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Abstract To contribute to a quantitative comparison of climate engineering (CE) methods, we assess
atmosphere-, ocean-, and land-based CE measures with respect to Earth system effects consistently within
one comprehensive model. We use the Max Planck Institute Earth System Model (MPI-ESM) with prog-
nostic carbon cycle to compare solar radiation management (SRM) by stratospheric sulfur injection and
two carbon dioxide removal methods: afforestation and ocean alkalinization. The CE model experiments
are designed to offset the effect of fossil-fuel burning on global mean surface air temperature under the
RCP8.5 scenario to follow or get closer to the RCP4.5 scenario. Our results show the importance of feed-
backs in the CE effects. For example, as a response to SRM the land carbon uptake is enhanced by 92 Gt
by the year 2100 compared to the reference RCP8.5 scenario due to reduced soil respiration thus reducing
atmospheric CO2. Furthermore, we show that normalizations allow for a better comparability of different
CE methods. For example, we find that due to compensating processes such as biogeophysical effects
of afforestation more carbon needs to be removed from the atmosphere by afforestation than by alka-
linization to reach the same global warming reduction. Overall, we illustrate how different CE methods
affect the components of the Earth system; we identify challenges arising in a CE comparison, and thereby
contribute to developing a framework for a comparative assessment of CE.

1. Introduction

Several measures to deliberately manipulate the global climate and thereby reduce the risks of substantial
anthropogenic climate change have been proposed (e.g., Caldeira et al., 2013). These climate engineering
(CE; or geoengineering) methods aim at reducing either the amount of solar radiation reaching the sur-
face of the Earth (solar radiation management, SRM) or the atmospheric CO2 concentration (carbon dioxide
removal, CDR). While a full understanding of the potential consequences of CE methods is still missing,
the role of CDR (or “negative emissions”) and of SRM in climate policy is increasingly discussed, in particu-
lar in the context of the Paris Agreement (Fuss et al., 2016; Hansen et al., 2017; Horton et al., 2016; Parson,
2017; Sanderson et al., 2016; United Nations Framework Convention on Climate Change [UNFCCC], 2015;
Williamson, 2016).

Modeling projects, such as the Geoengineering Model Intercomparison Project (GeoMIP; Kravitz et al.,
2013b) have contributed to our understanding of CE. However, GeoMIP so far is limited to SRM and
complementary approaches to study CDR such as CDR-MIP (Keller et al., 2017) have been initiated only
recently. Other modeling projects have contributed to the understanding of the global carbon cycle
(C4MIP; Friedlingstein et al., 2006; Arora et al., 2013) and land-use changes (LUCID; Brovkin et al., 2013), but
were not specifically designed to study CE and were not used to assess land- and ocean-based CE measures.

Being different concepts, CDR and SRM have been assessed separately in earlier reports (National Research
Council [NRC], 2015a, 2015b). Yet, other reports have assessed CDR and SRM methods comparatively (Rick-
els et al., 2011; Royal Society, 2009; Schäfer et al., 2015; Vaughan & Lenton, 2011) and state the usefulness
of a common assessment framework for all response options—CE methods, mitigation, and adaptation
(Intergovernmental Panel on Climate Change [IPCC], 2012). In addition, several authors (e.g., Klepper &
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Rickels, 2012; Victor, 2008) have emphasized that the response to climate change will likely be a portfolio of
mitigation, adaptation, and a subportfolio of CE measures. To arrive at such a portfolio, the comparison of
these very different measures is a prerequisite. Also, the need for integrated research on CE has been empha-
sized (Oschlies & Klepper, 2017), in particular on the carbon effects of SRM (Keith et al., 2017). The IPCC’s Fifth
Assessment Report summarizes that, although some robust responses to some SRM methods have been
found, there is insufficient knowledge concerning CDR and a “comprehensive quantitative assessment” of
CE in general is not possible (IPCC, 2013). Furthermore, for example afforestation is an already implemented
part of policy measures based on CE (UNFCCC, 2012). Thus, to go beyond understanding individual CE meth-
ods and to investigate how a CE comparison can be performed in a quantitative way is crucially needed at
this point in time where CE is discussed as policy implementation. We refrain from suggesting that quantita-
tive results of modeling studies themselves should be used for this purpose, but the challenges and possible
solutions for a quantitative comparison provide the basis for closing the gap identified by the IPCC.

Previous reports were mostly based on studies of individual CE methods, which makes it difficult to assess
different CE methods in a comparative way. Previous SRM model studies have focused mainly on comparing
the same SRM method simulated by different models (e.g., Kravitz et al., 2013a) or on comparing various
SRM methods simulated within one model (e.g., Niemeier et al., 2013). Concerning CDR, model studies have
used different scenarios and also different types of models (e.g., Boucher et al., 2012; Cao & Caldeira, 2010;
Gasser et al., 2015; Jones et al., 2016; Zickfeld et al., 2013). A comparison of a range of different CE methods
within one model framework, however, so far has only been performed by Keller et al. (2014) using an Earth
system model of intermediate complexity.

Using a state-of-the-art, comprehensive Earth system model to assess key CE methods, this study goes
beyond previous qualitative assessments (e.g., Royal Society, 2009) and comparative approaches that drew
from different individual studies. Furthermore, we compare the intended effects of the CE methods and
of mitigation efforts to possible unintended effects and feedbacks (e.g., Vaughan & Lenton, 2011). We use
the Max Planck Institute Earth System Model (MPI-ESM) that includes general circulation models for atmo-
sphere and ocean and models for the land surface, the terrestrial biosphere, and marine biogeochemistry.
We use MPI-ESM with an interactive carbon cycle and prognostic atmospheric CO2 concentrations. We com-
pare SRM by stratospheric sulfur injection with two CDR methods: afforestation and ocean alkalinization. We
perform model experiments each including one of the three CE methods and all forced by fossil-fuel CO2

emissions according to the high-emission scenario RCP8.5 (Riahi et al., 2011) that assumes no mitigation
policy.

This study aims at quantifying the effects of different CE methods on different components of the Earth sys-
tem, at illustrating different targets and effects, and at contributing to a better understanding of how inter-
actions and feedbacks between Earth system components lead to certain responses. As we are studying
the effects of different anthropogenic interferences on the Earth system from a natural science perspective
and not the response to these changes without affecting them, we do not include adaptation in our study.
We identify and illustrate challenges and the intrinsic complexity that arises in a comparative assessment
of CE. Rather than investigating technical or economic feasibility of the CE methods, which may in the end
be additional important factors to account for in an assessment of CE and are discussed, for example, by
Klepper and Rickels (2014), NRC (2015a, 2015b), Harding and Moreno-Cruz (2016), Moriyama et al. (2017),
and Niemeier and Tilmes (2017), we focus on studying the simulated Earth system response to a potential
deployment of the methods.

2. Methods

2.1. Model Configuration and Experiments

For all model experiments (see overview in Table 1) we use the MPI-ESM in the low resolution (LR) con-
figuration with a T63 (1.9∘) horizontal resolution and 47 hybrid sigma-pressure levels for the atmosphere
and a bipolar grid with 1.5∘ resolution (near the equator) and 40 unevenly spaced vertical levels for the
ocean (Giorgetta et al., 2013). The MPI-ESM includes the general circulation models for atmosphere ECHAM6
(Stevens et al., 2013) and ocean MPIOM (Jungclaus et al., 2013), the model JSBACH for the land surface and
the terrestrial biosphere including dynamic vegetation (Reick et al., 2013), and the model HAMOCC5 for
marine biogeochemistry (Ilyina et al., 2013a, 2013b). MPI-ESM includes a fully coupled carbon-cycle model
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Table 1.
Overview of the Model Experiments Used in This Study

Experiment name CO2 forcing Land-use transitions Other forcings

rcp85 RCP8.5 fossil-fuel emissions RCP8.5 RCP8.5

CE-atmos RCP8.5 fossil-fuel emissions RCP8.5 RCP8.5 + stratospheric aerosol
enhancement

CE-ocean RCP8.5 fossil-fuel emissions RCP8.5 RCP8.5 + ocean alkalinity
enhancement

CE-land RCP8.5 fossil-fuel emissions RCP4.5 RCP8.5

rcp45 RCP4.5 concentrations RCP4.5 RCP4.5

hist Historical fossil-fuel emissions Historical Historical

Note. Detailed descriptions are given in Section 2.

with interactive atmospheric CO2. This means that atmosphere, land, and ocean can exchange carbon in
response to given fossil-fuel CO2 emissions, while the resulting atmospheric CO2 concentration and the
various land and ocean carbon pools are calculated prognostically.

We use the same model configuration as for the Coupled Model Intercomparison Project Phase 5 (CMIP5)
experiment esmrcp85 (Reick et al., 2012a), which serves as a reference experiment and which we refer to as
“rcp85” here. In addition to this emission-driven model experiment, for comparison we also use the CMIP5
experiment rcp45 (called “rcp45” here, Giorgetta et al. (2012)), which is driven by CO2 concentrations accord-
ing to RCP4.5 (Thomson et al., 2011).

All CE model experiments are driven by CO2 emissions due to fossil-fuel burning and cement production,
while atmospheric CO2 concentrations are calculated prognostically. All experiments also use the same
boundary data for Earth orbit parameters and solar irradiance, as well as for atmospheric concentrations
of CH4, N2O, CFCs, ozone, and aerosols according to RCP8.5. The SRM model experiment uses an additional
aerosol forcing as described below. In all experiments, we use the land-use harmonization dataset accord-
ing to Hurtt et al. (2011), which provides transitions between different land-use types and information on
wood harvest based on global gridded land-use change scenarios. In MPI-ESM, the transitions between
crops, pasture, and natural vegetation types as well as the distribution of natural vegetation among differ-
ent plant functional types are simulated as described by Reick et al. (2013). Since the model includes an
interactive carbon cycle, CO2 emissions due to land-use changes are calculated prognostically according to
the given land-use transitions. All experiments are initialized from the end of the historical CMIP5 exper-
iment esmHistorical (called “hist” here, Reick et al. (2012b)) at the beginning of the year 2006 and are run
until the year 2100.

Not all processes and components that may play a role in adequately representing the response of the
Earth system to the simulated forcings are included in our model. For example, the model does not include
permafrost, which would lead to an additional warming in warmer (e.g., RCP8.5) compared to colder (e.g.,
RCP4.5) scenarios (e.g., Schaefer et al., 2014) and thus could lead to an underestimation of the cooling effects
of the CE methods. Our model also lacks a nitrogen cycle, which could affect the carbon response in the
reference and in the CE experiments (e.g., Kracher, 2017). However, potentially overestimated terrestrial
productivity and carbon content partly cancel out when looking at differences between model experi-
ments. Also, a high increase of gross primary productivity historically, as simulated by MPI-ESM, is in line
with newest evidence (Campbell et al., 2017) and for soil carbon most models show an increase for most
scenarios (Jones et al., 2013). Altogether, the published simulations are within the range of those of other
CMIP5 models, thus our results should be representative of current state-of-the-art.

2.2. CE Model Experiments

The three CE model experiments describe scenarios in which the effect of fossil-fuel burning on global mean
surface air temperature under the RCP8.5 scenario is offset to follow, or at least get closer to, the RCP4.5 sce-
nario. They are SRM via stratospheric sulfur injection, CDR via ocean alkalinization, and CDR via afforestation.
We compare the CE methods, which are frequently discussed but very different in their approach, to each
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other and to the reference scenarios RCP8.5 and RCP4.5. We choose RCP4.5 as target scenario because it con-
stitutes a substantial climate difference to RCP8.5 and provides a scenario of mitigation options to compare
CE to. Since SRM targets radiation, the deployment of this CE is chosen such that the net radiative forcing
follows the RCP4.5 trajectory. As CDR targets CO2, for the ocean alkalinization scenario the deployment is
such that the atmospheric CO2 concentration in the CE model experiment follows the RCP4.5 trajectory. For
CDR via afforestation we follow a different approach by choosing a well-defined land-use scenario, namely
the one according to RCP4.5, leading to a substantial global increase of forest. As stated before, we do not
aim at studying technical feasibility here, but in contrast to atmosphere- and ocean-based CE methods, very
strong afforestation will directly collide with also other concerns because of the trade-offs with food security
(e.g., Erb et al., 2016; Foley et al., 2011) and other ecosystem services (e.g., McCormack et al., 2016). Further-
more, extreme land-use change scenarios will have very much scenario-dependent features such as desert
irrigation and its specific biogeophysical effects (Keller et al., 2014; Kemena et al., 2017). For these reasons,
we stay with a scenario that has been identified as being a plausible future land-use change and that is part
of the same RCP framework that our study is embedded in. Since this afforestation experiment is expected
to show substantially smaller climate effects than the other two CE experiments, in our analysis we suggest
ways to allow for a comparison despite such differences in the experimental setup. In all experiments the
CE deployment starts in the year 2006 and is continued until the year 2100. In the following we describe the
experimental setups in more detail.

The SRM model experiment, called “CE-atmos,” describes enhancement of stratospheric aerosols by sulfur
injection and is similar to the GeoMIP experiment G6sulfur (Kravitz et al., 2015). The injection in the model
is done such that the net anthropogenic radiative forcing in RCP8.5 is counterbalanced to follow the radia-
tive forcing trajectory as in RCP4.5. Since aerosol concentrations are not calculated explicitly in the model,
the effects of the aerosols on radiation are prescribed in terms of their optical properties. We follow the
approach by Niemeier et al. (2013) and derive these properties from simulations with the aerosol micro-
physical model HAM (Stier et al., 2005) coupled to the general circulation model MAECHAM5 (Giorgetta
et al., 2006). In those simulations, SO2 is injected into one grid box at the equator. Transport causes a zonally
relatively homogeneous and meridionally symmetric aerosol distribution with maxima around the equator
and in the mid latitudes. Details are described in Niemeier and Timmreck (2015).

The ocean-based CE model experiment, called “CE-ocean,” is described in Ferrer González and Ilyina (2016)
and simulates enhancement of ocean alkalinity using calcium compounds. In this model experiment, total
alkalinity is increased globally uniformly in the uppermost ocean model level (i.e., in the upper 12 m of
the ocean) such that the atmospheric CO2 concentration follows the RCP4.5 trajectory: technically, this is
achieved by adding alkalinity when during the simulation the difference in atmospheric CO2 to the one in
RCP4.5 is larger than 1%. This spatially homogeneous global application of alkalinization is not a realistic
scenario, but it allows studying the potential effects of this method in an idealized way.

The land-based CE model experiment, called “CE-land,” is described in Sonntag et al. (2016) and simulates
large-scale regrowth of forest on abandoned agricultural land. As a CDR method, increase in forest area
aims at enhancing the natural terrestrial carbon sequestration. The experimental setup differs from the
reference experiment rcp85 only in the land-use transitions and wood harvest rates: they are taken from
RCP4.5 in experiment CE-land, describing large-scale abandonment of agricultural land and subsequent
reforestation. In contrast, in experiments rcp85, CE-atmos, and CE-ocean the land-use transitions are taken
from RCP8.5, which includes deforestation in large parts of the world.

2.3. Choice of Variables for Analysis

It is an open question which aspects of climate should be included in a comparative assessment of CE meth-
ods (Oschlies et al., 2016). Naturally, the focus is on surface air temperature, because the main aim of CE is
to combat global warming and because changes in regional climate variables that local stakeholders and
decision-makers can relate to are correlated with changes in global mean surface air temperature (Senevi-
ratne et al., 2016). But since these correlations may no longer hold when introducing additional forcings
by CE, as a proxy for water availability in terrestrial ecosystems, also changes in precipitation are taken into
account. In addition, the different CE methods tackle their main target temperature reduction by means of
different processes. SRM targets the short-wave radiative forcing and reduces the incoming solar radiation,
whereas CDR methods target the land or ocean carbon sinks and reduce absorption of long-wave radiation
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by CO2 in the atmosphere. Therefore, certain process-specific variables will be affected more intensely than
others and thus must be included in a comparative assessment. Examples are changes in radiative fluxes
for SRM and carbon cycle aspects for CDR methods. Accordingly, the set of variables entering a compara-
tive assessment is not independent of the CE measures considered, which makes general statements about
preferential CE methods problematic.

In the present study we focus our analysis on the variables surface air temperature and precipitation as being
most relevant for the characterization of climate conditions for living, on variables specific to the measures
considered, and on variables that help understand the underlying processes: Net radiation at the top of the
atmosphere as suggested by SRM, atmospheric CO2 as main target variable of the CDR methods, net pri-
mary productivity (NPP) for land and ocean as important quantities characterizing the biological processes
modified by them, and the carbon stocks as main drivers of temperature changes and for disentangling
the carbon-driven changes from those driven by other forcings, such as aerosols or biogeophysical effects.
While focusing our analysis on global annual mean changes induced by the CE methods, we also analyze
the CE effects on spatial patterns and extremes of surface air temperature. Since we aim at providing a wide
overview of Earth system effects of the CE methods, we limit our analysis in some aspects such as the hydro-
logical effects. Nevertheless, we also partly analyze the CE effects on precipitation minus evaporation. While
we do not explicitly distinguish between effects and side effects in this study, we would like to stress that
some CE effects may be intended and others may not and that this distinction may be different for different
CE methods. Effects of SRM have been studied, for example, by Pongratz et al. (2012) on agriculture and by
Pitari et al. (2014) on stratospheric ozone, and Davies-Barnard et al. (2015) study sea ice effects of afforesta-
tion. Climate impacts of SRM have been reviewed by Irvine et al. (2017). Impacts of SRM and CDR methods
on ecosystems are assessed by Russell et al. (2012) and McCormack et al. (2016).

3. Results and Discussion

3.1. Climate and Carbon Cycle Effects of CE Methods

The three different simulated CE methods have different effects on the climate and on the carbon cycle.
In the following we give an overview of these effects as simulated in the three CE model experiments
compared to the reference experiment rcp85 and partly also in comparison to experiment rcp45. Com-
plementary analyses are given in Ferrer González and Ilyina (2016) for the ocean alkalinization experiment
CE-ocean and in Sonntag et al. (2016) for the reforestation experiment CE-land.

3.1.1. Stratospheric Sulfur Injection

The idea of injecting sulfur particles into the stratosphere and thereby increasing the fraction of incoming
solar radiation that is reflected back to space is one of the earliest proposed CE measures and has been one
of the most discussed SRM methods (Budyko, 1977; Crutzen, 2006; Irvine et al., 2016; Niemeier & Tilmes,
2017). In our model experiment CE-atmos, the sulfur injections increase over the course of the century and
reach almost 20 Mt S yr−1 by the year 2100 (Figure 1a), corresponding to a forcing about 2–3 times higher
than that of the 1991 Mount Pinatubo eruption (Niemeier & Timmreck, 2015). The net radiation at the top
of the atmosphere, resulting from the radiative forcing and the feedbacks within the Earth system, is similar
to the one in experiment rcp45 (Figure 2a). The altered radiative forcing in CE-atmos leads to a surface air
temperature that is close to but slightly higher than the one in rcp45 (Figure 2b), especially in the Arctic due
to the disproportionally lower aerosol forcing in the high latitudes compared to the topics and mid latitudes.
This higher global mean temperature is due to an imperfect compensation of the forcings. SRM leads to
a global mean cooling of 1.83 K averaged over the years 2081–2100 compared to experiment rcp85, with
more pronounced cooling in the Arctic and more pronounced cooling over land than over ocean (Figure 3a).
For an overview of changes in key Earth system variables in the different model experiments see also Table 2.

Previous studies have analyzed the effect of SRM on extremes in idealized model simulations and indicate
that temperature extremes may be affected differently than annual means (Aswathy et al., 2015; Curry et al.,
2014). We find that the difference in the multiannual mean surface air temperature of the warmest day
of a year between CE-atmos and rcp85 is more pronounced over land compared to sea than the annual
mean (Figure 3b), whereas the Arctic amplification of the signal is stronger for the annual mean difference
(Figure 3a). This indicates that the simulated spatial pattern of the cooling effect of SRM is different for the
annual mean than for the warm extreme. The spatial pattern of the difference in the multiannual mean
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Forcings for the atmosphere-, ocean, and land-based climate engineering experiments

agriculture rcp85

forest rcp85

agriculture CE-land

forest CE-land

106-1a b c

Figure 1. (a) Sulfur injections in experiment CE-atmos needed to reduce the radiative forcing from RCP8.5 to RCP4.5 levels, (b) alkalinity input in experiment CE-ocean needed to
reduce the atmospheric CO2 concentration to RCP4.5 levels, and (c) global annual mean agricultural (crops+pastures) areas and resulting forest areas in experiments rcp85 and
CE-land for the years 2006–2100.

a b c d

e f g h

Figure 2. Global annual means of (a) net radiation at the top of the atmosphere (TOA), (b) surface air temperature, (c) precipitation, and (d) atmospheric CO2 concentration. Annual
means of total global (e) terrestrial carbon content change, (f ) terrestrial net primary productivity (NPP), (g) marine (ocean+ sediment) carbon content change, and (h) marine NPP in
experiments rcp85, CE-atmos, CE-land, CE-ocean, and rcp45 for the years 2006–2100. The plots show 5-year running means for (b), (c), and (f ) and 11-year running means
for (a) and (h).

surface air temperature of the coldest night of a year between CE-atmos and rcp85 (Figure 3c) is similar to
the one of the annual mean difference, but has a slightly higher amplitude.

Global warming is expected to amplify the hydrological cycle with global mean precipitation being strongly
increased in a warmer climate (Held & Soden, 2006). Earlier observational and model studies have indicated
potential impacts of SRM on the hydrological cycle (Robock et al., 2008; Trenberth & Dai, 2007), which
we also find in our simulations: the global mean precipitation is much lower in CE-atmos than in rcp85
and in rcp45 (Figure 2c). This finding is in line with previous model studies that found that SRM decreases
global mean precipitation (Bala et al., 2008; Kravitz et al., 2013a; Schmidt et al., 2012; Tilmes et al., 2013)
and that this decrease is particularly strong for aerosol-based methods compared to space-based mirrors
(Niemeier et al., 2013). As described in Schmidt et al. (2012) the weakening of the hydrological cycle can
be explained by the fact that the solar forcing acts primarily on the surface, while CO2 acts on the whole
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a b c

d e f

g h i

Figure 3. Multiannual (2081–2100) mean surface air temperature (SAT) differences between experiments CE-atmos and rcp85 for (a) the annual mean, (b) the warmest day, and (c)
the coldest night of a year. The corresponding differences are shown in (d), (e), and (f ) for CE-ocean and (g), (h), and (i) for CE-land. Differences that are not significant at the 5% level
are indicated by hatched areas. Significance is calculated using a Student’s t test modified to account for temporal autocorrelation (Zwiers & von Storch, 1995).

troposphere. This reduction in surface shortwave forcing leads to a reduction of the latent heat flux and
thus to a reduction of precipitation to close the surface energy budget. The precipitation decrease by SRM
is simulated in most mid to high latitude regions, while in the tropics and subtropics some regions show
a strong decrease and others show a strong increase in precipitation (Figure 4a), which is in agreement
with earlier studies (Schmidt et al., 2012). Although precipitation alone has been proven insufficient for
a comprehensive hydrological assessment of SRM in earlier studies (e.g., Kravitz et al., 2013a; Schmidt
et al., 2012), we find a similar spatial pattern and magnitude for the difference between precipitation and
evaporation as for precipitation (Figures 4a and 4b).

Since MPI-ESM includes a fully coupled carbon cycle and our model experiments are driven by fossil-fuel
CO2 emissions, atmospheric CO2 is calculated prognostically and is affected by the simulated CE methods.
By definition of “CDR,” reforestation and ocean alkalinization target at a decrease of atmospheric CO2; how-
ever, also SRM is found to have substantial impacts on CO2: atmospheric CO2 concentration is reduced by
46 ppm in the global annual mean in CE-atmos compared to rcp85 by the year 2100 (Figure 2d). Such a
reduction due to SRM has also been found in earlier studies that used an Earth system model of intermedi-
ate complexity and highly idealized representations of SRM. In those studies the reduction of atmospheric
CO2 was attributed to a general enhancement of natural (land and ocean) carbon sinks due to lower tem-
peratures (Matthews & Caldeira, 2007) or more specifically to an enhanced terrestrial carbon sink due to
higher primary productivity and lower soil carbon loss via heterotrophic respiration as a result of lower
temperatures (Keller et al., 2014; Matthews et al., 2009).

In our model experiment we also find an enhanced terrestrial carbon sink with 92 Gt more land carbon in
CE-atmos than in rcp85 by the year 2100 (Figure 2e). However, the increase in global terrestrial NPP over the
century is comparable in these two experiments (Figure 2f ) and the difference in land carbon is largely due
to a stronger increase in soil carbon in CE-atmos compared to rcp85 (Figure 5). The comparable land NPP
in the two experiments can be explained by compensating effects: lower temperatures in CE-atmos lead
to weaker boreal forest expansion and thus lower NPP in mid to high latitudes (Figure 6a), while in several
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Table 2.
Overview of the Simulated Climate Engineering (CE) Effects on Global Annual Mean Values of Surface Air Temperature,
Precipitation, Atmospheric CO2 Concentration, and Global Carbon Inventories

rcp45 CE-atmos CE-ocean CE-land

Present

rcp85 difference

to present Difference to rcp85

Surface air temperature (K) 287.43 3.73 −2.10 −1.83 −1.55 −0.27

Precipitation (mm d−1) 2.94 0.18 −0.08 −0.14 −0.06 −0.01

Atmospheric CO2 conc. (ppm) 380 589 −430 −46 −430 −85

Carbon content (Gt)

Atmosphere 805 1246 −911 −100 −905 −180

Ocean 42,642 406 −154 8 941 −36

Land 3404 246 220 92 −36 216

Note. “Present” refers to multiannual means of experiment hist for the years 1986–2005 for temperature and pre-
cipitation and to annual means of experiment rcp85 in the year 2006 for CO2 and the carbon pools. The differences
are calculated for multiannual means for the years 2081–2100 for temperature and precipitation and annual mean
values in the year 2100 for CO2 and the carbon pools. The differences are significant at the 5% level according to a
Student’s t test modified to account for temporal autocorrelation (Zwiers & von Storch, 1995).

tropical and subtropical regions higher water availability (see Figure 4a) leads to higher NPP (Figure 6a) in
CE-atmos compared to rcp85. In comparison to experiment rcp45, the terrestrial carbon content is much
lower in CE-atmos despite higher CO2 concentration, because the global forest area is much larger in rcp45
than in CE-atmos due to the different land-use forcings (afforestation in rcp45, deforestation in CE-atmos).

The response of terrestrial NPP to SRM has been found to be sensitive to the inclusion of a nitrogen cycle in
models (Glienke et al., 2015). Since this sensitivity is due to the CO2 fertilization effect that is overestimated
without inclusion of nitrogen, this indicates that the increased NPP in experiment CE-atmos compared to
rcp45 may be overestimated. Yet, the difference in NPP between CE-atmos and rcp85 may not be affected
much, as the difference in the CO2 concentrations is not large. Xia et al. (2016) find enhanced simulated
plant photosynthesis rates in response to stratospheric aerosols and partly attribute this to enhanced dif-
fuse radiation. We also find increased diffuse radiation in experiment CE-atmos compared to rcp85 (not
shown), which is partly due to stratospheric aerosols, but also due to changes in clouds. The marine con-
tribution to the carbon sink in our SRM experiment is only minor compared to the terrestrial contribution,
with the total marine (ocean and sediment) carbon content being higher by 8 Gt in CE-atmos than in rcp85
by the year 2100 (Figure 2g). This increase in marine carbon can partly be attributed to the weaker decline
in global marine NPP in CE-atmos compared to rcp85 over the century (Figure 2h), which can be explained
by the weaker warming that leads to less stratification of the upper ocean and thus to a weaker decline of
nutrient supply from deeper levels. Other factors leading to an increased oceanic carbon sink in CE-atmos
compared to rcp85 are the enhanced CO2 solubility in colder sea water and the weaker reduction of the
Atlantic meridional overturning circulation (not shown), as has been discussed by Tjiputra et al. (2016) and
Hong et al. (2017).

Tjiputra et al. (2016) use a similar model setup (ESM of comparable complexity and similar experimental
setup) and find a much weaker effect of stratospheric aerosol enhancement on atmospheric CO2 than we
do, even in an experiment with a net radiative forcing that is stronger than the one in our SRM experi-
ment. These different net responses of CO2 to SRM may be due to differences in the ESMs and differences
in the details of the CO2 forcings (CO2 emissions due to land-use changes are prescribed in Tjiputra et al.
(2016), whereas they are calculated prognostically in our setup). Tjiputra et al. (2016) argue that in their
model experiment the comparatively small CO2 response to SRM is due to the small land carbon response
because of nitrogen limitation, while in previous studies the higher CO2 response was partly due to the miss-
ing nitrogen coupling. Yet, as described above, in our experiment the land carbon uptake is increased due
to increased soil carbon because of reduced temperatures and thus reduced soil respiration, while NPP is
almost unchanged in response to SRM. It is, however, possible that nitrogen limitation would be enhanced
with reduced soil respiration and thereby reduce NPP.
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Figure 4. Multiannual (2081–2100) mean differences for precipitation in (a), (c), and (e) and for the difference between precipitation and
evaporation in (b), (d), and (f ) between experiments CE-atmos, CE-ocean, and CE-land and experiment rcp85. Significance is calculated
using a Student’s t test modified to account for temporal autocorrelation (Zwiers & von Storch, 1995).

a b c

Figure 5. Total global annual mean carbon content change in the (a) soil, (b) vegetation, and (c) litter pools in experiments rcp85, CE-land, CE-ocean, CE-atmos, and rcp45 for the
years 2006–2100.

Furthermore, Tjiputra et al. (2016) find that the marine carbon sink is enhanced in their SRM experiment
while the terrestrial carbon sink shows little response. They attribute this dominant contribution of the
marine carbon sink to the fact that their model shows a small sensitivity of the land carbon uptake to
changes in climate and CO2. Since the ocean and land carbon sinks both depend on and affect atmospheric
CO2, in models with a low sensitivity of the land carbon uptake to changes in climate and CO2 the ocean
carbon sink will be affected more strongly by SRM, and vice versa. Consistently, in our study, we find that
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Figure 6. Multiannual (2081–2100) mean difference of terrestrial net primary productivity (NPP) between experiments (a) CE-atmos, (c) CE-ocean, and (e) CE-land and rcp85, and (g)
between rcp85 and the multiannual (1986–2005) mean of experiment hist, and annual (2100) mean difference of forest cover fraction between experiments (b) CE-atmos, (d)
CE-ocean, and (f ) CE-land and rcp85, and (h) between rcp85 and the 2005 mean of experiment hist.

the ocean carbon sink will be affected less strongly, since our model shows higher sensitivity of the land
carbon uptake to changes in climate and CO2. These findings suggest that better constraints of this carbon
uptake sensitivity are needed.

3.1.2. Ocean Alkalinization

As a CDR method, ocean alkalinization aims at enhancing the natural process of weathering and thereby
increasing CO2 sequestration (e.g., Hartmann et al., 2013; Renforth & Henderson, 2017). In our model
experiment CE-ocean the cumulative alkalinity input increases drastically with increasing fossil-fuel CO2
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a b

Figure 7. Zonal mean differences of the multiannual (2081–2100) mean surface air temperature (SAT) of experiments CE-atmos,
CE-ocean, CE-land, rcp85, and rcp45 (a) to the 1985–2005 mean of experiment hist and (b) to the 2081–2100 mean of experiment rcp85,
normalized to the respective global mean difference.

emissions over the century and amounts to about 114 Pmol of alkalinity by the year 2100 (Figure 1b). As
explained in Ferrer González and Ilyina (2016) about 4010 Gt of olivine or 4220 Gt of lime would be needed
for this alkalinity increase, requiring an increase of three (two) orders of magnitude in the total olivine
(lime) production until 2100.

By construction of the experiment, the CO2 concentration in CE-ocean closely follows that of experiment
rcp45 (Figure 2d). As expected, the CDR in CE-ocean leads to a weakening of the anthropogenic global
warming (Figure 2b), with a global mean cooling of 1.55 K averaged over the years 2081–2100 compared
to rcp85 (Table 2). This cooling as well as all other effects on the climate in this experiment is exclusively
due to the reduction of CO2, since in the model there is no interactive feedback from ocean biogeochem-
istry to the climate other than via CO2. The spatial pattern of this cooling is similar to the one in experiment
CE-atmos, with more pronounced cooling in the Arctic and more pronounced cooling over land than over
ocean (Figure 3d). The global annual mean temperature in CE-ocean is higher by 0.55 K averaged over the
years 2081–2100 compared to rcp45. This difference can be attributed to the forcings of non-CO2 green-
house gases, of aerosols, and of biogeophysical effects from different land cover due to land-use transitions
that are all taken according to RCP8.5 in CE-ocean, but according to RCP4.5 in experiment rcp45. The CO2

emissions due to land-use changes are compensated already in CE-ocean. By simulation design in CE-atmos
not only the CO2 forcing, but all anthropogenic forcings of RCP8.5 are counterbalanced to follow the radia-
tive forcing as in RCP4.5.

The simulated effects of ocean alkalinization on temperature extremes are similar as those in the SRM exper-
iment: the multiannual mean surface air temperature difference of the warmest day of a year between
CE-ocean and rcp85 is more pronounced over land compared to sea than the annual mean (Figure 3e),
whereas the Arctic amplification of the signal is stronger for the annual mean difference (Figure 3d). Also
the spatial pattern of the multiannual mean surface air temperature difference of the coldest night of a
year between CE-ocean and rcp85 (Figure 3c) is similar to the one of the annual mean difference, but has a
slightly higher amplitude.

The differences in the global mean greenhouse-gas forcings are also reflected in the net radiation at the top
of the atmosphere that increases much less strongly over the century in CE-ocean than in rcp85 and slightly
more strongly compared to rcp45 (Figure 2a). Also global mean precipitation shows a similar response as
global mean temperature: the increase in global mean precipitation over the century is much weaker in
CE-ocean than in rcp85 and slightly stronger than in rcp45 (Figure 2c). While the global mean decrease
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of precipitation compared to rcp85 is less strong in CE-ocean than in CE-atmos, the spatial patterns of the
precipitation differences are similar, with a consistent drying of mid to high latitudes, but regions with strong
increase and strong decrease in precipitation in the tropics (Figure 4c). As for CE-atmos, we find a similar
spatial pattern and magnitude for the difference between precipitation and evaporation as for precipitation
(Figures 4c and 4d). Although in large areas the signals are not significant, this indicates that both CDR and
SRM may have strong impacts on hydrology and that this is not an exclusive feature or risk of SRM as has
been suggested (e.g., Royal Society, 2009). Also, the discussed climate effects are all in line with what could
be expected for a reduction in CO2 and are not specific to the CE method of ocean alkalinization.

Due to the increased buffering capacity of the ocean and facilitated by colder sea water in the alkalinization
experiment the marine carbon uptake increases strongly, with the marine carbon content being 941 Gt
higher in CE-ocean than in rcp85 by the year 2100 (Figure 2g). While the increases in carbon stocks over
the century are 1246, 406, and 246 Gt in atmosphere, ocean, and land, respectively, in experiment rcp85,
they are 341, 1347, and 210 Gt in CE-ocean. As a response to the weaker warming over the century due to
alkalinization, the decline of the marine NPP is also weakened in CE-ocean compared to rcp85 (Figure 2h),
which can be explained by a weaker increase in stratification leading to a less strong suppression of nutrient
supply to the surface ocean.

The changes in climate and atmospheric CO2 due to alkalinization also affect the terrestrial carbon sink.
The effect is less strong than in the SRM experiment and in the opposite direction: the total terrestrial car-
bon content is lower by 33 Gt in CE-ocean than in rcp85 by the year 2100 (Figure 2e). While the soil carbon
content is higher in CE-ocean due to lower temperatures and thus lower soil respiration in CE-ocean than
in rcp85, the vegetation carbon content is lower by 50 Gt by the year 2100 (Figure 5), overcompensating
the soil carbon content increase. The lower vegetation carbon content and the weaker increase in terres-
trial NPP (Figure 2f ) in CE-ocean compared to rcp85 can be explained by the much lower CO2 concentration
leading to weaker CO2 fertilization and by the lower temperature leading to weaker boreal forest expansion
compared to rcp85.

The substantially lower terrestrial carbon content and NPP in CE-ocean compared to rcp45 (Figures 2e
and 2f) despite only minor differences in the global mean climate and atmospheric CO2 between these
two experiments can largely be explained by the different land-use forcings (deforestation in CE-ocean,
afforestation in rcp45), which lead to much less forest in CE-ocean.

Ferrer González and Ilyina (2016) showed that the global marine biogeochemical effects of ocean alkalin-
ization in CE-ocean are consistent with results of previous model studies using different model setups and
different alkalinization scenarios (Ilyina et al., 2013a, 2013b; Keller et al., 2014; Köhler et al., 2013). However,
there are fewer studies to compare the effects of ocean alkalinization on the climate system and the global
carbon cycle. Using an Earth system model of intermediate complexity, Keller et al. (2014) also find a reduc-
tion of atmospheric CO2 and consequently a global cooling effect due to ocean alkalinization. They also find
an increase in the ocean carbon content and a slight decrease in the terrestrial carbon content in their ocean
alkalinization experiment. Yet, the effects are all smaller in magnitude, since in their study the amount of
added alkalinity was smaller and thus the results are not directly comparable in a quantitative manner.

3.1.3. Reforestation

The large-scale abandonment of agricultural areas in the RCP4.5 land-use scenario that is used in experi-
ment CE-land leads to an increase in global forest area by about 8 million km2 over the 21st century, while it
decreases by about 1 million km2 in rcp85 (Figure 1c). The increase in global forest cover in CE-land leads to
a stronger increase of terrestrial carbon (Figure 2e) and to a weaker increase in atmospheric CO2 (Figure 2d)
over the course of the century. By the year 2100, the land carbon content is 215 Gt higher and the atmo-
spheric CO2 concentration is 85 ppm lower in CE-land compared to rcp85. This CDR potential of reforestation
is higher than previous estimates (e.g., House et al., 2002) and is due to increased forest cover in combination
with enhanced terrestrial carbon uptake in a warm and high-CO2 climate, suggesting that the CDR potential
of reforestation depends on the background state of the Earth system (Sonntag et al., 2016). The CDR poten-
tial may be lower in a model including nitrogen limitation, as demonstrated recently by Kracher (2017).
Yet, the study by Kracher (2017) used a different baseline climate (RCP4.5 instead of RCP8.5) and found a
large effect mostly on boreal forest expansion, which makes a quantitative estimate of the effect of nitro-
gen in our scenario difficult. Terrestrial carbon is very similar in experiments rcp45 and CE-land (Figure 2e),
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because of two compensating effects: a decrease in soil carbon due to weaker soil respiration because of
lower temperatures and an increase in vegetation carbon in CE-land compared to rcp45 (Figure 5b).

In response to the reduction in atmospheric CO2 concentration and to the changes in land cover in
CE-land, the net radiation at the top of the atmosphere increases slightly less strongly over the century
in CE-land than in rcp85 (Figure 2a). The global mean temperature is reduced by 0.27 K averaged over
the years 2081–2100 (Figure 2b and Table 2) with the most pronounced cooling in the Arctic (Figure 3g).
The net effect being a cooling suggests that globally the cooling CDR effect dominates over the warming
biogeophysical effect that a forest increase has in particular in boreal regions due to an increase in surface
albedo (e.g., Bonan et al., 1992). Previous idealized model studies on large-scale afforestation suggested
that the albedo warming dominates over the CDR cooling in boreal regions (Bathiany et al., 2010; Claussen
et al., 2001; Sitch et al., 2005), whereas other studies indicate that afforestation can lead to a global warm-
ing when applied in the Saharan and Australian deserts (Keller et al., 2014; Ornstein et al., 2009). In our
experiment CE-land, the net global effect of reforestation is a cooling, since forest regrowth occurs on
previously cleared land for agricultural use. This land was picked for agriculture earlier because it was more
productive and had little snow. Thus, forests that regrow on these areas have a stronger cooling CO2 and a
weaker warming snow-masking effect (Pongratz et al., 2011).

The spatial patterns of the surface air cooling signal of reforestation are similar for the annual mean, for the
warmest day, and the coldest night of the year, but the amplitude of the signal is stronger for the coldest
night than for the annual mean (Figure 3i). Furthermore, as also shown in Sonntag et al. (2016), the cooling is
more pronounced in the mid-northern latitudes for the warmest day than for the annual mean (Figure 3h),
suggesting a reduction in extremely warm days due to reforestation in this region.

The increase in global mean precipitation is very similar in CE-land and rcp85 (Figure 2c), indicating that
the net global effect of the CDR and the change in land cover on precipitation is small in this scenario. Also,
in most areas the difference in precipitation and in the difference between precipitation and evaporation
between CE-land and rcp85 is not significant (Figures 4e and 4f).

Global terrestrial NPP increases more strongly over the century in CE-land than in rcp85 (Figure 2f ) since the
differences in temperature, precipitation, and CO2 between these two experiments are not large, but the
global forest area is much larger in CE-land than in rcp85 (Figure 1c). Global marine NPP decreases slightly
less strongly over the century in CE-land than in rcp85 (Figure 2h), which may be explained by less warming
leading to a weaker increase in thermal stratification of the ocean and thus weaker decrease of nutrient
supply to the surface. Despite this slight relative enhancement of the marine NPP and the cooling due to
reforestation, the marine carbon sink is weakened with 36 Gt carbon less in CE-land than in rcp85 by the
year 2100 (Figure 2g). This weakening of the marine carbon sink is due to the reduction of the atmospheric
CO2 concentration leading to a smaller air-sea CO2 gradient in CE-land compared to rcp85.

3.2. Comparison of CE Methods

The three CE methods differ vastly in their simulated effects on the Earth system. In terms of reducing future
global mean warming in our simulations, SRM has the largest effect, ocean alkalinization is only slightly
weaker, since it does not act on the non-CO2 forcings as opposed to SRM, and reforestation has a relatively
small effect (Figure 2b). Also regarding global mean precipitation, SRM has by far the largest effect relative
to the rcp85 baseline simulation, ocean alkalinization has a weaker effect, and reforestation has a minor
effect (Figure 2c). In terms of atmospheric CO2, however, the situation is different: ocean alkalinization has
the largest effect, reforestation has a much smaller effect, and SRM has an even smaller effect (Figure 2d).
Concerning global terrestrial NPP, we see yet a different picture: ocean alkalinization is simulated to have
the largest effect, reforestation has a weaker effect, but in the opposite direction, and SRM has almost no
effect (Figure 2f ) compared to the rcp85 baseline simulation.

3.2.1. Reasons for Different CE Effects

The differences in the effects of the CE methods on the Earth system are mainly due to the different radia-
tive forcings in the experiments. The differences are also due to different target processes invoked by the
methods: SRM targets the short-wave radiative forcing and aims at reducing temperature by reducing the
incoming solar radiation, whereas CDR methods target the land or ocean carbon sinks and aim at reduc-
ing temperature by reducing absorption of long-wave radiation by CO2 in the atmosphere. And since the
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methods have these different targets, different effects may be regarded as intended or unintended: while
changes in carbon are intended for CDR methods, they may be unintended for SRM.

In addition to the fundamentally different targets and underlying mechanisms of the different CE meth-
ods, their effects on the Earth system also depend very much on how the CE scenarios are designed. In
CE-atmos the net radiative forcing and in CE-ocean the atmospheric CO2 concentration are prescribed,
whereas in CE-land the model input in terms of land-use transitions instead of a target quantity is prescribed.
By construction of the three CE experiments, the resulting radiative forcings and thus also, for example, the
resulting temperature changes due to CE, are of comparable magnitude for CE-atmos and CE-ocean, but
much smaller for CE-land.

Using a simpler Earth system model of intermediate complexity, Keller et al. (2014) compared the effects of
different CE methods within one Earth system model. Although they studied similar CE methods, the results
are not directly comparable to ours, since they used different scenarios of CE implementation and focused
on assessing the maximum potentials of different CE methods. Whereas our SRM and ocean alkalinization
scenarios target the RCP4.5 radiative forcing and CO2 concentration, respectively, and our reforestation sce-
nario is based on the RCP4.5 land-use transitions, in Keller et al. (2014) the target quantity for SRM was
preindustrial global mean surface air temperature, the ocean alkalinization intensity was set by an estimate
for the technical limit, and the afforestation scenario was based on large-scale irrigation of deserts.

The simulated effects of CE methods on the Earth system also depend on the model that is used for the sim-
ulations. For example, as discussed earlier, the effect of SRM on CO2 depends on the interaction of several
model components and varies from one ESM to another. The Earth system model used in Keller et al. (2014),
for example, includes an energy-moisture balance model as opposed to a full atmospheric general circula-
tion model in MPI-ESM, and different model components for the ocean, the land surface, and the carbon
cycle.

Furthermore, as discussed above in the rankings of the CE methods, the choice of variables that are consid-
ered in the analysis plays a crucial role in the assessment of CE methods (Oschlies et al., 2016).

3.2.2. Evaluation of Normalized Effects

To allow for a better comparison of the three CE methods, we normalize the CE effects to a reference change.
First, we normalize the surface air temperature (SAT) differences both between the experiments at the end
of the century (years 2081–2100) and the end of the historical period (years 1986–2005 of experiment hist)
and between the experiments and the reference experiment rcp85 at the end of the century to the respec-
tive global mean differences. Second, we normalize the global mean precipitation difference between the
experiments at the end of the century and at the end of the historical period to a change in global mean
SAT of 1 K. And third, to compare the CE effects on the carbon cycle, we normalize the differences in the
atmosphere, ocean, and land carbon pools in the CE experiments to the reference experiment rcp85 to a
global mean SAT difference of 1 K and to a difference in atmospheric CO2 concentration of 100 ppm.

As shown before, the SAT differences of the experiments CE-atmos and CE-ocean to rcp85 are substantially
larger than that of CE-land in most regions of the world (see Figures 3a, 3d and 3g). The corresponding nor-
malized differences, however, are similar (Figure 7a). Also the spatial patterns of the normalized warming
(i.e., the normalized SAT differences to the historical period) are very similar (not shown). This suggests that
the local amplification factor compared to the global mean SAT change over the century is robust across the
CE scenarios, which has also been found for different RCP scenarios simulated with MPI-ESM (Giorgetta et al.,
2013). Despite these similarities, for the RCP scenarios slightly less Arctic amplification for scenarios with
stronger forcing has been found (Giorgetta et al., 2013), presumably partly because under strong warm-
ing Arctic sea ice is reduced so much that the sea ice albedo feedback is weakened. We can reproduce this
finding with respect to CE-ocean, which shows similar amplification as rcp45 and slightly stronger amplifica-
tion than rcp85 (Figure 7a). However, CE-land shows slightly lower amplification than rcp85 despite smaller
forcing. Experiment CE-atmos, on the other hand, shows a larger Arctic amplification than all other experi-
ments despite comparable forcing to rcp45 and CE-ocean. When comparing the normalized SAT differences
to the reference experiment rcp85 at the end of the century rather than to the historical period, we see a
similar picture: the general zonal patterns of the differences are similar to each other, whereas the Arc-
tic cooling signal due to CE is dampened in CE-atmos, but amplified in CE-land (Figure 7b). This amplified
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Table 3.
Global Carbon Content Differences in the Climate Engineering (CE) Experiments Compared to Experiment rcp85 in the Year
2100, Normalized to a Difference in Global Mean Surface Air Temperature (SAT) of 1 K and in Atmospheric CO2 Concentra-
tion of 100 ppm

Carbon content difference CE-atmos CE-ocean CE-land

Normalized by SAT (Gt K−1)

Atmosphere −55 −584 −667

Ocean 4 607 −133

Land 51 −23 800

Normalized by CO2 (10−2 Gt ppm−1)

Atmosphere −217 −210 −212

Ocean 17 219 −42

Land 200 −8 254

Note. The values for the atmospheric carbon content normalized to atmospheric CO2 differ slightly for the three CE
experiments, since the carbon mass is calculated for the whole atmosphere and normalized by the CO2 concentra-
tion at the surface.

cooling in CE-land is due to the reduced forest cover in the very high Northern latitudes compared to rcp85
(Figure 6) in response to reduced warming in CE-land compared to rcp85 that leads to even less warming
via snow-masking. This suggests that reforestation as simulated in our scenario has the potential to mitigate
Arctic warming disproportionately.

Although the global mean precipitation change over the century is more than 50% larger in CE-land than
in CE-ocean (see Figure 2c), these changes are very similar when normalized to the changes in global mean
surface air temperature: The hydrological sensitivity, that is, the relative change in global mean precipitation
per unit of global mean surface air temperature, is similar for CE-ocean (1.70%), CE-land (1.67%), and also
rcp85 (1.64%), with values are typical for experiments with CO2 forcings of these magnitudes (e.g., Giorgetta
et al., 2013). For CE-atmos, the hydrological sensitivity is smaller by a factor of three (0.54%). Our finding are
also in agreement with previous studies that found that the hydrological sensitivity to solar forcing is higher
than that due to CO2 forcing by a factor of 1.5–2 (e.g., Bala et al., 2008). Using this definition of hydrological
sensitivity involving the difference in precipitation per difference in temperature with respect to an unmiti-
gated high-CO2 scenario, which is rcp85 in our case, the hydrological sensitivity in our experiments is 2.45%
for CE-atmos, 1.24% for CE-ocean, 1.19% for CE-land, and 1.22% for rcp45. For CE-ocean and CE-land the
global hydrological sensitivities are similar despite the different patterns in temperature and precipitation.
These findings suggest that the hydrological sensitivity of the Earth system is altered substantially by SRM,
but only marginally by CDR methods.

The differences in the atmosphere, ocean, and land carbon pools to the reference experiment rcp85 differ
vastly among the CE experiments (see Table 2). Normalization of these differences to reference changes in
temperature and CO2, respectively, highlights the effects that are specific to the different CE methods by
eliminating the effects that are due to the strength of the CE scenarios in terms of their effects on tem-
perature or CO2. In the nonnormalized quantities the effect on atmospheric carbon is by far strongest in
CE-ocean, whereas the CDR effect is strongest in CE-land when normalized to the change in temperature
(Table 3). This means that in our simulations, to achieve the same reduction in global warming, more car-
bon needs to be removed from the atmosphere by reforestation (667 Gt C K−1) than by ocean alkalinization
(584 Gt C K−1). This lower cooling efficiency of reforestation can be explained by warming regional biogeo-
physical effects counteracting the cooling signal of terrestrial CDR and is reflected in a slight decrease of the
global mean surface albedo of 0.1% for the multi-year (2081–2100) mean difference between rcp85 and
CE-land. Another factor playing a role in the different efficiencies of the two CDR methods is the nonlinear
relationship between atmospheric CO2 and temperature, since both CO2 and climate are very different in
CE-land and CE-ocean.

Furthermore, we find that, to achieve the same reduction in atmospheric CO2, more carbon needs to be
stored on land (2.54 GtC ppm−1) in the reforestation scenario than in the ocean (2.19 GtC ppm−1) in the
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alkalinization scenario (Table 3). This different efficiency to remove carbon from the atmosphere is due to
the different compensation of the ocean releasing more carbon (0.42 GtC ppm−1) in CE-land and of the land
biosphere releasing relatively little carbon (0.08 GtC ppm−1) in CE-ocean. These differences in the weaken-
ing of the CDR effect of about 17% in CE-land, but only about 4% in CE-ocean suggest that the ocean reacts
more strongly to changes in atmospheric carbon than the land biosphere on the timescale of a century.

The effects on atmospheric and oceanic carbon are weakest in CE-atmos in the nonnormalized quantities
and are even weaker compared to CE-land and CE-ocean when normalized to the change in temperature
(Table 3). The effect on land carbon in CE-atmos is smaller than the one in CE-land and is even smaller when
normalized to the temperature change. When normalized to the change in atmospheric CO2 concentration,
however, the effect on the land and ocean carbon pools in CE-atmos is of comparable magnitude than the
one in CE-land, indicating that comparable reductions in atmospheric carbon would be accompanied by
comparable increases in terrestrial carbon in these scenarios of SRM and reforestation. The effect on the
oceanic carbon, normalized to the change in CO2, however, is a slight increase in CE-atmos, but a decrease
in CE-land.

4. Summary and Conclusion

Our results show that, driven by different target variables—reduction of atmospheric CO2 for CE-land and
CE-ocean, radiative forcing for CE-atmos—the different CE methods differ vastly in terms of their effects
and feedbacks with different Earth system components. For example, we find:

• Despite different amounts of global surface cooling achieved, local amplification factors compared to
the global mean temperature changes are generally similar in the CE scenarios. A notable difference
exists with respect to Arctic amplification, which is strengthened in CE-atmos, slightly strengthened in
CE-ocean, and slightly weakened in CE-land compared to the historical period.

• Effects on variables beyond global mean temperature are substantial: For example, global mean
precipitation, as discussed in earlier studies, decreases stronger in CE-atmos than one may expect from
a temperature reduction alone. That is, for CE-atmos the hydrological sensitivity is strongly reduced. As
expected, the precipitation reduction and the hydrological sensitivity are similar for CE-ocean as for
rcp45. Unintended effects may even influence the cooling efficiency of the CE method: Regional
biogeophysical effects of afforestation leading to warming counteract the cooling signal due to
reduced CO2 radiative forcing of the terrestrial CDR, so that more carbon needs to be removed from the
atmosphere in CE-land than in CE-ocean to achieve the same reduction in global warming.

• Similarly, effects on Earth system components not targeted by the CE method are found to be
substantial: Global terrestrial NPP, which features a targeted increase in CE-land, is substantially reduced
in CE-ocean, whereas in CE-atmos there is almost no net effect on global terrestrial NPP due to
counteracting effects of decreased water stress in low latitudes and weaker boreal forest expansion. The
ocean carbon sink is not just drastically increased in CE-ocean, but it is also increased in CE-atmos,
whereas it is weakened in CE-land.

• Carbon cycle feedbacks in the coupled Earth system alter the mitigation potential of CE methods: In
particular, the climate-carbon cycle feedback contributes to a larger mitigation potential in CE-atmos,
where atmospheric CO2 is reduced due to enhanced land carbon uptake under cooler conditions.
Further, compensatory fluxes between land and ocean carbon reservoirs makes CE-ocean more efficient
than CE-land, that is, less carbon needs to be stored in the ocean in the alkalinization scenario than on
land in the reforestation scenario, as the ocean outgasses faster in response to terrestrial CDR than land
does to oceanic CDR.

We also identify challenges when comparing the effects of the different CE methods on the Earth system.
We illustrate that the scenario design already sets targets and potentials of the respective CE method and
that the quantitative results depend on the details of the CE scenarios, on the type of model that is used for
the simulations, and also on the choice of variables that are analyzed in an assessment of CE methods. Also,
some of the responses are specific to the CE method under consideration, whereas others can be expected
also for similar methods. For example, as the CO2 reduction in CE-atmos is due the reduction in temperature,
we can assume it would be similar for other SRM methods. On the other hand, it has been shown in (Niemeier
et al., 2013) that precipitation responses may depend on the specific SRM method. Concerning the CDR
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methods, in our study ocean alkalinization has effects on climate only via changes in CO2, and hence these
climate effects are typical for a CO2 reduction, while afforestation has additional effects via physical changes
in land cover. Furthermore, the effect of a CE method may depend on the background state of the Earth
system, for example, the reforestation CDR potential depends on climate and CO2, making a comparative
assessment of CE even more challenging. We also show that normalizations allow for a better comparability
of different CE methods which, although not all effects may scale linearly at all scales, can serve as a basis
for comparative assessments of CE. Such normalizations could also be used more generally to assess effects
of other scenarios that do not involve CE.

Furthermore, we find that using a more complex ESM gives similar information on the qualitative global
mean response of the Earth system to different CE methods as a relatively simpler ESM of intermediate
complexity (EMIC) as used in Keller et al. (2014). Yet, to quantitatively investigate some of the intended
and unintended CE effects and especially their spatial patterns and statistics a more complex ESM is bet-
ter suited, since natural variability and relevant feedbacks can be captured more adequately. For example,
we can show that the spatial cooling patterns of annual mean changes are different across CE methods as
compared to those of the warm extreme.

Comprehensive reports of CE like, for example, Royal Society (2009), have approached the assessment of
CE, also in terms of effects and side effects, and have compared these indicators for different CE methods.
Our study suggests that in such assessments one needs to keep in mind that the quantitative intended and
unintended effects of a potential CE deployment are strongly influenced by the details of the deployment.
To improve the value of such assessments for policy advice and decision making more quantitative studies,
such as in coordinated model intercomparison projects like GeoMIP (Kravitz et al., 2015), LUMIP (Lawrence
et al., 2016), and CDR-MIP (Keller et al., 2017) can make valuable contributions.

As the potentials of individual CE methods to reduce climate change may be either limited, in particular
for land-based CE methods, or come with high risks and large unintended effects, individual CE methods
may be applied, if at all, as part of a portfolio that comprises various CE methods, possibly in combination
with mitigation and adaptation efforts (Klepper & Rickels, 2012; Victor, 2008). A logical next step is therefore
to study portfolio scenarios that combine different CE methods and allow investigating potential interac-
tions of the methods. Cao et al. (2017) study the simultaneous deployment of different SRM methods, but
a combination of land-, ocean- and atmosphere-based CE is still missing.
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