Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Characterizing rare fluctuations in soft particulate flows

MPG-Autoren
/persons/resource/persons48934

Vollmer,  Jürgen
Group Principles of Self Organisation, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rahbari, S. H. E., Saberi, A. A., Park, H., & Vollmer, J. (2017). Characterizing rare fluctuations in soft particulate flows. Nature Communications, 8: 11. doi:10.1038/s41467-017-00022-8.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-1DBC-7
Zusammenfassung
Soft particulate media include a wide range of systems involving athermal dissipative
particles both in non-living and biological materials. Characterization of flows of particulate
media is of great practical and theoretical importance. A fascinating feature of these systems
is the existence of a critical rigidity transition in the dense regime dominated by highly
intermittent fluctuations that severely affects the flow properties. Here, we unveil the
underlying mechanisms of rare fluctuations in soft particulate flows. We find that rare
fluctuations have different origins above and below the critical jamming density and become
suppressed near the jamming transition. We then conjecture a time-independent local
fluctuation relation, which we verify numerically, and that gives rise to an effective temperature.
We discuss similarities and differences between our proposed effective temperature
with the conventional kinetic temperature in the system by means of a universal scaling
collapse.