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Pneumococcal surface protein A (PspA) is one of the most abundant cell surface
protein of Streptococcus pneumoniae (S. pneumoniae). PspA variants are structurally
and serologically diverse and help evade complement-mediated phagocytosis of
S. pneumoniae, which is essential for its survival in the host. PspA is currently been
screened for employment in the generation of more effective (serotype independent)
vaccine to overcome the limitations of polysaccharide based vaccines, providing
serotype specific immune responses. The cross-protection eliciting regions of PspA
localize to the α-helical and proline rich regions. Recent data indicate significant
variation in the ability of antibodies induced against the recombinant PspA variants to
recognize distinct S. pneumoniae strains. Hence, screening for the identification of the
topographical repertoire of B-cell epitopes that elicit cross-protective immune response
seems essential in the engineering of a superior PspA-based vaccine. Herein, we revisit
epitope identification in PspA and the utility of hybridoma technology in directing the
identification of protective epitope regions of PspA that can be used in vaccine research.
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INTRODUCTION

Streptococcus pneumoniae (or pneumococcus) is a Gram-positive bacterium that asymptomatically
colonizes the upper respiratory tract of humans. Colonization of the nasopharynx by S. pneumoniae
involves adherence of the bacterium to the epithelial surface via different surface molecules
(McCullers and Tuomanen, 2001). On invading the host immune system, S. pneumoniae
can migrate to the lungs (pneumonia), blood (bacteremia), middle ear (otitis media) and
sometime cross the blood-brain barrier (meningitis) in humans (Boulnois, 1992; Mook-Kanamori
et al., 2011). Pneumococcal diseases can cause high mortality in children, the elderly and
immunocompromised patients. With more than 90 distinct serotypes, the transition from
asymptomatic nasopharyngeal carriage of S. pneumoniae to invasive pneumococcal disease
depends on the balance between the host’s defense mechanisms and bacterial adherence ability,
nutrition and their replication within the host (Bridy-Pappas et al., 2005). Of the available vaccines,
23-valent capsular polysaccharide vaccine (23-PPV) is ineffective in children less than 2 years of age
(Barocchi et al., 2007), while as 7-valent glyconjugate vaccine (7-PCV) is effective but has limited
serotype coverage (Cremers et al., 2015). Lately two vaccines, 10-valent and 13-valent glyconjugate
vaccines has been licensed for use in humans, while as 15-valent vaccine is currently under
consideration (Prymula and Schuerman, 2009; Bryant et al., 2010). Given serious consideration
to limited serotype coverage, there is utmost need to have serotype independent vaccine; generated
solely on the protein based strategy or using proteins as candidate in conjugate vaccines, for making
them effective against broader range of S. pneumoniae serotypes.
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Pneumococcal surface protein A (PspA) is one of most
abundant surface molecules and a major determinant of
protective immunity. Study of the role of PspA in virulence
through insertion duplication mutagenesis revealed that PspA
is essential for nasopharynx colonization (McDaniel et al.,
1987). Addition to its role in lung infection and bacteremia
(Ogunniyi et al., 2007), PspA prevents phagocytosis by inhibiting
complement-mediated opsonization of the bacterial cells (Ren
et al., 2004). With high genetic variability, this choline binding
protein with molecular size ranging from 67 to 99 kDa, is
employed for analyzing the global distribution of pneumococci
(Crain et al., 1990; Hollingshead et al., 2006). On one
side where serotype diversity of S. pneumoniae complicates
the generation of effective vaccines, use of proteins seems
advantageous to overcome the limitation with the existing
vaccines. To this, PspA is a promising vaccine candidate
because genomes of all S. pneumoniae isolates harbor the pspA
gene.

STRUCTURAL ANALYSIS OF PspA

Though PspA was originally identified by protective monoclonal
antibodies (mAbs) raised in CBA/N mice (McDaniel et al., 1984,
1986), cloning of full length PspA gene helped in predicting the
complete amino acid sequence of PspA (Yother and Briles, 1992).
Based on C-terminus α-helical domain, PspA is categorized into
three cross-reacting families with >55% identity and six clades,
with >75% identity, of which clades 1 and 2 are included in
family 1, clades 3, 4, and 5 in family 2, and clade 6 in family 3,
respectively (Hollingshead et al., 2000; Khan et al., 2015). Most of
the pneumococcal isolates belonging to PspA family 1 and family
2 (Beall et al., 2000; Brandileone et al., 2004; Hotomi et al., 2013).
With so much diversity between clades, it becomes imperative to
have an understanding of different structural aspects of PspA,
to confine regions that offer serotype independent protection
against varied S. pneumoniae serotypes.

On analyzing the N-terminal half of PspA from the clade 2
strain Rx1 against known members of other clades, sequence
homology of amino acids was found in the range of 45
(EF3296) -78% (BG9739) (Jedrzejas et al., 2001). As α-helical
part of the protein is capable of tolerating vast number changes
in the amino acid sequence, PspA sequences across different
serological groups are found to have a central coiled-coil part
flanked by different structural domains (Briles et al., 1998).
Despite sharing less identity in the α-helical residues, PspA
molecules are structurally conserved in terms of the position of
hydrophobic residues that contribute more to the maintenance
of coiled structure in the α-helical region (Yother and Briles,
1992). As such, conserved residual position of hydrophobic
residues rather than dissimilarity of coiled structure residues
appears a contributing factor to the biological property of
PspA.

Having four domain structural arrangements (Figure 1A),
analysis of N-terminal half (1–288 amino acid residues) of
PspA from strain Rx1 show a seven-residue periodicity in
non-polar amino acid distribution (Yother and White, 1994).

Compared to N-terminal part that shows higher presence
of net negative charge, the C-terminus of PspA contains a
proline rich region (289–371), 10 repeats of 20 conserved
amino acids that depict a choline binding domain and a
hydrophobic region of 17 amino acid residues. Despite sharing
antiphagocytic activity, difference in the primary structure of
PspA was found among the heterologous serotypes studied (Tu
et al., 1999). Furthermore, the appearance of a fibrous network
on the cell surface suggests resemblance of PspA to previously
characterized tropomyosin and M proteins. However, sequence
check of PspA with tropomyosin and streptococcal M proteins
revealed only 45% amino acid similarity in the seven-residue
periodicity of non-polar amino acids of the α-helical region of
PspA (McLachlan and Stewart, 1975; Hollingshead et al., 1986;
Fischetti, 1989). Different from the heptad repeat of streptococcal
M-protein that triggers autoimmune response, there are no
reports that suggest cross-reactivity of PspA to human proteins
(Briles et al., 2000). Representing safe for use in humans, this
advantageous property of PspA is exploited for use as vaccine
candidate; for which it is currently undergoing clinical trials.

Structural conformation prediction study firmly confirms
resemblance of PspA to fibrous proteins (Yother and Briles,
1992). Of the seven-residue periodicity (a-b-c-d-e-f-g)n repeat,
the hydrophobic residues (a, c) were found associated with the
coiled core formation and the remaining (b, d, e, f, and g) was
found having role in promoting the helix formation. Similarity
in structure corresponding to 1 through 288 amino acid residues
suggests a central coiled-coil conformation of PspA from the
strain Rx1 (Jedrzejas et al., 2000). Discontinuity in the heptad
sequence from other PspA and coiled-coil molecules generally
account for the flexibility of PspA as observed in the electron
micrographs (Hollingshead et al., 1986; Jedrzejas et al., 2001).
The flexible nature of PspA arises on account of the presence or
absence of disruptions in the periodicity of hydrophobic residues.
Differing across the PspA molecules and even among the same
serotype strains, the predominance of helix-promoting residues
in the heptad allows PspA molecules to attain similarity among
α-helical conformations (Figure 1B). Existence of PspA as a
monomer through ultracentrifugation and spectra observed in
the circular dichroism study indicates PspA of having more than
70% α-helical content (Jedrzejas et al., 2000). Studies on the
crystal structure of lactoferrin and the PspA provides evidence
for PspA existing as an α-helical coiled- coil structure (Senkovich
et al., 2007).

MECHANISTIC CHARACTERIZATION OF
PspA

Complement Inhibition
As an important component of the immune system, deposition
of the complement components on the surface of pneumococcus
is facilitated by the absence of PspA or by the addition of anti-
PspA antibodies (Figure 2A), which results in the faster clearance
of pneumococci by phagocytic cells bearing the C3b receptors
(Carroll, 1998; Ren et al., 2012). Thus, pneumococci lacking the
pspA gene get cleared faster by the immune system compared
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FIGURE 1 | Structural correlation of PspA in Streptococcus pneumoniae. (A) Domain organization of PspA in R36A strain show α-helical region, proline rich
and choline binding repeat regions. (B) Structure corresponding to α-helical domain of PspA generated by Swiss modeler online server
(https://swissmodel.expasy.org/) and validated using Ramachandran plot of Rampage server tool (http://mordred.bioc.cam.ac.uk/~rapper/rampage).

to wild type pneumococci (Joiner et al., 1983; McDaniel et al.,
1987; Briles et al., 1998). Amount of C3 deposited on the surface
of pneumococcus being higher in PspA− compared to PspA+
strains, suggest enhancement in the clearance of pneumococci
from the body (Ren et al., 2004, 2012). Consistent with the notion
that PspA+ pneumococci resist phagocytosis, evidences of faster
opsonization via alternative pathway of PspA− pneumococci is
reported (Tu et al., 1999; Cheng et al., 2000; Brown et al., 2002;
Yuste et al., 2006). Toward mechanistic elucidation, Mukerji
et al. (2012) showed that the surface bound PspA inhibited C3
deposition by competing with the C-reactive protein. However,
higher variability of PspA (classified into three family and six
clades) highlights the importance of having specific knowledge
of the epitopic regions associated with complement mediated
phagocytosis.

Lactoferrin Binding
As a member of the transferrin family of iron-binding
glycoproteins, lactoferrin is reported to be expressed by glandular
epithelial cells and secreted into the tissue secretions like
colostrums, milk, saliva, nasal wash, and tears (Ward et al.,
2005). It is also produced by neutrophils as secondary granules

(Masson et al., 1969; Berliner et al., 1995). Hammerschmidt et al.
(1999) demonstrated that PpsA interact with the iron saturated
lactoferrin. The lactoferrin binding property of PspA was found
exclusive for the human lactoferrin presumably because humans
are the only known natural hosts for S. pneumoniae (Hakansson
et al., 2001). The lactoferrin binding property has little to do
with the vaccine design, as it constitutes another important
property of bacteria that helps it to adhere with the surface
of the host. The co-crystal structure of N-terminal domain of
lactoferrin with PspA revealed that lactoferrin interact strongly
with the helix 3 and helix 4 (Senkovich et al., 2007). However, it
is not clear that how pneumococci utilize the human lactoferrin
in pathogenesis. Previous reports have shown that anti-PspA
antibodies enhance the killing of pneumococci by apolactoferrin
(Shaper et al., 2004; Bitsaktsis et al., 2012; Mirza et al.,
2016).

ROLE OF PspA IN VIRULENCE AND
IMMUNOGENICITY

Pneumococcal surface protein A attributed virulence to the
S. pneumoniae is essential for nasopharynx colonization, and
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FIGURE 2 | Role of PspA in protection. (A) PspA imparting resistance against engulfment by neutrophils. Pneumococcus showing more PspA on the surface
shows less complement deposition and as such less killing by neutrophils. (B) Mechanism adapted for the generation of anti-PspA- mAbs. (C) Graphical
demonstration of the production and characterization of antibodies (anti- PspA-mAbs) generated against different combinations of selected PspA epitopes of Red
and green color antibodies represent non-protective and protective antibodies, respectively. The green block represents epitopic regions of PspA that elicit
generation of protective antibodies.

in causing lung infection and bacteremia (Ogunniyi et al.,
2007). PspA elicits a high level of antibodies in humans, as
antibodies to PspA were found in the sera of infected individuals
(Briles et al., 2000; Melin et al., 2008, 2012). The protective
ability of PspA was analyzed when mice were given PspA−
and PspA+ unencapsulated strain Rx1 and challenged with
the strain WU2 (McDaniel et al., 1987). Active immunization
with PspA in animal models was found to confer protection
against the nasopharyngeal carriage and invasive disease (Wu
et al., 1997). Mice immunized with DNA vaccine expressing the
N-terminal region of PspA were found protected against the
intraperitoneal challenge with a strain expressing heterologous
PspA (Ferreira et al., 2006). Daniels et al. (2010) demonstrated
that the proline-rich region of PspA contains surface-accessible
epitopes that are protective in both active and passive mouse
protection experiments.

Irrespective of the serological variability, PspA expression
is observed in all clinically relevant capsular serotypes (Crain
et al., 1990). Immunization of mice with recombinant PspA
elicited antibodies produced in humans passively protects it upon
infection with pneumococci (Briles et al., 2000). Furthermore,
regions of diverse PspA variants homologous to the 192–588
amino acid region of strain Rx1 were found highly immunogenic
and as such cross-protective against unrelated strains of
pneumococci (Tart et al., 1996). The rabbit antisera raised against
the recombinant PspA from strain Rx1 (clade 2 PspA), exhibited
cross reactivity with all six clades of PspA (Nabors et al., 2000).
Similarly, Darrieux et al. (2008) analyzed recognition of a panel
of 35 pneumococcal isolates bearing diverse PspA variants by
antisera raised against the N-terminal region of PspA from
clade 1 to clade 5. The antisera against the PspA of clades 4
and 5 were found cross-reactive against pneumococcal strains
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expressing PspAs of all clades from families 1 and 2. The cross-
reactivity of antibodies elicited against a PspA hybrid which
included the N-terminal region of clade 1 fused to C-terminal
α-helical domain (∼100 amino acid residues) of PspA from
clade 4, exhibited strong binding with pneumococcal lysates of
clades 1, 4, and 5 and a weak binding with lysate from clade
2 to clade 3 (Darrieux et al., 2007). The polyclonal sera against
PspA/Rx1 provided significant cross protection against challenge
with the virulent strains when passively transferred into the mice
(Briles et al., 2000). The active immunization of PspA from
family 2 containing α-helical domain and proline-rich region
provided significant cross protection when challenged with the
strains from PspA families 1 and 2, while immunization with the
α-helical domain of family 2 PspA alone was found involved in
providing family specific protection (Moreno et al., 2010; Kothari
et al., 2015). Using monoclonal antibodies, Kolberg et al. (2001)
found that individual mAb cross-reacted with 20–50% strains and
in combination could recognize about 94% of the strains analyzed
(Kolberg et al., 2001). With higher cross reactivity, antibodies
generated against PspA held greater possibility of providing
cross-protection against varied pneumococcal strains (Tart et al.,
1996; Briles et al., 2000; Andre et al., 2015; Kristian et al., 2016).
Despite sequence divergence, cross-reactivity of PspA observed
in most of the studies on PspA makes it a potentially promising
vaccine candidate.

EPITOPE MAPPING USING ANTI-PspA
MONOCLONAL ANTIBODIES

Attributing S. pneumoniae with the anti-phagocytic property, use
of recombinant PspA leads to production of protective antibodies
similar to capsular polysaccharide. With evidences suggesting
that all anti-PspA antibodies are not protective, it becomes
imperative to have an understanding of the epitopes that can
elicit protective antibody response. Epitope mapping is currently
been employed in the identification of cross protecting antibodies
generated against different epitopic regions of PspA to access
their contribution in providing protection across different clades
of PspA, for employment in the generation of superior serotype
independent vaccine. To localize protection eliciting regions of
PspA, McDaniel et al. (1994) raised a series of nine mAbs against
PspA from strain Rx1. Of them, five mAbs attributing protective
behavior on infecting mice with a virulent strain were mapped to
N-terminal 115 amino acids and 192–260 amino acid stretches of
PspA from the strain Rx1. Compared with mAb that correspond
to N-terminal 115 amino acids residues, four mAbs recognizing
192–260 amino acid regions were found more cross-reactive
(Figures 2B,C).

Recognizing different subset of pneumococcal strains, seven
anti-PspA mAbs were divided into two groups on the basis
of their reactivity. It was found that all epitopes recognized
by these mAbs were surface accessible (Kolberg et al., 2001).
Surprisingly, a combination of the two anti-PspA mAbs detected
94% of the 77 strains analyzed. In a study, Darrieux et al.
(2008) reported anti-PspA antibodies generated against family
2 PspAs, which showed more cross reactivity across different

clades compared with those generated against family 1 PspAs
that showed limited cross-reactivity within the family. Rohatgi
et al. (2009) reported generation of anti-PspA mAbs against
surface exposed domain of PspA from R36 strain. In their study,
they suggested that these antibodies exhibit diverse VH and Vk
genes/families. Furthermore, characterization of anti-PspA mAbs
revealed that seven mAbs that encoded DH-less heavy chain gene
did not affect to attain the average relative avidity. Compared with
the recombinant PspA, immunization of mice with heat-killed
R36A resulted in generation of anti-PspA polyclonal antibodies
that too with higher avidity (Rohatgi et al., 2009). In a similar
type of studies, mAbs generated against proline-rich region
(PPR) of PspA from Rx1 strain were found more cross- reactive
(Daniels et al., 2010; Melin et al., 2012). These studies clearly
indicated the potential benefit of identifying protective B-cell
epitopes of PspA that show conserved nature across all PspA
clades.

MEDICAL PERSPECTIVE

Emergence of non-vaccine serotypes poses a great challenge in
the management of pneumococcal diseases. These concerns are
driving efforts to develop a ‘universal’ pneumococcal vaccine that
is immunogenic in all age groups and broadly cross protective
against all serotypes. Efforts are being made to develop a serotype
independent protein based vaccine to prevent pneumococcal
infections. Rather than targeting a single candidate protein,
targeting a complex of proteins based on their roles in bacterial
pathogenicity and physiology seems appropriate. Several studies
have reported use of two or more proteins for achieving additive
and broad protection against pneumococci in mice (Briles et al.,
2003; Ogunniyi et al., 2007; Chen et al., 2015; Lagousi et al., 2015).

The rapid emergence of resistance to antimicrobials
like penicillin has complicated the global management of
pneumococcal disease. The polysaccharide vaccines have several
shortcomings which include its limited serotype coverage and
poor immunogenicity in high-risk groups. To this, replacement
of the vaccine serotypes by other non-vaccine serotypes is
currently being perused. However, increasing the number of
serotypes in the vaccine increases the cost of preparation that
may limit its deployment in under-developing and developing
countries. These concerns are driving efforts to develop universal
pneumococcal vaccine that is immunogenic in all age groups
and broadly cross protective against all serotypes. As proteins
are antigenically conserved across epidemiologically relevant
serotypes, it is assumed that coupling proteins (Figure 2C)
with potential to act as effective immunogens in a multi-
component protein-based pneumococcal vaccine or as a carrier
protein in conjugate vaccine would confer broader resistance to
pneumococci. With this, protein based vaccines are considered as
a better replacement of capsular-polysaccharide based vaccines.

Study of the prevalence of seven different protein
candidates including PspA within global (445 isolates
from 26 countries representing four continents) serotype 1
collection of S. pneumoniae, revealed only 68% (305/445)
coverage for possible implementation as a vaccine candidate
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(Cornick et al., 2017). Individual distribution of PspA among
serotype 1 study population showed presence of PspA among
76% of Asian isolates, 67% of African isolates, 68% of European
isolates and 41% among South American isolates. Though,
monovalent usage showing limited coverage, multivalent vaccine
candidate combinations (PspA combination with CbpA, PcpA,
and PhtD) increased global serotype coverage of PspA from
68 to 86%. Taking a note of this, multivalent vaccine having
PspA as a component advocates increased serotype coverage
relative to monovalent vaccine candidates. Increases in the
efficaciousness of protein based vaccines in combinations thereby
offers an effective vaccine intervention to the disease across the
globe, irrespective of the type and geographical distribution of
S. pneumoniae.

Represented as hotspot of recombination events, PspA
undergoes highest number of transforming events to evade
host antibody response (Croucher et al., 2017). To this,
identification of conserved protection eliciting B-cell epitopes
of PspA holds great promise in engineering a superior PspA-
based vaccine. Knowledge of protective epitopes can also be
employed in the generation of fusion construct of multi-
epitopes or used for developing a covalent conjugate with

well-defined dendrimers or cyclodextran for direct employment
as a multiantigenic semi-synthetic immunogen (Gupta et al.,
2012). Additionally, these epitopes can also be used as an
important constituent in the preparation of conjugate vaccines
with the pneumococcal polysaccharide. Collectively, PspA seems
an appropriate option to be selected as one of the candidates that
can be employed to reduce the global burden of pneumococcal
diseases.
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