in May 2016, was to investigate wavelength
and intensity dependence of the resonance-enhanced ICD. FLASH2 allows this via
a tunable undulator gap. Wavelength adjustments are made within seconds.
The variation in intensity comes naturally from the FEL. There are �uctuations
both from shot to shot and over time ranges of minutes (see �SASE� in section
6.2).
An overview of the ion abundances, can be found in the time of �ight spectrum
(�gure 7.1). The FEL ionizes atoms and molecules, which are accelerated in the
electric �eld towards the MCP. The time it takes depends on the particle's mass m
and its charge state q, but also on technical conditions like the acceleration length d
and the applied voltage U . The distance d is covered by a particle with acceleration
a in time t, according to equation 7.1. In the second part of the equation the inertial
force F is equated with the electric force on a charged particle:

d =
1

2
at2 → t =

√
2d

a
and F = m · a =

qU

d
(7.1)

Solve for a and insert to get the TOF equation:

t = d ·
√

2m

qU
∝
√
m

q
(7.2)

In practice, it is often complicated to state the exact acceleration voltage and
length. Thus, one takes a known peak and calculates the mass to charge ratio m

q

or the TOF, relative to the unknown peak. Atomic masses and charge states come
in integers, which makes an identi�cation much easier. Voltages and lengths drop
out:

t1 =

√
m1

q1

q2
m2

· t2 . (7.3)
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Broad peaks, like N+
2 or H2O+, belong to the residual gas. They are thermalized

and therefore have a relatively broad momentum distribution. Additionally, they
are produced along the entire FEL path (compare �gure 7.8(a)), so they have dif-
fering �ight distances and TOFs.
The sharp peaks belong to particles of the jet. Due to the supersonic expansion
and the successive skimming and cutting of the gas jet, the translational velocity
distribution gets very narrow. In the restframe of jet particles, typical �tempera-
tures range from tens of millikelvin to a few kelvin� [44].
Two FEL pulses are separated by about 5000 ns. Heavy particles may take longer
to reach the detector than this time span and appear in the �next� TOF spectrum
at short times. To get the right time of �ight, one has to add 5000 ns to the
displayed time. In �gure 7.1, this is the case for the Neon trimer. Changing the
acceleration voltage shifts the peaks and stretches the axis. Here, all important
fragments arrive within the �rst pulse spectrum.
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Figure 7.1: Time of �ight spectrum of Neon at 46.1 nm =̂ 26.9 eV

The Neon gas jet was produced with room temperature gas and a backing pressure
of 40 bar, which lead to a dimer to monomer ratio of about 11 %. These dimer
yield-optimized conditions were systematically investigated in [50].
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7.1 Isolate Coulomb Explosions

The signature for ICD are Coulomb-exploded Neon dimers, i.e. Ne+ ions with
large momenta. If both ions of an event are detected, they can be matched. The
matching done by applying conditions on the position and the time of �ight. This
combination gives an unambiguous coincidence based on matching, fully resolved
momenta.
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Figure 7.2: A PiPiCo-Plot: Diagonal lines are the signature for coulomb
exploding dimers. A larger TOF of one constituent leads to a smaller TOF of

the other.

Coulomb exploding ions show up on a diagonal line in the PiPiCo plot (�photo-ion
photo-ion Coincidence�) (�gure 7.2). In this 2D histogram, the �rst column shows
the fastest ion plotted against all other ions arriving at later times. In the second
column, the second fastest ion is plotted against all remaining ions arriving at later
times and so on. In short, each ion time of �ight is plotted against all other, larger
ion time of �ights. The color code gives information on how often a TOF-pair is
found. It ranges from low to high counts with the color gradient going from blue
to red.
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(a) Detector image with TOF condition of
7.3(b). Hits within the red polygon are cut
away.
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due to the additional gained momentum in
the coulomb explosion

Figure 7.3: Spatial (a) and temporal (b) condition to select 20Ne+-ions of
Coulomb explosions.

In Coulomb explosions of dimers, the ions are emitted back to back, due to momen-
tum conservation. The electron momentum can be neglected in good approxima-
tion. If the explosion axis has an z-direction contribution, one ion has momentum
in +z-direction i.e a shorter TOF, while the other has momentum in -z-direction,
i.e. a longer TOF. This TOF discrepancy gets maximal if the explosion axis is
z-aligned, but all other angles in between are also possible. We therefore obtain a
diagonal line in the PiPiCo-Plot. There are also lines at larger time of �ights which
correspond to exploding dimers composed of isotopes (22Ne-20Ne, 22Ne-22Ne).
The coincidence line is a good measure for the extent of the TOF region, where
Coulomb exploding Ne+ ions are found. In order to calculate momenta and coin-
cidences, we use this information to set a temporal condition in the conventional
TOF spectrum (�gure 7.3(b)).
The impact of the temporal condition can be seen in �gure 7.3(a). In the XY-plot,
the sphere of Coulomb explodes is projected onto the XY-plane and shows up as
a circle centered around the jet spot. There are still a lot of counts from residual
gas. The main contribution has water, which is ionized along the FEL path. This
is because, water ions hit the detector at same time of �ights than slow Ne+ ions
do.
To prevent false coincidences, we additionally set a spatial condition. The om-

66



7 Data Analysis - Resonance-Enhanced ICD

-10 -5 0 5 10
PxSum (a.u.)

0

5

10

15

20

25

30

35

40

(a) x-direction: Momenta determined via
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Figure 7.4: Momentum sum distributions for coincident Ne+ ions

nipresent residual gas, especially along the FEL path and the saturated 20Ne+

ions are removed. In the end, we are considering just particles lying outside the
red sandglass-shaped polygon. Furthermore, one can obtain real coincidences by
applying momentum conservation. The sum of both momenta should add up to
zero in each direction, if the ions originate from the same, back to back exploding,
dimer. The momentum of the emitted ICD electron has not be taken into account.
The exerted recoil a�ects rather the entire molecule than a single Ne+ ion, as the
separation starts with the emission of the electron itself.
The momentum sum distribution width is ruled by the measurements precision.
Aside from that, the distribution widths are di�erent for z- and xy-direction. The
momentum pz is calculated via the time of �ight, while px and py are calculated
via the spatial information of the delay line, lacking in resolution. Two exemplary
momentum sums are displayed in �gure 7.4.
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7.2 Kinetic Energy Release

A more detailed view on the process is given in �gure 7.5, where the calculated
potential energy curves are plotted (Ref. [41]). The lower panel shows the ground
state of the neutral Ne2. The equilibrium inter-atomic nuclear distance is 3.1Å.
In the middle panel one can see the outer valence (OV) ionic states, exhibiting a
2p vacancy. Shortly after this �rst ionization, the Ne+(2p)−1Ne ion �nds itself still
at the equilibrium distance, where the OV states are practically degenerate.
The absorption of the second

Figure 7.5: Potential energy curves for the
relevant ionic Ne dimer states [41].

photon is plotted in pink. A
negligible delay between the two
photons is assumed, so the ab-
sorption of the second photon
is positioned at the equilibrium
distance as well. Another sup-
port for this assumption are the
�at potential energy curves i.e.
low core dynamics. The sec-
ond photon is absorbed reso-
nantly, as its energy ~ω matches
exactly the energy di�erence be-
tween the Ne+(2p)−1Ne state
and the Ne+(2s)−1Ne state.
The two states in the top panel
are called inner valence (IV)
ionic states, due to their 2s va-
cancy. The energy of these states
is almost identical and both lie within the FELs energy width (hatched pink area).
Thus the FEL addresses both, all the OV ionic states and all the IV ionic states.
Therefore, dipole selection rules do not constrain the considered transition.
Once the Neon dimer is in the Ne+(2s)−1Ne state, ICD is a possible de-excitation
mechanism. Thereby, an ICD electron is emitted and the dimer transits to the
dissociating Ne+(2p)−1Ne+(2p)−1 state. The ICD electron obtains exactly the gap
energy between the two states. There is no local minimum, so the constituents
go to large distances R to minimize their energy. This process is so powerful that
one speaks of a Coulomb explosion. In the limit of a large separation, the two
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Ne+(2p)−1 ions can be considered as unbound and free.
The minimum energy they are approaching is their single ionization energy of
21.56 eV [40]. The di�erence energy of the Ne+(2s)−1Ne state at the Ne2 equilib-
rium distance (48.48 eV [51]) and the two single Neon OV ions, gives the released
energy shared by the ICD electron and the fragments.

Eexcess = 48.48 eV − 2 · 21.56 eV

= 5.36 eV

In our experiment, no electrons were
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Figure 7.6: KER of the exploding
Ne+(2p)−1Ne+(2p)−1 ions.

measured, but Jahnke et al. de-
termined the ICD electron in 2004
to be in the range of 0 eV�2 eV.
The peak value is found at about
0.25 eV [52]. Thus, the kinetic en-
ergy release (KER) of the
Ne+(2p)−1Ne+(2p)−1 Coulomb ex-
plosion peaks at about 5.11 eV.
The resulting KER-distribution ob-
tained in our experiment can be
seen in �gure 7.6 and peaks at
4.7 eV, with maximum energy at
5.4 eV. The good accordance with
the anticipated maximum value of
5.11 eV is managed with a deliber-
ately chosen energy scaling param-
eter. x xx x xx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx
x xx xxx xx x xx x x xx xxx xxx
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7.3 Scanning the Resonance

According to Dubrouil et al. Ref. [53] and Demekhin et al. Ref. [41], there is a
resonant enhancement of the Coulomb explosion rate, if the photon energy is tuned
to the Ne+(2p−1)→ Ne+(2s−1) transition at 26.9 eV. Compared to Dubrouil et al.,
the data taken with a REMI should be clearer and more pronounced. Coincidences
are not just made via matching times of �ights, but due to the additional spatial
resolution, we obtain coincidences based on momentum conservation.
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Figure 7.7: Coulomb explosion yield, normalized to singly ionized dimers.

Each data point in �gure 7.7 shows the averaged yield of several hours measuring
time. Intensity �uctuations during a run are not taken into account. The gained
absolute number of coulomb explosions, as described in section 7.1, depends still
on the the measuring time (or total number of photons) of the considered data
set. To account for that, one normalizes with another ion yield. In �gure 7.7, the
dominant Ne dimer 20/20Ne+2 is chosen. The peak is not saturated and has decent
statistics.
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The error calculation is done using the sampling error ∝ 1√
n
for the Coulomb ex-

plosion and dimer counts. The error of the ratio follows with the usual propagation
of uncertainty.
To improve statistics, the dimer 20Ne � 22Ne consisting of two di�erent isotopes,
can be considered as well. The existence of the dimer isotope is apparent in the
PiPiCo �gure in 7.2.
The resonant enhancement is centered at around 46.1 nm, exhibiting a hanging
tip. The peak width of about 0.3 nm ≈̂ 0.2 eV is attributed to the bandwidth of
the FEL. The peak position is in good accordance with the theoretical value of
46.09 nm =̂ 26.9 eV. The pronounced e�ect shows an enhancement of the Coulomb
explosion yield by a factor of ≈ 2.5.
The employed multilayer mirror has a photon energy dependent re�ectivity, which
can be seen in the appendix �gure A.4. Within the scanned region, there is no
signi�cant change of re�ectivity.
The analysis is still in progress, especially the data of the �Online Photoionization
Spectrometer� (OPIS) at FLASH. The OPIS can provide single-shot wavelength
information, which rules out the shot-to-shot induced bandwidth. Therefore, the
resonance curve will be based on much more data points and the bandwidth is
governed by a single pulse.

7.4 Intensity Dependence

7.4.1 Intensity Calibration

The FLASH facility provides a rough intensity signal, which is averaged over many
pulses. The intensity of the FEL though, can change from pulse to pulse. For
observing an intensity dependence in a reaction, one therefore needs information
on a single shot basis.
For this experiment, this is achieved with a voltage signal from the back re�ecting
mirror. Due to the high pulse energy of the FEL, photoelectrons are emitted from
the mirror. The subsequent voltage drop depends on the FEL intensity and is
recorded for every pulse. The experimental realization is a voltage measurement
between the mirror mount and ground.
The signal however, is not linearly proportional to the actual intensity and needs to
be calibrated. One needs to calibrate with a signal, which is linear with intensity.
This can be for example, the water ion H2O+ yield. Water is a residual gas in

71



7 Data Analysis - Resonance-Enhanced ICD

X [mm]
60− 40− 20− 0 20 40 60

Y 
[m

m
]

60−

40−

20−

0

20

40

60

(a) Ion detectors xy-positions: spatial con-
dition along the FEL path, with cut out tar-
get, background and Coulomb exploded ions.

[ns]3100 3200 3300 3400 3500

310

410

510

610

(b) Time of �ight condition. Hatched area
shows the chosen water peak.

Figure 7.8: Spatial and temporal conditions on residual water molecules, for
calibrating the intensity signal.

the main chamber and is ionized along the entire path of the FEL. Ions hit the
MCP at di�erent positions, with a moderate count rate and therefore prevent
dead time problems and saturation e�ects. The spatial condition (�gure 7.8(a)) is
set on the path of the FEL. Here, the beam is not focused and lower intensities
where residual water gets ionized. There is a spared region around the target
spot to omit Neon ions from Coulomb explosions. As shown later, these ions obey
a di�erent intensity dependence and would spoil the calibration. On top of the
spatial condition, a TOF restriction is set to address H2O+ (�gure 7.8).
The two conditions are applied to the intensity-distribution histogram, which gets
normalized with the unrestricted intensity distribution. The normalization ac-
counts for the fact, that high and low intensities occur less often than medium
intensities. If this normalized distribution (�gure 7.9(b)) was already linear, no
calibration would be needed. In our case however, we make use of the fact that
the water signal is actually linear and take the ordinate as the calibrated intensity
axis. Basically, the inverse function is taken for the calibrated axis. The region
where the ratio is monotonously increasing with intensity is unambiguous, i.e. can
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Figure 7.9: The blue curve shows the normalized water ion yield. Its non-linear
intensity dependence is shown in 7.9(b). For linearization, the �t function

values are used as the new intensity axis in successive plots.

be used for calibration (from -22 to -5 in �gure 7.9(b)). Otherwise two di�erent
intensities would lead to the same calibrated intensity and spoil the distribution.
Even though the curvature is not too complex, an eighth order polynomial is used
for the �t. Lower order functions were proven to be too inaccurate. The �t func-
tion values are scaled up to the order of 10, just to deal with more convenient
numbers.
For an absolute calibration, cross-sections at the considered wavelengths have to
be considered. Moreover, the target density and the interaction volume come into
play.

7.4.2 Intensity Dependence of ICD

Once the intensity is calibrated on a linear process (section 7.4.1), all other pro-
cesses can be analyzed for their intensity dependence. Here, the main attention
will be given to ICD related Neon ion yields. Figure 7.10 shows the coincident
Ne ions plotted against the pulse intensity. Ordinate values are smaller than one,
because they are normalized with the total calibrated intensity distribution. The
absolute values in the plot report about the gathered statistics. Assuming the cross
sections σ to be constant in the considered intensity range, the yields (absorption
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7 Data Analysis - Resonance-Enhanced ICD

probabilities) should scale with integer powers of the intensity (see section 4.2):

Yield ∝ w
(n)
ab ∝ |c

(n)
b (t)|2 ∝ In . (7.4)

One typically uses log-log plots to show this dependence. In these plots, the
intensity dependence becomes a straight line and the number of involved photons
n is found as the slope.

In order to �t the data, one uses the
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Figure 7.10: Ion yield vs intensity in
a log-log plot. The slope n is a �t
result. Calibration in red and in

green the coincident Ne+.

function:

f(x) = a · xn (7.5)

log f(x) = n log x+ log a (7.6)

The parameter a contains all constants
and the cross section.
The �t on CH+

3 ions is used to test if
the intensity calibration is correct. It is
scaling linearly ncalib = 0.99 ± 0.01, as
demanded from the procedure and has
an ionization energy of 9.8 eV Ref. [54].
Due to good statistics, the error cannot
be seen in the plot.
For the process of interest, there is about
three orders of magnitude less statistics.
In about 7 h data acquisition there were
1184 coincidences detected. Neverthe-
less, su�cient data was gathered to ob-
tain decent �t results. The slope of
nICD = 2.04± 0.30 suggests a two pho-
ton process. In section 5.2, the two main
channels leading to Coulomb explosion
were introduced. Both in ICD and the
2p ionization in each atom, involves two
photons. Therefore they have the same

intensity dependence and cannot be distinguished in this plot. In combination with
the resonant enhancement however, depicted in section 7.3, the ICD mechanism
can be con�rmed.
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8 Summary

In the course of this work, experiments on dimers (Ne2, (H2O)2) at the free-
electron laser FLASH, were prepared and analyzed, by using a reaction micro-
scope equipped with a supersonic gas jet. The part on the water cluster source
describes the procedure of designing and dimensioning of the source, to ful�ll all
performance demands. Special attention was given to the optimization of cluster
yields, especially on the maximization of dimer yields.
The experiment on resonance-enhanced ICD in Neon dimers was carried out with
a reaction microscope. Spatial and time sensitive detectors allowed us to inves-
tigate the molecular reactions in detail. The resulting coincidences are based on
momentum conservation and fragments originating from the same molecule are
matched unambiguously.

8.1 Results of the Water Cluster Jet

The cluster source was designed and built from scratch and its long term usability
could be shown. Filling and heating procedures were established to ensure a safe
and e�cient use.
Time of �ight spectra of the water gas jet were taken by using an intense infrared
laser. Intact, singly ionized water dimers could be produced and quanti�ed. A
series of measurements revealed an optimal temperature of 88 ◦C for pure water,
which gave a dimer yield relative to monomers of about 0.2 %. Compared to the
measurements which employ carrier gases, the (H2O)2 yields for pure water were
about an order of magnitude smaller. There are two reasons for this large di�er-
ence in dimer yields. First, the backing pressure with pure water is built up by
the water vapor pressure only. In order to reach su�cient backing pressures for
supersonic expansion to set in, the water reservoir has to be heated. However,
with respect to the water dimer yield, temperature and pressure are competing
quantities. While pressure leads to an increased clustering rate, temperature has
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a negative impact in the (H2O)2 yield. The second reason for the low cluster rate
in pure water vapor jets, is the missing carrier gas cooling. The e�ect of a carrier
gas was investigated in detail for four di�erent noble gases (Helium, Neon, Argon
and Xenon).
For Helium, the measurements covered the largest pressure range (2 bar to 14 bar).
This allowed to observe the e�ect of decreasing cluster rates for large carrier gas
pressures. The water dimer yield increases from 2 bar to 10 bar, where the max-
imum yield of 1.07 % relative to the water monomer is found. This is explained
by the increased Helium abundance, and the following increased cooling rate. For
large pressures (> 14 bar) however, the dimer yield decreases, as it is less probable
for water molecules to collide and form clusters.
With Neon, a maximum dimer yield of 1.9 % at 8 bar backing pressure was achieved.
Unfortunately the maximum dimer yield, like in the Helium measurement, could
not be found. Pumping rates are limiting the backing pressure. Furthermore,
the e�ect of temperature was analyzed. Increasing the temperature from 44 ◦C to
70 ◦C leads to a dimer yield decrease of 30 % at 8 bar backing pressure and 42 %

at 4 bar backing pressure.
Additionally the formation of mixed clusters Ne -H2O was found was observed. It
is following the same temperature and pressure dependences like the water dimer
and has a maximum yield of 1.31 % at 8 bar backing pressure.
Using Argon as carrier gas has lead to the largest water dimer yields (5.62 % at
6 bar). This is probably due to their similar masses of 38Ar and m((H2O)2) = 40u

and the enhanced collision energy transfer.
Seeding with Xenon turned out to be most challenging for the tested gases. Due
to its low ionization potential, the Xenon signal dominates and easily saturates
detectors. Additionally, one has to use low backing pressures (0.3 bar), to keep
pumps in operation. Nevertheless, we obtained dimer yields of 4.25 %.

8.2 Results of the Neon Experiment

The aim of the experiment was to show the resonant enhancement of Interatomic
Coulombic Decay. This was shown in Ne2, by employing a two-photon pro-
cess. The experiment was carried out at DESY with the Free-Electron Laser
in Hamburg (FLASH2). The adjustable undulator gaps allowed to tune pho-
ton wavelengths. With this feature, we could scan the energy region around the
Ne+(2s)−1 →Ne+(2p)−1 transition at 26.9 eV (46.1 nm). While the �rst photon
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singly ionizes the dimer, by emitting a 2p electron, the second photon drives the
mentioned transition. The 2s inner-valence vacancy is the prerequisite for ICD to
take place. The relaxation involves a 2p electron, �lling the 2s vacancy within the
same atom and the following emission of a 2p electron in the neighboring Neon
atom. According to Ref. [41], the relaxation via ICD is enhanced, if the the second
photon is absorbed resonantly.
In our experiment, we could clearly show the energy dependence of the ICD rate.
Within the scanned photon wavelengths from 45.2 nm�46.6 nm, we found an en-
hancement of the signal by a factor of about 2.5.
Additionally, the intensity dependence of the considered process was analyzed.
For that, a detailed description of the intensity calibration was given. The natu-
ral intensity �uctuations of the FEL were recorded shot by shot and used for the
analysis. As expected, the ICD rate showed a quadratic intensity dependence, as
we are dealing with a two photon process.

8.3 Outlook

The designed water cluster source will be used in two experiments, scheduled in
October and November 2016 at FLASH2. First, the proton transfer through a
hydrogen bond in water dimers will be investigated. A special focus will be put
on the time scale of the process. For this, an XUV-XUV pump-probe scheme will
be used.
In the second experiment, the newly designed cluster source will provide mixed
water-rare-gas clusters (Ne-H2O, Xe-H2O). The aim of the experiment is, to in-
tentionally switch on and o� ICD. The rare gas atom acts as an absorption center
in the vicinity of a weakly bound water environment. Once a photon is absorbed,
the following de-excitation of the rare gas atom can lead to the emission of an ICD
electron in the water molecule.

As already mentioned, the analysis of the Neon dimer measurement is not �n-
ished at this point. The coarse information on the photon wavelength will be
improved with a precise tool based on photoelectron TOF measurements, pro-
vided by FLASH2. The Online Photoionization Spectrometer (OPIS), allows to
increase the resolution of the scanned resonance and might bring new insight in
the exact shape. Furthermore, the single-shot wavelength information can be used
to study all kind of photon energy dependent processes in detail.
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A.1 Supplement Characteristic Values for Scaling

Laws

Figure A.1: Values used for gas and metal vapors [22]
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A.2 TOF Spectra
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Figure A.2: Neon seeded water jet without heating.
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A.3 MCP Gain-Curve

Figure A.3: MCP saturation characteristics (analog mode) [48].
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A.4 Mirror Re�ectivity
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Figure A.4: Photon energy dependence of the mirrors re�ectivity
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A.5 Design Drawings of the Water Cluster Jet
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