Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films

MPG-Autoren
/persons/resource/persons182542

Razdolski,  Ilya
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32638

Alekhin,  Alexandr
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
IMMM UMR CNRS 6283, Universite du Maine;

/persons/resource/persons21862

Melnikov,  Alexey
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Faculty of Physics, Martin Luther University of Halle-Wittenberg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Razdolski_JPCM17_ultrafast_MOKE_analysis.pdf
(beliebiger Volltext), 514KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Razdolski, I., Alekhin, A., Martens, U., Bürstel, D., Diesing, D., Münzenberg, M., et al. (2017). Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films. Journal of Physics: Condensed Matter, 29(17): 174002. doi:10.1088/1361-648X/aa63c6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-32AE-3
Zusammenfassung
We discuss fundamental aspects of laser-induced ultrafast demagnetization probed by the time-resolved magneto-optical Kerr effect (MOKE). Studying thin Fe films on MgO substrate in the absence of electronic transport, we demonstrate how to disentangle pump-induced variations of magnetization and magneto-optical coefficients. We provide a mathematical
formalism for retrieving genuine laser-induced magnetization dynamics and discuss its applicability in real experimental situations. We further stress the importance of temporal resolution achieved in the experiments and argue that measurements of both time-resolved MOKE rotation and ellipticity are needed for the correct assessment of magnetization
dynamics on sub-picosecond timescales. The framework developed here sheds light onto the details of the time-resolved MOKE technique and contributes to the understanding of the interplay between ultrafast laser-induced optical and magnetic effects.