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Abstract

The paper provides mathematical foundations for a homeomor-
phism theorem à la Mertens and Zamir (1985) when the space of belief
hierarchies of an agent has the uniform topology rather than the prod-
uct topology. The Borel σ-algebra for the uniform topology being
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the topology of weak convergence on the space of measures on this
σ-algebra with reference to the uniform topology on the underlying
space. For a countable product of complete separable metric spaces,
the paper shows that this topology on the space of measures on the
product σ-algebra is metrizable by the Prohorov metric. The projec-
tion mapping from such measures to sequences of measures on the first
` factors, ` = 1, 2, ..., is a homeomorphism if the range of this mapping
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1 Introduction

This paper provides mathematical foundations for studying the question
whether the homeomorphism theorem of Mertens and Zamir (1985) remains
valid when the space of belief hierarchies of an agent is endowed with the
topology generated by a uniform metric rather than the product topology.
In games of incomplete information, a belief hierarchy of an agent is a list of
beliefs of different orders: the agent’s first-order belief is a subjective prob-
ability distribution over states of nature, the agent’s second-order belief is a
subjective probability distribution over states of nature and the other agents’
first-order beliefs, the agent’s third-order belief is a subjective probability
distribution over states of nature and other agents’first- and second-order
beliefs, and so on. A belief hierarchy is consistent if the implications of
a higher-order belief for events that are also covered by lower-order beliefs
coincide with the lower-order beliefs for these events.

A belief hierarchy is an element of the product of the spaces of beliefs of
different orders. Mertens and Zamir (1985) imposed the topology of weak
convergence on the space of beliefs of order k, for each k, and the associated
product topology on the space of belief hierarchies.1 With this specification
of topologies, they showed there is a homeomorphism that maps consistent
belief hierarchies of an agent into probability measures over states of nature
and other agents’belief hierarchies.

Dekel et al. (2006) and Chen et al. (2010, 2017) argued that the product
topology on the space of belief hierarchies is too coarse to capture all the
continuity properties of strategic behaviour that one may be interested in.
As an alternative, Chen et al. (2010, 2017) proposed the topology that is
induced by a uniform metric on belief hierarchies. They showed that, for
any ε > 0, there exists δ > 0 such that, if two hierarchies are δ-close under
the uniform metric, an action that interim correlated ε-rationalizable for one
hierarchy is also interim correlated ε′-rationalizable for any ε′ > ε, where
δ can be chosen uniformly over all games with a fixed payoff bound.2 For
brevity, I will refer to the topology induced by the uniform metric as the
uniform topology.

1For an extension of this analysis, see Brandenburger and Dekel (1993).
2 In fact they showed that the topology generated by their uniform metric is equivalent

to the uniform strategic topology of Dekel et al. (2006), which is defined precisely in terms
of upper and lower continuity properties of interim correlated ε-rationalizable behaviours.
Rubinstein’s (1989) email game shows that the desired lower continuity properties are not
generally obtained if the space of belief hierarchies has the product topology. In the email
game, beliefs of arbitrarily high orders can have a significant impact on strategic behaviour,
which is incompatible with lower continuity with respect to the product topology.
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What becomes of the Mertens-Zamir homeomorphism theorem when this
topology is used? Because the change of topology concerns both the domain
and the range of the homeomorphism in Mertens and Zamir (1985), the
answer to this questions cannot simply be derived from the observation that
the uniform topology is finer than the product topology.

In Hellwig (2016/2023), I prove a homeomorphism theorem of the Mertens-
Zamir type when belief hierarchies have the uniform topology. The theorem
involves the product σ-algebra on the space of belief hierarchies and, for
measures on this σ-algebra, the topology of weak convergence that is de-
fined by the uniform topology on belief hierarchies. In this topology, a
sequence of measures converges to some limit if and only if, for every real-
valued measurable function that is bounded and continuous with respect to
the uniform topology on the underlying space, the sequence of integrals of
the function with respect to the different measures converges to the integral
of the function with respect to the limit measure.

Reliance on the product σ-algebra rather than the Borel σ-algebra for the
chosen topology is unusual. Usually, one chooses a topology that is suitable
for the analysis one is pursuing and then one works with the Borel σ-algebra
for that topology. Under this procedure, any function that is continuous for
the chosen topology is also measurable. However, this is no more than a
matter of convenience. There are no deeper reasons for this subordination
of the choice of a σ-algebra to the topology.

In the context of belief hierarchies, however, even if one prefers the uni-
form topology, the choice of the product σ-algebra is mandated by the sub-
stantive consideration that the Borel σ-algebra on the space of states of
nature and other agents’belief hierarchies is much larger than the product
σ-algebra and that the hierarchies of beliefs of different orders do not con-
tain the information that is needed to assign probabilities to events in the
larger σ-algebra that do not also belong to the smaller σ-algebra. In some
cases, it may even be impossible to assign such probabilities to all events in
the larger σ-algebra at all.3

The product σ-algebra is defined without reference to any topology. It
happens to coincide with the Borel σ-algebra for the product topology but
there is also a link to the uniform topology. To to see this, consider the

3Consider the infinite product {0, 1}∞. The Borel σ-algebra for the topology induced
by a uniform metric is just the set of all subsets of {0, 1}∞. Consider a measure on the
product σ-algebra that assigns the probability one half to each of the outcomes 0 and 1
for the k-th factor, for any k, with independence of the different factors (fair cointossing).
This measure on the product σ-algebra cannot be extended to a measure on the σ-algebra
of all subsets of {0, 1}∞, i.e., the Borel σ-algebra for the uniform topology.
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σ-algebra that is generated by the open balls in the uniform topology.4 In
contrast to the Borel σ-algebra for the uniform topology, this σ-algebra
is actually smaller than the product σ-algebra. However, the difference
is negligible because the measures on the product σ-algebra are just the
completions of measures on the σ-algebra that is generated by the open
balls in the uniform topology. For any measure on the product σ-algebra
and any set in this σ-algebra, there is a set in the σ-algebra generated by
the open balls in the uniform topology that is a subset of the first set and
has the same measure.

For the proof of the homeomorphism theorem, a key issue is whether
the topology on the space of measures is metrizable. For Borel measures,
it is well known that the topology of weak convergence is metrizable if and
only if it is metrizable by the so-called Prohorov metric. Moreover, such
measures are metrizable by the Prohorov metric if they are separable in
the sense that they assign probability one to a separable set.5 The latter
condition is trivially satisfied if the underlying space itself is separable. It
is also satisfied if the underlying space is not separable but the cardinal of
any discrete subset of the space is not atomlessly measurable.6

In the present context, these results cannot be used because the product
σ-algebra is not a Borel σ-algebra for the uniform topology. For the space
of probability measures on the product σ-algebra, the main result of this
paper shows that, nevertheless, under a slightly stronger version of the set
theoretic axiom of Billingsley (1968), the topology of weak convergence that
is induced by the uniform topology on the underlying space is metrizable by
a suitably adapted Prohorov metric.

The argument is similar to the argument for Borel measures. However,
I replace the notion of separability by a notion of quasi-separability. I say
that a measure on the product σ-algebra is quasi-separable in the uniform
topology if and only if any family of open balls in the uniform topology
to which the measure assigns probability one has a countable subfamily to
which the measure also assigns probability one. Under the assumption that

4The σ-algebra that is generated by the open balls in the uniform topology was intro-
duced by Dudley (1966, 1967)

5See Theorem 5, p. 238, in Billingsley (1968).
6See Theorem 2, p. 235, in Billingsley (1968). A cardinal said to be atomlessly measur-

able if there exists a set with cardinal no greater than the given cardinal and an atomless
probability measure that is defined on all subsets of the given set. Billingsley uses the
term "measurable". The more recent literature reserves the pair "measurable - nonmea-
surable" for the case of binary measures taking the values zero and one, and uses the
pair "atomlessly measurable - not atomlessly measurable" for the case considered by
Billingsley.
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the continuum is not atomlessly measurable, I show that every measure on
the product σ-algebra is quasi-separable with respect to the uniform topol-
ogy. Moreover, if the measures on this σ-algebra are quasi-separable, the
topology of weak convergence on the space of these measures is metrizable
by the Prohorov metric.

The analysis will proceed without reference to the game theoretic mo-
tivation. For an arbitrary countable product of complete separable metric
spaces, Section 2 below introduces the σ-algebra that is generated by the
open balls in the uniform topology and formulates the results on the quasi-
separability of measures on this σ-algebra and the metrizability of the topol-
ogy of weak convergence on the space of such measures. Quasi-separability
is proved in Section 3, metrizability by the Prohorov metric in the appendix.
Section 5 contains a homeomorphism theorem without reference to the game
theory, however.

2 The Main Results

Let X1, X2, ... be non-singleton complete separable metric spaces with met-
rics ρ1, ρ2, ... . Suppose that the product

X =
∞∏
k=1

Xk (2.1)

has the topology induced by the uniform metric ρu where, for any x and x̂
in X,

ρu(x, x̂) = sup
k
ρk(πk(x), πk(x̂)) (2.2)

and, for any k, πk is the projection from X to Xk. I use the notation Xu to
indicate that X has the topology induced by ρu.

Occasionally, I will also refer to the product topology on X. In those
cases, I will use the notation Xp. As a product of complete separable metric
spaces, Xp itself is a complete separable metric space.7 A metric ρp for the
product topology is given by the formula

ρp(x, x̂) =
∑
k

αkρk(πk(x), πk(x̂)), (2.3)

7See Problem 3, p. 42, Proposition 2.4.4, p. 50, and Theorem 2.5.7, p. 62, in Dudley
(2002).
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where α is some number strictly between zero and one and, for any k, πk is
again the projection from X to Xk.

The topology on X that is induced by the uniform metric ρu is strictly
finer than the product topology. Indeed the space Xu is non-separable.8

The non-separability of Xu causes diffi culties for working with the Borel σ-
algebra B(Xu) and the spaceM(Xu) of probability measures on (Xu,B(Xu)).

As an alternative, I consider the product σ-algebra Bπ(X) and the space
Mπ(X) of probability measures on (X,Bπ(X)). Both Bπ(X) and Mπ(X)
are defined without reference to a topology onX. As is well known, however,
Bπ(X) = B(Xp), the product σ-algebra is equal to the Borel σ-algebra that
is induced by the product topology on X.

As mentioned in the introduction, I will also refer to the σ-algebra
B0(Xu) that is generated by the ρu-open balls and with the spaceM0(X

u) of
probability measures on (Xu,B0(Xu)).9 This σ-algebra is obviously coarser
then the Borel σ-algebra B(Xu).10 The following lemma shows that it is also
coarser than the product σ-algebra Bπ(X).

Lemma 2.1 B0(Xu) ⊂ Bπ(X).

Proof. Given that the product σ-algebra Bπ(X) coincides with the Borel σ-
algebra B(Xp) for the product topology, it suffi ces to show that any open ball
in Xu can be represented as a countable intersection of countable unions of
open balls in the product topology. To see this, consider any x = {xk}∞k=1 ∈
X and any r > 0. The ρu-open r-ball around x is given as

Bu(x, r) =
∞⋃
n=1

∞∏
k=1

Bk(xk,max(r − 1

n
, 0)), (2.4)

where, for each k and r′ > 0, Bk(xk, r′) is the ρk-open r
′-ball around xk.

Equation (2.4) can be rewritten as

Bu(x, r) =
∞⋂
`=1

∞⋃
n=1

[∏̀
k=1

Bk(xk,max(r − 1

n
, 0))×

∞∏
k=`+1

Xk

]
, (2.5)

8For k = 1, 2, ..., let x∗k and x̂k be two distinct elements of Xk. The set of sequences
{xk}∞k=1 such that, for any k, xk ∈ {x∗k, x̂k} is uncountable and is discrete in the topology
induced by ρu.

9This σ-algebra was proposed by Dudley (1966, 1967) in order to avoid the diffi culties
in working with B(Xu).
10B0(Xu) contains the ρu-open balls and is closed under countable unions and intersec-

tion, B(Xu) of ρu-open sets, i.e. uncountable unions of ρu-open balls and is closed under
countable unions and intersections.
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which is a countable intersection of countable unions of cylinder sets of the
form

C = B1 × ...×B` ×X`+1 ×X`+2 × ...., (2.6)

where, for k = 1, ...`, Bk is a ρk-open subset of Xk. Since B(Xp) contains the
cylinder sets and is closed under countable unions and intersections, (2.5)
implies that Bu(x, r) ∈ B(Xp) and hence that Bu(x, r) ∈ Bπ(X).

To take account of the fact that X has the uniform topology, I say that
a sequence {µr} of measures in Mπ(Xu) converges weakly to a measure
µ ∈Mπ(Xu) if and only if∫

X
f(x)dµr(x)→

∫
X
f(x)dµ(x) (2.7)

for all f in the space Cπ(Xu) of bounded, ρu-continuous, and Bπ(X)-measurable
real-valued functions on X. For measures in M0(X

u), the same definition
applies, except that the functions f must belong to the space C0(Xu) of
bounded, ρu-continuous, and B0(X)-measurable real-valued functions on X.

An important question concerns the metrizabilizy of the topology weak
convergence. For Borel measures, Billingsley (1968) has shown that, if the
topology of weak convergence is metrizable at all, it is metrizable by the
Prohorov metric. Given the uniform topology on X, the associated (ρu-
based) Prohorov distance between any two measures µ and µ̂ inMπ(Xu) is
defined as the greatest lower bound on the set of ε > 0 such that

µ(B) ≤ µ̂(Bε) + ε and µ̂(B) ≤ µ(Bε) + ε (2.8)

for all sets B ∈ Bπ(X). As shown by the following lemma, the set Bε in
(2.8) is always well defined.

Lemma 2.2 For any B ∈ Bπ(X) and any ε > 0, the set

Bε :=
⋃
x∈B
{x′ ∈ X|ρu(x′, x) < ε} (2.9)

is also an element of Bπ(X).

Thus, the ρu-based Prohorov distance onMπ(Xu) is always well defined.
The following result shows that it provides a suitable metric for the topology
of weak convergence onMπ(Xu).
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Theorem 2.3 If the cardinal c of the continuum is not atomlessly mea-
surable, the topology of weak convergence on Mπ(Xu) is metrizable by the
ρu-based Prohorov metric onMπ(Xu).

For Borel measures, metrizability of the topology of weak convergence
by the Prohorov metric is established in Appendix III of Billingsley (1968).
The analysis there involves two steps. First, Theorem 2, p. 235, gives a
condition under which any Borel measure is separable in the sense that
any family of open sets to which the measure assigns probability one has
a countable subfamily to which the measure also assigns probability one.
Second, Theorem 5, p. 238, shows that, on a space of separable Borel
measures, the topology of weak convergence is equivalent to the topology
induced by the Prohorov metric.

BecauseMπ(Xu) is not a space of Borel measures, I cannot use Billings-
ley’s arguments as such. However, if I replace the notion of separability of
a measure by a notion of quasi-separability, I can use similar arguments. A
measure inMπ(Xu) is quasi-separable if and only if any family of ρu-open
balls to which the measure assigns probability one has a countable subfam-
ily to which the measure also assigns probability one. The following result
shows that quasi-separability is in fact enough to ensure that the topology
of weak convergence is metrizable.

Proposition 2.4 If the measures inMπ(Xu) are quasi-separable, the topol-
ogy of weak convergence onMπ(Xu) is metrizable by the ρu-based Prohorov
metric.

The proofs of Lemma 2.2 and Proposition 2.4 are given in the appendix.
The argument for Proposition 2.4 is step by step the same as the argument
for Theorem 5, p. 238, in Billingsley (1968).

Given Proposition 2.4, Theorem 2.3 is an immediate consequence of the
following proposition, which is proved in Section 3 below.

Proposition 2.5 If the cardinal c of the continuum is not atomlessly mea-
surable, the measures inMπ(Xu) are quasi-separable.

As a by-product of the analysis, one also obtains the following result on
the relation between Mπ(Xu) and the space M0(X

u) of measures on the
σ-algebra that is generated by the ρu-open balls.
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Proposition 2.6 If the cardinal c of the continuum is not atomlessly mea-
surable, any measure inMπ(X) is the completion of a measure inM0(X

u),
i.e., for any measure µ̄ ∈Mπ(X), there exists a measure µ ∈M0(X

u) such
that, for every B ∈ Bπ(X), there exists B0 ∈ B0(Xu) such that B0 ⊂ B and
µ̄(B\B0) = 0.

In this analysis, the assumption that the cardinal c of the continuum
is not atomlessly measurable replaces the assumption of Billingsley’s (1968)
that no discrete subset of the space has a cardinal that is atomlessly measur-
able. Whereas discrete sets depend on the topology, my somewhat stronger
assumption does not depend on the topology of the underlying space.

By a theorem of Banach and Kuratowski (1929), the assumption that the
cardinal c of the continuum is not atomlessly measurable is implied by the
Continuum Hypothesis (CH). The older literature, such as Dudley (1967)
or Billingsley (1968), invokes this fact to suggest that the assumption is
unproblematic. Under the influence of Cohen (1966), CH has increasingly
met with criticism in recent decades. It it therefore worth noting that CH
is not necessary for the condition that c is not atomlessly measurable. Bar-
toszynski and Halbeisen (2003) point to the fact that, in Banach and Ku-
ratoski (1929), the conclusion that c is not atomlessly measurable follows
from the existence of a certain matrix, which Bartoszynski and Halbeisen
call a BK-matrix. The existence of such a matrix is implied by CH but is
also compatible with the negation of CH.11

3 Quasi-Separability of Measures in Mπ(X
u)

This section is devoted to the proof of Propositions 2.5 and 2.6.

Lemma 3.1 For any k, the projection mapping πk from Xu to X0× ...×Xk

is continuous and open.

Proof. Continuity is trivial. To prove openness, I note that any ρu-open
set U ⊂ Xu can be written in the form

U =
⋃
`∈L

V` (3.1)

11 If the underlying space if the unit interval, a BK-matrix is a doubly infinite array
of sets Aik, i, k ∈ N, such that (i) for each i ∈ N, ∪k∈NAik = [0, 1], (ii) for each i ∈ N,
and all k, k′ ∈ N, Aik ∩ Aik′ = ∅ if k 6= k′, and (iii) for any sequence {ki} in N, the set
∩i∈N(∪k≤kiAik) is at most countable. Bartoszynski and Halbeisen show that such a matrix
exists if and only if there exists a K-Lusin set of the size of the continuum.
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where each V`, ` ∈ L, is a ρu-open ball around an element x` = (x`0, x
`
1, ...)

of U. Any one of these balls takes the form

V` =
∞⋃
n=1

∞∏
j=0

Bj(x
`
j , r

` − 1

n
), (3.2)

with projections

πk(V`) =
∞⋃
n=1

k∏
j=0

Bj(x
`
j , r

` − 1

n
) =

k∏
j=0

Bj(x
`
j , r

`), (3.3)

which are open in X0 × ...×Xk, k = 0, 1, 2, ... Since

πk(U) =
⋃
`∈L

πk(V`), (3.4)

it follows that πk(U) is open if U is ρu-open.

Corollary 3.2 For any k and any ρu-open set U , the set

Πk(U) = πk(U)×Xk+1 ×Xk+2 × ... (3.5)

is an element of Bπ(X) = B(Xp).

For any ρu-open set U ⊂ Xu and all k, one obviously has U ⊂ Πk+1(U) ⊂
Πk(U). Therefore, the set

V (U) =
∞⋂
k=0

Πk(U) (3.6)

is well-defined and satisfies
U ⊂ V (U). (3.7)

Lemma 3.3 Let U, Û be two ρu-open subsets of X and suppose that, for
some ε > 0,

ρu(x, x̂) ≥ ε (3.8)

for all x ∈ U and x̂ in Û . Then V (U) ∩ V (Û) = ∅.
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Proof. The premise of the lemma implies that, for every δ > 0 and every
x ∈ U and x̂ in Û , there exists k such that

ρk(πk(x), πk(x̂)) ≥ ε− δ. (3.9)

If the lemma were false, then for some x∗ ∈ X, one would have x∗ ∈
Πk(U) for all k and x∗ ∈ Πk(Û) for all k. Since ρk(πk(x

∗), πk(x
∗)) = 0 for

all k, this is incompatible with (3.9).

As a countable intersection of elements of Bπ(X), V (U) is also an element
of Bπ(X). Therefore, for any ρu-open set U ⊂ Xu and any measure µ ∈
Mπ(X), the quantity µ(V (U)) is well defined. By definition,

µ(V (U)) ≥ µ∗(U), (3.10)

where µ∗, the outer measure induced by the measure µ, is defined by the
formula

µ∗(U) := inf
∞∑
i=1

µ(Bi), (3.11)

where the infimum is taken over all sequences {Bi}∞i=1 such that Bi ∈ Bπ(X)

for all i and U ⊂
∞⋃
i=1

Bi.
12 The following result plays a similar role as The-

orem 1 in Marczewski and Sikorski (1948); the proof idea is due to Banach
(1930).

Lemma 3.4 Assume that the cardinal c of the continuum is not atomlessly
measurable, and let {Ui}i∈I be a collection of ρu-open subsets of X such that,
for some ε > 0, for all i and j in I,

ρu(xi, xj) ≥ ε (3.12)

for all xi ∈ Ui and all xj ∈ Uj . Then for any µ ∈ Mπ(X), there exists a
finite or countable set I∗ ⊂ I such that

µ∗(Ui) > 0 for i ∈ I∗ (3.13)

and

µ∗

 ⋃
i∈I\I∗

Ui

 = 0. (3.14)

12For the definition of outer measure, see Dudley (2002), p. 89.
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Proof. Before embarking on main argument, I recall that, when endowed
with the product topology, the space X is a complete separable metric space.
By the isomorphism theorem therefore the cardinal of X is no greater than
c.13 I claim that therefore also the cardinal of the index set I cannot be
greater than c. To prove this claim, I note that any mapping ϕ : I → X such
that ϕ(i) ∈ Ui for all i is an injection because, by (3.12), ρu(ϕ(i), ϕ(̂ı)) ≥
ε > 0 for all i and ı̂ in I satisfying i 6= ı̂. The cardinal of I is therefore equal
to the cardinal of the range of ϕ, which cannot exceed the cardinal of X.

Turning to the claim of the lemma, by (3.10), it suffi ces to prove that
there exists a finite or countable set I∗∗ ⊂ I such that

µ(V (Ui)) > 0 for i ∈ I∗∗ (3.15)

and

µ

V
 ⋃
i∈I\I∗∗

Ui

 = 0. (3.16)

The set I∗∗ is defined as the union over n of the sets

In := {i ∈ I|µ(V (Ui)) >
1

n
}.

I claim that each set In has at most n elements and, therefore, that I∗∗,
as a countable union of these sets, is at most countable. For suppose that
some set In has n′ > n elements, say i1, ..., in′ . Then, by Lemma 3.3 and
the countable additivity of the measure µ,

µ

 in′⋃
i=i1

V (Ui)

 =

in′∑
i=i1

µ(V (Ui)) > n′ · 1

n
> 1,

which is impossible.
For any set Î ⊂ I, the union

⋃
i∈Î

Ui is an open set in Xu. By the argument

given above, it follows that, for any Î ⊂ I, the set V

⋃
i∈Î

Ui

 belongs to

the σ-algebra B(Xp) and therefore also to the σ-algebra B0(Xu). One may
therefore define a set function ν by setting

ν(Î) = µ

V
⋃
i∈Î

Ui

 for Î ⊂ I.

13See Theorem 13.1.1, p. 487, in Dudley (2002).
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Notice that this set function is defined on all subsets of I.
By the definition of I∗∗,one obviously has

ν({i}) = µ(V (Ui)) = 0 for i ∈ I\I∗∗, (3.17)

i.e. the set function ν has no atoms in I\I∗∗.
I also claim that ν is countably additive. Let Ij , j = 1, 2, ... be any

sequence of disjoint subsets of I. Then, by Lemma 3.3 and the countable
additivity of µ,

ν

 ∞⋃
j=1

Ij

 = µ

V
 ∞⋃
j=1

⋃
i∈Ij

Ui

 =

∞∑
j=1

µ

V
⋃
i∈Ij

Ui

 =

∞∑
j=1

ν(Ij),

which proves countable additivity of ν.
Because the cardinal of I is at most c, the cardinal of I\I∗∗ is also at most

c. By the assumption that the continuum is not atomlessly measurable, it
follows that ν(I\I∗∗) = 0 and hence that

µ

V
 ⋃
i∈I\I∗∗

Ui

 = ν(I\I∗∗) = 0,

which proves (3.16). The lemma follows immediately.

Proposition 3.5 If the cardinal c of the continuum is not atomlessly mea-
surable, then for any measure µ ∈Mπ(X) and any family G of ρu-open balls
covering X, there exists a countable subfamily G∗ ⊂ G such that µ(G∗) = 1,
where G∗ is the union of the sets in G∗.

Proof. The proof follows along similar lines as the proof of Theorem 2, p.
235, in Billingsley (1968). Let µ and G be as specified in the proposition.
Because Xu is a metric space, Theorem 4.21, p. 129, in Kelley (1955),
implies that G has a σ-discrete refinement, i.e., there exists a family H of
ρu-open sets (not necessarily balls) covering X such that, for every H ∈ H,
there exists G(H) ∈ G such thatH ⊂ G(H) and, moreover, H can be written
as a countable union

H =
∞⋃
t=1

Ht (3.18)

where, for any t, any two sets Hti, Htj in Ht, there exists εt > 0 such that
ρu(xi, xj) ≥ εt for all xi ∈ Hti and all xj ∈ Htj .
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For any t, let It be the set of indices i such that Hti ∈ Ht. By Lemma
3.4, the set It has a finite or countable subset I∗t such that

µ∗(Hti) > 0 for i ∈ I∗t (3.19)

and

µ∗

 ⋃
i∈It\I∗t

Hti

 = 0. (3.20)

Let H∗t be the family of sets Hti, i ∈ I∗t , and let

H∗ =

∞⋃
t=1

H∗t . (3.21)

Then H∗ is a countable union of finite or countable sets and is itself count-
able.

Recalling that, for each H ∈ H, there exists G(H) ∈ G such that H ⊂
G(H), define G∗ ⊂ G so that G ∈ G∗ if and only if G = G(H) for some
H ∈ H∗. Since H∗ is countable, so is G∗. Moreover, because, by Lemma 2.1,
the elements of G∗ belong to Bπ(X), so does the countable union

G∗ =
⋃

H∈H∗
G(H).

Hence µ(G∗) is well defined and so is µ(X\G∗) = 1− µ(G∗).
I claim that µ(G∗) = 1. For suppose that µ(G∗) < 1. Then also µ(X\G∗) >

0. Hence also µ∗(X\G∗) > 0, where µ∗ is the outer measure defined by µ ,
in accordance with (3.11) above. Since H ⊂ G(H) for all H, we also have
X\G∗ ⊂ X\H∗, where H∗ is the union of the sets Hti over all t and all
i ∈ I∗t . Thus, µ∗(X\G∗) > 0 implies µ∗(X\H∗) > 0. Because the refinement
H of the family G covers X , the set X\H∗ is a subset of the union of the
sets Hti over all t and all i ∈ It\I∗t . By the subadditivity of outer measure,
it follows that

µ∗(X\H∗) ≤ µ∗
 ∞⋃
t=1

⋃
i∈It\I∗t

Hti

 ≤ ∞∑
t=1

µ∗

 ⋃
i∈It\I∗t

Hti

 . (3.22)

By (3.20) the right-hand side of (3.22) is zero. Therefore, µ∗(X\H∗) = 0,
which is incompatible with µ(G∗) < 1. This completes the proof of the
proposition.
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Proposition 2.5 follows immediately. If the cardinal c of the continuum
is not atomlessly measurable, the measures inMπ(Xu) are quasi-separable.

The arguments used to prove Proposition 3.5 can also be used to prove
Proposition 2.6, concerning the relation of the space Mπ(Xu) of measures
on the product σ-algebra on X to the space M0(X

u) of measures on the
σ-algebra generated by the ρu-open balls. For any measure µ̄ ∈ Mπ(Xu),
the restriction of µ̄ to the smaller σ-algebra B0(Xu) belongs to the space
M0(X

u) of measures on (Xu,B0(Xu)). Proposition 2.6 is therefore equiva-
lent to the following result.

Proposition 3.6 If the cardinal c of the continuum is not atomlessly mea-
surable, then, for every measure µ ∈ Mπ(X) and every set B ∈ Bπ(X),
there exists B0 ∈ B0(Xu) such that B0 ⊂ B and µ(B\B0) = 0.

Proof. The product σ-algebra Bπ(X) is the smallest σ-algebra that is closed
under countable unions and countable intersections and that contains the
cylinder sets of the form

C(Bk) = Bk ×Xk+1 ×Xk+2 × ...

for k = 1, 2, ... and Bk ∈ B(X1 × ... × Bk). Therefore it suffi ces to prove
that the claim of the proposition is true for every measure µ ∈Mπ(X) and
every cylinder set C(Bk), for k = 1, 2, ... and Bk ∈ B(X1 × ...×Xk). Fix a
measure µ ∈ Mπ(X) and a cylinder set C(Bk). Without loss of generality,
one may assume that Bk is an open subset of the product X1 × ...×Xk.

If µ(C(Bk)) = 0, the claim of the proposition is trivially true because
for any B0 ∈ B0(Xu) such that B0 ⊂ C(Bk), one has µ(C(Bk)\B0) ≤
µ(C(Bk)) = 0. Suppose therefore that µ(C(Bk)) > 0.

Define a new product space X̂ =
∞∏
`=1

X̂` by setting X̂1 = Bk and, for

` > 1, X̂` = Xk+`−1. One easily verifies that the product σ-algebra Bπ(X̂)
on X̂ consists of sets of the form B̂ = B ∩C(Bk), B ∈ Bπ(X). Any such set
also belongs to Bπ(X). One can therefore set

µ̂(B̂) =
µ(B̂)

µ(C(Bk))
for B̂ ∈ Bπ(X̂),

which yields a measure µ̂ on (X̂,Bπ(X̂)). Upon applying Proposition 3.5 to
the space (X̂,Bπ(X̂)), one finds that there exists B̂0 ∈ B0(X̂u) such that
µ̂(B̂0) = 1 and therefore µ(C(Bk)) = µ(B̂0), or µ(C(Bk)\B̂0) ≤ µ(C(Bk))−
µ(B̂0) = 0.
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Whereas Proposition 3.6 starts from a measure on the product σ-algebra
on X and uses Proposition 3.6 to show that any set to which this measure
gives positive weight has a subset in B0(Xu) to which the measure gives
the same weight, I conjecture that one might also start from a measure
on (Xu,B0(Xu)), take the completion of that measure and show that this
completion is a measure on the product σ-algebra. For any measure on
(Xu,B0(Xu)) that can be extended to (Xu,Bπ(X)), this conjecture would
follow from the arguments given here. However, if there exist measures
on (Xu,B0(Xu)) that cannot be extended to (Xu,Bπ(X)), the argument
cannot be used because the proof of Lemma 3.4 presume that the measure
with which one is concerned be defined on the product σ-algebra.

4 A Homeomorphism Theorem

As mentioned in the introduction, I came across the spaces Mπ(Xu) and
M0(X

u) when I was trying to prove a homeomorphism theorem for the
universal type space with the uniform topology. For reasons discussed in the
introduction, there are problems in working with the Borel σ-algebra induced
by the uniform topology. In Hellwig (2016/2023), I therefore work with the
space Mπ(Xu) of measures on the product σ-algebra with the topology
of weak convergence that is induced by the uniform topology on X. With
this modification, I show that the homeomorphism and embedding theorems
of Mertens and Zamir (1985) remain intact when the product topology on
the spaces of belief hierarchies is replaced by the uniform topology. The
argument makes essential use of the equivalence of the topology of weak
convergence and the topology induced by the Prohorov metric onMπ(Xu).

Without going into the game-theoretic analysis, I briefly sketch the math-
ematical argument. For ` = 1, 2, ..., let π` be the projection from X to the
finite product

X` =
∏̀
k=1

Xk. (4.1)

For any µ ∈Mπ(Xu) and any `, let

Π`(µ) = µ ◦ (π`)−1 ∈M
(
X`
)
, (4.2)

and let
Π∞(µ) = (Π1(µ),Π2(µ), ...). (4.3)
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Proposition 4.1 Suppose that each of the spaces M
(
X`
)
, ` = 1, 2, ...,is

endowed with the Prohorov metric, denoted as d`, and that the product space
∞∏
`=1

M
(
X`
)
is endowed with the uniform metric du such that, for any two

sequences {µ`}∞`=1, {µ̂
`}∞`=1,

du({µ`}∞`=1, {µ̂`}∞`=1) = sup
`
d`(µ

`, µ̂`). (4.4)

If M0(X
u) has the topology of weak convergence, then, under the assump-

tion that the cardinal c of the continuum is not atomlessly measurable,
the mapping Π∞ is a homeomorphism between M0(X

u) and the subspace

Hu ⊂
∞∏
`=1

M
(
X`
)
that consists of those sequences {µ`}∞`=1 that are mutually

consistent in that µ`+1 ◦ (π`)−1 = µ` for all `.

Proof. By Kolmogorov’s extension theorem, there exists a mapping from
the space H of sequences {µ`}∞`=1 that are mutually consistent to the space
Mπ(X) of measures on (X,Bπ(X)). Moreover, this mapping is injective and
onto.

The mapping Π∞ in the proposition is just the inverse of the Kolmogorov
mapping. Because the Kolmogorov mapping is injective and onto, it suffi ces
to show that Π∞ and (Π∞)−1 are both continuous.

Continuity of Π∞ is straightforward: For any ` and any setW ` ∈ B(X`),
the cylinder set

Ŵ ` = W ` ×X`+1 ×X`+2 × ...
belongs to Bπ(X), and, for any ε > 0, the cylinder set

Ŵ `ε = (W `)ε ×X`+1 ×X`+2 × ...

that is defined by the ε-neighbourhood (W `)ε ofW ` inX` is an ε-neighbourhood
of Ŵ ` in Xu. If the Prohorov distance pu(µ, µ̂) between two measures µ, µ̂
inMπ(Xu) is less than ε, we have

µ(Ŵ `) < µ̂(Ŵ `ε) + ε

and
µ̂(Ŵ `) < µ(Ŵ `ε) + ε.

By the definition of the marginal distributions µ` = Π`(µ) and µ̂` = Π`(µ̂),
it follows that

µ`(W `) < µ̂`(W `ε) + ε
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and
µ̂`(W `) < µ`(W `ε) + ε.

Because the choice of W ` ∈ B(X`) was arbitrary, it follows that the Pro-
horov distance d`(µ`, µ̂`) between µ` = Π`(µ) and µ̂` = Π`(µ̂) inΠ`(Mπ(Xu))
is no greater than ε. Since ε may be taken to be arbitrarily close to the Pro-
horov distance pu(µ, µ̂) between µ and µ̂ in Mπ(Xu), it follows that the
Prohorov distance between µ` = Π`(µ) and µ̂` = Π`(µ̂) in Π`(M0(X

u)) is
no greater than pu(µ, µ̂). Since this is true for all `, it follows that

du(Π∞(µ),Π∞(µ̂)) = sup
`
d`(Π

`(µ),Π`(µ̂)) ≤ pu(µ, µ̂).

Continuity of the map Π∞ fromMπ(Xu) to Hu follows immediately.
Next, consider the map β := (Π∞)−1 from Hu toMπ(Xu) that is given

by Kolmogorov’s extension theorem. Proceeding indirectly, suppose that β
is not continuous. Then there exist sequences hr = {µ`r}∞`=1, r = 1, ...,∞,
and h = {µ`}∞`=1 in Hu such that hr converges to h ∈ Hu but β(hr) does
not converge to β(h) inM0(X

u). Convergence of hr to h implies that

lim
r→∞

sup
`
d`(µ

`r, µ̂`) = 0. (4.5)

Non-convergence of β(hr) to β(h) implies that, for some ε > 0 and some
subsequence {hr′} of {hr},

pu(β(hr), β(h)) ≥ ε

for all r′. Thus, for every r′, there exists a set Br′ ∈ B0(Xu) such that

β(Br′ |hr) > β(Bε
r′ |h) + ε (4.6)

or
β(Br′ |h) > β(Bε

r′ |hr) + ε, (4.7)

where Bε
r′ ∈ Bπ(X) is the ε-neighbourhood of Br′ in Xu.

For any `, let B`
r′ = π`(Br′) be the projection of Br′ to X` = π`(Xu)

and let (B`
r′)

ε be an ε-neighbourhood of B`
r′ in X

`. Let

B̂`
r′ := B`

r′ ×X`+1 ×X`+2 × ...

and
(B̂`

r′)
ε := (B`

r′)
ε ×X`+1 ×X`+2 × ...
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be the cylinder sets in Xu that are defined by B`
r′ and (B`

r′)
ε. One easily

verifies that the sequences {B̂`
r′} and {(B̂`

r′)
ε} are nonincreasing and that

Br′ =
∞⋂
`=1

B̂`
r′ and Bε

r′ =
∞⋂
`=1

(B̂`
r′)

ε (4.8)

for all r′. By elementary measure theory,14 for any r′ and any δ > 0, there
exists an integer Lr

′
(δ) such that, for ` > Lr

′
(δ),

β(Bε
r′ |h) ≥ β((B̂`

r′)
ε|h)− δ (4.9)

and
β(Bε

r′ |hr
′
) ≥ β((B̂`

r′)
ε|hr′)− δ. (4.10)

Moreover, by (4.8),
β(Br′ |h) ≤ β(B̂`

r′ |h) (4.11)

and
β(Br′ |hr

′
) ≤ β(B̂`

r′ |hr
′
). (4.12)

Set δ = ε
2 and combine (4.9) - (4.12) with (4.6) and (4.7). Thereby one

finds that, for all r′, all δ > 0, and all ` > Lr
′
(δ), either

β(B̂`
r′ |hr

′
) > β((B̂`

r′)
ε|h) +

ε

2
(4.13)

or
β(B̂`

r′ |h) > β((B̂`
r′)

ε|hr′) +
ε

2
. (4.14)

Since (B̂`
r′)

ε
2 ⊂ (B̂`

r′)
ε, it follows that, for all r′, all δ > 0, and all ` > Lr

′
(δ),

either
β(B̂`

r′ |hr
′
) > β((B̂`

r′)
ε
2 |h) +

ε

2
(4.15)

or
β(B̂`

r′ |h) > β((B̂`
r′)

ε
2 |hr′) +

ε

2
. (4.16)

By the definition of β as the inverse of Π∞ = (Π1,Π2, ...), and the
cylinder nature of the sets B̂r′ and (B̂`

r′)
ε
2 , we also have

β(B̂`
r′ |hr

′
) = Π`(B`

r′ |β(hr
′
)) = µ`r

′
(B`

r′), (4.17)

β(B̂`
r′ |h) = Π`(B`

r′ |β(h)) = µ`(B`
r′), (4.18)

14Theorem 3.1.1, p. 86, in Dudley (2002).
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β((B̂`
r′)

ε
2 |hr′) = Π`((B`

r′)
ε
2 |β(hr

′
)) = µ`r

′
((B`

r′)
ε
2 ), (4.19)

β((B̂`
r′)

ε
2 |h) = Π`((B`

r′)
ε
2 |β(h)) = µ`((B`

r′)
ε
2 ). (4.20)

Thus, (4.15) and (4.16) can be rewritten as

µ`r
′
(B`

r′) > µ`((B`
r′)

ε
2 ) +

ε

2
(4.21)

and
µ`(B`

r′) > µ`r
′
((B`

r′)
ε
2 ) +

ε

2
, (4.22)

and one of (4.21), (4.22) must hold if r′, δ = ε
2 , and ` > Lr

′
(δ). But then,

for such r′, δ, and `, d`(µ`r
′
, µ̂`) ≥ ε

2 , contrary to (4.5). The assumption that
β = (Π∞)−1 is not continuous has thus led to a contradiction and must be
false.

A Metrizability of the Topology of Weak Conver-
gence on M0(X

u)

In this appendix, I provide a proof of Proposition 2.4. As mentioned in the
text, the proof is step by step an analogue to the proof of Theorem 5, p. 238,
in Billingsley (1968), the analogue of Proposition 2.4 for Borel measures.

As discussed in the introduction, I rely on the ρu-based Prohorov metric,
which specifies the distance between any two measures µ and µ̂ inMπ(X)
as the greatest lower bound on the set of ε > 0 such that

µ(B) ≤ µ̂(Bε) + ε and µ̂(B) ≤ µ(Bε) + ε

for all sets B ∈ Bπ(X), where

Bε :=
⋃
x∈B
{x′ ∈ X|ρu(x′, x) < ε}. (A.1)

Lemma 2.2 in the text indicates that, for any B ∈ Bπ(X) and any ε > 0,
the set Bε is also an element of Bπ(X) so that, for any µ and µ̂ inMπ(X),
not only µ(B) and µ̂(B) but also µ(Bε) and µ̂(Bε) are well defined.

Proof of Lemma 2.2. Consider the class C of sets for which the lemma
is true. For Bk ∈ B(X1 × ...×Bk), let

C(Bk) = Bk ×Xk+1 ×Xk+2 × ...
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be the cylinder set defined by Bk. Then

C(Bk)ε = (Bk)ε ×Xk+1 ×Xk+2 × ...,

where

(Bk)ε :=
⋃

(x1,...,xk)∈Bk
{(x′1, ..., x′k) ∈ X1 × ...×Xk|max

j
ρj(x

′
j , xj) < ε}.

Since, obviously, (Bk)ε ∈ B(X1 × ...×Xk), it follows that C(Bk)ε ∈ Bπ(X)
and therefore that C(Bk) ∈ C. The class C contains all cylinder sets in X.

Moreover, C is closed under countable unions: If Br, r = 1, 2, ..., is any
countable family of sets in C, a point x belongs to the ε-neighbourhood of
∪rBr if and only if it belongs to Bε

r for some r. The ε-neighbourhood of
∪rBr is therefore equal to the union ∪rBε

r . Since Br ∈ C implies Bε
r ∈ Bπ(X)

and Bπ(X) is closed under countable unions, it follows that ∪rBε
r ∈ Bπ(X)

and hence that ∪rBr ∈ C.
Finally, C is also closed under countable intersectons: If Br, r = 1, 2, ..., is

any countable family of sets in C, a point x belongs to the ε-neighbourhood
of ∩rBr if and only if it belongs to Bε

r for all r. The ε-neighbourhood of
∩rBr is therefore equal to the intersection ∩rBε

r . Since Br ∈ C implies
Bε
r ∈ Bπ(X) and Bπ(X) is closed under countable intersections, it follows

that ∩rBε
r ∈ Bπ(X) and hence that ∩rBr ∈ C.

Since Bπ(X) is the smallest σ-algebra that is closed under countable
unions and countable intersections and that contains the cylinder sets in
X, it follows that Bπ(X) ⊂ C. Since, trivially, Bπ(X) ⊃ C, it follows that
Bπ(X) = C.

Turning to the proof of Proposition 2.4, I note that the proof of the
analogous result in Billingsley (1968) comes in two distinct steps. The first
step (Theorem 3, p. 236) specifies several families of sets of measures and
shows that each family is a base for the topology of weak convergence. The
second step (Theorem 5, p. 238) uses this finding to establish the equivalence
of the topology of weak convergence with the topology generated by the
Prohorov metric.

The argument here has the same structure. For the first step of the
argument, I note that the family F0 of sets taking the form{

ν ∈Mπ(X)|
∣∣∣∣∫
Xu

fi(x)dν(x)−
∫
Xu

fi(x)dµ(x)

∣∣∣∣ < ε, i = 1, ..., k

}
(A.2)
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for some µ ∈ Mπ(Xu), ε > 0, and f1, ..., fk in C0(Xu) is a base for the
topology of weak convergence onMπ(Xu). I also consider families F1,F2,F3
of sets taking the forms

{ν ∈Mπ(Xu)| ν(Fi) < µ(Fi) + ε, i = 1, ..., k} (A.3)

for some µ ∈ Mπ(Xu), ε > 0, and ρu-closed sets F1, ..., Fk belonging to
Bπ(X) in the case of F1,

{ν ∈Mπ(Xu)| ν(Gi) < µ(Gi) + ε, i = 1, ..., k} (A.4)

for some µ ∈ Mπ(Xu), ε > 0, and ρu-open sets G1, ..., Gk belonging to
Bπ(X) in the case of F2, and

{ν ∈Mπ(Xu)| |ν(Ai)− µ(Ai)| < ε, i = 1, ..., k} (A.5)

for some µ ∈ Mπ(Xu), ε > 0, and µ-continuity sets A1, ..., Ak belonging to
Bπ(Xu) in the case of F3. Each one of the families F1,F2,F3 is the base
for a topology on Mπ(Xu). The following result provides an analogue of
Theorem 3, p. 236, in Billingsley (1968).

Proposition A.1 Each of the families F1,F2,F3 is a base for the topology
of weak convergence onMπ(Xu).

Proof. The proof has two parts. The first part shows that the topologies
induced by the families F1,F2,F3 are equivalent to each other. The second
part shows that the topology induced by the family F1 is equivalent to
the topology induced by the family F0. For the first part, I refer to the
argument of Billingsley (1968, p. 237), which goes through without any
change. Because of Lemma 2.2, the requirement that the sets Fi, Gi, Ai
must all belong to Bπ(X) plays no role in the argument.

For the second part, the requirement that the sets Fi in F1 must belong
to Bπ(X) does play a role. Therefore I give the adapted argument in detail.

I first show that any element of F1 contains an element of F0 as a subset.
Any set N ∈ F1 takes the form (A.3) for some µ ∈ Mπ(Xu), ε > 0, and
ρu-closed sets F1, ..., Fk in Bπ(X). By Lemma 2.2, for any δ > 0, the sets
F δi = {x ∈ X|ρu(x, Fi) < δ}, i = 1, ..., k, also belong to Bπ(X). Let δ > 0 be
such that, for i = 1, ..., k, the set F δi is a µ-continuity set and, moreover,

µ(F δi ) < µ(Fi) +
ε

2
. (A.6)
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Next, let ϕ : R+ → [0, 1] be a continuous function such that, for any
t ∈ R,

ϕ(t) = 1− t if t ∈ [0, 1) and ϕ(t) = 1 if t ≥ 1.

For any i, define a function fi : X → [0, 1] by setting

fi(x) = ϕ

(
1

δ
· ρu(x, Fi)

)
, (A.7)

where again ρu(x, Fi) = minx̂∈Fi ρ
u(x, x̂). The function fi is obviously bounded

and ρu-continuous. Since Fi ∈ Bπ(X), by Lemma 2.2, fi is also measurable
with respect to Bπ(X).15 We also have fi(x) = 0 for x ∈ X\F δi and fi(x) = 1
for x ∈ Fi. For any ν ∈Mπ(Xu), therefore,∫

Xu

fi(x)dν(x) <

∫
Xu

fi(x)dµ(x) +
ε

2

implies

ν(Fi) ≤
∫
Xu

fi(x)dν(x) <

∫
Xu

fi(x)dµ(x) +
ε

2
≤ µ(F δi ) +

ε

2
< µ(Fi) + ε

For any ν ∈Mπ(Xu) satisfying∣∣∣∣∫
Xu

fi(x)dν(x)−
∫
Xu

fi(x)dµ(x)

∣∣∣∣ < ε

2

for i = 1, ..., k, we therefore have

ν(Fi) < µ(Fi) + ε

for i = 1, ..., k. Thus the set N ∈ F1 of measures ν ∈ Mπ(Xu) that satisfy
(A.3) for the given µ ∈ Mπ(Xu), ε > 0, and F1, ..., Fk contains a set of
measures ν ∈ Mπ(Xu) that satisfy (A.2) for the same µ ∈ Mπ(Xu), ε > 0,
and the specified functions fi, i = 1, ..., k. The latter set is an element of F0.
Thus every element of F1 contains an element of F0.

For the claim that every element of F0 also contains an element of F1,
the argument in Billingsley (1968) applies with hardly any change. For
example, let N ∈ F0 be the set of measures ν ∈ Mπ(Xu) such that, for
given µ ∈Mπ(Xu), ε > 0, and f ∈ C0(Xu),∣∣∣∣∫

Xu

f(x)dν(x)−
∫
Xu

f(x)dµ(x)

∣∣∣∣ < ε. (A.8)

15fi(x) > fi(x̂) implies ρu(x, Fi) < ρu(x̂, Fi) so that, for some η ∈ (ρu(x, Fi), ρu(x̂, Fi)),
x ∈ F ηi and x̂ ∈ X\F

η
i .
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Without loss of generality, assume that f takes values in the unit interval.
Choose k′ so that 1

k′ < ε and, for i = 1, ..., k′, let Fi = {x ∈ Xu| ik′ ≤ f(x)}.
Then, for any i, Fi is ρu-closed. Moreover, since f is Bπ(X)-measurable, Fi
is in Bπ(X). By standard arguments, therefore, ν(Fi) < µ(Fi) + ε implies∫
Xu

f(x)dν(x) <
1

k′
+

1

k′

k′∑
i=1

ν(Fi) <
1

k′
+

1

k′

k′∑
i=1

µ(Fi)+ε <

∫
Xu

f(x)dµ(x)+2ε.

By a parallel argument for the function x → 1 − f(x), there also exist
ρu-closed, Bπ(Xu)-measurable sets Fi, i = k′ + 1, ..., 2k′, such that, for i =
k′ + 1, ..., 2k′, ν(Fi) < µ(Fi) + ε implies∫

Xu

(1− f(x))dν(x) <

∫
Xu

(1− f(x))dµ(x) + 2ε,

or, equivalently, ∫
Xu

f(x)dµ(x) <

∫
Xu

f(x)dν(x) + 2ε.

Upon combining these arguments, one finds that the set N of measures
ν ∈ Mπ(Xu) that satisfy (A.8) for some given µ ∈ Mπ(Xu), ε > 0, and
f ∈ C0(Xu), an element of F0, contains a subset consisting of measures
that satisfy ν(Fi) < µ(Fi) + ε for the given µ, ε, k = 2k′, and ρu-closed,
Bπ(X)-measurable sets Fi, i = 1, ..., k. Thus N has a subset that belongs to
F1.

By taking intersections of sets like N, with different functions f, the
argument can be generalized to all sets in F0. Thus every element of F0
contains an element of F1 as a subset. This completes the proof of the claim
that the topologies induced by F0 and F1 are equivalent.

The following result provides an analogue of Billingsley’s (1968) Theorem
5, p.238.

Proposition A.2 For any measure µ ∈ Mπ(Xu) that is quasi-separable,
the topology induced by the Prohorov metric and the topology of weak con-
vergence onM0(X

u) are equivalent at µ.

Proof. Let N(µ) be any F1-neighbourhood of µ, characterized by ε > 0 and
ρu-closed, Bπ(X)-measurable sets Fi, i = 1, ..., k, such that ν ∈ N(µ) if and
only if ν satisfies (A.3) for µ, ε, and F1, ..., Fk. Let δ < ε be such that, for
i = 1, ..., k, the set F δi = {x ∈ Xu|ρu(x, Fi) < δ} is a µ-continuity set and,
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moreover, µ(F δi ) < µ(Fi) + ε
2 . For any ν ∈ M0(X

u) such that p(ν, µ) < δ,
one has

ν(Fi) < µ(F δi ) + δ < µ(Fi) + ε,

so the p-open ball with radius δ around µ is a subset of N(µ). Therefore
the topology onMπ(Xu) that is induced by the Prohorov metric is at least
as fine at µ as the topology of weak convergence.

Next, suppose that µ is quasi-separable. I will show that for any ε > 0,
the p-open ball with radius ε around µ contains an F3-neighbourhood N(µ)
of µ. Fix a cover of X by ρu-open, µ-continuity balls with diameters less
than δ, where δ < ε

3 . Appealing to quasi-separability, pass to a countable
subfamily {Bi}∞i=1 such that µ(∪iBi) = 1. Construct disjoint µ-continuity
stes A1, A2, ... by setting A1 = B1 and, for i > 1, Ai = Bi\∪j<iAj . Choose
k so that

µ(∪ki=1Ai) > 1− δ (A.9)

and let A be the set of unions of the sets Ai over subsets of the indices
i = 1, ..., k. Then each A ∈ A is a µ-continuity set, and, by Proposition A.1,
there is a neighbourhood N(µ) ∈ F3 of µ such that, for any ν ∈ N(µ),

|ν(A)− µ(A)| < δ for all A ∈ A. (A.10)

I claim that N(µ) is contained in the p-open ball with radius ε around µ.
To prove this claim, consider any B ∈ Bπ(X). Let IB be the set of indices i
such that Ai∩B 6= ∅ and let AB := ∪i∈IBAi. Then B ⊂ AB ∪ (Xu\∪ki=1Ai).
Moreover, AB ∈ A and, because the sets Ai all have diameters less than δ,
AB ⊂ Bδ. Using (A.9) and (A.10), one obtains

µ(B) ≤ µ(AB) + 1− µ(∪ki=1Ai) < ν(AB) + 2δ ≤ ν(Bδ) + 2δ < ν(Bε) + ε.

Similiarly, taking account of the fact that (A.9) and (A.10) imply

ν(∪ki=1Ai) > 1− 2δ,

one also obtains

ν(B) ≤ ν(AB) + 1− ν(∪ki=1Ai) < µ(AB) + 3δ ≤ µ(Bδ) + 3δ < µ(Bε) + ε.

Thus, for any ν ∈ N(µ), the Prohorov distance between ν and µ is less than
ε. The specified set N(µ) ∈ F3 is contained in the p-open ball with radius
ε around µ. At µ, therefore the topology of weak convergence onMπ(Xu)
is at least as fine as the topology that is induced by the Prohorov metric.
Given that the topology induced by the Prohorov metric is also at least
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as fine at µ as the topology of weak convergence, it follows that the two
topologies are equivalent at µ.

Proposition 2.4 in the text is a straightforward corollary to Proposition
A.2.
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