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Abstract

Across species, cued fear conditioning is a common experimental paradigm to investigate aversive Pavlovian

learning. While fear-conditioned stimuli (CS1) elicit overt behavior in many mammals, this is not the case in

humans. Typically, autonomic nervous system activity is used to quantify fear memory in humans, measured by skin

conductance responses (SCR). Here, we investigate whether heart period responses (HPR) evoked by the CS, often

observed in humans and small mammals, are suitable to complement SCR as an index of fear memory in humans. We

analyze four datasets involving delay and trace conditioning, in which heart beats are identified via electrocardiogram

or pulse oximetry, to show that fear-conditioned heart rate deceleration (bradycardia) is elicited and robustly

distinguishes CS1 from CS2. We then develop a psychophysiological model (PsPM) of fear-conditioned HPR. This

PsPM is inverted to yield estimates of autonomic input into the heart. We show that the sensitivity to distinguish CS1

and CS2 (predictive validity) is higher for model-based estimates than peak-scoring analysis, and compare this with

SCR. Our work provides a novel tool to investigate fear memory in humans that allows direct comparison between

species.
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Cued fear conditioning is a form of associative learning acquired

by the contingent coupling of a neutral precursor (conditioned stim-

ulus, CS1) with an aversive event (unconditioned stimulus, US). It

is often seen as a laboratory model of phobia or posttraumatic stress

disorder (VanElzakker, Dahlgren, Davis, Dubois, & Shin, 2014).

This is why ongoing research programs seek to elucidate the neural

microcircuits supporting this type of learning (Bach, Weiskopf, &

Dolan, 2011; Ciocchi et al., 2010) and possibilities to prevent

(Grillon, Cordova, Morgan, Charney, & Davis, 2004; Reist, Duffy,

Fujimoto, & Cahill, 2001), or even erase (Kroes et al., 2014; Schil-

ler et al., 2010) fear memory. Such investigations crucially rest on

the ability to assess even subtle alterations in the strength of fear

associations. Fear conditioning in many mammals, and particularly

rodents, elicits overt behavioral responses to the CS1, such as

freezing, which are easily quantified (LeDoux, Cicchetti, Xagora-

ris, & Romanski, 1990; Rogan, Staeubli, & LeDoux, 1997). This is

not the case in humans, partly because very mild US are employed

due to ethical considerations. Instead, typically the activity of

the autonomic nervous system is assessed in human fear condi-

tioning such as the sympathetically mediated skin conductance

response (SCR, Boucsein, 2012; Collet, Vernet-Maury, Del-

homme, & Dittmar, 1997; Critchley, Elliott, Mathias, & Dolan,

2000). An alternative measure is fear potentiated startle (FPS,

Brown, Kalish, & Farber, 1951; Hamm & Weike, 2005), which

allows direct comparison between rodents (Falls, Carlson,

Turner, & Willott, 1997; Walker, Ressler, Lu, & Davis, 2002)

and humans (Hamm & Vaitl, 1996; Keil, Stolarova, Moratti, &

Ray, 2007). However, FPS requires the presentation of aversive

sounds during both CS1/CS2 presentations and may thus inter-

fere with the learning process, while autonomic measures can be

obtained without interference. Hence, previous methodological

research has sought to improve accuracy of fear memory quanti-

fication from SCR by model-based methods (Bach, Daunizeau,

Friston, & Dolan, 2010; Staib, Castegnetti, & Bach, 2015). Here,

we investigated conditioned bradycardia as a complementary

measure in humans. While both SCR (Boucsein, 2012) and car-

diac responses (Berntson, Quigley, & Lozano, 2007; Bohlin &

Kjellberg, 1978; Paulus, Castegnetti, & Bach, 2016) may be

confounded by psychological arousal processes unrelated to fear

memory, the combination of several psychophysiological techni-

ques may provide more precise quantification.
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In contrast to a long-lasting, sympathetically mediated tachy-

cardia observed during aversive contextual conditioning in rats

(Nijsen et al., 1998; Roozendaal, Koolhaas, & Bohus, 1991), cue

conditioning typically elicits short-latency, parasympathetically

mediated bradycardia in humans (Furedy & Poulos, 1976; Head-

rick & Graham, 1969; Klorman & Ryan, 1980) as well as rabbits

(Gallagher, Kapp, McNall, & Pascoe, 1981; Gentile, Jarrell, Teich,

McCabe, & Schneiderman, 1986) and rats (Supple & Leaton,

1990), thus providing comparability across species.

Stimulus-evoked changes in heart rhythm are typically assessed

in continuous data time series, created by interpolating instantane-

ous heart rate or heart period (Allen, Chambers, & Towers, 2007;

Hodes, Cook, & Lang, 1985). In line with our previous work (Pau-

lus et al., 2016), we use heart period here, because heart period and

autonomic input are linearly related in vagal stimulation studies

(Berntson et al., 2007). Our approach of creating continuous data

renders the cardiac response amenable to model-based methods

(Paulus et al., 2016). These make prior assumptions on typical

response shape and timing, embedded in psychophysiological mod-

els (PsPM, Bach & Friston, 2013). Such PsPMs can then be

inverted in order to quantify autonomic input. This approach distin-

guishes between the response components of interest and what is

treated as noise. This can improve signal-to-noise ratio and thereby

reconstruction of the causes of observed data, as in the case of SCR

(Bach, 2014; Bach & Friston, 2013), event-related heart period

response (HPR, Paulus et al., 2016) or fMRI (Friston, Jezzard, &

Turner, 1994). In addition, one can define and separately interpret

different components of the response and make inferences about

the neural inputs responsible for these components. Finally, such a

standardized approach could ameliorate the current heterogeneity

in scoring the heart response found in the literature, thus ensuring a

meaningful comparability between studies. Here, we develop and

compare a set of methods based on general linear convolution mod-

els (GLM).

The goals of this study were threefold. First, we investigated to

what extent HPR allow inference on associative fear memory in

typical fear conditioning paradigms. Second, we sought to identify

the best method to quantify fear from observed HPR. Finally, we

compared the discriminative power provided by HPR and SCR

measured during the same experiments.

Critically, the objective magnitude of fear memory (i.e., ground

truth) is unknown to the experimenter. Here, we use a fear condi-

tioning paradigm with many trials and with CS that are simple to

learn, and assume that the CS1 will elicit a stronger autonomic

response than the CS2. We can then assess how well a method

recovers this difference between the two conditions; we term this

predictive validity (Bach & Friston, 2013). Combined with Bayes-

ian model comparison, this allows a statement on how much two

methods differ in discriminating CS1/CS2, and hence in quantify-

ing fear memory.

We built the methods on data from one delay conditioning

experiment, and validated the results on three independent datasets:

a delay conditioning experiment, a trace conditioning experiment,

and a delay conditioning experiment with peripheral pulse oxime-

try rather than electrocardiography (ECG) for identification of heart

beats. In the trace conditioning dataset, the CS/US interval was lon-

ger than in the other experiments. This allowed for the study of

how to modify the model to account for small variations in the

stimulus onset asynchrony (SOA). In particular, we expected the

model to perform best when the anticipatory response is assumed

to be time-locked to the US, in agreement with previous findings

(Damen & Brunia, 1987).

Method

Participants

We recruited four independent samples of healthy, nonmedicated

individuals from the general population. All participants confirmed

that they had no history of neurological, psychiatric, or systemic

disorders, and all had normal or corrected-to-normal vision. We

recorded data from 35 (23 females, age 18–31 years, mean 6 SD,

23.4 6 3.4 years), 20 (11 females, age 18–33 years, mean 6

SD, 23.1 6 3.7 years), 23 (10 females, age 20–32 years,

mean 6 SD, 23.8 6 3.0 years), and 21 (8 females, age 19–34 years,

mean 6 SD, 25.7 6 4.6 years) participants, respectively, in the four

experiments. Because of technical malfunction or participants’

noncompliance with instructions, we excluded six subjects from

Experiment 1, three subjects from Experiment 2, four subjects

from Experiment 3, and four subjects from Experiment 4. All par-

ticipants gave informed written consent before the beginning of the

experiment. The study was conducted in accord with the Declara-

tion of Helsinki and approved by the competent research ethics

committee (Kantonale Ethikkommission Z€urich).

Experimental Procedure

Common settings. The unconditioned stimulus (US) was a train

of electric square pulses delivered on participants’ dominant fore-

arm through a pin-cathode/ring-anode configuration with a constant

current stimulator (Digitimer DS7A, Digitimer, Welwyn Garden

City, UK). The current was set such that perceived shock intensity

was around 90% of the pain threshold. We estimated the pain

threshold during two phases. First, the intensity was increased from

being unperceivable to a painful level. This was set as the upper

threshold for the second phase, in which participants were asked to

rate the perceived intensity of the delivered stimulus. These ratings

were then interpolated to estimate the intensity that the subject

would have rated as 90%. For all experiments, the screen had a

diagonal of 20 inches, an aspect ratio of 16:9, and a resolution of

1,280 3 1,024 pixels at 50 Hz (P2014HT, Dell, Round Rock, TX).

The duration of the intertrial interval was randomly determined to

be 7, 9, or 11 s, and there were no habituation or extinction blocks.

Reinforced trials were not analyzed. In all the experiments consid-

ered here, participants were not instructed about the contingency

between CS and US and were asked to indicate stimulus identity

by pressing one of two designated buttons on the keyboard. These

designated buttons were counterbalanced across participants.

Experiment 1. Experiment 1 (dataset code: FR) implemented a

delay fear conditioning paradigm with visual CS. For the US, we

used 250 square electric pulses of 1-ms duration and delivered at a

frequency of 500 Hz, resulting in a total US duration of 0.5 s. Cur-

rents were between 1.0 and 6.7 mA (mean 6 SD, 2.6 6 1.28 mA).

Participants were presented with 160 CS: 80 CS1, half of which

coterminated with the US, and 80 CS2 that predicted the absence

of the US. The two CS types were two different colors (screen plain

blue or red for CS1/-) on a computer screen. The colors were

counterbalanced across participants. The US was delivered 3.5 s

after the CS onset; CS and US coterminated 0.5 s later.

Experiment 2. Experiment 2 (dataset code: SC4B) was a delay

fear conditioning task with auditory CS. For the US, we used five

square electric pulses with 0.2-ms duration and delivered at a fre-

quency of 10 Hz, resulting in a total US duration of 0.5 s. Currents
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were between 3.4 and 30.0 mA (mean 6 SD, 10 6 7.2 mA). A total

of 192 trials was divided into eight blocks of 24 trials each. Of

these, 96 were CS1, half of which coterminated with the US, and

96 were CS2. Two pairs of CS1 and CS2, either complex or sim-

ple, were delivered binaurally with headphones (HD518, Sennhe-

iser, Wedemark-Wennebostel, Germany) at about 68 dB. Complex

stimuli were a sequence of four rising (400 to 800 Hz) or falling

(800 to 400 Hz) sounds lasting 1 s each. Simple stimuli were tones

with constant frequency (400 or 800 Hz) presented for 4 s. Within

each block, only one pair of CS, either complex or simple, was pre-

sented. After 25% of the CS2 and 50% of the nonreinforced CS1,

a startle probe was delivered via headphones. These trials were not

analyzed here. We confirmed with SCR that learning was not dif-

ferent for complex and simple CS and pooled them for the current

analysis. To summarize, 96 trials were retained for the analysis, 72

of which were CS2 and 24 nonreinforced CS1.

Experiment 3. This experiment (dataset code: TC) consisted of a

trace fear conditioning task with the same CS, US, and settings as

Experiment 1, with the exception that the CS/US onset asynchrony

was 4 s instead of 3.5 s. Currents were between 1.0 and 7.0 mA

(mean 6 SD, 3.0 6 1.3 mA). CS were presented for 3 s, after which

a fixation cross appeared, followed 1 s later by the US in 50% of

the CS1 trials.

Experiment 4. Experiment 4 (dataset code: VC1F) consisted of

16 blocks of 12 trials each, and was performed while participants

underwent fMRI. Of the 16 blocks, eight consisted of explicitly

instructed nonreinforced trials that are not analyzed here. The

remaining eight blocks contained overall 96 trials, evenly divided

into CS1, half of which coterminated with the US and CS2. The

US were the same as in Experiment 2. Across participants, currents

were set between 6 and 45 mA (mean 6 SD, 17.2 6 12.2 mA).

Two pairs of visual CS of 4-s duration were presented, either sim-

ple (during four blocks) or complex (during the other four blocks).

Simple stimuli were two Gabor patches with different orientation

(2908 or 3408, counterbalanced across participants), while complex

stimuli consisted of simple stimuli overlaid with an additional

Gabor patch oriented at 2308.

Psychophysiological recording. In Experiments 1–3, ECG was

recorded via four 45-mm, pregelled Ag/AgCl adhesive electrodes

attached to the four limbs. The experimenter visually identified the

lead (I, II, III) or the augmented lead (aVR, aVL, aVF) configura-

tion that displayed the highest R spike, and only recorded this con-

figuration. Data were preamplified and 50 Hz notch-filtered with a

Coulbourn isolated five-lead amplifier (LabLinc V75-11, Coul-

bourn Instruments, Whitehall, PA), digitized at 1000 Hz using a

Dataq card (DI-149, Dataq Inc., Akron, OH) and recorded with

Windaq (Dataq Inc.) software. In Experiment 4, the cardiac activity

was detected at 500 Hz via a peripheral pulse sensor (PPS, SpO2

adult grip, Invivo, Gainesville, FL) placed around the nondominant

index finger and connected to a wireless peripheral pulse unit via

optic fiber. This was transmitted to a wireless triggering unit and

then to the MRI console for recording. We also recorded the SCR

from the thenar/hypothenar of the nondominant hand using two 8-

mm disk Ag/AgCl cup electrodes (EL258, Biopac Systems Inc.,

Goleta, CA) and 0.5% NaCl gel (GEL101, Biopac; Hygge & Hug-

dahl, 1985). SC signal was measured with an SCR coupler/ampli-

fier (V71-23, Coulbourn Instruments) and digitized at 200 Hz. In

Experiment 4, SCR was recorded with a Biopac MP150 data acqui-

sition system coupled to a GSR-100C signal amplifier (Biopac) at

1000 Hz sampling frequency.

Data Preprocessing

Data processing and analysis was performed with MATLAB (Ver-

sion R2013b, MathWorks Inc., Natick, MA). A modified offline

implementation (Paulus et al., 2016) of the Pan & Tompkins

(1985) real-time QRS detection algorithm was used to identify

QRS complexes from the ECG recording. Interbeat intervals (IBIs)

deviating by more than two standard deviations from the single

subject average were visually checked by a trained expert (GC)

and corrected. To extract the heart beats from the PPS time series,

we used a custom template-matching algorithm. In particular, we

obtained the template from the average waveform of the peaks that

satisfied two conditions: first, a prominence higher than one-third

of the signal amplitude; second, a time distance from neighboring

peaks higher than 0.3 s (corresponding to a heart rate of 200 beats

per minute). The time points at which the correlation between the

template and the PPS trace peaked were then assumed to corre-

spond to heart beats. This assumption neglects the phase lag

between the peripheral measure and the actual heart beat. However,

the model developed with Dataset 1 (with ECG measures) well

generalized to PPS data, suggesting this phase lag to be negligible

for model-based analysis, in line with previous findings on SCR

(Bach, Flandin, Friston, & Dolan, 2010). Both with the ECG and

the PPS, the IBI was assigned to its following heart beat, and the

time series was interpolated linearly at 10 Hz to create equidistant

data points. Interpolated heart period time series were band-pass

filtered with a bidirectional Butterworth filter: Unless otherwise

specified, the low-pass and the high-pass cutoffs were 2 and 0.01

Hz, respectively. Single-trial responses were analyzed in a time

window of 11 s starting from the CS onset, corresponding to the

minimum time interval between subsequent CS onsets. Single-trial

responses were baseline corrected by subtracting the heart period

average during the 5 s before the CS onset, in line with previous

research (Pollatos, Herbert, Matthias, & Schandry, 2007). This

baseline window reconciles the need to average out respiratory

arrhythmia and to minimize the effect of the previous trial. SCR

data were preprocessed with a Butterworth band-pass filter with

0.0159 Hz and 5 Hz cutoff, respectively. For statistical analysis of

the SCR, we used the default dynamical causal model (DCM)

method as implemented in PsPM 3.0 (http://pspm.sourceforge.net)

(Bach, Daunizeau et al., 2010; Staib et al., 2015).

Model Specification

We modeled the HPR as a linear time invariant system (LTI). This

is a system with two characteristic properties: First, the output does

not explicitly depend on time (time invariance), and second, the

response to several inputs is the sum of the responses to the individ-

ual inputs (linearity). In most real systems, including the heart,

these criteria are only approximately met. In particular, the assump-

tion of linearity implies pure summation of overlapping inputs,

which may be unrealistic for the cardiac oscillator (Zebrowski

et al., 2007). However, we assume that, with our choice of the

intertrial interval, this approximation is accurate enough for the

LTI formalism to be applicable. Thus, if an input xðtÞ produces

the output y tð Þ, then the input x t1dð Þ, with d 2 R, elicits y t1dð Þ.
An LTI system is fully specified by its response function

(RF) h tð Þ. Recalling the operation of convolution between the

functions x and h to be defined as
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x�hð Þ tð Þ5
ð1

0

x sð Þh t2sð Þds;

then one can obtain the response of a LTI system to any input by

convolving it with the RF, that is,

y tð Þ5h tð Þ�x tð Þ:

Here, we assume a short input at CS onset. The RF h then sum-

marizes all neural and cardiac processes that finally lead to the

heart period response.

There are at least two principled ways to construct a RF for an

LTI. First, the RF can be formalized from known biophysical rela-

tionships between input and output. This is useful when dealing

with biological systems whose mechanisms are largely known to

the modeler (Friston, Mechelli, Turner, & Price, 2000). Secondly,

if one or more internal states of the system are unknown and not

accessible by experiment, a phenomenological RF must be inferred

from the data. To this end, a set of known inputs is delivered to the

system and the output measured. We capitalize on this second

approach, which has also led to the successful development of a

model for SCR (Bach, Flandin et al., 2010) and event-related HPR

(Paulus et al. 2016).

General linear models (GLM). Once the shape of the RF is

defined, the goal is to estimate the system’s input to best explain

data. If we assume the input to be of constant shape, we can harness

GLM to estimate its amplitude. The assumption of a constant input

shape is a simplification to increase robustness of the estimates.

Specifically, we note that heart period variability due to the respira-

tory sinus arrhythmia (RSA) is typically larger than that induced by

fear bradycardia. This means that trial-by-trial estimates of input

into the cardiac system are corrupted by a signal that, at a first

approximation, is not related with the emotional content of the CS.

Assuming a constant shape allows averaging across many trials,

thus removing RSA.

If Y is a set of k observations and X is the design matrix, the

GLM can be written as

Y5Xb1E;

where E is normally distributed noise. In our case, the columns of

the design matrix X contain the time series (i.e., impulse functions

at the onsets) of the different kinds of inputs representing the exper-

imental design, convolved with the components of the RF. In other

words, we define each column of X as a series of impulses located

at the onset of the respective input type, convolved with the RF.

Finally, the amplitude parameters b are estimated as the vector of

coefficients for which the columns of X must be multiplied to

obtain the best fit to the experimental time series (i.e., amplitudes

of each component of RF). To infer b; the Moore-Penrose pseu-

doinverse X1 was calculated with a maximum likelihood inversion

method as implemented in the MATLAB function pinv (Bach,

Flandin, Friston, & Dolan, 2009).

Model construction. We sought to develop a data-driven response

function for discriminating between HPR to CS1 and CS2 from

the first dataset. To this end, we built the RF from the difference

between the grand means of the responses to the two different

stimuli. The shape of the response was determined by visually

identifying, among different function classes, the function that

qualitatively best resembled the difference between grand means.

This suggested a gamma distribution to be a good candidate.

Hence, we fitted it by finding the values of the shape parameter k,

the scale parameter �, the time onset x0, and the amplitude A that

minimized the residual sum of squares (RSS) from the gamma

distribution

y5
A

ukC kð Þ
x2x0ð Þk21e2

x2x0
u :

The amplitude A is later left as a free parameter in the GLM

implementation. We term this the canonical heart period response

function (HPRF) and formalize it as model G1 (Figure 1). To allow

for subject-specific variations in peak latency, we included its time

derivative (HPRF’ in Figure 1) as a second component in models

G2 and G3, analogous to previous approaches (Bach et al., 2009;

Friston et al., 1998). Finally, we observed an early response to both

CS which might be interpreted as resulting from stimulus process-

ing (Barry, 1982), and was formalized in a previous study (Paulus

et al., 2016). We added this as a third component to G3 (Figure 1).

The previous models capitalize mainly on the difference between

CS1 and CS2; however, a nonzero response to the CS2 is also

observed. An additional model S1 combined this (Figure 1) with

the canonical response reflecting the CS1/CS2 differences. The

Figure 1. Left: Components of the response function. The four components that we combined to build the RFs (canonical response and its time deriv-

ative, early response, and response resulting by fitting the CS- only) are shown. The amplitudes are normalized for the sake of illustration. Right:

Reconstruction of the autonomic input that convolved with the earliest HPR component found in our previous study (Paulus et al., 2016) most likely

recovers the conditioned bradycardia response observed in the present work. The estimated autonomic input peaks at 3.5–4 s, that is, during antici-

pated presentation of the US.
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GLMs G1, G2, and G3 contained the canonical response as the first

component, while S1 included it as the second component. To esti-

mate autonomic input from these different models, we recon-

structed the estimated HPR from the entire basis set and calculated

the signed maximal variation from baseline of this reconstructed

response between 2 and 11 s after CS onset, in line with previous

SCR work (Bach, Friston, & Dolan, 2013).

To allow broad application of our model in future investiga-

tions, we sought to base the HPRF on a larger dataset. Hence, we

combined data from Experiments 1 and 2 to update the HPRF. We

then studied its performance on the third dataset, thus checking the

consistency of the method and setting the state of art for further

developments.

Finally, we note that the assumption of constant, instantaneous

input at CS onset is a mathematical simplification, not a biophysi-

cal reality, in particular because the CS extends in time. To assess

the biophysical plausibility of the HPRF, we related it to previously

reported HPR to brief stimuli for which the assumption of an

almost instantaneous autonomic input is better justified. We speci-

fied the autonomic input into the previously identified LTI system

that would produce the HPRF observed in the current study. We

specified the input as a Gaussian function for which we estimated

parameters by ordinary least square minimization (Figure 1).

Model comparison and validation. To find the model that best

distinguishes CS1 and CS2, we used Bayesian model comparison

between the models described above and model-free peak-scoring

methods. As model-free methods, we scored the HPR (a) by the

amplitude of the maximum positive peak in a time window

between 2 and 11 s after the CS onset (Furedy & Poulos, 1976), (b)

by the signed amplitude of their maximal variation from baseline

in this window (Geer, 1964), and (c) by the average HPR within a

window of 2–8 s (Hermans, Henckens, Roelofs, & Fern�andez,

2013). The interval for method (c) is shorter because the average is

a function of the entire data in the window and thus more suscepti-

ble to noise that occurs after the true response ends. To maximize

the performance of this method, we optimized the time window

on the first dataset. For all methods, we excluded the first 2 s

because the HP is reported to vary in a nonspecific way in such

window (Hermans et al., 2013). To quantify predictive validity, we

calculated evidence for a model in which CS1 and CS2 estimates

are drawn from distributions with different means, rather than the

same mean (analogous to a paired t test). We did this by computing

a regression model in which the vector of event types is the

dependent variable, and the vector containing the estimated

response amplitudes is a regressor, complemented by regressors for

subject-specific intercepts (equivalent to a repeated measures anal-

ysis of variance, ANOVA). We then converted the RSS from this

regression model into a negative log likelihood (NLL, Burnham &

Anderson, 2004)

NLL5nlog
1

n
RSS

� �
;

where n is the number of observations. A smaller NLL indicates a

higher model evidence. We did not account for the number of

parameters in the predictive model because it was the same for all

approaches. An absolute NLL difference of more than 3 is often

regarded as decisive, by analogy to a classic p value. If a classic

test statistic falls into the rejection region, the probability of the

data given the null hypothesis is p< .05. For an absolute NLL dif-

ference higher than 3, the probability of the null hypothesis given

the data is p< e23 ’ .05 (Penny, Stephan, Mechelli, & Friston,

2004; Raftery, 1995). Together with the NLL, we also report t and

p values from an equivalent paired t test for illustration. Note that

this slightly deviates from a previous approach where the condition

(e.g., CS type) predicts the data (Bach et al., 2009; Green, Kragel,

Fecteau, & LaBar, 2014). In both approaches, t or F values monot-

onically relate to predictive validity. However, in the previous

approach, model evidence cannot be compared between the mod-

els. This is because model evidence scales with the dependent vari-

able, which is then different between the models.

To investigate the effects of the CS2US SOA on the HPR, we

designed Experiment 3 with a different SOA (4 s, instead of 3.5 s

as in Experiment 1, 2, and 4). We tested two parsimonious models:

(1) the RF is unchanged in shape and time-locked to the CS, and

(2) the RF is unchanged in shape and time-locked to the US. We

then compared the predictive validity of these two models to iden-

tify the most likely transformation that the RF undergoes as a func-

tion of the SOA.

Moreover, we sought to empirically rule out any bias of the

model toward higher scorings of CS1 with respect to CS2. To do

this, we randomly permuted the trial indices. This created two sets

of trials between which the true autonomic inputs did not system-

atically differ. We then analyzed such mislabeled responses with

the most discriminative method. To exclude any possible effect

of the particular permutation, we performed the statistical analysis

of the scores averaged over 1,000 different permutations.

Filter optimization. The settings of the Butterworth filter applied

to the data might have an impact on the model performances. If the

true RF was known, one could use the matched filter theorem to

minimize the signal-to-noise ratio. However, as the RF is unknown,

and may vary between subjects, we used Bayesian model compari-

son to optimize filter parameters in line with previous approaches

(Bach et al., 2013; Staib et al., 2015). We varied the high-pass cut-

off between 0.01 and 0.1 Hz, and the low-pass cutoff between 0.25,

and 1 Hz, recomputed the RF, and re-estimated CS1 and CS2

responses. Similarly to the model selection, we optimized filter set-

tings on the first dataset.

Results

First, we used an established measure to confirm that participants

successfully learned the CS/US association. SCR to CS1 were sig-

nificantly larger than to the CS2 (Experiment 1: t(28) 5 3.23,

p< .01; Experiment 2: t(16) 5 4.67, p< .001; Experiment 3:

t(18) 5 3.58, p< .01; Experiment 4: t(16) 5 2.90, p< .05) demon-

strating the successful learning of the association between CS

and US.

Heart Period Responses

The grand means of the HPR to CS1 and CS2 in the four experi-

ments are depicted in Figure 2A. Importantly, responses in all

experiments show the appearance of the three well-known compo-

nents of the cardiac response in two-stimulus paradigms: an early

deceleration (D1), followed by an acceleration (A), and a further

late deceleration (D2; Bohlin & Kjellberg, 1978). Figure 2A shows

that the HPR to CS1 is higher than the response to CS2, between

2 and 8 s after the CS onset. Since the two responses begin to differ

after about 2 s (i.e., 1.5 s before the US onset), the bradycardia

appears to be due to the CS presentation rather than the US
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omission. Three model-free methods showed a highly significant

CS1/CS2 difference of the HPR (Table 1). Together, these results

demonstrate the elicitation of anticipatory fear bradycardia as a

response to fear-conditioned stimuli.

Response Function

The difference between the responses to CS1 and CS2 in Experi-

ment 1 is depicted in Figure 2B. A heuristic function search sug-

gested that a gamma distribution could best capture its shape. The

fitted parameters of the gamma distribution, describing the shape

of the canonical HPRF, are listed in Table 2. The amplitude of the

canonical response and of additional model components is left as

free parameters in the GLM inversion. From this canonical HPRF,

we built different models, including only the HPRF (G1), adding

its derivative (G2), adding derivative and an early response (G3),

or the HPRF with the CS2 response (S1).

Model Comparison

For each model (G1–3 and S1 in Table 1), we computed the predic-

tive validity of their amplitude parameters (Table 1), that is, their

ability to discriminate between CS1 and CS2, and compared it

with model-free methods (P1–3), based on the first dataset. As a

first result, all model-based methods discriminated CS1 and CS2.

Secondly, the two best model-based methods (G2/G3 in Table 1)

are the ones with the derivative of the gamma distribution as sec-

ond component, with or without the early response. Finally, the

best model-based methods were more predictive than the best

model-free method (P3). There was no difference between the two

best models such that we defined the simpler model G2 as winning

model.

Filter Settings

We next searched for the filter settings that maximize predictive

validity of the winning model. The results are shown in Figure 3.

The high-pass cutoff that returned the best predictive validity was
Table 1. Model Comparison

# Model description NLL t(28) p

P1 Maximum variation from baseline 297.0 3.0 5.0�1023

P2 Peak scoring 2112.1 4.5 1.0�1024

P3 Average in the 2–8 s window 2119.4 5.2 1.7�1025

G1 HPRF 2115.7 4.8 4.3�1025

G2 HPRF 1 HPRF’ 2124.5 5.7 4.7�1026

G3 HPRF 1 HPRF’ 1 early response 2124.1 5.7 4.7�1026

S1 HPRF 1 baseline response 2115.2 4.8 4.9�1025

Note. Listed are the values of the negative log likelihood (NLL)
together with the t and the p values obtained by contrasting all the
model-free and the model-based evaluations of the HPR to CS1 and
CS-. Absolute differences in NLL higher than 3 indicate significant dif-
ferences in model evidence. The models G2 and G3 outperform the
other model-based and all the model-free methods.

Table 2. Parameters of the Gamma Distributions Modeling the
HPRF

k � x0

Dataset 1 2.56�105 2.26�1023 2574
Dataset 1 optimized 1.37�103 3.11�1022 238.0
Dataset 1 1 2 43.2 0.196 23.47
Dataset 1 1 2 optimized 48.5 0.182 23.86

Note. The parameters k (shape parameter), � (scale parameter) and x0

(time onset) of the gamma distribution resulting from the fit to the dif-
ference between response to CS1 and CS-. These parameters were
obtained after averaging the responses over the first dataset only or a
combination of the first and the second dataset, before and after filter
optimization.

Figure 2. Heart period response. A: Response to CS1 and CS-, averaged across participants and trials, 6 SEM (thin lines), obtained with default filter

settings (LP 5 2 Hz, HP 5 0.01 Hz) from the four datasets. Responses to CS typically begin with an initial deceleration (D1), followed by an accelera-

tion (A), and a second deceleration (D2). B: Difference between the mean response to the CS1 and to the CS- (solid gray) and the best fitting gamma

distribution (dashed black), obtained from Experiment 1 (upper) and after merging data from Experiment 1 and 2 (lower).
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0.015 Hz. Cutoff frequencies between 0.01–0.015 Hz were not sig-

nificantly worse. Instead, the low-pass filter did not significantly

affect the performance of the model. We therefore chose 0.015 Hz

as high-pass cutoff and an arbitrary 0.5 Hz cutoff for the low-pass

filter as it was a frequency in the middle range of the low-pass cut-

offs analyzed. The parameters obtained after fitting the difference

between CS1 and CS2 with these filters are listed in Table 2.

With these settings, predictive validity was slightly but not signifi-

cantly improved compared to the original filter settings

(NLL 5 2126.7 for new filter settings, NLL 5 2124.6 for original

filter settings).

Model Validation

We built and tested the model on the same data from Experiment 1,

possibly rendering the test of the model biased. Hence, we sought

to validate the model on independent datasets. The results are

illustrated in Figure 4. For delay conditioning Experiment 2, model

G2 outperformed all model-free methods, and it performed as well

as models G1 and G3 (NLLG2 2 NLLG1 5 1.74; NLLG2 2 NLLG3

5 0.05, respectively). For trace conditioning Dataset 3 with a larger

SOA, we first sought to determine the optimal RF. To this end, we

compared two versions of G2: one in which the RF is time-locked

to the CS and one where it is time-locked to the US. The US-locked

versions of G2, which we term G20, had the highest predictive valid-

ity, thus performing better than any model-free method, including

the CS2locked version G2. This suggests the latency of the fear

bradycardia to be time-locked to the US. The US-locked versions

of the Models G1–3 were not significantly different from each

other (NLLG20 2 NLLG10 5 21.13; NLLG20 2 NLLG30 5 20.02).

For Experiment 4, in which we used peripheral pulse oximetry

rather than ECG to identify heart beats, G2 outperformed all

the model-free methods and did not significantly differ from G1 and

G3 (NLLG2 2 NLLG1 5 22.66; NLLG2 2 NLLG3 5 2.29). Taken

together, these results demonstrated that the model G2 successfully

generalizes to other, independent datasets, and guarantees a predic-

tive validity significantly higher than classical scoring methods.

While these results imply higher sensitivity of our model-based

approach, we also sought to address its specificity. Crucially, there

is no theoretical reason why the approach should overestimate

CS1/CS2 differences. Empirically, specificity can be assessed by

investigating the difference between two CS for which the true

HPR does not differ. We implemented this by randomly permuting

condition labels and recomputing the HPR difference between such

CS1 and CS2 trials between which the true autonomic input will

not be systematically different. In this analysis, we found no differ-

ence between conditions, t(28) 5 0.95; p 5 .35, thus ensuring the

unbiased nature of the method.

Our HPRF is based on 29 individuals only. To enhance general-

izability of this HPRF for future studies, we sought to base it on a

larger sample (i.e., combined Experiments 1, 2). This HPRF is

shown in Figure 2B (bottom), and its parameters are reported in

Table 2. Validation on Experiments 3, 4 showed that predictive

validity for this model was not significantly different from a model

based only on Dataset 1.

In our model, we assumed that fear-conditioned bradycardia

results from the convolution of an instantaneous autonomic input

with our HPRF. For estimation of input amplitude in our GLM,

this is mathematically equivalent to assuming any arbitrary input

together with a suitable HPRF that result in the same output.

Hence, we can relax this assumption and investigate possible auto-

nomic inputs. A previous investigation has revealed early HPR to

brief stimuli, for which the assumption of an instantaneous input is

better justified than in the current work. Hence, we estimated the

autonomic input that would result, convolved with the HPR from

our previous study, in the fear-conditioned bradycardia response

observed here. Results are shown in Figure 1B and suggest a Gaus-

sian input centered 3.8 s after the CS onset (i.e., during US deliv-

ery). Importantly, the input onset appears to occur after the CS

presentations, thus ensuring the correct causality relation between

stimulus and response. The finding that autonomic input may peak

during the US also relates to the modeling results from Experiment

3, which suggested that the bradycardia response is time-locked to

the US, rather than the CS.

Figure 3. Comparison between filter settings. The figure shows predic-

tive validity as negative log-likelihood (smaller is better) for model G2

in dependence on the high-pass (HP) cutoff (top) and on the low-pass

(LP) cutoff (bottom). The high-pass cutoff has a strong effect on the

predictive validity, returning the best performance between 0.01 and

0.015 Hz. Conversely, the low-pass cutoff does not significantly affect

the predictive validity. The dashed lines represent the significance

thresholds with respect to the selected winning cutoffs (circled dots).

Figure 4. Model comparison. Bars represent predictive validity as nega-

tive log-likelihood (NLL, smaller is better) for three model-free methods

(P1–P3) and the winning model G2 with the optimal filter settings (HP

cutoff: 0.015 Hz, LP cutoff: 0.5 Hz), including the canonical HPRF and

its time derivative. For each experiment, the NLL was normalized to the

best model-free method (MF*: P3 for Experiment 1–3; P2 for Experi-

ment 4). The horizontal dashed line represents the significance threshold

with respect to the best model-free method. In Experiment 3, G2’ repre-

sents the US-locked RF. For the respective winning method (G2 for

Experiment 1, 2, and 4; G2’ for Experiment 3), Cohen’s d was 1.33,

1.05, 1.27, and 0.59 for Experiment 1, 2, 3, 4, respectively.
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Comparison with SCR

Finally, we compared the predictive validity of the HPR estimates

with SCR estimates. To do this, we contrasted the NLL obtained

by the GLM implementation of the best model for the HPR (based

on Dataset 1 only) with the one returned from a standard DCM

analysis of the SCR on the same dataset. The results are illustrated

in Figure 5, and show that the HPR allow a significantly better dis-

crimination than SCR in Dataset 1 (NLLHPR 2 NLLSCR 5 229.6)

and 3 (NLLHPR 2 NLLSCR 5 212.0), but not in Dataset 2 and 4,

for which SCR is significantly better than HPR (Experiment 2:

NLLHPR 2 NLLSCR 5 4.1; Experiment 4: NLLHPR 2 NLLSCR 5

3.5). We were concerned that this discrepancy might arise from the

lower number of trials per condition in Experiment 2 and 4 (24

CS1US- in Experiment 2 and 4 in contrast with 40 CS1US- in

Experiment 1 and 3). Hence, for the experiments with a higher

number of trials (160, Experiment 1 and 3), we computed the pre-

dictive validity in dependence on the number of successive trials

included into the analysis (Figure 6). If the reason for the discrep-

ancy was the number of trials, we expected the SCR to consistently

perform better when analyzing only a fraction of the dataset. Pre-

dictive validity of both HPR and SCR estimates increases with an

increasing trial number. In Experiment 3, SCR outperformed HPR

at low trial numbers, but in Experiment 1, HPR was always better

than SCR, also for lower numbers of trials. Hence, the number of

trials is probably not the reason for this discrepancy between

experiments.

Discussion

In this study, we investigated fear-conditioned bradycardia and its

suitability for quantifying human fear memory. We first showed a

significant bradycardia response upon presentation of CS1 com-

pared to CS2 across three delay conditioning and one trace condi-

tioning experiments. We then developed a PsPM that discriminates

the HPR to CS1 versus CS2 better than classical scoring methods.

Best predictive validity was achieved with a RF that approximated

the differential response as a gamma distribution that peaks 4.7 s

after the CS onset, together with its time derivative accounting for

between-subjects variation in peak latency. We optimized data pre-

processing and confirmed the best preprocessing settings and the

best model in three independent datasets. Finally, HPR allow, on

average, a better quantification of fear learning than SCR-based

estimates, although with variability between datasets. In particular,

HPR performed better with a wide margin in two datasets, while it

was significantly less sensitive in the remaining two. The inconsis-

tency was not explained with the number of trials in the individual

experiments. Alternative explanations may relate to the differences

in the experimental designs distinguishing Experiment 2/4 from

Experiment 1/3, possibly involving nonspecific effects of anticipat-

ing startling sounds or the alternation of complex and simple

stimuli.

Overall, it appears that HPR is a powerful and robust indicator

of fear learning, in particular when analyzed with a model-based

approach. This could be of particular importance in a neuroimaging

context, since MRI machines are standardly equipped with a

peripheral pulse sensor or ECG to record cardiac activity, while

equipment for recording SCR is less available. However, SCR

allows single-trial estimation of fear learning (Bach, Daunizeau

et al., 2010), while the single trial HPR in our data appeared to be

dominated by RSA and therefore not sufficiently reliable to allow

trial-by-trial estimation. Nevertheless, the good discriminative

power of the HPR justifies future investigations aimed at develop-

ing a method capable of single trial analyses. Moreover, it would

be interesting to estimate RSA independently (e.g., by integration

Figure 5. Comparison between predictive validity for HPR and SCR.

The horizontal dashed lines represent the significance thresholds with

respect to HPR. The HPR returns a predictive validity significantly

higher than SCR for Dataset 1 and 3, while SCR is significantly better

with Dataset 2 and 4.

Figure 6. Dependence of NLL on number of trials. Modality-specific dependence of the predictive validity as negative log-likelihood (smaller is bet-

ter) on the number of trials. The figure depicts an overall increase in predictive validity as a function of the number of trials analyzed from the begin-

ning of the experiment, for model based approach of HPR (GLM, dark gray) and SCR (DCM, light gray).
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with respiratory time series) to assess HPR uncontaminated by

RSA.

An important difference between HPR and SCR is that early

HPR, as analyzed in the present work, is almost exclusively modu-

lated by the parasympathetic nervous system (Berntson et al.,

2007), while SCR is under almost exclusive control of the sympa-

thetic branch (Boucsein, 2012). Concurrently assessing both meas-

ures could provide a tool to discriminate sympathetic and

parasympathetic autonomic learning.

A trace conditioning dataset was analyzed to investigate how

the RF depends on CS/US interval. We found that time-locking the

RF to US performed better than locking it to the CS, in line with

experimental reports showing that the second deceleration of the

HPR (D2), that is, the component we modeled to discriminate

across conditions, is time-locked to the stimulus that is being antici-

pated (Damen & Brunia, 1987). This suggests that the HPR may

prepare for an upcoming US, an idea in keeping with our result that

an autonomic input peaking at anticipated US presentation can best

explain our HPRF. However, additional datasets with more diverse

SOAs are needed to unambiguously confirm this result.

To summarize, the present work provides a novel tool to evalu-

ate fear learning. In the current state of research, where the possi-

bility of intervening directly on memory to treat fear-related

psychiatric disorders starts being investigated, this technique pro-

vides a standardizable approach to assess fear memory. Moreover,

despite its development on an ECG-based time series, we show its

validity on data from peripheral pulse oximetry, commonly avail-

able in fMRI scanners. Therefore, with its natural suitability for

recordings in fMRI machines, our method may complement the

current standard methods for quantifying fear memory.
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