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The graded product of real spectral triples
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Abstract: Forming the product of two geometric spaces is one of the most basic oper-
ations in geometry, but in the spectral-triple formulation of non-commutative geometry,
the standard prescription for taking the product of two real spectral triples is problem-
atic: among other drawbacks, it is non-commutative, non-associative, does not transform
properly under unitaries, and often fails to define a proper spectral triple. In this paper,
we explain that these various problems result from using the ungraded tensor product; by
switching to the graded tensor product, we obtain a new prescription where all of the earlier
problems are neatly resolved: in particular, the new product is commutative, associative,
transforms correctly under unitaries, and always forms a well defined spectral triple.
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1 Introduction

Forming the product between two geometric spaces is a basic operation in geometry. In non-
commutative geometry (NCG) not only do product geometries provide a rich set of example
spaces for mathematicians to explore, but they are also of great physical interest, because
they arise in the description of gauge theories (including the standard model of particle
physics, and its extensions) coupled to Einstein gravity. Unfortunately, in the spectral triple
formulation of NCG, the traditional prescription for taking the product of geometric spaces
has problems. In particular, although it should be expected that the product operation be
commutative and associative, and to transform naturally under unitaries, it does not; and
given two geometries T1 and T2 with well-defined ‘KO-dimensions’ d1 and d2 respectively, it
should be expected that their product T1,2 = T1×T2 also has a well defined KO dimension
di,j = d1 + d2 (mod 8), but in general it does not. In this paper, we point out that these
difficulties (and others) ultimately result from the fact that the traditional prescription
incorrectly uses the ungraded tensor product to describe the product between graded spaces.
We show that by switching to the graded tensor product, all of these issues are neatly
resolved.

The paper is organised as follows: In Sections 2 and 3 we cover review material. In
particular we start in Subsection 2.1 by briefly reviewing the idea of KO-dimension, af-
ter which in Subsection 2.2 we review the traditional prescription for taking the product
between two or more real NCGs and describe what goes wrong in general. In Section 3
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we review graded tensor products as they are defined for star differential graded algebras
(∗-DGAs). The material from Section 4 onwards is new. In Sections (4.1), (4.2), and (4.3)
we use the graded tensor product developed for ∗-DGAs to redefine the product between
NCGs. Then in Subsection 4.4 we provide a useful mnemonic for constructing the full
KO-dimension table. In Subsection 4.5 we briefly detail how our new prescription builds
upon the previous approaches introduced in [1–4].

2 The traditional product prescription (and its shortcomings)

The goal of this section is two fold: (i) We begin in Subsection 2.1 by reviewing the idea
of KO-dimension, which is the notion of dimension we will be making use of in this paper.
(ii) In Subsection 2.2 we review the traditional prescription for taking the product between
two real spectral triples in NCG. We show what goes wrong, and briefly discuss some of
the previous proposed solutions.

2.1 KO-dimension

There are several equally good ways of defining the dimension of an ordinary Riemannian
geometry. The most familiar definition is given in terms of the number of linearly inde-
pendent basis elements in the tangent space of a smooth manifold. Alternatively one could
instead make use of Weyl’s law, which relates the asymptotic growth of the eigenvalues of
the Laplace operator on a manifold to the metric dimension of the underlying space [5]. A
less familiar notion is so called ‘KO-dimension’, which exists for Riemannian spin geome-
tries and more generally for ‘real’ NCGs. KO-dimension can be understood in the following
functional sense: Consider a familiar four dimensional Riemannian spin geometry equipped
with the flat Dirac operator D = −iγµ∂µ, the Dirac gamma five matrix γ = γ0γ1γ2γ3,
and the charge conjugation operator J = γ0γ2 ◦ cc, where we are using the basis of hermi-
tian gamma matrices γa given in [6, §3.4]. If one checks, then what one finds is that the
operators {D,J, γ} satisfy the following conditions:

J2 = εI, JD = ε′DJ, Jγ = ε′′γJ, (2.1)

where {ε, ε′, ε′′} = {−1,+1,+1}. An analogous treatment can be performed in any metric
dimension [7, §B], however in general the signs {ε, ε′, ε′′} will depend on the dimension
mod 8 of the underlying manifold1. Said another way, the signs {ε, ε′, ε′′} define the ‘KO-
dimension’ of a spin geometry, and this idea continues to make sense for real NCGs. The
notion of KO-dimension has many deep connections with Clifford algebras, Bott-periodicity,
homology, etc (see e.g. [1, 7–12]), but the functional definition outlined here is all that will
be necessary for understanding the rest of the paper. In table 1 we collect the various signs
corresponding to each KO-dimension as they are usually presented in the NCG literature.

1As explained in [13, 14], ‘KO-dimension’ is a misnomer, and really only corresponds to metric dimen-
sion for commutative Riemannian geometries. If for example we had instead considered the familiar 4D

Lorentzian spin geometry with Dirac operator D = −iγµ∂µ, gamma five matrix γ = iγ0γ1γ2γ3, and a
charge conjugation operator JU = γ2 ◦ cc, then we would have found signs {ε, ε′, ε′′} corresponding to the
‘KO-signature’ 3− 1 = 2 case.
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0 1 2 3 4 5 6 7

ε +1 +1 −1 −1 −1 −1 +1 +1

ε′ +1 −1 +1 +1 +1 −1 +1 +1

ε′′ +1 −1 +1 −1

Table 1. Mod 8 KO-dimension table as it is traditionally presented in the NCG literature (see
e.g. [10–16]). With this presentation no obvious patterns emerge in the signs.

2.2 Product non-commutative geometries

NCG is a generalization of Riemannian geometry which (amongst other applications) pro-
vides an elegant framework for describing gauge theories coupled to gravity. In this capacity,
it’s main physical interest is in constraining the allowed extensions of the standard model
of particle physics [10, 16–27]. The basic idea of NCG is to replace the familiar manifold
and metric data {M, g} of Riemannian geometry with a ‘spectral triple’ of data {A,H,D},
which consist of a ‘coordinate’ algebra A that provides topological information, a Dirac
operator D which provides metric information, and a Hilbert space H that provides a
place for A and D to interact. A spectral triple is said to be ‘real’ and ‘even’ if it is also
equipped with an anti-unitary real structure operator J [28] and a Z2 grading operator γ
on H respectively. We will call a spectral triple which is not equipped with a non-trivial
grading operator ‘odd’. The benefit of this ‘spectral’ approach to geometry is that it con-
tinues to make sense even when the input algebra A is non-commutative, hence the name
‘non-commutative geometry’. For a review see for example [6, 10, 11, 15, 29–31].

To build a sensible NCG, the data {A,H,D, J, γ} should not be selected arbitrarily,
but instead must satisfy a number of geometric conditions and axioms (which generalize the
conditions satisfied by commutative Riemannian geometries, see e.g. [10, 11, 16] for details).
In particular, a ‘real’ NCG must have a well defined KO-dimension, which in practice means
that the operators {D,J, γ}must satisfy the ‘real structure’ conditions outlined in Eqs. (2.1)
for an appropriate set of signs {ε, ε′, ε′′}. A useful trick for finding new and interesting
geometric spaces which satisfy the NCG axioms is to build product geometries from spaces
which are already known to satisfy the NCG axioms. Unfortunately, as we will discuss now,
the traditional prescription for taking the product between two or more real spectral triples
does not always result in a product space with a well defined KO-dimension.

In the traditional prescription, a product NCG is defined as follows: Given two real
spectral triples Ti = {Ai, Hi, Di, Ji, γi} and Tj = {Aj , Hj , Dj , Jj(, γj)}, the first of which
is necessarily even, their product Ti × Tj is defined by Ti,j = {Ai,j , Hi,j , Di,j , Ji,j(, γi,j)}
where [1, 2, 10, 11, 28]:

Ai,j = Ai⊗̂Aj , Hi,j = Hi⊗̂Hj ,

Di,j = Di⊗̂Ij + γi⊗̂Dj , (2.2a)

γi,j = γi⊗̂γj , Ji,j = Ji⊗̂Jj ,

and where ⊗̂ is the usual tensor product (see e.g. [1, §4]), and the Z2 grading operator γi,j
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is only defined if both Ti and Tj are even.
The product given in Eqs. (2.2a) does not always form a well defined spectral triple

satisfying the real structure conditions of Eqs. (2.1). In fact for the signs given in Table 1,
this product only makes sense if the first spectral triple Ti is of KO-dimension 0 or 4 (mod
8): When Ti is of KO-dimension 2 or 6 (i.e. when ε′′i = −1) then the product geometry Ti,j
fails to satisfy the real structure condition Ji,jDi,j = ε′i,jDi,jJi,j of Eqs. (2.1), and when
the first spectral triple Ti is of odd KO-dimension the product Dirac operator Di,j is not
defined at all (because an odd Ti will not be equipped with a non-trivial grading operator
γi). Worse still, the definitions given in Eqs. (2.2) are inherently non-symmetric in the sense
that even when a product geometry Ti,j is well defined, Tj,i is not necessarily.

A partial solution to the above mentioned problems is obtained if one makes two im-
portant observations: (i) The first observation, which was emphasised in [1, 4], is that for
even spectral triples there is a second equally good choice for the product Dirac operator:

D̃i,j = Di⊗̂γj + Ii⊗̂Dj . (2.2b)

The two choices of Dirac operator given in Eqs. (2.2) are unitarily equivalent, D̃i,j =

UDi,jU
∗, with the unitary operator U given by [4]:

U = 1
2(Ii⊗̂Ij + γi⊗̂Ij + Ii⊗̂γj − γi⊗̂γj). (2.3)

(ii) The second observation which was emphasised in [1] is that Table 1 should be extened
to include 12 instead of 8 possible KO-dimension signs. This is because in each even KO-
dimension there are two equally good ways of defining the real structure operator: If JU
is a real structure operator with KO-dimension signs {εU , ε′U , ε′′U}, then the composition
JL = γJU is also an anti-unitary operator satisfying the real structure conditions given
in (2.1) with signs {ε′′LεL,−ε′L, ε′′L}. The ‘U’ and ‘L’ subscripts stand for ‘upper’ and ‘lower’
respectively - the reason for our naming convention will become apparent in Section 4. For
odd spectral triples the grading operator is trivial γ ∝ I, and the upper and lower sign
choices {ε, ε′} are degenerate.

0 2 4 6 0 2 4 6 1 3 5 7

ε +1 +1 −1 −1 +1 −1 −1 +1 +1 −1 −1 +1

ε′ −1 −1 −1 −1 +1 +1 +1 +1 −1 +1 −1 +1

ε′′ +1 −1 +1 −1 +1 −1 +1 −1
L U L U U L U L

Table 2. Extended Mod 8 KO-dimension table as presented in [1], with even KO-dimension signs
grouped according to their ε′ sign. ‘Even’ KO-dimension signs corresponding to our ‘upper’ (‘lower’)
naming convention are marked with a ‘U’ (‘L’).

When taken together, these two observations extend the applicability of the product
defined in Eqs. (2.2) significantly [1, 4]. For example, if the product between a certain pair
of even spectral triples Ti and Tj is not well defined, then one can always find a well defined
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product triple Ti,j by first replacing either the real structure operator Ji with γiJi, or by
replacing Jj with γjJj (i.e. if the product between triples Ti and Tj is not well defined, then
replacing Ti = {Ai, Hi.Di, Ji, γi} with T̃i = {Ai, Hi.Di, γiJi, γi} in the product will always
result in a well defined geometry Ti,j). Similarly, products which are poorly defined when
using the Dirac operator Di,j may make sense if instead the unitariliy equivalent choice of
Dirac operator D̃i,j is used. What is more, the definitions given in Eqs. (2.2) have been
extended to include the odd-odd cases in [1–3]. Despite these improvements, the product
as defined in Eqs. (2.2) remains problematic:

• Undefined products: For even spectral triples there are two equally good choices
for the real structure operator {J, γJ}. Therefore when forming the product of any
two real, even spectral triples there are four possible combinations for the product
real structure operator (i.e. Ji⊗̂Jj , γiJi⊗̂Jj , Ji⊗̂γjJj , or γiJi⊗̂γjJj), while only two
of these four possibilities may correspond to a well defined product geometry. To
understand what goes wrong for two of the four choices it is useful to examine the
KO-dimension signs {εi,j , ε′i,j , ε′′i,j} corresponding to a product space Ti,j = Ti × Tj .
For the definitions given in Eqs. (2.2) these are given by:

εi,j = εiεj , ε′i,j = ε′i = ε′′i ε
′
j , ε′′i,j = ε′′i ε

′′
j , (2.4a)

or
ε̃i,j = εiεj , ε̃′i,j = ε′iε

′′
j = ε′j , ε̃′′i,j = ε′′i ε

′′
j . (2.4b)

where the product signs with ‘tildes’ {ε̃i,j , ε̃′i,j , ε̃′′i,j} correspond to the choice of Dirac
operator D̃i,j , while those without tildes {εi,j , ε′i,j , ε′′i,j} correspond to the choice Di,j .
It is clear from Eqs. (2.4) what must go wrong: For certain real structure combitations
it is not possible to satisfy ε′i,j = ε′i = ε′′i ε

′
j and/or ε̃

′
i,j = ε′iε

′′
j = ε′j . In tables 2-5 of [1],

and 2-5 of [4] the authors give a full listing of which product geometries have a well
defined KO-dimension, along with those which do not.

• Transformation under unitaries: Despite the two Dirac operators Di,j and D̃i,j

being unitarily equivalent, it does matter which one is used when taking the product
of two even spaces [1]. While some products are always well defined regardless of
which Dirac operator is selected, others depend on the choice between Di,j and D̃i,j ,
while other products are never well defined. In addition, product triples as defined
in Eqs. (2.2) are not stable under the unitary transformation of the Dirac operator
given in Eq. (2.3), in the sense that while the product algebra Ai,j and grading γi,j are
invariant under conjugation by U , the real structure operator Ji,j is not. It transforms
along with the Dirac operator.

• Commutativity and Associativity: The product defined in Eqs. (2.2) is non-
commutative in the sense that while Ti,j may be well defined, Tj,i is not necessarily.
Perhaps more troubling however is that the product is not associative, in the sense that
while a product (Ti×D Tj)×D̃ Tk may be well defined, the product Ti×D (Tj×D̃ Tk) is
not necessarily (where the D and D̃ subscripts indicate which choice of Dirac operator
is being used for the product).
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• Obscure grading factors: The two product Dirac operators defined in Eqs. (2.2)
include grading factors. These factors are introduced to ensure that the total Dirac
operator squares to D2

i,j = D2
i ⊗̂Ij + Ii⊗̂D2

j , which implies that the dimensions add
di,j = di + dj [4]. Grading factors also appear when translating between ‘upper’
and ‘lower’ real structure operators JL = γJU . The distinction between ‘upper’ and
‘lower’ spectral triples and between Di,j and D̃i,j does seem to matter, and so it would
be good to understand what is it that governs the appearance of the various grading
factors in well defined product geometries.

• Obscure KO-dimension signs: The product as defined in Eqs. (2.2) together with
the KO-dimension table as presented in Table 2, provides little hint as to why certain
products work, and why others fail. There is no obvious pattern behind the various
KO-dimension signs, and no good reason for distinguishing those even signs for which
ε′ = +1 from those satisfying ε′ = −1 as is done in the literature (see e.g. e.g. [10–16]).

A number of solutions to the above mentioned problems have already been proposed.
In particular the authors in [2–4] provide new definitions for the product real structure
operator Ji,j , each of which includes various clever insertions of grading factors γi and γj ,
which depend explicitly on the KO-dimensions of the two spectral triples being multiplied.
While it is always possible to form well defined products in this way, the definitions already
proposed offer no real explanation for the various obscure grading factors which are forced
to appear. They also either depend on lookup tables, or unnaturally distinguish those
KO-dimension signs for which ε′ is positive. Stability of the various definitions under the
unitary transformation given in Eq. (2.3) has also not been discussed. In Section 4 we will
show that a much more natural definition for the product between spectral triples is given
in terms of the graded tensor product. The new definitions we provide are simple, and
neatly resolve all of the various problems and questions which arise for the product defined
in Eqs. (2.2).

3 Graded tensor products

The purpose of this section is to provide a brief review of ∗-DGAs, as well as to review
graded tensor products as they are defined for ∗-DGAs. For a more complete account see
the second section and the appendix of [19].

3.1 Differential graded star algebras

A Z graded vector space H (over a field F), is a vector space which decomposes into the
direct sum of vector spaces Hi (each defined over the field F):

H =
⊕
i∈Z

Hi. (3.1)

Any element h ∈ Hi is said to be of ‘degree’ or ‘order’ |h| = i ∈ Z.
A graded algebra A over the field F, is defined to be a graded vector space over F which

is equipped with a bi-linear product over F, A× A→ A, which respects the grading on A
in the sense: |aa′| = |a|+ |a′| for a, a′ ∈ A.
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A graded algebra A is said to be involutive if it is equipped with an anti-linear operator
∗ : A→ A which satisfies:

(a∗)∗ = a, (3.2a)

(aa′)∗ = (−1)|a|.|a′|a′∗a∗, (3.2b)

for a, a′ ∈ A.2 A graded algebra is said to be differential if it is equipped with a linear first
order differential operator d : A→ A, which satisfies:

d2 = 0, (3.3a)

d[aa′] = d[a]a′ + (−1)|a|ad[a′] (3.3b)

for a, a′ ∈ A. An algebra A is said to be a ∗-DGA if it is equipped with an involution ∗
and a differential d satisfying Eqs. (3.2) and (3.3) respectively, along with the condition

d[a∗] = ±d[a]∗, (3.4)

for a ∈ A.3

3.2 Graded tensor products

The action of linear operators on graded vector spaces can be defined in the same way as is
done for spaces which are ungraded. In particular, a linear operator O on a graded vector
space H is a map from H to itself satisfying:

O(α1h1 + α2h2) = α1Oh1 + α2Oh2, (3.5a)

where h1, h2 ∈ H, and α1, α2 ∈ F. An operator O is said to be of ‘degree’ or ‘order’
|O| = j ∈ Z if it maps elements of Hi into elements of Hi+j , i.e. O : Hi → Hi+j . Notice
that any element a ∈ Aj of a graded algebra A (as defined above in Subsection 3.1) can be
thought of as an operator of degree j on A, i.e. a : Ai → Ai+j .

Given two graded vector spaces H ′ and H ′′ over the field F and graded linear operators
O′ : H ′ → H ′ and O′′ : H ′′ → H ′′ respectively, their graded tensor product is defined as
follows: the product vector space H is the tensor product of the vector spaces H ′ and H ′′,
where the degree of an element h′ ⊗ h′′ ∈ H ′ ⊗H ′′ is defined to be |h′ ⊗ h′′| ≡ |h′| + |h′′|.
The product operator O′ ⊗O′′ : H ′ ⊗H ′′ → H ′ ⊗H ′′ is defined to be of order |O′ ⊗O′′| =
|O′|+ |O′′|, while its action on H is defined such that:

(O′ ⊗O′′)(h′ ⊗ h′′) ≡ (−1)|O′′||h′|(O′h′ ⊗O′′h′′), (3.6a)

or alternatively:

(O′ ⊗O′′)(h′ ⊗ h′′) ≡ (−1)|O′||h′′|(O′h′ ⊗O′′h′′), (3.6b)

2Note that our choice of sign convention here corresponds to ‘convention 2’ as outlined in [19].
3For a natural generalization of condition (3.4) see [19].
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for h ∈ H, h′ ∈ H ′. The choice between the ‘Kozul’ signs given in Eqs. (3.6) is purely
conventional, but will be of consequence when we later define the graded product between
NCGs4. It is easy to show that the graded tensor product is associative.

The definitions given in (3.6) are all that is needed to construct the graded tensor
product of two ∗-DGAs. Given two graded algebras A′ and A′′, the order of an element
a′ ⊗ a′′ ∈ A′ ⊗ A′′ is defined to be |a′ ⊗ a′′| = |a′| + |a′′|. Multiplication between any two
elements a′1 ⊗ a′′1 and a′2 ⊗ a′′2 in A′ ⊗A′′ is defined following (3.6) to be:

(a′1 ⊗ a′′1)(a′2 ⊗ a′′2) ≡ (−1)|a′′1 ||a′2|(a′1a′2 ⊗ a′′1a′′2), (3.7a)

or alternatively:

(a′1 ⊗ a′′1)(a′2 ⊗ a′′2) ≡ (−1)|a′1||a′′2 |(a′1a′2 ⊗ a′′1a′′2), (3.7b)

depending on the ‘Kozul’ sign convention chosen. If A′, and A′′ are equipped with star
operations ∗′, and ∗′′ respectively, then the star operation on the product algebra A =

A′ ⊗A′′ is defined to be:

∗ = ∗′ ⊗ ∗′′. (3.7c)

If A′, and A′′ are equipped with differential operators d′ and d′′ respectively, then the
differential on the product algebra A = A′ ⊗A′′ is defined to be:

d = d′ ⊗ I′′ + I′ ⊗ d′′. (3.7d)

The graded tensor product as given in Eqs. (3.6) is defined such that the product of two
∗-DGAs as given in Eqs. (3.7) is itself a ∗-DGA which satisfies Eqs. (3.2), (3.3), and (3.4).
This is the graded product which we will employ in Section 4.

4 A new product prescription (and its advantages)

In this section we apply the graded tensor product reviewed in Subsection 3.2 to redefine
the tensor product of two real, spectral triples. We consider the even-even, even-odd, and
odd-odd cases separately. Our goal will be to ensure that the product geometries we define
always have a well defined KO-dimension. Before we begin it should be noted that in
addition to this dimensional requirement, product geometries must also satisfy a number
of other geometric conditions in order to qualify as NCGs [10, 11, 16]. We will not discuss
these extra conditions here, but instead refer the reader to the relevant sections of [1–4] to
see that this will indeed always be the case.

4.1 The even-even case

The graded tensor product which we reviewed in Subsection 3.2 is directly applicable when
constructing a product geometry from two real even spectral triples. For even spectral

4The ungraded tensor product is defined with no ‘Kozul’ sign, i.e. (O′⊗̂O′′)(h′⊗̂h′′) = (O′h′⊗̂O′′h′′),
see e.g. [1, §4].
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triples {A,H,D, J, γ} the Hilbert space H is Z2 graded, with the degree of its elements
distinguished by the grading operator γ. The degree of the algebra representation π with
respect to the grading on H, and also that of the operators {D,J, γ} is determined by the
NCG axioms, a review of which can be found for example in [6, 10, 11, 16, 29]. The grading
operator is both hermitian and unitary γ = γ∗ = γ−1, which means that it is equipped with
eigenvalues ±1. We say that elements h ∈ H which satisfy γh = h are of ‘even’ degree,
while elements satisfying γh = −h are of ‘odd’ degree. The representation π of the input
algebra A on H is even with respect to the grading on H, which means that it satisfies
[π(a), γ] = 0 for all a ∈ A. Meanwhile the Dirac operator is of odd degree with respect to
the grading on H, which means that it satisfies {D, γ} = 0. The degree of the real structure
operator depends on the KO-dimension of the geometry: Jγ = ε′′γJ . For a more complete
discussion of the Z2 grading on H see also [19].

Following the prescription outlined in Subsection 3.2 we define the graded product
between two real, even spectral triples Ti = {Ai, Hi, Di, Ji, γi} and Tj = {Aj , Hj , Dj , Jj , γj}
as Ti,j = {Ai,j , Hi,j , Di,j , Ji,j , γi,j}, where:

Ai,j = Ai ⊗Aj , Hi,j = Hi ⊗Hj ,

Di,j = Di ⊗ Ij + Ii ⊗Dj , (4.1)

Ji,j = Ji ⊗ Jj , γi,j = γi ⊗ γj ,

and where the lack of ‘hats’ indicates that we are using the graded tensor product of
Subsection 3.2. We note that the real structure operator in a spectral triple may be viewed
as a star operation on the input Hilbert space (as described in [17–19]), and so the form of
the product real structure operator Ji,j in (4.1) follows directly from Eq. (3.7c). Similarly,
the Dirac operator of a spectral triple may be understood as deriving from the differential
operator of a ∗-DGA (as for example in [19]), and so the form of Di,j in (4.1) follows directly
from Eq. (3.7d).

To compare our new definitions with the traditional definitions given in Eqs. (2.2), as
well as to compare with the product triples defined in [1–4], we have only to re-express our
graded tensor product in terms of the un-graded tensor product, which we do now: Because
the representations of the algebras Ai, Aj and grading operators γi, γj are of even order,
the action of the product algebra Ai,j and product grading operator γi,j given in eq (4.1)
may be expressed on Hi,j exactly as in eq (2.2):

Hi,j = Hi⊗̂Hj , Ai,j = Ai⊗̂Aj , γi,j = γi⊗̂γj . (4.2a)

The Dirac operators {Di, Dj} however are of odd order, while the order of the real structure
operators {Ji, Jj} depends on their KO-dimension signs {ε′′i , ε′′j }. Re-expressing the opera-
tors Ji,j and Di,j of Eqs. (4.1) using the un-graded tensor product results in the appearance
of grading operators:

Ji,j = Jiγ
(1−ε′′j )/2
i ⊗̂Jj , Di,j = Di⊗̂Ij + γi⊗̂Dj , (4.2b)

or

J̃i,j = Ji⊗̂Jjγ
(1−ε′′i )/2
j , D̃i,j = Di⊗̂γj + Ii⊗̂Dj , (4.2c)
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where the two choices depend on the Kozul sign convention chosen (see Subsection 3.2).
These two choices are unitarily equivalent, with the unitary transformation given as in
eq (2.3). As would be expected given the unitary equivalence of {Di,j , Ji,j} and {D̃i,j , J̃i,j},
the signs {εi,j , ε′i,j , ε′′i,j} corresponding to a product triple Ti,j do not depend on which
‘Kozul’ sign convention is chosen:

εi,j = (−1)(1−ε
′′
i )(1−ε′′j )/4εiεj , ε′i,j = ε′iε

′′
j = ε′′i ε

′
j , ε′′i,j = ε′′i ε

′′
j . (4.3)

Comparing with the KO-dimension signs of the traditional product prescription in Eq. (2.4),
the signs in Eq. (4.3) are completely symmetric and do not depend on what order the tensor
product is taken in (i.e. both Ti,j and Tj,i are always well defined). Our naming convention
for the KO-dimension table now also becomes apparent: The product between two even
‘upper’ (‘lower’) spectral triples is always well defined and results in an ‘upper’ (‘lower’)
product triple of the correct KO-dimension. One can also check that the product between
three ‘upper’ (‘lower’) spectral triples always remains well defined and is associative. It
should be stressed that the graded product automatically organizes the KO-dimension table
into a closed set of ‘upper’ and ‘lower’ signs in this way, and this is not something we have
introduced by hand (i.e. we have not made an arbitrary choice such as ε′L = +1 for all even
dimensions as is regularly done in the NCG literature). We re-arrange the KO-dimension
signs according to our ‘upper’ and ‘lower’ classification in Table 3, with the ‘upper’ signs for
a given KO-dimension placed above the corresponding ‘lower’ signs. The ‘upper’ signs are
those for which ε′U = ε′′U , while the ‘lower’ signs satisfy ε′L = −ε′′L. With this presentation a
clear pattern between the signs emerges: {εn+1,U , ε

′
n+1,U} = {εn,L, ε′n,L} (where we remind

the reader that for odd KO-dimensions the ‘upper’ and ‘lower’ signs {ε, ε′} are degenerate).
Every real, even spectral triple is equipped with both an ‘upper’ and a ‘lower’ real structure,
and eqs (4.1) and eqs (4.2) consistently define how to take their product.

4.2 The even-odd cases

Our next goal is do define the product between odd and even spectral triples. The Hilbert
space Hi,j , and algebra Ai,j will be the same as in Eq. (4.2a), but now only the even
dimensional space will be equipped with a non-trivial grading operator. We therefore
choose {Di,j , Ji,j} or {D̃i,j , J̃i,j} from Eqs. (4.2), according to whether the even triple is the
first one or the second one in the product respectively (a similar choice was made in [1]).
Making use of Eqs. (4.2) in this way however presents us with a puzzle: how do we define
the ε′′ signs in odd dimensions? We take inspiration from Clifford algebras5, and define:

ε′′n+1,L = ε′′n,U , (4.4)

5An irreducible representation of the d = 2n + 1 dimensional Clifford algebra can be constructed by
extending the irreducible representation of the d = 2n dimensional Clifford algebra by γ, or alternatively
a reducible representation can be constructed as a sub-algebra of a representation of the d = 2n + 2

dimensional Clifford algebra. See [7, §B] for details.
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for all n ∈ Z8
6. We have included these additional ε′′ signs for the odd cases in table 3.

With these definitions in place, the product between an upper (lower) 2n dimensional
geometry and an upper (lower) 2m + 1 dimensional geometry, according to Eqs. (4.2),
yields a geometry with upper (lower) KO-dimension 2(m+ n) + 1.

0 1 2 3 4 5 6 7

ε
+1

+1
+1

+1

−1
−1 −1

−1
−1 −1

+1
+1

ε′
+1

−1
−1 −1

+1
+1

+1

−1
−1 −1

+1
+1

ε′′ +1
−1
+1

−1 +1

−1
+1

−1
+1

−1 +1

−1

Table 3. Complete Mod 8 KO-dimension table: Black entries correspond to the KO-dimension
signs {ε, ε′, ε′′} of Eq. (2.1). We introduce the red ε′′ entries for odd KO-dimensions to facilitate
the construction of odd-even and odd-odd product geometries. In this presentation a clear pattern
emerges: {εn+1,U , ε

′
n+1,U , ε

′′
n+1,L} = {εn,L, ε′n,L, ε′′n,U}.

Note that the reader may wish to view these new odd ε′′ signs as corresponding to the
two choices γ = {I, iI}, which leave the upper and lower signs {ε, ε′} degenerate and which
satisfy [D, γ] = [γ, π(a)] = 0. While γ = iI no longer satisfies the usual defining condition
γ2 = I [11], both choices γ = {I, iI} are unitary, which means that we can still make use of
the unitary transformation given in Eq. (2.3)7. In practice however we will never be making
any practical use of the identification γ = {I, iI} when constructing product geometries (i.e.
we will never build a product grading operator γi,j where for example γi = iI).

4.3 The odd-odd case

For the odd-odd cases there is no non-trivial grading operator to work with and so we can
no longer make use of the product given in Eq. (4.2). Taking inspiration from [1, 2] however
we define:

Ai,j = Ai⊗̂Aj , Hi,j = Hi⊗̂Hj⊗̂C2, γi,j = Ii⊗̂Ij⊗̂σ3,

Di,j = Di⊗̂I⊗̂σ1 + Ii⊗̂Dj⊗̂σ2, Ji,j = Ji⊗̂Jj⊗̂σ
(1−ε′′i )/2
1 (iσ2)

(1+ε′′j )/2 ◦ cc, (4.5)

where the σi are Pauli matrices, and once again the signs ε′′ are determined for odd KO-
dimensions using Eq. (4.4). The representation of the algebra is understood to be trivial

6Note that we could have also chosen ε′′n+1,U = ε′′n,L, which would have resulted in a more aesthetically
pleasing presentation of the KO-dimension table, but at the same time would have also propagated various
signs through the definition for the tensor product between odd-even and odd-odd spectral triples.

7When γj = iI the product Dirac operator Di,j = Di⊗̂Ij + γi⊗̂Dj transforms as UDi,jU
∗ =

Diγi⊗̂i + γ⊗̂D, while the real structure operator Ji,j = Jγ
(1−εj)/2
i ⊗̂Jj transforms as UJi,jU

∗ =

Jiγ
(1−ε′′i )/2
i ⊗̂i(1−εi)/2Jj , where U is the unitary given in Eq. (2.3). When γj = I the product Dirac and real

structure operators are invariant under the unitary transformation given in Eq. (2.3): Di,j = UDi,jU
∗, and

Ji,j = UJi,jU
∗.
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on the C2 factor, i.e. π(ai ⊗ aj) = πi(ai) ⊗ πj(aj) ⊗ IC2 [1]. With these definitions in
place, the product between an upper (lower) 2n + 1 dimensional geometry and an upper
(lower) 2m+ 1 dimensional geometry yields a geometry with upper (lower) KO-dimension
2(m+n+1) without the need for the lookup tables that were required in [1, 2]. Finally, just
as in the even-even and even-odd cases, the odd-odd product KO-dimension signs depend
symmetrically on their constituent KO-dimension signs:

εi,j = (−1)(1+ε
′′
i )(1+ε

′′
j )/4εiεj , ε′i,j = −ε′iε′′j = −ε′′i ε′j , ε′′i,j = −ε′′i ε′′j . (4.6)

4.4 A useful Mnemonic

Having defined the product between real spectral triples, we are now able to introduce a
useful mnemonic for ‘deriving’ the full KO-dimension table. We proceed in three steps:

Step 1. There are 23 = 8 possible sign combinations {ε, ε′, ε′′} corresponding to the
even KO-dimension cases, and 22 = 4 sign combinations {ε, ε′} corresponding to the odd
KO-dimension cases. Begin by matching the 8 even cases into 4 pairs according to the
relation JU = γJL. Note that it is not yet important to know which set of signs in each pair
should be labelled ‘upper’, and which should be labelled ‘lower’, only which pairs belong
together.

Step 2. It is now possible to determine which of the even sign cases corresponds to
KO-dimension 0 mod 8, and which of the even sign cases corresponds to KO-dimension 4

mod 8. The product of two KO-dimeinsion 0mod 8 spectral triples is again a KO-dimension
0 mod 8 spectral triple. This is the only KO-dimension which has this property, and so we
can use equations (4.3) directly to distinguish which signs correspond to KO-dimension 0

mod 8. Similarly the product of two KO-dimension 4 mod 8 spectral triples gives a spectral
triple of KO-dimension 0 mod 8, and so the signs corresponding to KO-dimension 4 mod 8

are also readily distinguishable.
Step 3. Usually modular arithmetic would prevent us from going any further, however

the ‘upper’ signs {εn+1,U , ε
′
n+1,U} corresponding to a spectral triple of KO-dimension n mod

8 match the ‘lower’ signs {εn,L, ε′n,L} corresponding to a spectral triple of KO-dimension
n − 1 mod 8, while these ‘upper and ‘lower’ signs in the odd cases are degenerate. We
therefore have:

{ε2n,L, ε′2n,L} = {ε2n+1,U , ε
′
2n+1,U} = {ε2n+1,L, ε

′
2n+1,L} = {ε2n+2,U , ε

′
2n+2,U}. (4.7)

Equation (4.7) is restrictive enough that it allows the ‘upper’ and ‘lower’ signs of KO-
dimension 0 mod 8 to be distinguished. Alternatively we could have distinguished ‘upper’
signs from ‘lower’ by noting that for ‘upper’ signs ε′U = ε′′U , while for ‘lower’ signs ε

′
L = −ε′′L.

This is enough information to fill out the remainder of table 3.

4.5 Concluding remarks

We conclude this section with a brief recap of the advantages of our graded product of
spectral triples, which we introduced in Eqs. (4.1), (4.2) and (4.5).
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• Well defined products: The first point to note is that our product is always well
defined for any pair of real spectral triples of any KO-dimensions including the odd-
odd cases. In particular our product does not rely on the various look-up tables which
were required for the odd-odd cases in [1, 2]. Furthermore, our product is associative,
and as is clear from Eqs. (4.3) and (4.6) it is also symmetric in the sense that if a
product space Ti,j is well defined, then so is Tj,i.

• Meaning behind the grading factors: The authors in [2–4] all found ways of clev-
erly inserting grading factors into their definitions for the product of real structure
operators in order to construct well defined product spectral triples. In our formula-
tion the appearance of grading factors in both the Dirac and real structure operators
is natural, and is no longer a mystery. They result automatically when translating
between the graded tensor product and the ungraded tensor product.

• Transformation under unitaries: Our product always remains well defined under
the unitary transformation given in Eq. (2.3). Unlike in previous work, we stress that
the Dirac operator and the real structure operator of an even spectral triple transform
non-trivially under the action of the unitary operator given in Eq. (2.3). In addition
the unitary equivalence of the two choices {Di,j , Ji,j} and {D̃i,j , J̃i,j} is linked to the
choice of Kozul sign in the graded tensor product.

• KO-Dimension patterns: Our product naturally distinguishes the ‘upper’ from the
‘lower’ KO-dimension signs. What is more, once this naming convention is adopted a
number of patters emerge in the KO-dimension table which were previously obscured
by the arbitrary distinction between KO-dimension signs for which ε′ = +1 and those
for which ε′ = −1.

• KO-dimension table extension: Our product suggests a natural extension of the
KO-dimension table, in which there are 8 rather than 4 possible odd KO-dimension
combinations.

We close with the product table corresponding to our prescription in Table 4. In order
to appreciate just how simple our product is, comparison should be made for example with
Tables 2-5 of [1] and tables 2-5 of [4]. Our product for the odd-odd cases also avoids the
need for lookup tables which can be seen for example in Table 6 of [1], and Table 2.3 of [2].

Note: During the write-up of this work we learned that the authors C. Brouder, N. Bizi
and F. Besnard have also constructed a product of spectral triples similar to that of [3, 4]
for Lorentzian spectral triples, which they will likely publish along with future work. We
make note of this as their work has some similarities to our own which were obtained
independently.

Acknowledgements: We would like to thank John Barrett, Nadir Bizi, Latham Boyle,
Christian Brouder, and Matilde Marcolli for useful discussions during the writing of this
work. This work was supported by the Max Planck Society, and in part by the European
Cooperation in Science and Technology association.
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0U 1U 2U 3U 4U 5U 6U 7U 0L 1L 2L 3L 4L 5L 6L 7L

0U 0U 1U 2U 3U 4U 5U 6U 7U
1U 1U 2U 3U 4U 5U 6U 7U 0U
2U 2U 3U 4U 5U 6U 7U 0U 1U
3U 3U 4U 5U 6U 7U 0U 1U 2U
4U 4U 5U 6U 7U 0U 1U 2U 3U
5U 5U 6U 7U 0U 1U 2U 3U 4U
6U 6U 7U 0U 1U 2U 3U 4U 5U
7U 7U 0U 1U 2U 3U 4U 5U 6U

0L 0L 1L 2L 3L 4L 5L 6L 7L
1L 1L 2L 3L 4L 5L 6L 7L 0L
2L 2L 3L 4L 5L 6L 7L 0L 1L
3L 3L 4L 5L 6L 7L 0L 1L 2L
4L 4L 5L 6L 7L 0L 1L 2L 3L
5L 5L 6L 7L 0L 1L 2L 3L 4L
6L 6L 7L 0L 1L 2L 3L 4L 5L
7L 7L 0L 1L 2L 3L 4L 5L 6L

Table 4. The graded product table for real spectral triples.

References

[1] L. Dabrowski and G. Dossena, Product of real spectral triples, International Journal of
Geometric Methods in Modern Physics. 8, 1833 (2011) [arXiv:1011.4456 [math-ph]].

[2] B. Cacic, Real structures on almost-commutative spectral triples, Lett. Math. Phys., 103,
793-816 (2013). [arXiv:1209.4832 [math-ph]].

[3] A. Sitarz, Habilitation Thesis Introduction, Available on the Web at
http://th-www.if.uj.edu.pl/ sitarz/publ-gb.html

[4] F. Vanhecke, On the Product of Real Spectral Triples, Letters in Mathematical Physics, 50,
2, 157-162 (1999).

[5] M. Marcolli, Noncommutative Cosmology, Book in draft (2015).

[6] T. Schucker, Forces from Connes’ geometry, Lect. Notes Phys, 659, 285-350 (2005)
[arXiv:111236 [hep-th]].

[7] J. Polchinski, Superstring Theory and Beyond, Volume 2, Cambridge Monographs on
Mathematical Physics (2005).

[8] M. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology, 3, 3-38 (1964).

[9] M. Atiyah and I.M. Singer, Index theory for skew-adjoint fredholm operators, Publ. Math.
Inst. Hautes Etudes Sci., 37, 305-326 (1969).

[10] A. Connes, Gravity coupled with matter and foundation of noncommutative geometry,
Commun. Math. Phys. 182, 155-176 (1996) [arXiv:9603053 [hep-th]].

[11] A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives,
American Mathematical Society, Colloquium Publications (2008).

– 14 –



[12] J. Gracia-Bondia, J. Varilly and H.Figueroa, Elements of Noncommutative Geometry,
Birkhauser Advanced Texts Basler Lehrbücher Gebundene Ausgabe, (2000).
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