日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Trimethylation and Acetylation of ß-Catenin at Lysine 49 Represent Key Elements in ESC Pluripotency

MPS-Authors

Hoffmeyer,  Katrin
Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191144

Kanzler,  Benoit
Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191147

Kemler,  Rolf
Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Hoffmeyer, K., Junghans, D., Kanzler, B., & Kemler, R. (2017). Trimethylation and Acetylation of ß-Catenin at Lysine 49 Represent Key Elements in ESC Pluripotency. Cell Reports, 18, 2815-2824. doi:10.1016/j.celrep.2017.02.076.


引用: https://hdl.handle.net/11858/00-001M-0000-002E-85FA-6
要旨
Wnt/β-catenin signaling is required for embryonic stem cell (ESC) pluripotency by inducing mesodermal differentiation and inhibiting neuronal differentiation; however, how β-catenin counter-regulates these differentiation pathways is unknown. Here, we show that lysine 49 (K49) of β-catenin is trimethylated (β-catMe3) by Ezh2 or acetylated (β-catAc) by Cbp. Significantly, β-catMe3 acts as a transcriptional co-repressor of the neuronal differentiation genes sox1 and sox3, whereas β-catAc acts as a transcriptional co-activator of the key mesodermal differentiation gene t-brachyury (t-bra). Furthermore, β-catMe3 and β-catAc are alternatively enriched on repressed or activated genes, respectively, during ESC and adult stem cell differentiation into neuronal or mesodermal progenitor cell lineages. Importantly, expression of a β-catenin K49A mutant results in major defects in ESC differentiation. We conclude that β-catenin K49 trimethylation and acetylation are key elements in regulating ESC pluripotency and differentiation potential.