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ABSTRACT

The signal recognition particle (SRP) from Escherichia coli, composed of Ffh protein and 4.5S RNA, mediates membrane
targeting of translating ribosomes displaying a signal or signal-anchor sequence. SRP binds at the peptide exit of the large
ribosomal subunit. Structural details of the interaction are not known. Here, the position of Ffh or SRP on the ribosome was
probed by using site-specific UV-induced crosslinking by p-azidophenacyl bromide (AzP) attached to a number of cysteine
residues engineered into surface positions of Ffh. Efficient crosslinking to vacant ribosomes took place from two positions
(AzP17 and AzP25) in the N domain of Ffh, both with Ffh and SRP. Both AzP17 and AzP25 were predominantly crosslinked to
ribosomal protein L23 that is located at the peptide exit of the 50S subunit. The SRP receptor, FtsY, did not change the crosslink
pattern, whereas the presence of a nascent signal peptide on the ribosome resulted in a second crosslink between Ffh(AzP17)
and protein L23, indicating that binding to the nascent signal peptide induced a slightly different arrangement of SRP on the
ribosome. These results indicate a model of the topographical arrangement of SRP at the peptide exit of the 50S ribosomal
subunit.
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INTRODUCTION

The signal recognition particle (SRP) coordinates the co-

translational targeting of secretory and membrane proteins

to the membrane of the endoplasmic reticulum in eukary-

otes or the plasma membrane in bacteria. The SRP in Esch-

erichia coli is composed of a 48-kD protein, Ffh, and 4.5S

RNA. The SRP receptor, FtsY, binds to the SRP-ribosome

nascent-chain complex and mediates the transfer of the

translating ribosome to the site of protein translocation

(translocon) in the membrane. Ffh, 4.5S RNA, and FtsY

share significant sequence homology and structural conser-

vation with their respective eukaryotic functional counter-

parts, SRP54, 7S RNA, and SR� (Keenan et al. 2001).

Ffh is composed of three domains: the N-terminal N

domain, the central GTPase (G) domain, and the C-termi-

nal methionine-rich M domain (Freymann et al. 1997,

1999). The N domain is composed of four antiparallel �-he-

lices; it appears to influence GTP binding and hydrolysis in

the G domain. Furthermore, biochemical studies indicate a

role for the N domain in integrating signal transduction

events that occur during cotranslational protein targeting

(Lu et al. 2001). The G domain has a �/� fold common to

all GTP binding proteins. A unique feature of SRP-related

GTPases is an insertion, I box, in the switch 1 region of the

G domain (Freymann et al. 1997; Montoya et al. 1997). The

M domain of Ffh contains the binding sites for the signal

sequence and the 4.5S RNA (Batey et al. 2000). Binding of

4.5S RNA to Ffh stabilizes the M domain without signifi-

cantly affecting binding of signal peptides (Zheng and Gi-

erasch 1997). 4.5S RNA plays an important role in modu-

lating the complex conformation of Ffh and its receptor,

FtsY (Peluso et al. 2000, 2001; Jagath et al. 2001).

The binding site of SRP on the ribosome is not known in

detail so far. The signal peptide is recognized cotranslation-

ally by the SRP, indicating a location of SRP on the ribo-

some in the vicinity of the exit channel. Using UV-induced

crosslinking to the ribosome from thio-U-substituted 4.5S

RNA, two binding sites for 4.5S RNA were identified

(Rinke-Appel et al. 2002). The crosslink from position 84 of

4.5S RNA to nucleotides 2828–2837 of 23S rRNA was de-

pendent on the presence of both Ffh and a nascent peptide,

indicating the significance of this 4.5S RNA binding site for

Reprint requests to: Wolfgang Wintermeyer, Institute of Molecular
Biology, University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten,
Germany; e-mail: winterme@uni-wh.de.

Article and publication are at http://www.rnajournal.org/cgi/doi/
10.1261/rna.2196403.

RNA (2003), 9:566–573. Published by Cold Spring Harbor Laboratory Press. Copyright © 2003 RNA Society.566



protein targeting. Crosslinks from positions 29–50 of 4.5S

RNA were found to the small ribosomal subunit and may be

involved in functions of 4.5S RNA other than SRP-depen-

dent targeting. The labeled N termini of signal peptides can

be crosslinked to nt 91 of 23S rRNA in the neighborhood of

L23 and L29 (Choi and Brimacombe 1998), indicating that

SRP should also bind there. In fact, the mammalian homo-

log of Ffh, SRP54, was crosslinked to proteins L23a and L35

of eukaryotic ribosomes, the homologs of E. coli L23 and

L29, respectively, indicating that SRP54 binds in the vicinity

of the peptide exit of the large ribosomal subunit (Pool et al.

2002). Recently, the trigger factor (TF), a bacterial chaper-

one that binds to the nascent peptide chains emerging from

the ribosome (Teter et al. 1999; Beck et al. 2000), was

crosslinked to L23 at the peptide exit of the 50S ribosomal

subunit (Kramer et al. 2002).

In this paper, we localize the position of the Ffh moiety

of SRP on the E. coli ribosome by UV-induced crosslinking

of a p-azidophenacyl (AzP) group attached to cysteine resi-

dues engineered into different surface positions of Ffh. The

combined length of AzP and cysteine side chain is ∼10Å.

AzP-modified Ffh was used to probe the spatial proximity

to ribosomal residues on both vacant ribosomes and trans-

lating ribosomes exposing a signal peptide. The results are

discussed in terms of the topographical arrangement of SRP

at the peptide exit of the 50S ribosomal subunit.

RESULTS

Modification of Ffh with AzP

The crosslinker AzP was incorporated at single cysteine resi-

dues that were engineered into six different surface posi-

tions in the N, G, and M domains of Ffh (Fig. 1), replacing

nonconserved amino acids. The native cysteine at position

406 of Ffh was replaced with serine, and the C terminus was

extended with a tag of six histidines for affinity purification.

Labeling positions were chosen so as to cover most of Ffh,

that is, the tip of the N domain (positions 17 and 25), the

interface between the N and G domains (position 84), the I

box insertion in the G domain (position 152), the side of

the G domain opposite to the I box (position 206), and the

so-called finger loop in the M domain (position 344).

The functional activity of AzP-modified Ffh was tested in

gel-shift assays with 4.5S RNA and FtsY (Jagath et al. 2001).

According to these assays, all Ffh-AzP derivatives used for

the crosslinking experiments were as active as native Ffh in

binding 4.5S RNA and the SRP receptor, FtsY (data not

shown).

Crosslinking of Ffh-AzP to the ribosome

First, crosslinking of Ffh or SRP to nontranslating vacant

ribosomes was studied. SRP has a significant affinity to

vacant ribosomes (∼0.05 µM, unpubl.). Ribosome-Ffh/SRP

complexes were prepared at 1 µM concentrations of both

ribosomes and Ffh/SRP. The photoreactive azido group was

activated for crosslinking by UV irradiation at 305 nm.

Irradiated ribosome complexes were subjected to two

rounds of sucrose gradient centrifugation to separate (1)

30S and 50S subunits and (2) rRNA from ribosomal pro-

teins (Stade et al. 1989). The crosslinked products from the

rRNA and ribosomal proteins pools were denatured by

heating, and RNA was digested with RNase T1. Proteins

were separated by SDS-PAGE, and crosslinked Ffh was vi-

sualized by immunoblotting by using an antibody against

the His tag of Ffh.

Given the molecular weights of Ffh (48 kD) and most

ribosomal proteins, molecular masses of crosslinked prod-

ucts are expected at �∼60 kD. For AzP-modified Ffh at

positions of 17 and 25, Ffh(AzP17) and Ffh(AzP25),

crosslinks were found to both 23S rRNA and to proteins of

the 50S subunit (Fig. 2A). The protein–protein crosslink

product gave a band at ∼60 kD, distinct from the position

of Ffh. Interestingly, crosslinks of Ffh to ribosomal proteins

were not affected by 4.5S RNA, indicating that binding of

Ffh to the ribosome does not depend on 4.5S RNA and that

the location on the ribosome of Ffh alone and Ffh in SRP is

similar. A slight difference is indicated by the observation

that the crosslink to 23S rRNA observed with Ffh alone

disappeared on addition of 4.5S RNA. Because the crosslink

to 23S RNA was rather weak, ∼50× weaker than that to

ribosomal proteins, it was not analyzed further. No

crosslinks were found from other positions in Ffh (Fig. 2B).

Ribosome-nascent chain complexes (RNC) were formed

by translating a 3�-truncated fragment of leader peptidase

FIGURE 1. Positions in Ffh of AzP-modified cysteine residues. (Left)
NG domain of Ffh from Thermus aquaticus ( PDB entry 2FFH; Keenan
et al. 1998). (Right) M domain of Escherichia coli Ffh complexed with
a 49-nucleotide fragment of 4.5S RNA (1DUL; Batey et al. 2000).
Amino acids replaced with cysteine are indicated in red and labeled by
E. coli numbers; residue 344 corresponds to residue 335 of the T.
aquaticus structure. The structure of the parts of the M domain miss-
ing in the structure of the RNA complex, including the finger loop
comprising residue 344, was modeled on the basis of the crystal struc-
ture of full-length Ffh (2FFH).
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(Lep) mRNA coding for the first 94 amino acids of the

protein. The fraction of the ribosomes that contained the

nascent chains was ∼50%, as quantified from the number of

f[3H]Met-labeled peptide chains per ribosome. The length

of the nascent chains was as expected (>90 amino acids), as

calculated from the number of 14C-labeled leucine residues

incorporated per f[3H]Met and verified by SDS-PAGE and

phosphoimaging (data not shown).

The affinity of SRP to the ribosome is increased >10-fold

when the SRP-specific signal peptide of leader peptidase is

exposed on the ribosome (unpubl.). Therefore, we used

smaller concentrations of Lep-RNC and Ffh/SRP (0.1 µM

each) in order to minimize Ffh/SRP binding to nontrans-

lating ribosomes present in the preparation. Crosslinks

from both Ffh(AzP17) and Ffh(AzP-25) to Lep-RNC were

obtained, as identified with an antibody against the His tag

of Ffh (data not shown). Other positions in Ffh gave no

significant crosslink product.

Identification of ribosomal proteins crosslinked to Ffh

Ribosomal proteins crosslinked to Ffh(AzP17) or Ffh(AzP25)

were analyzed using antibodies against about half of all

ribosomal proteins (kindly provided by R. Brimacombe,

Berlin, Germany; see Materials and Methods). Crosslinking

to vacant ribosomes of Ffh(AzP17) alone or in SRP resulted

in a single crosslink to protein L23 (Fig. 3A). The same

protein was the major crosslinking product of Ffh(AzP25),

both in the absence and presence of 4.5S RNA. The effi-

ciency of crosslinking to L23 was high, >10% and ∼30%

with Ffh(AzP17) and Ffh(AzP25), respectively (Fig. 3B).

Low-yield crosslinks were formed between Ffh(AzP25) and

two other proteins, L21 and L27; Ffh(AzP17) did not form

crosslinks other than to L23.

L23 was also the major crosslinking target on the Lep-

RNC (Fig. 4). Unlike with vacant ribosomes, with RNC the

crosslink products between Ffh(AzP17) and L23 appeared

in two bands, indicating the formation of two L23-Ffh ad-

ducts with slightly different electrophoretic mobilities. Both

products are probably owing to crosslinks to RNCs, as at the

conditions used (equimolar amounts of RNC and Ffh/SRP

at low concentration, Ffh/SRP binding to vacant ribosomes

is expected to be very low. UV irradiation of the Lep-RNC

with Ffh(AzP25) resulted in single crosslink product with

L23, as with vacant ribosomes. Crosslinking products of

Ffh(AzP25) with L21 and L27 were observed in only small

amounts.

FtsY did not change the crosslink pattern on Lep-RNC

At the plasma membrane, the RNC-SRP complex binds to

the SRP receptor, FtsY. In the presence of GTP, a stable

complex between Ffh and FtsY is formed that is necessary to

promote release of the signal peptide from SRP. The

crosslinking of Ffh(AzP17) and Ffh(AzP25) to the Lep-RNC

did not change on addition of FtsY and a nonhydrolyzable

GTP analog, GDPNP (Fig. 5). Also in the presence of FtsY,

two crosslinking products to L23 were observed with

Ffh(AzP17), and the yield of both crosslinks was only

slightly decreased. The major crosslink of Ffh(AzP25) to

L23 was not affected by FtsY. This is in contrast to the

eukaryotic system, in which binding of the Ffh homolog,

SRP54, or SRP to the SRP receptor, SR�, results in the loss

of a crosslink of SRP54 to the eukaryotic homolog of L23

(Pool et al. 2002), indicating that prokaryotic and eukary-

otic complexes in that respect behave differently. Consistent

with this notion, Pool et al. (2002) reported that the differ-

ence induced by SR� binding was less when E. coli SRP was

present on the eukaryotic RNC.

DISCUSSION

The present results localize the binding site of SRP on the

ribosome in the vicinity of the peptide exit of the large

ribosomal subunit. In bacteria, the peptide exit is sur-

rounded by proteins L23, L29, L22, and L24 (Harms et al.

2001). We show that the tip of the N domain of Ffh (po-

sitions 17 and 25) is located in the proximity of L23. Al-

FIGURE 2. Crosslinking of AzP-modified Ffh and SRP to vacant 70S
ribosomes. (A) Identification of crosslinks from Ffh positions 17 and
25. Crosslinks to 23S rRNA (rRNA) or 50S ribosomal proteins (pro-
tein) were analyzed after two rounds of sucrose gradient centrifuga-
tion, which removed noncrosslinked Ffh (for details, see Materials and
Methods). Ffh* indicates position of Ffh crosslinked to rRNA or pro-
tein. (B) No crosslinks from positions 84, 152, 206, and 344 of Ffh.
Irradiated complexes were analyzed without sucrose gradient centrifu-
gation. In A and B, Ffh was identified by immunoblotting using an-
tibodies against the His tag of Ffh. Without UV irradiation, no
crosslinking products were found with either mutant (data not
shown).
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though the yield of crosslinks to L23, particularly from po-

sition 25 of Ffh is very high, no crosslinks to the neighbor-

ing protein L29 were found, indicating that the N domain

of Ffh binds to the side of L23 opposite from L29. Another

constraint for positioning SRP on the ribosome comes from

the crosslink formed between the position 84 of 4.5S RNA

and nt 2828–2837 of 23S rRNA (Rinke-Appel et al. 2002).

Thus, SRP must bind to the ribosome in such a manner that

the N domain of Ffh is located at L23, whereas the 3� end

of 4.5S RNA is pointing away from the exit tunnel in the

direction of nt 2828–2837 of 23S rRNA.

The structure of SRP is not known, and the domain

arrangement in full-length Ffh is unclear. In the crystal

structure of full-length Ffh (Keenan et al. 2001), the protein

is found as a trimer, and the structure of the loop connect-

ing the NG and M domains is not resolved, precluding the

unambiguous assignment of the relative domain orientation

in one protein. The M domain from the molecule designed

A in the Protein Data Bank (PDB) entry (2FFH) may belong

to the protein with the NG domain that is denoted as chain

A or to the one denoted as chain B. In the following, we

term these relative domain arrangements A/A (both NG

and M domains belong to the same chain in 2FFH) or B/A

(the NG domain belongs to chain B, whereas the M domain

belongs to chain A), respectively. The two arrangements

predict a different orientation of 4.5S RNA relative to the

NG domain, as can be deduced by su-

perimposing the structure of the M do-

main from Ffh (2FFH) with the M do-

main in the complex with domain IV of

4.5S RNA (1DUL; Batey et al. 2000). In

the complex with 4.5S RNA, some ad-

justment of the NG domain is necessary

to avoid an otherwise extensive steric

clash with 4.5S RNA. Docking the two

alternative SRP structures to the ribo-

some by using the crosslinks from posi-

tions 17 and 25 of Ffh to L23 and from

position 84 of 4.5S RNA to nt 2828–

2837 of 23S rRNA as constraints yielded

two alternative SRP orientations, as de-

scribed below. Both arrangements sat-

isfy the crosslinking results, as positions

84, 152, and 206 of Ffh are located far

from any ribosomal component, and

position 344 in the M domain is ori-

ented away from the ribosome, in agree-

ment with the lack of crosslinks from

these positions. Only an extended form

of RNA, rather than a bent form, could

span the distance between the crosslinks

on L23 and nt 2828–2837 of 23S rRNA,

indicating that the functionally active

form of 4.5S RNA on the ribosome may

be extended (Gorodkin et al. 2001).

Fitting the tip of the N domain in the A/A model of SRP

toward L23 results in an arrangement in which the NG and

M domains of Ffh enclose the peptide exit (Fig. 6A). The

tetra-loop region of 4.5 RNA is oriented toward the tunnel,

whereas the 3� end can be placed very close to the site of the

crosslink to 23S RNA (Rinke-Appel et al. 2002) by intro-

ducing a slight bent in 4.5S RNA. According to this model

(A/A), the emerging signal peptide could easily contact both

NG and M domains, explaining that the signal peptide

could be crosslinked to both domains (Zopf et al. 1990;

FIGURE 4. Crosslinking from positions 17 and 25 of Ffh bound to
Lep-RNC. An immunoblot of the crosslinking products using an an-
tibody against L23 is shown. Crosslinking efficiencies to L23, L21, and
L27 were as in Figure 3.

FIGURE 3. Identification of ribosomal proteins crosslinked from positions 17 and 25 of
Ffh/SRP bound to vacant ribosomes. (A) Immunoblots using an antibody against the ribo-
somal protein L23. (B) Crosslinking efficiencies using antibodies against several large subunit
proteins. Shaded bars indicate Ffh alone; solid bars, SRP.
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High and Dobberstein 1991; Lütcke et al. 1992; Cleverley

and Gierasch 2002). It has been suggested that FtsY binds at

the I box of the NG domain of Ffh (Montoya et al. 1997).

With this assumption, the arrangement of the NG domain

of Ffh in model A/A would place FtsY in direct proximity to

the ribosome, in keeping with the interaction between FtsY

and the ribosome reported recently (Herskovits et al. 2002).

The alternative orientation of NG and M domains of Ffh,

the B/A orientation, brings the tetra loop of 4.5S RNA close

to the peptide exit and places the M domain on the top of

L23 and L29, whereas the bulk of the NG domain protrudes

away from the ribosome. According to this model, the

emerging signal peptide is more likely to bind to the hy-

drophobic groove of the M domain (Keenan et al. 1998),

whereas the G domain appears to be too distant to allow a

simultaneous interaction of the N-terminal part of the sig-

nal sequence with the M domain (Zopf et al. 1990; High and

Dobberstein 1991; Lütcke et al. 1992) and of the hydropho-

bic part of the signal sequence with the G domain of Ffh

(Cleverley and Gierasch 2002). Also, the simultaneous in-

teraction of FtsY with the ribosome and the I box of Ffh

would be unlikely according to the B/A model. However,

this does not exclude the B/A model, because the contacts

mentioned above may be established sequentially, rather

than simultaneously.

The present results show that bacterial SRP binds to a site

on the ribosome which overlaps with that of TF, a chaper-

one involved in the cotranslational folding of cytosolic pro-

teins, which also crosslinks to protein L23 (Kramer et al.

2002). TF binds to short nascent chains of any kind, with

preference for peptides enriched in basic and aromatic resi-

dues (Patzelt et al. 2001), whereas SRP is specific for pep-

tides containing a signal or signal-anchor sequence (Valent

et al. 1995; Beck et al. 2000). A simple model assumes that

SRP and TF alternate in transient binding to the ribosome

until a nascent peptide emerges. On recognition of a na-

scent peptide, the binding of either SRP or TF is stabilized,

and this event determines whether the RNC is targeted to

the membrane for cotranslational protein translocation or

membrane insertion (SRP) or whether the growing peptide

is handed over to chaperones downstream of TF. There is

evidence indicating that the ribosome may sense the nature

of the nascent peptide while it is still in the exit tunnel (Liao

et al. 1997; Nakatogawa and Ito 2002), raising the possibility

that the ribosome actively recruits SRP or TF to the peptide

exit.

MATERIALS AND METHODS

Reagents

Buffer A contains 50 mM Tris-HCl (pH 7.5), 70 mM NH4Cl, 30

mM KCl, and 7 mM MgCl2. AzP was from Sigma. GTP, GDPNP,

pyruvate kinase, and phosphoenolpyruvate were from Roche Di-

agnostics. Ni-NTA agarose was from Qiagen. Nikkol (Octa-ethyl-

ene glycol mono-n-dodecyl ether) was from Nikko Chemicals,

Japan. All other chemicals were obtained from Sigma or Merck.

E. coli strains and plasmids

BL21 (DE3) pLysS strain was used for expressing FtsY and Ffh

from pET9-FtsY(Trp343) and pET24-Ffh, respectively (Jagath et

al. 2000). The plasmid pT7–4.5S was used to prepare 4.5S RNA by

transcription in vitro using T7 RNA polymerase (Lentzen et al.

1994).

Ffh, FtsY, and 4.5S RNA

Mutants of Ffh containing a single cysteine residue at positions 17,

25, 84, 152, 206, or 344 were generated by PCR mutagenesis by the

QuickChange method using Pfu polymerase (Promega). The

single cysteine residue present at position 406 of native Ffh was

substituted with serine. Mutations were generated in plasmid

pET24-Ffh coding for Ffh extended by six histidines at the C

terminus. Mutations were confirmed by DNA sequencing.

Ffh mutants were expressed in E. coli BL21 (DE3) pLysS cells

and purified on Ni-NTA agarose under non-denaturing condi-

tions. Four grams of cell pellet was resuspended in 40 mL of buffer

(20 mM Hepes at pH 7.5, 300 mM NaCl, 0.1 mM EDTA, 0.01%

FIGURE 5. Crosslinking from positions 17 and 25 of Ffh bound to
Lep-RNC in the presence of FtsY. (A) Immunoblot of the crosslinking
products using antibody against L23. (B) Crosslinking efficiencies.
Shaded bars indicate Ffh alone; solid bars, SRP.
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Nikkol, 0.1 mM Pefablock SC, and 10 mM 2-mercaptoethanol),

and the suspension was sonicated 3× for 5 min each on ice (Bran-

son Sonifier, duty cycle 50%, output 4). The extract was centri-

fuged at 20,000g for 30 min (Beckman, JA25.5). The supernatant

was incubated with 1 mL of Ni-NTA agarose, equilibrated with

buffer (20 mM Hepes at pH 7.5, 300 mM KCl, 10 mM 2-mercap-

toethanol), for 60 min on ice under shaking. The resin was washed

with buffer (20 mM Hepes at pH 7.5, 1 M KCl, 10 mM imidazole,

10 mM 2-mercaptoethanol) to remove unspecifically bound pro-

teins. Ffh was labeled while bound to Ni-NTA agarose with 200

µM AzP in 20 mM Hepes (pH 7.5), 300 mM KCl, 10% methanol,

and 10% glycerol in the dark for 2 h. After washing with the same

buffer to remove excess crosslinking reagent, the protein was

eluted by high-imidazole buffer (20 mM Hepes at pH 7.5, 300 mM

KCl, 250 mM imidazole, 25% glycerol). Labeled Ffh was re-

buffered into buffer A with 50% glycerol and concentrated on

30-kD Centricon filters at 4°C. The purity of proteins was >90%

according to SDS-PAGE analysis. 4.5S RNA and FtsY(Trp343)

were prepared as described (Jagath et al. 2000).

Ribosome-nascent chain complexes

70S ribosomes from E. coli MRE 600 and purified components of

the translation system were prepared as described (Rodnina and

Wintermeyer 1995; Matassova et al. 1999; Rodnina et al. 1999).

Aminoacyl-tRNA was prepared by aminoacylation of total tRNA

by the protein supernatant fraction after centrifugation at 100,000g

(S100) from E. coli in the presence of 19 amino acids (0.3 mM

each) except leucine, L-[14C]leucine (30 µM), and ATP (3 mM).

Aminoacyl-tRNA was phenolized and purified by ion exchange

chromatography on MonoQ. RNCs were prepared as follows. 70S

ribosomes (0.5 µM) were programmed with truncated Lep-mRNA

(2 µM) coding for the first 94 amino acids of leader peptidase (de

Gier et al. 1996) in the presence of purified initiation factors 1, 2,

3 (0.85 µM each), f[3H]Met-tRNAfMet (1 µM), and GTP (1 mM)

in buffer A for 60 min at 37°C. Translation was started by mixing

70S initiation complexes (0.05 µM after mixing) with a preincu-

bated mixture of EF-Tu (40 µM), EF-Ts (0.04 µM), EF-G (0.3

µM), purified aminoacyl-tRNA containing [14C]Leu-tRNA (21

µM), GTP (1 mM), phosphoenolpyruvate (3 mM), and pyruvate

kinase (0.08 mg/mL) in buffer A. After translation for 45 min at

37°C, RNCs were purified by ultracentrifugation through 400 µL

1.1 M sucrose in buffer A containing 20 mM MgCl2 for 1.5 h at

259,000g in a 55S swing-out rotor in a Sorvall M120GX centrifuge.

Pellets were dissolved in buffer A, shock-frozen, and stored at

−80°C.

UV-induced crosslinking of Ffh(AzP) to the ribosome

SRP was formed by incubating AzP-modified Ffh and 4.5S RNA

for 5 min at 25°C.

FIGURE 6. Model of the SRP-ribosome complex. (A) Docking of SRP with the A/A orientation (2FFH) of the NG and M domains. (B) Docking
of SRP with the B/A orientation of the NG and M domains. In both models, the NG domain is shifted slightly to remove the steric clash with
4.5S RNA. For details of the models, see text. Green ribbon indicates, NG domain of Ffh; purple ribbon, M domain of Ffh; red ribbon,
AzP-modified positions in Ffh; blue ribbon, 4.5S RNA. The crosslink between 4.5S RNA (position 84) and 23S rRNA (Rinke-Appel et al. 2002)
is indicated in yellow. The ribosomal surface was calculated from the coordinates of the 50S subunit from Haloarcula marismortui (1JJ2; Ban et
al. 2000) and is depicted in light gray (rRNA), with protein L23 in orange and other proteins in dark grey. E indicates peptide exit.
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Crosslinking experiments were performed in buffer A contain-

ing, in addition, 0.02% Brij 35, 1 mM DTT, and 10% glycerol.

Ffh/SRP was added to vacant ribosomes (1 µM each), to RNC (0.1

µM each), or to RNC (0.1 µM each) in the presence of FtsY (0.4

µM) and GDPNP (200 µM) to form the complex under subdued

light. Mixtures were irradiated in a microtiter plate on ice for 10

min using four Philips Cleo 15 W lamps at a distance of 10 cm. To

minimize photodegradation of protein or RNA, a 305 nm cut-off

filter was placed between light source and sample.

Irradiated samples were denatured by boiling for 2 min, di-

gested by RNase T1, and subjected to SDS-PAGE analysis (see

below). In some experiments (Fig. 2A), irradiated samples were

subjected to two rounds of sucrose gradient centrifugation prior to

gel analysis: In the first run, 30S and 50S subunits were separated

and, in the second, were performed in the presence of SDS; rRNA

and proteins were separated (Stade et al. 1989). The material from

the rRNA peak was digested with RNase T1 and subjected to

SDS-PAGE analysis. The material from the protein peak was ana-

lyzed directly.

Crosslinked ribosomal proteins were identified by immuno-

blotting. Proteins were separated on a 7% SDS-PAGE and trans-

ferred to nitrocellulose membranes by electroblotting. The mem-

brane was incubated either with anti-penta-His antibody (Qiagen)

to identify His-tagged Ffh or with primary antibodies against a

large number of ribosomal proteins of the small and large subunit

(provided by R. Brimacombe). Initial screening indicated positive

signals for L21, L23, and L27. Additional antibodies used for rou-

tine testing were against L19, L22, L24, L28, L29, and L30, which

were always negative. Detection was by enhanced chemilumines-

cence using secondary antibodies conjugated to horseradish per-

oxidase (DAKO). For quantitative analysis, films were scanned,

and the intensities of L23 crosslinked to Ffh relative to total L23

were determined.
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