Supporting Information

Biotemplated carbide-derived Carbons with Hierarchical Pore Structure for the Adsorption of Mercury

C. Fischer, M. Oschatz, W. Nickel, D. Leistenschneider, S. Kaskel and E. Brunner

Cultivation and Treatment of Diatoms

Thalassiosira pseudonana (T. pseudonana) has been isolated from the North Sea in June 2004 by Prof. Manfred Sumper (Regensburg). Cultivation was performed in a 20 L polycarbonate vessel (Nalgene) with artificial seawater (ASW) medium prepared according to the protocol of Harrison et al.¹. Diatoms grew in 20 L of sterile filtrated (0.2 lm, Kleenpak) ASW medium for 2 weeks. A RUMED 1301 light thermostat (18 °C, 12 h/12 h day/night cycle, ca. 1000 lux) provided constant growing conditions. Adjustment of the rising pH to 8.0 – 8.2 was carried out with 2.5 M HCl. The cells were harvested by centrifugation of the culture medium (Heraeus biofuge primo, swinging bucket rotor, 1000 RCF). Cell wall extraction follows the protocol described by Hedrich $et al.^2$. In order to remove physically bound organic material from the cell walls, an aqueous buffer containing ethylenediaminetetraacetic acid (EDTA) (0.1 M) and sodiumdodecylsulfate (SDS) (2 %) at pH 8 was used. The harvested cells were suspended in 20 mL buffer solution and heated to 95°C for 10 min. This treatment was repeated three times. Finally, the biosilica was washed at least three times with Milli-Q water. In all steps, the biosilica was separated from the supernatants via centrifugation (Heraeus biofuge primo, swinging bucket rotor, 4000 RCF, 10 min). After extraction, the samples were freeze-dried. To further remove organic material from the biosilica, a calcination was performed in a muffle furnace (Nabertherm) for 5 h at 550°C under static air atmosphere.

Parameters of CDC Process

100 mg of vacuum dried *T. pseudonana* biosilica was infiltrated with different amounts (0.06 mL – low, 0.10 mL – medium and 0.17 mL – high) of the liquid polycarbosilane SMP-10 (Starfire Systems) in a mortar followed by pyrolysis in a tube furnace at 800°C for 2 h with a heating rate of 60 K h⁻¹ under flowing argon atmosphere. After cooling to room temperature, the materials were washed with 150 mL HF solution (H₂O:EtOH:37%HF in H₂O = 1:1:1) over night, filtrated and washed with EtOH. The

obtained silicon carbide (SiC) materials were treated with hot chlorine gas at 800°C for 3 h. A final hydrogen treatment at 600°C for 1 h was performed to remove residual chlorine and chlorides³.

Characterization

Nitrogen physisorption isotherms were measured at -196°C on a Quadrasorb apparatus (Quantachrome Instruments). Specific surface areas (SSA) were calculated using the multipoint BET equation ($p/p_0 = 0.05 - 0.2$ for the TP-SiC materials, $p/p_0 = 0.01 - 0.1$ for the TP-CDC materials). Total pore volumes were calculated at $p/p_0 = 0.99$. Pore size distributions (PSDs) were calculated using the quenched solid density functional theory (QSDFT) method for nitrogen at -196°C on carbon with slit/cylindrical/spherical pore geometry from the adsorption branch and non-local density functional theory (NLDFT) with cylindrical pore geometry for the diatom biosilica. Micropore volumes were estimated at the cumulative pore volumes at a diameter of 2 nm.

SEM analyses were performed on a Zeiss DSM 982 Gemini field-emission scanning electron microscope. Droplets of water suspensions of the samples were placed on alumina sample holders. TG was performed on a Netzsch STA 409CD (Netzsch, Germany) under synthetic air with a heating rate of 5 K h⁻¹.

Mercury Adsorption

The adsorption of mercury was performed with 250 mL of a 100 mg L⁻¹ Hg²⁺ solution with 10 mg of the carbon material under continuous stirring for 3 h (pH 6.5). For the isotherm measurements, different Hg²⁺ initial concentrations of 10, 50, 100, 200, 400 and 800 mg L⁻¹ were used (pH 6.5). Samples were taken at different times and filtered through a 0.22 μ m PVDF syringe filter (Rotilabo). The concentration of Hg⁺ was determined photometrically using UV-VIS measurements. Therefore 50 μ l of the sample were mixed with 1 mL potassium iodide/ potassium hydroxyphthalate solution (20 g L⁻¹ each) and shacked for 1 h. Then, 2.95 mL H₂O and 1 mL Rhodamin-6G were added, shaked and the solution was measured after 30 s using a UV/VIS (UV-3100PC Spectrophotometer, VWR). The recyclability was tested by filtering and washing the material with Milli Q water through a nylon mesh (1 μ m pore size) followed by drying over night.

S1: N₂-physisorption isotherms (-196 °C), cumulative pore size distributions and differential pore size distributions of *T. pseudonana* biosilica (a, b, c) and spherical coal (d, e, f).

S2 – Differential Pore Size Distributions

S2: Differential QSDFT pore size distribution of TP-SiC (a) and TP-CDC (b) materials.

S3: Thermogravimetric analysis curve of TP-CDC materials under synthetic air, heating rate: 5 K min⁻¹.

S4 – Kinetic Study of TP-CDC Material at 10 mg L⁻¹ Hg²⁺ Initial Concentration

S4: Hg^{2+} adsorption of TP-CDC-high over time at a Hg^{2+} initial concentration of 10 mg L⁻¹.

T 1 – Composition of the TP-SiC Materials Measured with EDX

Sample	C-Content / %	Si-Content / %
TP-SiC-0.06	88 ± 3.9	12 ± 3.9
TP-SiC-0.10	76 ± 6.9	24 ± 6.9
TP-SiC-0.17	75 ± 6.3	25 ± 6.3

$T 2 - Q_e$ Values of the Different Hg^{2+} Equilibrium Concentrations

Equilibrium concentration C _e / mg L ⁻¹	Adsorbed amount Q _e / mg g ⁻¹
3.9	132
23.9	833
54.6	957
110.1	1610
253.2	3063
491.5	7166

.

- 1 P. J. Harrison, R. E. Waters, F. J. R. A. Taylor, *J. Phycol.*, 1980, **16**, 28.
- 2 R. Hedrich, S. Machill, E. Brunner, *Carbohydr. Res.*, 2013, **365**, 52.
- 3 M. Oschatz, L. Borchardt, M. Thommes, K. A. Cychosz, I. Senkovska, N. Klein, R. Frind, M. Leistner, V. Presser, Y. Gogotsi, S. Kaskel, *Angew. Chem. Int. Ed.*, 2012, **51**, 7577.