Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Divergent Diffusion Coefficients in Simulations of Fluids and Lipid Membranes

MPG-Autoren
/persons/resource/persons194660

Vögele,  Martin
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vögele, M., & Hummer, G. (2016). Divergent Diffusion Coefficients in Simulations of Fluids and Lipid Membranes. The Journal of Physical Chemistry B, 25(33), 8722-8732. doi:10.1021/acs.jpcb.6b05102.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-1B15-2
Zusammenfassung
We investigate the dependence of single-particle diffusion coefficients on the size and shape of the simulation box in molecular dynamics simulations of fluids and lipid membranes. We find that the diffusion coefficients of lipids and a carbon nanotube embedded in a lipid membrane diverge with the logarithm of the box width. For a neat Lennard-Jones fluid in flat rectangular boxes, diffusion becomes anisotropic, diverging logarithmically in all three directions with increasing box width. In elongated boxes, the diffusion coefficients normal to the long axis diverge linearly with the height-to-width ratio. For both lipid membranes and neat fluids, this behavior is predicted quantitatively by hydrodynamic theory. Mean-square displacements in the neat fluid exhibit intermediate regimes of anomalous diffusion, with t ln t and t3/2 components in flat and elongated boxes, respectively. For membranes, the large finite-size effects, and the apparent inability to determine a well-defined lipid diffusion coefficient from simulation, rationalize difficulties in comparing simulation results to each other and to those from experiments.