Scheme S1. Synthesis of glycose-amino ligand.

5-Chloro-1-pentyl-2,3,4,6-tetra-O-acetyl-ß-D-glucopyranoside S2

To a solution of penta-O-acetyl-ß-D-glucopyranoside S1 (3.0 g, 7.69 mmol) and 5-chloropentan-1-ol (1.413 g, 11.53 mmol) in CH₂Cl₂ (77 mL) at 0 °C, BF₃. OEt₂ (1.948 mL, 15.37 mmol) was added under Ar. The reaction mixture was allowed slowly to rt and reacted for 18 h. After 18 h of stirring, the reaction mixture was guenched with NaHCO₃, diluted with CH₂Cl₂, then and then washed with brine, dried over MgSO₄, filtered and concentrated in vacuum to give a residue, which was then purified by a flash silica gel column chromatography (EA/Hex, form 1/10 to 1/3) to provide product 5-Chloro-1-pentyl-2,3,4,6-tetra-O-acetyl-ß-D-glucopyranoside S2 (1.7 g, 3.75 mmol, 49 % yield) R_f = 0.19 (EA/Hex, 1/3); ¹H NMR (400 MHz, CDCl₃) δ 5.18 (t, J = 9.6 Hz, 1H, H-3), 5.07 (t, J = 9.7 Hz, 1H, H-4), 4.97 (dd, J = 9.6, 8.0 Hz, 1H, H-2), 4.47 (d, J = 8.0 Hz, 1H, H-1), 4.24 (dd, J = 12.2, 4.7 Hz, 1H, H-6), 4.12 (dd, J = 12.2, 2.4 Hz, 1H, H-6'), 3.88 (dt, J = 9.6, 6.0 Hz, 1H, OCH₂), 3.67 (ddd, J = 9.7, 4.7, 2.4 Hz, 1H, H-5), 3.51 (t, J = 6.6 Hz, 2H, CH₂Cl), 3.48 – 3.43 (m, 1H, OCH₂), 2.07 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H), 1.75 (m, 2H), 1.65 – 1.55 (m, 2H), 1.53 – 1.40 (m, 2H); ESI-MS (C₂₀H₃₃ClO₁₀): calcd for [M+NH₄] 470.2; found 470.2

¹H NMR of S2 (400 MHz, CDCI₃)

COSY NMR of S2 (400 MHz, CDCI₃)

HSQC NMR of S2 (400 MHz, CDCI₃)

5-Chloro-1-pentyl-2,3,4,6-tetra-*O*-acetyl-ß-D-glucopyranoside **S2** (1.7 g, 3.75 mmol) , NaN₃ (2.440 g, 37.5 mmol) and NH₄Cl (0.402 g, 7.51 mmol) were dissolved in dry DMF (37.5 mL) at rt and allowed to stir for 18 h at 65 °C under Ar. After 18 h under stirring, the solvent was removed under vacuum. The reaction mixture was diluted with EA and then washed with H₂O twice and brine. The organic part was dried on MgSO₄. Without purification, R_f, 0.344 (EA/Hex, 1/2, same as SM). To a solution of 5-Azido-1-pentyl-2,3,4,6-tetra-O-acetyl-ß-D-glucopyranoside (1.7 g, 3.70 mmol) in dry MeOH (37,0 mL) at rt , NaOMe (0.20 g, 3.70 mmol) was added and allowed to stir for 1 h at rt under Ar. After the reaction was completed, the reaction mixture was neutralized with IR-120 (H⁺). The residue was purified by silica gel column chromatography (EA/Hex 1/1 to EA/Hex/MeOH 1/1/0.15) to achieve the desired product 5-Azido-1-pentyl-ß-D-glucopyranoside **S3** (0.99 g, 3.40 mmol, 92 % yield); R_f,

S3

0.375 (EA/Hex/MeOH, 1/1/0.2); $[\alpha]_D^{20} = -21.7$ (c = 1.00, CHCl₃); IR (thin film) v_{max} = 3476, 2936, 2872, 2098, 1455, 1077, 1035 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 4.25 (d, J = 7.8 Hz, 1H, H-1), 3.92 (dt, J = 9.8, 6.7 Hz, 1H, OCH₂), 3.89 – 3.83 (m, 1H, H-6), 3.66 (dd, J = 11.8, 5.4 Hz, 1H, H-6'), 3.56 (dt, J = 9.8, 6.7 Hz, 1H, OCH₂), 3.38-3.24 (m, 5H, H-3, H-4, H-5, CH₂N₃), 3.17 (dd, J = 9.0, 7.8 Hz, 1H, H-2), 1.74 – 1.53 (m, 4H), 1.54 – 1.40 (m, 2H); ¹³C NMR (101 MHz, CD₃OD) δ 104.24 (C-1), 78.14, 77.83, 75.25 (C-2), 71.75 (OCH₂), 70.48 (C-6), 62.80 (CH₂N₃), 30.24, 29.68, 24.39; ESI-HRMS (C₁₁H₂₁N₃O₆Na): calcd for [M+Na] 314.1328; found 314.1317.

¹H NMR of S3 (400 MHz, CDCI₃)

¹³C NMR of S3 (101 MHz, CDCI₃)

COSY NMR of S3 (400 MHz, CDCI₃)

5-Amino-1-pentyl-ß-D-glucopyranoside S4

Methanol (10 mL) was added in ground flask with а 5-Azido-1-pentyl-ß-D-glucopyranoside S3 (440 mg, 1,510 mmol) and 10% Pd/C (48 mg). The reaction mixture was purged with H₂ and allowed for overnight. The catalyst was removed by filtration through a pad of celite. The filtrate was concentrated to give 5-Amino-1-pentyl-ß-D-glucopyranoside S4 (400 mg, 1.508 mmol, guant), $[\alpha]_{D}^{20} = -26.3$ (c = 1.00, CH₃OH); IR (thin film) v_{max} = 3362, 2924, 2861, 1568, 1459, 1078, 1037 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 4.21 (d, J = 7.8 Hz, 1H, H-1), 3.88 (dt, J = 9.6, 6.6 Hz, 1H, OCH₂), 3.82 (dd, J = 11.7, 1.8 Hz, 1H, H-6), 3.62 (dd, J = 11.7, 5.4 Hz, 1H, H-6'), 3.52 $(dt, J = 9.6, 6.6 Hz, 1H, OCH_2), 3.29 - 3.25 (m, 1H, H-4), 3.25 - 3.20 (m, 2H, 1H, 1H)$ H5, H-3), 3.13 (t, J = 8.5 Hz, 1H, H-2), 2.61 (t, J = 6.9 Hz, 2H, CH₂NH₂), 1.66 -1.54 (m, 2H), 1.53 – 1.34 (m, 4H); ¹³C NMR (101 MHz, CD₃OD) δ 102.94 (C-1), 76.68, 76.50, 73.69 (C-2), 70.22, 69.21 (OCH₂), 61.31(C-6), 40.92 (CH₂NH₂), 31.81, 29.09, 22.94; ESI-HRMS (C11H24NO6): calcd for [M+H] 266.1604; found 266.1608.

¹H NMR of S4 (400 MHz, CDCI₃)

¹³C NMR of S4 (101 MHz, CDCI₃)

COSY NMR of S4 (400 MHz, CDCI₃)

HSQC NMR of S4 (400 MHz, CDCI₃)

Figure S1. (a) STEM imaging of Si-COOH NPs. (b) STEM imaging of Si-Glc NPs. (c) EDX analysis of Si-Glc NPs. Scale bar: 20 nm. Inset scale bar: 10 nm.

Figure S2. FT-IR spectra of Si-COOH and Si-Glc NPs.

Figure S3. Zeta potential of Si-COOH NPs (- 37.6 ± 1.9 mV), Si-Glc NPs-1 eq. (- 15.4 ± 2.8 mV), and Si-Glc NPs-0.5eq. (- 12.9 ± 1.6 mV).

Figure S4. Acid-base titration of Si-COOH NPs. (inset: 2nd derivative vs V_{NaOH})

Figure S5. ¹H NMR spectra of sugar ligand (S4), Si-COOH NPs, Si-Glc NPs (1 eq. and 0.5 eq. of sugar).

The calculation of amount of glucose on Si NPs

We used CDCl₃ as internal standard for calculating the amount of glucose on the Si NPs. 100 μ L CDCl₃ (99.8% D atom) was added into Si-Glc NPs samples and the integration value of ¹H NMR showed the ratio between CHCl₃ and H_{C1} from glucose. According to this ratio, we can quantify the amount of glucose and also calculate the coverage on Si NPs. As a result, 71.8% of glucose attached when we used 1 eq. of glucose, and 32.6% cover when using 0.5 eq. of glucose.[1]

	µmol of Glc/mg of Si NPs	% of glucose on Si NPs
Si-Glc NPs-1 eq.	0.840	71.8%
Si-Glc NPs-0.5 eq.	0.381	32.6%

Table S1. The amount of glucose on Si NPs

Figure S6. Comparison of the anisotropy decay of Si-Glc NPs in (a) MeOH, rt, (b) ethylene glycol, rt, (c) ethylene glycol, 0°C.

Figure S7. Confocal imaging of 100 μ g/ mL Si-COOH NPs incubated with HeLa cells for (a) 1 hour (d) 4 hours (g) 24 hours. Scale bar : 20 μ m, false colors.

Figure S8. Z-stack of Si-COOH NPs after: (a) 1 hour, (b) 4 hours, (c) 24 hours incubation. Scale bar: 5 μ m, false color.

Figure S9. Intensity profile of Si NPs incubated with HeLa cells for 1, 4 and 24 hours. (left) Si-COOH NPs, (right) Si-Glc NPs.

Reference

[1] Correspond to ref [12f] in the manuscript: Chian-Hui Lai, Julia Hütter, Chien-Wei Hsu, Hidenori Tanaka, Luisa De Cola, Bernd Lepenies, Peter H. Seeberger *Nano Letters*, **2016**, *16*, 807-811