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1. Introduction

1.1. General Context

Fluorescence microscopy plays an important role in life sciences. The ability to se-

lectively observe fluorescently tagged proteins above a background of thousands of

endogenous proteins expanded our knowledge about the spatiotemporal regulation

of proteins in living cells. A key enabling technology represents the possibility to ge-

netically fuse a fluorescent protein (FP) domain as a marker to any protein of interest.

FP-labeling can be done from ’inside’ the cell, without the need to penetrate the cell

boundary with chemicals or enzymes. Straightforward DNA recombination techno-

logy allowed the comparably easy manipulation of cloned genes of interest within a

vector plasmid and their expression in target cells or tissues. Subsequently, genetic

FP-labeling catalyzed a wide spectrum of fluorescence based microscopic technologies

to study proteins in living cells.

It is a serious inherent limitation of conventional fluorescence imaging under wide

field and confocal illumination that the strength of the signals depends on the ap-

plied excitation, i.e. the intensity of lamp or laser light used to excite the fluorescent

sample. Thus, images cannot be interpreted in molecular terms without laborious

calibrations (Weidemann, Wachsmuth et al., 2003). Although confocal microscopy

in combination with fluorescence fluctuation analysis provides a means to interpret

signal fluctuations in terms of molecular parameters, these advanced techniques are

limited to freely diffusing fluorescent molecules in the volume where the laser fo-

cus is positioned (Weidemann, Mücksch and Schwille, 2014). Such quasi-equilibrium

conditions are rarely given in cells that feature a considerable degree of spatial het-

erogeneity. Many biochemical processes are either transient and precisely regulated

in time or they occur in specialized compartments like small vesicles or supramolecu-

lar aggregates. In addition, imaging is limited by sensitivity in general. Cellular

processes that involve only a couple of molecules per diffraction limited voxel are ba-

sically invisible when employing FP-labeling. Since the advent of green fluorescent

protein (GFP) in the early nineties of the last century, the field therefore invested

continuous efforts for improving the photophysical properties of fluorescent protein

variants.
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1. Introduction

1.2. The Biochemistry of Green Fluorescent Proteins

The wilde-type GFP (wtGFP) isolated from Aequorea victoria has been studied for

about two decades before the crystal structures were finally reported (Ormo et al.,

1996; Yang, Moss and Phillips, 1996). Purified GFP is a very stable protein that

can resist harsh denaturing conditions like 6 M guanidinium hydrochloride (chem-

ical similar to the arginine side chain) at 90 ◦C. It remains fluorescent under a broad

range of different pH (4<pH<12). Partial unfolding seems to be reversible, as the

fluorescent signal recovers within minutes following reversal of denaturing condi-

tions by dialysis or neutralization (Ward and Bokman, 1982). Maturation time for

wtGFP is about 4 hours. Temperatures higher than 30 °C seem to be unfavorable

for maturation, therefore some laboratories cultivated cells for protein production at

temperatures lower than 37 ◦C (Yang, Moss and Phillips, 1996). Nonspecific proteo-

lysis (papain) leads to a residual chromopeptide containing the chromophore (Cody et

al., 1993). Similar to intact wtGFP protein, these chromopeptides absorb at shorter

wavelength (360 nm) in buffer of pH 4 and at longer wavelengths (450 nm) in buf-

fer of pH 11 with an isosbestic point at 405 nm. However, these chromopeptides are

themselves non-fluorescent, indicating that shielding of the chromophore by the pro-

tein shell is crucial for light emitting properties.

In wtGFP, absorption spectra show two peaks that are associated with two electronic

systems corresponding to two isoforms of the chromophore. The two electronic sys-

tems can be interconverted by irradiance with UV-light. Within minutes, the 395 nm

absorption peak decreases with a concomitant increase of the 475 nm absorption peak

(Chattoraj et al., 1996; Cubitt et al., 1995). This photo-isomerization reaction seems

irreversible when using 280 nm irradiation (Cubitt et al., 1995), whereas 60% recov-

ery was observed after 24 hours in the dark when using 398 nm for photo-conversion

(Chattoraj et al., 1996). In the GFP-S65T mutant (amino acids in one letter code) the

395 nm absorption band is missing at higher pH. Although here absorption at 395

nm builds up under acidic conditions, the band is always non-fluorescent for detec-

tion at 500 nm. In GFP-S65T, the absorption cross-section of the longer wavelength

band (with a maximum at 475 nm in wtGFP) is significantly increased and the max-

imum for the S65T mutant shifted to 488 nm (Cubitt et al., 1995). This drastic effect

occurs although the hydroxyl group is shifted only one carbon further (from gamma-

position in T65 to beta-position in S65). Accordingly, the GFP-S65T substitution in

combination with F64L that improves folding was termed enhanced GFP (EGFP) and

soon recognized as a superior candidate for genetic fluorescence labeling applications

(Cubitt et al., 1995).
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1. Introduction
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Figure 1.1.: Crystal structures of EGFP (PDB: 2Y0G), AcGFP (PDB: 3LVA), and laGFP
(PDB: 4HVF), a precursor protein of mNeonGreen, visualized from similar
angles in (a) side view and (b) from the top, where the N- and C-termini are
indicated. The secondary structures were illustrated using the style “cartoon“,
the chromophore is shown in orange “stick“ representation (MacPyMOL: Py-
MOL v1.8.0.3, enhanced for MacOS). In comparison to EGFP and AcGFP, the
barrel of laGFP appears flattened.

1.3. The Structure of Green Fluorescent Proteins

The crystal structure of GFP revealed immediately the compact architecture of the

protein shell around the chromophore. The GFP structure consist of an 11 stranded

beta-barrel (beta-can) 3 nm wide and 4 nm high (Yang, Moss and Phillips, 1996) or

rather 2.4 nm wide and 4.2 nm high as Ormö et al. reported for GFP-S65T (Ormo

et al., 1996). The N- and C-terminus exit at the same face of the barrel (fig. 1.1).

Both faces of the barrel appear capped with small alpha-helical domains. Three

amino acids (S65, T66, and G67 for wtGFP) covalently form the chromophore, a

hydroxbenzylidene-imidazolinone moiety providing the conjugated π-electron system

for fluorescence, positioned within a central alpha-helix at a 60° angle with respect

to the length axis of the barrel (fig. 1.2a).

The required cyclization reaction is a result of protein folding, therefore autocata-

lytic in nature and requires dioxygen in a final maturation step. Mass spectrometry

indicated in 30% of GFP-S65T protein a surplus of 18-20 Da. This mass difference

3



1. Introduction
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Figure 1.2.: Overlay of crystal structures (i) EGFP (green, PDB: 2Y0G) and AcGFP (tur-
quoise, PDB: 3LVA) and (ii) EGFP and laGFP (violet, PDB: 4HVF) visualized
from the top, where the N-termini (red) and C-termini (blue) are indicated. The
position of the chromophore of EGFP and AcGFP is almost identical reflecting
the high degree of homology (21 amino acid substitutions), but shifted with re-
spect to mNeonGreen.
(b) Chemical structure of the main type of chromophores in green fluorescent
proteins highlighting the amino acid side-chain in red at position 65, which dif-
fers among the three GFP variants under investigation.

corresponds to exactly one water molecule (Ormo et al., 1996). Since water is sup-

posed to be lost during cyclization, this finding suggested that only 70% of the puri-

fied GFP-S65T variant have matured into a fluorescent form. Ormö et al. describe a

large cavity where four water molecule are buried linking E222 and Q69 by a chain of

H-bonds in the vicinity of the chromophore (Ormo et al., 1996). It is speculated that

one of these water molecules is produced by the dehydration reactions during cycliz-

ation and that the cavity accommodates dioxygen used for the final maturation step.

Yang et al. emphasize the paradoxical role of dioxygen: on one hand it is required for

maturation, a dehydration reaction that generates the double bond between the Cα

and Cβ of Y66, on the other hand oxygen is a dangerous quenching reagent for the

matured chromophore. GFP-evolution may therefore have sacrificed 100% matura-

tion efficiency for improved stability and quantum yield once it is fully formed (Yang,

Moss and Phillips, 1996).

Quite interesting, GFP cannot be much further reduced to a minimal fluorescent

protein. Genetic deletions further than the N-terminal methionine (position 1) as

well as chopping more than 7 amino acids from the C-terminus (positions 231-238)

abolishes fluorescence (Dopf and Horiagon, 1996). In the structure of wtGFP, the 7 C-

terminal amino acids appear unstructured. Their lacking role in stabilizing the bar-

rel structure may explain why these amino acids appear superfluous for fluorescence,

however, the crucial role of the N-terminus for fluorescence is less clear. N-terminal

amino acids seem to contribute in capping the beta-barrel for tight chemical shield-

4



1. Introduction

mNeonGreen EGFP AcGFP
Excitation wavelength [nm] 506 488 475
Emission wavelength [nm] 517 507 505
Extinction coefficient [M−1 cm−1] 116 000 56 000 32 500
Quantum yield (QY) 0.8 0.6 n.d.
Brightness (EC ·QY) 92.8 33.6 n.d.
Fluorescence lifetime [ns] n.d. ≈ 2.5 n.d.
Chromophore sequence GYG TYG SYG

Table 1.1.: Published fluorescence properties of GFP variants.

ing. Crystal structures indeed provide hints that the stability of the chromophore

environment is crucial for fluorescence. Yang at al. stress the unusual accumula-

tion of charged amino acids in the vicinity of the chromophore, which show extensive

hydrogen-bonding to electronegative atoms of the chromophore (Yang, Moss and Phil-

lips, 1996). The comparably small Stokes-shift of GFPs was explained by the rigid

encapsulation of the chromophore that prevents dissipative vibrations during the ex-

cited state (Ormo et al., 1996). In both wtGFP and the S65T mutant, there is a single

tryptophan buried in the neighborhood of the chromophore that shows no emission

by its own, potentially due to resonance energy transfer (RET). It was suggested that

polarization of aromatic residues in the vicinity of the chromophore can dissipate

excited state energy and lead to red shifted variants, as exemplified by the T203Y

mutation leading to enhanced yellow fluorescent protein (EYFP).

Our three protein candidates under investigation contain three different combina-

tions of amino acids involved in the cyclization reaction: in AcGFP (as in wtGFP)

’SYT’, in EGFP ’TYG’ and in mNeonGreen (as in EYFP) ’GYG’ (table 1.1). Due to the

different chromophore chemistry diverse photophysical properties can be expected.

However, to causally link protein sequence to photophysics is not as straightforward

as it seems. Because polarization of the chromophore is an important feature to inter-

pret spectroscopic data, hydrogen bonding and the location of negative charges was

extensively discussed for the crystal structure of GFP-S65T. Side chains of amino

acids surrounding the chromophore keep three essential oxygen atoms negatively

charged: (i) the phenolic hydroxyl of Y66 by T203, H148, and S205, (ii) the side chain

oxygen of T65 (in the S65T mutant) by E222, and (iii) the carbonyl oxygen of the im-

idazolidinone ring by R96. Contrary to the S65T mutation that abolishes the 395 nm

absorption band, a hydrophobic isoleucine replacement T203I abolishes the 488 nm

peak in the excitation spectrum. Thus, 488 nm excitation seems to require a negative

charge locating at Y66.

5



1. Introduction

1.4. Photodynamics of Green Fluorescent Proteins

In agreement with photo-conversion experiments, time-resolved spectroscopy already

showed quite rich photophysical phenomena and the existence of multiple substates

and isoforms were suggested for wtGFP (Chattoraj et al., 1996). Interestingly, these

experiments promoted a mechanism by which the two isoforms interconvert prefer-

entially via the excited state, a process that involves protonation of the chromophore.

Because the isoform of the 395 nm absorption band is non-fluorescent in GFP-S65T,

a modified dark-state-model was employed to explain fast flickering of the fluores-

cence signal in fluorescence correlation spectroscopy (FCS) experiments (Haupts et

al., 1998). Measuring purified GFP in buffers of varying pH, this seminal study pro-

posed that external protonation of the terminal hydroxyl group in Y66 drives the

GFP molecules into a transient dark state (lasting 50-500 µs). Since the fraction

of molecules in the dark state decreased to a constant plateau at basic conditions,

a competing ’internal’ protonation reaction was also proposed. Importantly, substi-

tuting Y66 with a non-polar tryptophan abolished the entire blinking phenomenon

and thus provided a strong argument for role of protonation for these transitions.

A follow-up FCS study along similar lines investigated YFP variants and uncovered

additional, photo-induced isomerization reactions. On the timescale of microseconds

a fluorescent and dark state interconvert exclusively via their excited states as a

gateway (Schwille et al., 2000). Thus, depending on chromophore structure, proton-

ation and photo-induced isomerization might be coupled, therefore adding consider-

able complications for the interpretation of molecular brightness in different chemical

environments.

The blinking behavior of EGFP was thouroughly studied by Widengren and Rigler,

who provided pioneering work on the treatment of triplet transitions (Widengren,

Mets and Rigler, 1999). Measuring pseudo-cross-correlation over an extended time

range from 12.5 ns to 1 s allowed even to resolve signal contributions associated with

rotational movement (19 ns). Widengren determined the fundamental anisotropy of

GFP(S65T) to be r0 = 0.39, thus confirming the rigid embedding of the chromophore

within the GFP-barrel. Concerning blinking, the authors claim a complex blinking

behavior that involves three time scales: (i) very fast blinking (2 µs, 10%) that is

only visible at very high laser powers, however, excitation independent and there-

fore not associated with triplet, (ii) intermediate blinking (500−10 µs; 14%) that is

associated with photo-induced isomerization (ISO1), and (iii) a blinking time in the

range of 100 µs−5 ms that is associated with another photo-induced isomerization

state (ISO2). Surprisingly, diffusion times fall in the same range as transition into

ISO2 and it is not clear how they can be distinguished in the fit. Varying the pH

6



1. Introduction

in a range between 6 and 4.5 revealed fundamental differences between FITC and

EGFP (Widengren, Terry and Rigler, 1999) For EGFP the relaxation rate depended

non-linearly on the pH and buffer concentration. Also the type of buffer mattered for

the magnitude of the blinking amplitude. Titration of phosphate buffers from 10 mM

up to 1 M increased the relaxation rates by a factor of 10 and the steady state dark

fraction of GFPs from 0.7 to 0.85 with a plateau reached already at 200 mM.

1.5. Aim of this Study

In the meantime, hundreds of FP mutants have been produced and described in such

a rich detail that cannot be reviewed here. The search for red-shifted mutants was in

particular intense due to the need for dual-color experiments that address molecular

interactions between two binding partners inside cells. Available FP variants now

cover the whole visible spectrum (Nathan C. Shaner, Campbell et al., 2004). Many

spectral GFP variants suffered from reduced quantum yield and photostability and

the search to improve these limiting properties is still ongoing (Nathan C. Shaner,

Lin et al., 2008). Considering all these activities, it may appear surprising that EGFP,

one of the first mutants derived from Aequoroea victoria, wtGFP, is still in widespread

use for the familiar 488 nm argon laser line. Attempts to improve the molecular

brightness have therefore been limited to multimerization of several GFP-domains

(Dross et al., 2009; Pack et al., 2006; Vamosi et al., 2016). Just recently, a promising

new GFP was discovered in Brachiostoma lanceolata, called mNeonGreen, showing

an unusually high quantum yield comparable to state-of-the-art organic dyes (N. C.

Shaner et al., 2013). This new GFP variant, although spectrally slightly red shif-

ted, was proposed to be a promising candidate to replace EGFP for routine genetic

labeling and live cell imaging applications.

The aim of this work is to characterize key fluorescence parameters of mNeonGreen

like molecular brightness, photostability and pH sensitivity. Additionally, multimer-

ized mNeonGreen tandem proteins were investigated. This is accomplished by the

single-molecule techniques fluorescence correlation spectroscopy (FCS) in free solu-

tion and by imaging of immobilized proteins using total internal refection illumina-

tion fluorescence microscopy (TIRFM). Such data may provide a firm basis to estab-

lish mNeonGreen as a superior fluorescent marker in biophysical applications.

7



2. Material and Methods

2.1. Fluorescence and Photophysics

Fluorescence or photoluminescence, is the phenomenon of emitting a photon caused

by the absorption of a single or multiple photons (Valeur, 2001). The process of fluor-

escence can be divided into three events by means of the different timescales at which

they occur, as illustrated in figure 2.1. First, a molecule is excited within femto-

seconds by absorption of a photon of suitable energy. As a consequence, the electron

is transferred from the ground state S0 to the first excited state S1 or higher electronic

states (singlet-singlet transition). Within picoseconds, the excess energy of higher vi-

brational levels is quickly relaxated. The electronic system exits the excited S1 state

either by emitting a fluorescence photon, or non-radiatively by internal conversion

or, intersystem crossing into the triplet state.

Figure 2.1.: Jablonski diagram.
Electronic (first subsript) and vibrational energy levels (second subsript) and
the most important excitation and de-excitation pathways are shown. Dashed
arrows indicate non-radiative transitions. Adapted from (Visser and Rolinski,
2014)

2.2. Fluorescence Correlation Spectroscopy (FCS)

In FCS, the time-dependent fluorescence signal is monitored within a small, open

sample volume in solution. If the photophysical processes leading to fluorescence

8



2. Material and Methods

are in equilibrium, the signal can be expressed as small fluctuation δF (t) around an

average fluorescence intensity 〈F〉 (Petrov and Schwille, 2008):

F (t)= 〈F〉+δF (t) (2.1)

By introducing the correlation function G(τ), information inherently contained in the

intensity fluctuations is extracted:

G(τ)= 〈δF (t)δF (t+τ)〉
〈F〉2 . (2.2)

The measured fluorescence intensity F at a particular time t can be expressed as

F (t)=
∫

W (~r)ψc (~r, t)d3r, (2.3)

where W (~r) describes the effective shape of the detection volume, ψ is the molecular

brightness of the fluorophore and c (~r, t) its concentration. The detection volume W

itself is dependent on the applied excitation intensity I (~r) and on the normalized

collection efficiency S (~r) for the emitted fluorescence. The molecular brightness ψ of

the fluorophore is composed of the peak intensity I0, the excitation cross section σexc,

the quantum yield QY as well as the overall detection efficiency κ for the spectrum of

emitted fluorescence:

W (~r)= S (~r) I (~r) /I0, ψ= I0σexc QYκ (2.4)

Inserting equation 2.3 into equation 2.2 gives the following analytical expression for

the correlation function:

G (τ)=
Î

W (~r)〈δc (~r, t)δc(~r′, t+τ)〉W(~r′)d3rd3r′(〈c〉∫ W (~r)d3r
)2 (2.5)

This equation can be seen as the master formula of FCS, as it is the starting point

for the development of model functions which describe underlying physical processes

causing the signal changes.

The lateral and axial profile of the detection volume is commonly approximated by a

3D Gaussian

W (x, y, z)= exp

(
−2

(
x2 + y2)
ω2

0
+ −2z2

z2
0

)
, (2.6)

where ω0 is the waist of the detection volume and z0 its elongation along the optical

axis (z-axis).

In the simplest case of pure diffusion, inserting eq. 2.6 into 2.5 yields the following

correlation function for three-dimensional diffusion:
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2. Material and Methods

G (τ)= 1
N

(
1+ τ

τD

)−1 (
1+ τ

(z0/ω0)2 ·τD

)−1/2

=GD (τ) (2.7)

Here, τD represents the characteristic residence time of a fluorophore in the detection

volume and is linked to its diffusion coefficient D via

D = ω2
0

4τD
. (2.8)

The average number N of fluorophores inside the detection volume is, in the limit

of zero lag time, equal to the inverse of the amplitude of the diffusional correlation

function

GD (0)= 1
N

. (2.9)

This equality can be used to access concentrations of diffusing fluorophores if the

dimensions of the effective detection volume Veff are known:

Veff =π3/2z0ω
2
0. (2.10)

However, even for freely diffusing fluorescent particles in solution the picture is com-

plicated by the fact that fluorophores are subject to intramolecular reactions that

alter their specific brightness. In case of singlet-triplet transitions, where a fraction

Ttrip of molecules temporarily stops fluorescing, the correlation function shows an ad-

ditional decay with a correlation time corresponding to the lifetime of the triplet state

τtrip.

G(τ)=GD(τ) ·GTtrp(τ) (2.11)

G(τ)= 1
n

(
1+ τ

τD

)−1 (
1+ τ

SP2 ·τD

)−1/2 (
1+ Ttrip

1−Ttrip
e−τ/τtrip

)
(2.12)

2.2.1. Setup

The FCS measurements were performed with the commercial laser scanning confocal

microscope LSM780 (Carl Zeiss AG) equipped with an inverted Axio Observer.Z1 mi-

croscope and a ConfoCor 3 unit.

The excitation light of an argon ion laser operated at 488 nm is focused into the

sample by a water immersion objective (C-Apochromat 40x/NA 1.2 W Korr UV-VIS-
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2. Material and Methods

Figure 2.2.: Sketch showing essential parts of the confocal microscope-based setup
used for FCS measurements. Adapted from Petrov and Schwille, 2008.

IR, Carl Zeiss AG). The emitted fluorescence is collected by the same objective, passes

a confocal pinhole (34 µm, divided by a beam splitter (NFT IR) and subsequently de-

tected by two avalanche photon diodes (APD). Boths beams are filtered by a long-pass

(LP 505 nm) to prevent possible scattered excitation light from reaching the detectors

(see fig. 2.2). The signal is correlated using multiple tau correlators, which is then

displayed in realtime by the ZEN software (Carl Zeiss AG).

Even though only single-color experiments were performed throughout this study

with GFPs, the separation of the fluorescence signal allows one to cross-correlate the

signal from the two detectors, which removes detector artifacts like antibunching and

afterpulsing from the measured correlation curves.

2.2.2. Data Acquisition

Each GFP construct, stored in PBS pH 7.5, was diluted to a final concentration of

15 nM in 10 mM potassium phosphate buffer with a pH value of 8 and measured in

#1.5 8-well chamber cover slides (Lab-Tek, Thermo Scientific) at room temperature

(≈ 23◦C). Correlation functions were recorded with an acquisition time of 30 s and

repeated 30 times for each measurement. Beforehand, in a solution of ATTO488

(ATTO-TEC) the objective correction collar was adjusted to the maximum of the fluor-

escence signal to accommodate small thickness variation of the cover slide. In the

same solution, reference measurements were calibrate the focal volume.

2.2.3. Data Analysis

Model Function

In addition to the diffusion part (N;τD), the correlation curves for purified GFP vari-

ants in solution were fitted to a model containing two non-fluorescent decays: a triplet

contribution (Ttrp;τtrp) and a blinking contribution (Tbl;τbl):
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trip bl D

GD(0) ~ N-1

Figure 2.3.: Simulation showing the effect of transient dark states on correlation
functions.
Numerical correlation function for a fluorophore with two non-radiative pro-
cesses with characteristic relaxation times τtrip (triplet) and τblink (blinking) as
well as 3D diffusion through the focal volume.

G(τ)=GD(τ) ·GTtrp(τ) ·GTbl(τ) (2.13)

G(τ)= 1
n

(
1+ τ

τD

)−1 (
1+ τ

SP2 ·τD

)−1/2 (
1+ Ttrp

1−Ttrp
e−τ/τtrp

)(
1+ Tbl

1−Tbl
e−τ/τbl

)
(2.14)

Fitting of measured correlation curves was performed with the program PyCorrFit

v0.9.8 (Müller, Schwille and Weidemann, 2014) , using the Levenberg-Marquardt

algorithm to minimize the sum of the squares. The structural parameter SP was

fixed to 5 in all fitting procedures.

Correcting for Non-Correlating Background

Non-correlating background B contained in the fluorescent signal S was accounted

for by correcting the measured amplitude of the diffusional part GD,meas (0) of the

correlation function according to

GD,cor (0)=GD,meas (0)
(

S1

S1 −B1

)(
S2

S2 −B2

)
, (2.15)

where S1 and S2 are the average intensities detected in each channel of the used

pseudo-cross-correlating setup. B1 and B2 are the corresponding background intens-

ities determined by measurements of the fluorescence signal from plain potassium
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phosphate buffer solutions, averaged over an acquisition time of 30 s for each indi-

vidual laser power.

Calculation of Laser Power Densities

The laser power density in the focal spot was calculated from the measured mean

power P of the laser beam and the beam diameter ω0:

I0 = 2P0

πω2
0

. (2.16)

The mean power P0 was measured with a microscope slide power sensor (S170C,

Thorlabs) after the excitation light passed the objective. The beam waist w0 was

determined by a calibration measurement with the synthetic dye ATTO 488 (ATTO-

TEC). From the diffusion time τD of ATTO488 measured at low excitation power

(≈0.2 kW/cm2), one can estimate the beam waist ω0 by inserting the published diffu-

sion coefficient (D = 400µm2/s; Kapusta, 2010) into equation 2.8.

Molecular Brightness (CPP)

One key parameter of all fluorescent dyes is their molecular brightness, stating how

many photons per second per molecule a specific chromophore is able to emit. Making

use of fluorescence correlation spectroscopy (FCS) one is able to access this quantity,

also termed counts per particle (CPP) or counts per molecule (CPM). It is defined as

CPP= 〈F〉 /〈N〉 with the mean fluorescence intensity 〈F〉 detected in counts per second

and the mean number of molecules 〈N〉 in the detection volume.

As this parameter depends on excitation intensity, FCS measurements were per-

formed over a broad range of laser irradiances to quantify the respective brightness

of mNeonGreen, EGFP and AcGFP.

Molecular Brightness (CPP) of oligomerized FPs

Special care has to be taken when the observed sample contains a mixture of fluores-

cent species. If the individual species have identical (or similar) diffusion times and

only differ in their respective brightness, the amplitude of the correlation function is

weighted proportionally to the square of the respective molecular brightness. For the

CPP in a chain with binomially distributed non-fluorescent domains follows (Petrov

and Schwille, 2008):
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ψcor (n)=F (n) GD (0)

(∑n
i=1ψi pi

)2∑n
i=1ψ

2
i pi

=F (n) GD (0)

(∑n
i=1 ipi

)2∑n
i=1 i2 pi

i≥2=
p<1

F (n) GD (0)
np

np+1− p
(2.17)

CPP per fluorescent subunit in a FP n-mer:

ψ1
cor (n)= ψcor (n)

neff (n)
= ψcor (n)

np+1− p
(2.18)

= F (n) GD (0)
np

(np+1− p)2 (2.19)

Average number of fluorescent subunits in a FP n-mer as observed in an FCS exper-

iment (multimers with zero fluorescent subunits are excluded):

neff (n)=
∑n

i=1ψ
2
i pi∑n

i=1ψi pi
, pi =

(
n
i

)
pi (1− p)n−i , i > 0 (2.20)

= np+1− p (2.21)

Using the probability of mNeonGreen to adopt a matured, fluorescent state (p =
0.76%), the effective number of fluorescent domains in multimeric construct can be

calculated:

p = 76%

n neff np/(np+1− p) np/(np+1− p)2

1 1 (1) (1)
2 1.76 0.86 0.49
3 2.52 0.90 0.36
4 3.28 0.93 0.28
5 4.04 0.94 0.23

Table 2.1.: Effect of binomially distributed dark domains on CPP-values in tandem proteins.

2.3. Total Internal Reflection Fluorescence (TIRF) Microscopy

The single-molecule sensitivity of a total internal reflection fluorescence microscope

(TIRFM) is achieved by its highly confined excitation volume, which is comparable
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in size to a diffraction-limited spot in FCS. The spatial selectivity is accomplished

by an evanescent field, which is generated by total internal reflection of an incident

laser beam at the interface between a dense (usually glass) and a less dense medium

(usually aqueous solutions) with refractive indices of n1 and n2, respectively. The ex-

citation intensity Iex of the evanescent field decreases exponentially along the optical

axis z:

Iex (z)= I0 exp
(
− z

d

)
. (2.22)

The characteristic penetration depth d at which the intensity of the evanescent field

has dropped to 1/e of the peak intensity, can be estimated by (Gingell, Heavens and

Mellor, 1987):

d = λ

4π
√

n2
1 sin2θ−n2

2

. (2.23)

2.3.1. Single-Molecule Imaging

An inverted microscope (Axio.Observer Z1, Carl Zeiss AG) served as the body for the

objective-based TIRF setup used in this study. The microscope was equipped with an

oil immersion objective (100x/NA 1.46, Carl Zeiss AG) for high collection efficiency.

GFP was excited with argon ion laser operating at 488 nm, and the fluorescence sig-

nal was detected by an EMCCD camera (Evolve 512, Photometrics) with an EM gain

set to 1000. The laser power for imaging (≈25 mW) was adjusted in a way that for the

mNeonGreen pentamer none of the pixels showed saturation. This power was then

kept constant for all other constructs.

To be able to identify single molecules adsorbed on the glass surface, the GFP stock

solutions were highly diluted to concentrations of approximately 50 pM into PBS

pH7.5 and incubated 5 min on freshly plasma cleaned 8-well cover slide chambers

(Eppendorf AG). After thorough washing with PBS the coverglass was imaged in

TIRF mode using an oil immersion objective (100x / NA 1.46, Carl Zeiss) with a 1.6x

post-magnification lens, giving a total magnification of 1600-fold. After quickly ad-

justing the focus at low laser power (4 mW), the movie was started with 20 frames per

second until 750 images were acquired. 5-10 movies were recorded for each construct

and saved as 16-bit image stacks.
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2.3.2. Data Analysis

Image Processing

Using ImageJ, the initial frame of each movie was masked by a pixel threshold to

discriminate between fluorescence signal (≥ 2500 camera count numbers) and back-

ground (< 2500 camera count numbers). This mask was then kept fixed throughout

the movie and the average intensity of the fluorescence signal was plotted versus

time. The threshold was chosen empirically so that it is considerably above the back-

ground to mainly detect the GFP fluorescence. As a control, different thresholding

values were also tested without any effect on the results.

Criteria for spot selection from the movies

When performing single-molecule experiments of immobilized molecules adsorbed on

a glass surface, special care has to be taken in discriminating between spots contain-

ing one fluorescent molecule and spots where two or more fluorophores or fluorescent

contaminants are aggregated and not distinguishable due to the diffraction limited

resolution. Using a self-written ImageJ plugini, this problem was addressed as re-

ported previously (Ulbrich and Isacoff, 2007), by fitting a 2D elliptical Gaussian to

the spot in each frame and plotting the corresponding angle of the fitted major axis

to an arbitrary reference axis. If the point represents the PSF of a single fluorophore,

one expects the angle to scatter randomly across the frames until the fluorophore

bleaches, as well as a rather circular shape of the 2D gaussian (i.e. small eccentri-

city). If the bright spot would originate from aggregated fluorophores, the angle of

the Gaussian fit is more stable due to a preferential orientation and a pronounced ec-

centricity of the spot. With this additional information one is able to quickly identify

invalid spots, which reduces experimental bias in the single-molecule analysis.

2.4. Fluorescence Lifetime Measurements

The fluorescence lifetime measurements were performed using a Leica TCS SP5 X

confocal microscope equipped with a pulsed white light laser (WLL, 80 MHz repe-

tition rate, NKT Photonics), a FLIM X16 TCSPC detector (LaVision Biotec) and a

63x water objective (HCX PL APO CS, NA 1.2). The detection covered a time win-

dow of 12.24 ns after the excitation pulse with a temporal resolution of 0.08 ns. A

custom-written MATLAB script (Austen et al., 2015) extracted the photon counts for

each time increment and region of interest. For in vivo measurements, the ROI was

manually selected for single cells. For in vivo measurements, the photon counts were

iArmin Lambacher, Max Planck Institute of Biochemistry, Germany
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summed up over the whole frame. The instrument response function of the setup was

determined with a scattering solution (LUDOX, Sigma-Aldrich). By approximating

the IRF with a Gaussian function, one is able to deconvolve the fluorescence lifetime

analytically with the fitting function F:

f (t)=Θ (t− t0) A exp
(
− t− t0

τ

)
, Θ (t) : Heaviside step function

g(t)= 1p
2πσ

exp
(
− t2

2σ2

)

( f ⊗ g) (t)+ y0 =
∞∫

−∞
f (τ)g(t−τ)dτ+ y0

F(t)= 1
2

A exp
(
σ2 −2τ (t+ t0)

2τ2

)(
1−Erf

[
σ2 −τ (t+ t0)p

2στ

])
+ y0 (2.24)

The convolution integral was evaluated using Mathematica 10.1 (Wolfram Research,

USA).

2.5. Preparation and Purification of mNeonGreen Oligomers

The fluorescent proteins used in solution studies were provided by Magnus-Carsten

Huppertz, Max Planck Institute of Biochemistry.

mNeonGreen (1x – 5x) are multimeric fluorescent proteins, with 5-amino-acid (E-

G-A-G-A) linkers connecting individual mNeonGreen units. We inserted the mNeon-

Green gene (AlleleBiotech) into the NotI restriction site of a pET-28a(+) vector (Clone-

tech) to obtain a C-terminal His6-tagged fragment. Next, we transferred mNeonGreen-

His6 into the NotI restriction site of the pEGFP-N1 vector (Clonetech). We digested

vector backbones with BsrGI and mNeonGreen inserts with BsrG1 and Not1 to clone

tandem mNeonGreen expression constructs containing a C-terminal His6-tag. To

confirm sequences of mNeonGreen expression constructs, we first digested respect-

ive plasmid DNA with the restriction enzymes NotI and BamHI to yield expected

lengths for mNeonGreen tandem inserts (see fig. 2.4a). All plasmid constructs were

send for sequencing (Eurofins Genomics) with corresponding sequencing primers (see

sequence alignment in fig. 2.5).

HEK293T cells were seeded 72 h before harvesting in T-75 flasks (1.5 · 106/18 mL)

and cultivated in DMEM containing 10% fetal calf serum in humidified 5% CO2 at-

mosphere at 37 ◦C. Cells were transfected with 10 µg mNeonGreen vector according

to TurboFect Transfrection Reagent Instructions (Thermo Scientific). Transiently

transfected cells were briefly washed with 1x PBS and harvested by scraping cells

from the dish while applying ice-cold lysis-buffer (1x PBS/cOmplete ULTRA protease
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inhibitor/10 mM imidazole) to cells. Harvested cells were collected by centrifugation

at 1000×g and 4 ◦C for 30 min. Supernatants were discarded and pellets were re-

suspended in 1 mL lysis buffer containing 1 µL Benzonase nuclease (250 U/µL). Cells

were subsequently lysed by sonication (10 sec pulse, 30 sec break, 6 times, 10%

power) and centrifuged at 20 000×g and 4 ◦C for 30 min to separate protein bear-

ing supernatants from cell debris. His6-tagged mNeonGreen proteins were purified

on 1 mL Ni-NTA superflow beads (Qiagen). The column was washed three times

with 10 mL lysis buffer. Proteins were eluted with elution buffer (1x PBS, cOmplete

ULTRA protease inhibitor, 250 mM imidazole). Eluates were dialyzed against 1x PBS

buffer (pH 7.5) at 4 ◦C, overnight. Proteins were stored in 1x PBS at 4 ◦C until further

use. Purified proteins were separated by SDS-PAGE to assure purity and full-length

expression of mNeonGreen oligomers (see fig. 2.4b). The double band visible in SDS-

PAGE of monomeric mNeonGreen is an artifact caused by boiling to denaturate the

proteins (see fig. 2.4c).In addition, the fluoroscence of each oligomer was visualized

by in-gel analysis see (fig. 2.4d).
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(a)
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mNeonGreen expression plasmids
(BamHI and NotI double digest)
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(c)
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boiled not boiled
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1x 2x 3x 4x 5x
mNeonGreen

Figure 2.4.: Gel electrophoresis of mNeonGreen DNA fragments and purified
mNeonGreen oligomers.
(a) Expression vectors of mNeonGreen oligomers were digested with BamHI and
NotI at 37°C for 1h followed by an inactivation step at 80°C for 10 min. Samples
were mixed with 6x DNA loading dye and separated on a 1% agarose gel (con-
taining SYBR Safe DNA stain) in 1x TAE buffer at 100 V for 1h.
(b) Denaturating 4-20% SDS-gel (BioRad) of mNeonGreen oligomers. HEK293T
cells were lyzed by sonication, centrifuged and supernatants were purified with
Ni-NTA super flow columns. Proteins were separated in 1x Elpho buffer with
60 A for 30 min and stained with Coomassie brilliant blue solution. The gel was
recorded as 16-bit grey scale images.
(c) Denaturating 4-20% SDS-gel (BioRad) of mNeonGreen monomers. Purified
mNeonGreen monomers were mixed with 1x Laemmli sample buffer containing
beta-mercapto ethanol and were either boiled at 95°C for 10 min or kept on RT.
Proteins were separated according to (b).
(d) Native polyarcryl amide gel of mNeonGreen visualized with a Abrasham
A600 scanner. The in-gel fluorescence of mNeonGreen oligomers was visual-
ized using a LED emitting at 488 nm for excitation and was detected using
pre-installed corresponding filter settings on a CCD camera. Figures kindly
provided by Magnus-Carsten Huppertz.
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(a)

(b)

Figure 2.5.: Sequence alignment of the characterized monomeric GFP variants.
AcGFP (a) and mNeonGreen (b) were aligned against EGFP using the SIM
alignment tool (Expasy). The amino acids forming the hydroxybenzene-
imidazolinone chromophore are highlighted (red box), as well as the hexahis-
tidine affinity tag at the C-terminus that was used for purification (black box).
Note that the first 7 N-terminal amino acids of mNeonGreen were derived from
EGFP (6 amino acids from wtGFP plus an additional V inserted at position 2).

20



3. Steady-State Fluorescence Spectra of

GFP constructs

Absorption and emission spectra were recorded with a Jasco V-650 spectrophotometer

and a Jasco FP-8500 fluorospectrometer. GFP samples were measured in stock solu-

tion at about 500 nM (absorption) or diluted to 15 nM in PBS pH 7.5 (fluorescence

emission).

Compared to EGFP, mNeonGreen is slightly red-shifted both in excitation and emis-

sion, while AcGFP is blue-shifted. The excitation peaks are positioned at wavelengths

477 nm for AcGFP, 489 nm for EGFP and 505 nm for mNeonGreen, the emission

peaks at wavelengths 505 nm for AcGFP, 511 nm for EGFP and 518 nm for mNeonGreen.

Further studies on the photophysical properties of the three GFP variants were per-

formed using argon ion lasers operating at 488 nm. When comparing the respect-

ive brightess of the GFP variants, it has to be taken into account that excitation of

488 nm matches with the absorption peak of EGFP (100 %), but is less efficient for

AcGFP (84 %) and especially for mNeonGreen (59 %).

(a) (b)

EGFP
AcGFP

Figure 3.1.: Absorption and emission spectra of mNeonGreen, EGFP and AcGFP.
(a) Absorption spectra were recorded at a scan speed of 400 nm/min and with a
bandwith of 1 nm. Spectra were corrected for Rayleigh scattering. (b) Emission
spectra were recorded at a scan speed of 50 nm/min and with slit widths of 5 nm
for excitation and emission. Compared to EGFP, AcGFP is blue-shifted, while
mNeonGreen is red-shifted, in both absorption and emission.
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4. TIRF Microscopy of Immobilized GFPs

Total internal reflection fluorescence (TIRF) microscopy provides the possibility to ex-

cite only fluorophores that are located near a solid surface. The hereby achieved high

spatial selectivity suppresses fluorescent contributions from fluorophores or auto-

fluorescent contaminants in layers above and facilitates the detection of fluorescence

down to a single-molecule level. This unique feature was exploited to visualize single

photobleaching events of monomeric mNeonGreen and mNeonGreen tandem with

up to five domains. Photobleaching statistics is used to estimate the probability of

mNeonGreen to be inherently non-fluorescent due to misfolding or unsuccessful mat-

uration. This quantity can be of importance when using mNeonGreen as a protein

tag or when addressing the stoichiometry of complexes in single-molecule bleaching

assays. Additionally, bleaching times of mNeonGreen, EGFP and AcGFP monomers

are determined by single-molecule lifetime distributions and compared to bulk pho-

tobleaching rates from ensemble measurements.

Diffraction-limited spots representing individual molecules of mNeonGreen, EGFP

and AcGFP are shown in fig. 4.1. All images were recorded at the same illumination

power and identically post-processed using ImageJ. Therefore, the individual spots

reflect the brightness of the single molecules given that the proteins have no tendency

to dimerize or aggregate. The data show that mNeonGreen is considerably brighter

than EGFP and AcGFP.

4.1. Photostability of mNeonGreen, EGFP and AcGFP

For practically all applications in fluorescence microscopy and fluorescence spectro-

scopy it is crucial to estimate of the absolute or relative photostability of the fluores-

cent dyes. To compare the photostability between the three GFP variant, the bleach-

ing kinetics was determined by two complementary approaches. First, the total fluor-

escence signal averaged over the whole image frame was monitored as a function of

time to extract the bulk photobleaching rate. Second, the lifetime before photobleach-

ing of individual molecules identified in the TIRF movies was measured with statist-

ically analyzed.

First, the bleaching rate of mNeonGreen, EGFP and AcGFP was determined in bulk
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mNeonGreen

Time: 0 s 2.5 s 10 s 25 s

EGFP

AcGFP

Figure 4.1.: mNeonGreen is clearly superior in brightness compared to EGFP and
AcGFP in single-molecule TIRFM.
Representative TIRF images showing mNeonGreen, EGFP and AcGFP ad-
sorbed on glass in TIRFM 0 s, 2.5 s, 10 s and 25 s after laser activation. Each
16-bit image was post-processed in the same manner for illustration using Im-
ageJ: The minimum displayed value in the gray is equivalent to 71 camera count
numbers, maximum displayed value is equivalent to 3736 camera count num-
bers, corresponding to 0.35 % saturated pixels in the initial (t = 0s) frame show-
ing mNeonGreen. Scalebars 5 µm.
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(a) (b)

Figure 4.2.: Bulk fluorescence decay of mNeonGreen, EGFP and AcGFP as seen in
TIRFM movies.
Fluorescence from spots detected in each frame masked by pixel value
thresholding was averaged and plotted versus time for mNeonGreen, EGFP and
AcGFP (a). The individual decays are adequately fitted by single exponential
with characteristic bleaching times of (3.4±0.1) s for mNeonGreen, (9.7±0.2) s
for EGFP and (9.2±0.2) s for EGFP. Normalization of each curve to the initial
amplitude illustrates the relative bleaching kinetics, showing that EGFP and
AcGFP are almost 3 times more photostable compared to mNeonGreen at the
laser power (25 mW) tested.

to access information about the relative photostability of the three variants.

Using ImageJ, the initial frame of each movie was masked by a pixel threshold to

discriminate between fluorescence signal and background (see methods 2.3.2). This

mask was then kept fixed throughout the movie and the average intensity of the

fluorescence signal was plotted versus time (see fig. 4.2a). The result confirms the

observation already made from the images in figure 4.1 and shows that the average

fluorescence intensity of mNeonGreen is about 3 times higher compared to EGFP and

AcGFP. However, a fit of the intensity decay to an exponential function of type F =
A exp−κt showed that mNeonGreen also bleaches roughly 3 times faster than EGFP

and AcGFP under the conditions tested. The sensitivity of mNeonGreen to photode-

struction is emphasized in fig. 4.2b, which shows the respective intensity traces

normalized to the initial amplitude. The photobleaching rates were determined to

(0.29±0.01) s−1 for mNeonGreen, (0.10±0.01) s−1 for EGFP and (0.11±0.01) s−1 for

AcGFP. The values are the mean ± s.d. from five movies for each construct.

For this purpose, the lifetime before photobleaching was determined for a large num-

ber of single molecules and plotted in a histogram. The result for monomeric (n = 207

spots) and trimeric mNeonGreen (n = 240 spots) can be seen in figure 4.3. Fitting the

histogram to an exponential decay function of the type F = A exp(−κt) yielded bleach-
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(a) (b)

Figure 4.3.: Single fluorophore lifetime distribution before photobleaching of
mNeonGreen.
Histograms showing the fluorescent time-span of single fluorophores for mono-
meric mNeonGreen (207 spots) and trimeric mNeonGreen (240 spots, 487 indi-
vidual bleaching events) at the same laser power. These were fitted to mono-
exponential decays with characteristic bleaching times of (2.8±0.1) s for 1xm-
NeonGreen and (3.2±0.1) s for 3xmNeonGreen, consistent with the results from
bulk experiments. Binsize of the individual histograms had no effect on the res-
ults and was set according to the Freedman-Diaconis rule to (a) 1.5 s and (b)
1.15 s.

ing times κ1x = (0.36±0.01)s−1 for monomeric and κ3x = (0.31±0.01)s−1 for trimeric

mNeonGreen.

4.2. Non-Fluorescent Fractions of mNeonGreen

The intensity trajectoy of bright spots in the first frame after laser activation was

plotted using an ImageJ plugin.

To evaluate the number of fluorescent domains per molecule, bleach steps in traject-

ories of individual molecules were statistically analyzed in time-lapsed image stacks

(fig. 4.4). For the mNeonGreen trimer (3xmNeonGreen), over 500 spots from six dif-

ferent locations on the coverglass were analyzed and classified into the number of

observable distinct bleaching steps (1, 2 and 3 steps) or discarded as invalid (e.g. due

to aggregated proteins, weakly fluorescent contaminants, or movement of the spot

during the movie). From 557 analyzed spots of 3xmNG, 240 fulfilled the criteria (see

section 2.3.2) to be processed as single-molecule data and were categorized into the

number of observed bleaching steps. In fig. 4.5a, the red columns represent a bino-

mial fit to the data which yields an estimated probability for the fluorophore to be

fluoerescent in this case 68 %.

The distribution of observed bleaching steps is broadened for two reasons: Firstly,
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1xmNeonGreen 2xmNeonGreen

3xmNeonGreen 4xmNeonGreen

5xmNeonGreen

Figure 4.4.: Representative time traces of fluorescence emission of mNeonGreen
oligomers recorded in TIRFM show typical quantitized photobleach-
ing events.
Irreversible photobleaching of single fluorophores can be seen by distinct drops
of intensity in the fluorescence trajectories, occuring at the times indicated by
green arrowheads.
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4. TIRF Microscopy of Immobilized GFPs

(a) (b)

Figure 4.5.: Distribution of number of steps observed in mNeonGreen single-
molecule photobleaching analysis.
(a) Histogram showing the number of bleaching steps observed for each indi-
vidual spot (240) (black columns) together with a binomial fit to the data (red
columns), assuming that the distribution of step counts is caused mainly by ran-
domly non-fluorescent subunits present in each trimer. (b) Taking into account
that single bleaching steps are not detected when they coincide within the time
scale of the camera acquisition rate, a binomial distribution fit to the data cor-
rected for missed events gives an estimate of (76±2) % for the probability that a
single mNeonGreen protein is fluorescent.

due to the definite time resolution of the camera (integration time of 50 ms), there

is a certain probability that two or more individual bleaching steps fall into such a

small time interval so that it is not possible to identify the bleaching step as in fact

two or more distinct bleaching steps in the time trace. Secondly, GFPs have a certain

probability of beeing mis-folded or non-correctly matured, leading to non-fluorescent

domains.

To account for possibly missed bleaching events, the distribution of observed intensity

amplitudes from individual steps is analyzed (see fig. 4.6b). Since the step height of a

missed event will be roughly double as much as the one of a single bleaching step, the

number of steps with a height larger than that of a typical monomeric bleaching event

should be indicative of the number of missed events during the analysis. For this pur-

pose, the step height distribution of the 1xmNG is shown as a reference (fig. 4.6a).

Comparing both distribution, one can see that the dominant peak of 3xmNeonGreen

matches with the distribution of 1xmNeonGreen. Therefore, a single mNeonGreen

fluorophore has, under these conditions, an average fluorescence intensity of about

1100 camera counts. Additionally, the center xc of the fitted peak 2 and peak 3 rise

linearly as one would expect for a simultaneous double and triple bleaching event, re-

spectively. The area of the histograms represent the fraction of molecules undergoing
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(a) (b)

Figure 4.6.: Distribution of step-wise intensity drops of monomeric and trimeric
mNeonGreen detected in single-molecule photobleaching analysis.
Histograms showing the average amplitude of fluorescence intensity relative
to the background intensity or relative to the next lower intensity plateau in
cases where multiple steps are observed within a time trace. This analysis was
done for monomeric mNeonGreen (a) and trimeric mNeonGreen (b) to quant-
itatively determine the relative step height of single mNeonGreen fluorphores
which is proportional to the molecular brightness. The histogram correspond-
ing to 1xmNeonGreen features a peak located at 1120±30 (in camera count
numbers), which is also present in the data of 3xmNeonGreen with a center
at 1180±80 as approximated by Gaussian fits. In addition, two smaller peaks
shifted to higher count numbers can be identified whose centers are located at
roughly 2 times (2280±190 and 3 times (3460±210 higher intensities compared
to the predominant peak. This is caused by the simultaneous bleaching of two
and three subunits within a trimer that can not be resolved as individual events
and are thus treated as a single bleaching event. Based on the relative areas
under each peak one can estimate a probability of 31 % and 7 % that a double
and triple bleaching event is missed, respectively.
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1, 2 or 3 simultaneous bleach steps within the selected ensemble. The ratio of area 2

with respect to area 1 (31 %) was used as a factor to correct for two coinciding bleach-

ing events. Consistently the ratio of area 3 with respect to area 1 (7.3 %) was used as

a factor for three simultaneous bleaching events. This transforms the distribution in

figure 4.5a into that shown in 4.5b. A binomial fit to the adjusted distribution estim-

ates a probability of p = 76% for a mNeonGreen protein to be fluorescent inside the

trimeric chain.
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5. Fluorescence Spectroscopy of

Monomeric GFP Variants

Next, the photophysical properties of the three GFP variants mNeonGreen, EGFP

and AcGFP were addressed in more detail using fluorescence correlation spectroscopy

(FCS) and fluorescence lifetime measurements. This includes a detailed examination

of the molecular brightness of each fluorescent protein over a broad range of laser

powers, a characterization of non-radiative transient dark states as well as their

sensitivity towards changes in pH of the surrounding solution.

5.1. Molecular Brightness of mNeonGreen, EGFP and AcGFP

5.1.1. Power Series in a Diffraction-Limited Focus Volume

By exploiting the full power range of the argon laser in the setup and setting the con-

focal pinhole to a diameter of 1 airy unit (= 34µm), correlation curves of mNeonGreen,

EGFP and AcGFP were recorded over a range from 0.1 kW/cm2 to 800 kW/cm2 with

an acquisition time of 60 s. Each measurement was repeated 10 times in row.

The correlation curves were fitted with a T-T-3D model (see eq. 2.14) containing

two contributions characteristic blinking times and a diffusion-related decay: one

contribution accounts for singlet-triplet transitions typically taking place in the mi-

crosecond timerange (1−10 µs), while the other contribution describing the commonly

observed protonation-dependent blinking of fluorescent proteins in the sub-millisecond

timerange (10−300 µs).

The behavior of the CPP versus excitation intensity can be separated into three dif-

ferent regimes based on the underlying effects causing the progressivity:

At relatively low excitation intensities ranging from 0.1-2 kW/cm2, the CPP of each

GFP rises linearly with excitation power as expected for one-photon excitation. This

proportionality of CPP to I0 is confirmed by fitting the first three data points with a

power law of type axb; the estimated exponents are close to 1 (b = 1.04 for mNeonGreen,

b = 1.09 for EGFP, b = 1.08 for AcGFP). In this regime, mNeonGreen is approximately

1.6 times brighter than EGFP and 2.9 times brighter than AcGFP.

As the power increases further, photophysical dynamics in the fluorophores start to
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(a) (b)

(c) (d)

Figure 5.1.: Effect of the excitation intensity and size of the observation volume on
autocorrelation functions (ACFs) of mNeonGreen, EGFP and AcGFP.
Each ACF shown is the average of five measurements with an acquisition time
of 60 s. Residuals show the fitting quality of two models tested which contain in
one case two independent components (T3D), one singlet-triplet transition and
one diffusion, and in the other case three components with two contributions
from non-radiative relaxation (TT3D) instead of one. used to describe the data
for a model containing two components (T3D) and three components (TT3D), the
latter of which is superimposed on the correlation data (red lines).

31



5. Fluorescence Spectroscopy of Monomeric GFP Variants

0.1 1 10 100 1000
0.1

1

10

100

C
PP

 [k
H

z]

Laser irradiance I 0/2 [kW/cm2]

 mNeonGreen
 EGFP
 AcGFP

Figure 5.2.: Molecular brightness of freely diffusing mNeonGreen, EGFP and
AcGFP, as measured in FCS over a broad laser power range.
Data is fitted to a power law of type axb (dashed lines), yielding values for b close
to 1 as expected for a single-photon excitation process. The laser irradiance I0
was estimated from the mean power of the laser beam P and the beam waist
ω0 = 0.2µm, determined by a reference measurement of ATTO488: I0 = 2P/

(
πω2

0
)
.

λexc = 488nm, T = 298K, Setup used in the study: Zeiss LSM780 ConfoCor3.
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rise and distort the proportionality and thus, the linear increase. A growing fraction

of molecules is driven into the excited state leading to a depletion of fluoropohores

in the excitable ground state. This saturation effect leads to a reduced photon yield

which can be achieved per further irradiance boost, causing the CPP to drop at higher

excitation intensities. This can be seen by deviations from the linear slope in the

log-log plot at laser irradiances above 2 kW/cm2. Above 10 kW/cm2 the quenching

of fluorescence emission per molecule is amplified by increased de-excitation of the

excited state non-radiative triplet states via intersystem crossing. This can be seen

by a stark rise of the triplet fraction contributing to the correlation functions of all

three GFP variants.

At 100 kW/cm2 of laser irradiance, the CPP reaches a maximum and starts to drop

if the laser power is further increased. This can be explained by irreversible pho-

tobleaching of the fluorophores at the high irradiances applied. Due to the exponen-

tial nature of the bleaching process, with an inreasing photon influx, the average

survival-time of the GFPs decreases with inreasing photon influx and will, at some

point, drop below the residence time inside the focal volume. This leads to a sig-

nificant fraction of fluorophores that bleach during their diffusion through the focal

volume and thus, stop contributing to the fluorescence emission, leading to a drop in

CPP.

During the fitting process it became clear that the recorded correlation curves are

not well suited for a more detailed analysis of the power dependence of the individual

correlation times governing the shape of the correlation function. The fast diffusion

of the GFPs through the focal volume in 100 µs coincides with the relaxation time

expected for protonation- or isomerization dependent blinking, making it impossible

to discriminate between the individual processes.

To circumvent this problem, the focal volume was enlarged by underfilling the back-

aperture of the objective which increased the waist ω0 of the detection volume by a

factor of up to 5 (see fig. 5.1d). As a consequence, the diffusion time of the fluoro-

phores prolongs by a factor of 52 = 25 reaching time scales above 2 ms. This adjust-

ment in the experimental design prevents the overlap of time regimes of transient

states of the fluorophore with the residence time inside the focal volume and facilit-

ates the separation of the distinct components in the autocorrelation function.

5.1.2. Power Series with an Enlarged Focus Volume

Now, correlation functions of the three GFP variants diluted to 5 nM were recorded

using a 20% underfilled objective at identical buffer conditions (10 mM phosphate

buffer pH 8). The measurement at each laser irradiance was repeated 15 times with

an acquisition time of 30 s.
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Due to constraints of the setup used in this study, underfilling reduced the applicable

laser power range from 0.1−700 kW/cm2 as in the previous experiment to 0.1−2 kW/cm2.

This confines detailed photophysical analysis of the GFPs to the low to moderate irra-

diance regime, which however still covers the range of typical fluorescence microscopy

and fluorescence spectroscopy experiments.

The measured correlation curves were fitted again with the T-T-3D model (see eq.

2.14) that accounts for singlet-triplet transitions and a second transient state attrib-

uted to isomerization or protonation processes in or near the chromophore, commonly

termed as blinking.

Figure 5.3a shows the molecular brightness of the mNeonGreen, EGFP and AcGFP

as a function of excitation intensity as calculated from FCS measurements in an en-

larged focal volume. For the first three data points corresponding to irradiances of

0.1, 0.2 and 0.3 kW/cm2, respectively, the fluorescence emission per molecule rises

proportional to the laser power increase for all GFP variants. This is emphasized in

fig. 5.3b that shows the respective brightness values normalized to the fitted CPP

of EGFP. From 0.1 − 0.3 kW/cm2, the CPP of each GFP remains constant within the

experimental uncertainty indicated by the error bars (standard deviation of 15 meas-

urements). With higher intensities, the relative photon yield decreases continuously.

The relative CPP of each GFP when excited with 2.0 kW/cm2 instead of 0.1 kW/cm2

drops by 14 % for mNeonGreen, 10 % for EGFP and 19 % for AcGFP.

When comparing the progressivity of CPP with increasing laser irradiance between

the three GFPs in the normalized plot, it seems that the CPP of mNeonGreen starts to

drop already at low I0 and then continuously decreases throughout the laser powers

scanned. A possible explanation could be that mNeonGreen is more susceptible to

saturation mainly due to its relatively extinction coefficient of 116 000 M−1 cm−1. To

confirm this assumption the fluorescence lifetime was the determined for mNeonGreen,

EGFP and AcGFP.

5.2. Fluorescence Lifetime Measurements

The fluorescence lifetime of GFPs was determined using time-correlated single photon

counting (TCSPC). Single fluorophores are excited by short laser pulses in the pico-

second timerange and the time delay between the excitation pulse and the detection

of the emitted photon is recorded. By repeating this procedure multiple times one

obtains a distribution of the times the fluorophore spends in the excited state, which

can then be fitted to an exponential decay function to extract the fluorescence lifetime

of the specific fluorophore. The technique is complicated by the fact that the recorded

correlation time between the pulse and the actual detection of the photon is a convo-
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(a) (b)

Figure 5.3.: Molecular brightness for freely diffusing mNeonGreen, EGFP and
AcGFP, as measured in FCS at different laser powers in an enlarged
focus volume.
In (a), data is fitted to a power law of type axb (dashed lines), yielding values for
b close to 1 as expected for a single-photon excitation process. Normalization of
the respective CPP values to the fit of EGFP illustrates the relative brightness
of the fluorphores and the increasing deviation of data from the fit at high laser
irradiances (b). Error bars indicate the standard deviation from 15 measure-
ments with an acquisition time of 30 s.
The laser irradiance I0 was estimated from the mean power of the laser beam
P and the beam waist ω0 = 0.7µm, determined by a reference measurement of
ATTO488: I0 = 2P/

(
πω2

0
)
, λexc = 488nm, T = 298K.
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(a)

FWHM 
= 0.40 ns

σ = 0.17 ns

(b) (c)
in PBS
 pH7.5

Figure 5.4.: Fluorescence lifetime of GFP monomers measured with TCSPC-FLIM.
(a) Instrument response function (IRF) of the setup (b) the time trace of fluores-
cence emission is well described by a mono-exponential decay in PBS pH 7.5 for
all constructs as can be seen from two exemplary curves in (b). Scatter plot on
the right (c) shows that the fluorescence lifetime of mNeonGreen is increased by
a factor of 25% with respect to EGFP and AcGFP under the conditions tested.

lution of both systematic time delays (finite laser pulse width, finite processing speed

of the electronics) and the time delay of interest (fluorescence lifetime). This was

accounted for by recording the instrument response function (IRF) with a scattering

solution (LUDOX, Sigma-Aldrich). The IRF of the acquisition system is plotted in fig.

5.4a with a FWHM of 400 ps, which resembles the laser pulse duration. Approxim-

ating the IRF by a Gaussian allows the derivation of an analytical expression for the

fitting function (see equation 2.24) by solving the convolution integal. The plateau

of the IRF at longer correlation times is probably related to spontaneous emission of

the laser (Leonard et al., 2014) and neglectable in amplitude. The width σ = 170ps

obtained from the IRF was kept fixed for all fits, which well described the measured

fluorescence decays (see fig. 5.4b). In this way, deconvoluted values for the fluores-

cence lifetimes of each GFP variant were obtained (see fig. 5.4c).

While AcGFP and EGFP have similar fluorescence lifetimes of (2.56±0.02) ns and

(2.52±0.01) ns, respectively, the lifetime of monomeric mNeonGreen is considerably

higher with a value of (3.20±0.02) ns.

This result confirms observations made in FCS that mNeonGreen is more viable to

saturation not only due to a higher extinction coefficient, but also due to a 28 % longer

residence time in the excited state compared to EGFP and AcGFP. This enhances the

effect of ground state depletion and may make it relevant already at low excitation

intensities.
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(a) (b)

Figure 5.5.: Power dependence of blinking fraction and blinking time for
mNeonGreen, EGFP and AcGFP.

5.3. Triplet and Blinking Dynamics of the GFP Variants

At laser powers exceeding 10 kW/cm2 singlet-triplet transitions increase strikingly

in amplitude and are the predominant photophysical contribution observable in the

recorded correlation curves.

In the low irradiance regime, however, triplet fraction and triplet time do not show

any trend for all three GFPs (see appendix A.2a and A.2b). The fraction of molecules,

that occupy the triplet state is with 4% and 5% comparably small for mNeonGreen

and AcGFP and practically not detectable, but significant for EGFP with on average

13 %.

Blinking is observable already at low excitation intensities and shows a similar be-

havior for all three GFP variants (see 5.5). The blinking times of mNeonGreen and

EGFP are similar and range from 400 µs down to about 75 µs, whereas the time cor-

responding to AcGFP is in each case roughly 200 µs longer throughout the power

range tested.

5.4. Protonation of the Chromophore

Besides the use of fluorophores as pH probes, the dynamical processes observed in

FCS upon a change in pH can be used to gain information about the conformation

and structure of the fluorophore.

To test the pH sensitivity of the three GFP variants, 10 mM potassium phosphate

buffers with different pH values covering a range from 4 to 12 were prepared and

sterile filtered. Outside the natural buffer capacity of phosphate buffer ranging from

37



5. Fluorescence Spectroscopy of Monomeric GFP Variants

pH 5.8 to pH 8, the pH value was adjusted by adding the required amounts of NaOH

or HCl. GFP stock solutions were diluted to 15 nM in buffers of particular pH. The

excitation intensity was set to 0.6 kW/cm2.

Figure 5.6 shows the effect of two selected pH values on the shape of the meas-

ured correlation curves for all three GFP variants. At low pH, a dark state in the

time range of the previously described blinking dominates the shape of the correla-

tion functions for EGFP and AcGFP, with amplitudes of up to 400 %. Surprisingly,

mNeonGreen response to pH is far less pronounced and, in addition, reversed. While

the dark fraction increases with decreasing pH for EGFP and AcGFP, the opposite

is observed for mNeonGreen. Moving from pH 11.0 to pH 4.5 reduces the fraction of

molecules that are on average in a blinking state by 30 %. The diffusion time is in-

dependent on the pH of the buffer, with the exception that at highly acidic pH (≤ 4.5)

the diffusion time decreases due to conformational changes of the protein structre or

due to denaturation.

A more detailed analysis of the blinking fractions as a function of pH value is shown

in figure 5.7a, which illustrates the striking differences of pH sensitivity between

mNeonGreen and the other two GFP variants. At neutral to basic pH, the blinking

fraction Tbl of EGFP and AcGFP remains constant with fractions of 9 % and 15 %,

respectively. Below a pH value of about 7, the blinking fraction rises sharply for

both GFPs reaching blinking fractions of over 80 % at pH 4. The dependence of the

blinking fraction on pH is well described by a sigmoid function F = A0 + (A1 − A0)/(1+
10pKa−pH); fitting F to the data yields a pKa of 5.3±0.1 for AcGFP and a slightly higher

pKa of 5.7±0.1 for EGFP. The latter result is in good agreement with a reported pKa

value of 5.8 based on fluorescence emission intensity measurements (Haupts et al.,

1998).

As already mentioned before, mNeonGreen shows a completely different behavior

when exposed to varying pH conditions. In contrast to EGFP and AcGFP, the mag-

nitude of the blinking fraction Tbl is much less ranging from 5% to 25%. Additionally,

the overall picture of the course of the blinking fraction is reversed: Opposite to the

observations for EGFP and AcGFP, less molecules undergo blinking in acidic condi-

tions, while at highly basic conditions the blinking fraction increases slightly above

a broad plateau ranging from pH 5.5 to 10.0.

The behavior of the blinking fraction with changes in pH conditions directly affects

the molecular brightness of each GFP variant, since molecules are not able to fluor-

esce as long as they are in a dark state. This is demonstrated by figure 5.7b, which

shows the dependence of the counts per molecule (CPP) on pH. Comparing fig. 5.7a

with 5.7b, one can tell that the progressivity of the CPP is a mirror image of the pro-

gressivity of the blinking fraction Tbl. When the buffer becomes acidic, the CPP of
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EGFP drops sharply from 5 kHz to roughly 2.2 kHz at pH 4.5. Likewise, the CPP of

AcGFP drops from 3 kHz to below 0.8 kHz at low pH. The association of the blinking

fraction and the molecular brightness is emphasized by also fitting the CPP data to

the same sigmoid function F, which yield similar pKa values for all three constructs

as were derived previously. The outlier at pH 4 for EGFP was excluded from the

fitting process, as it is probably caused by denaturation (Kneen et al., 1998).

To exclude that the observed blinking dynamics are related to diffusional or pho-

tobleaching processes, correlation functions of mNeonGreen were recorded at an iden-

tical excitation density in a larger detection volume. This was achieved by increasing

the underfilling factor from 5 to 6.7, leading to a beam waist shift of ω0 = 0.7nm to

ω0 = 1.0nm.

Figure 5.8 shows that the blinking fraction Tbl as well as the blinking time τbl are

independent of the focal volume size. This result confirms that the blinking dynam-

ics seen in the correlation functions belong to inherent transient dark states of the

fluorophore, which should correspondingly not depend on the geometry of the obser-

vation volume. Moreover, figure 5.9 shows the effect of different laser irradiances on

the blinking fraction and the blinking time. It is demonstrated that blinking dynam-

ics not only depend on the excitation power as discussed in the previous section, but

also on the pH value of the buffer. The coupled dependency of the blinking dynam-

ics of mNeonGreen on pH as well as illumination power differs from the behavior

of EYFP, where the blinking time was not affected by excitation intensity (Schwille

et al., 2000).
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(a) (b)

(c)

Figure 5.6.: Exemplary correlation curves showing the effect of different pH on
mNeonGreen, EGFP and AcGFP.
From high to neutral pH, the correlation curves of EGFP (a) and AcGFP (b)
are dominated by diffusion and are nearly unchanged, while at low pH (≤ 7)
the fraction Tbl of molecules undergoing blinking grows strongly. In contrast,
mNeonGreen’s (c) response to a shift of the pH value from 11.0 to 4.5 is reversed
and, additionally, far less pronounced. Measurements were performed at a laser
irradiance of 0.6 kW/cm2 in an observation volume with a beam waist of 0.7 µm.
The correlation functions shown are the average of 30−60 repetitions with an
acquisition time of 30 s.
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(a)
T bl

(b)

Figure 5.7.: mNeonGreen’s sensitivity to varying pH differs strongly from EGFP
and AcGFP regarding blinking fraction and molecular brightness.
(a) At low pH, a process in the time regime of blinking grows in amplitude simil-
arly for EGFP and AcGFP by almost a factor of 4. This behavior of Tbl can be well
described by sigmoidal dose-response functions, yielding a pKa of 5.7 for EGFP
and 5.3 for AcGFP. Surprisingly, the fluorescence properties of mNeonGreen are
far less affected by acidic or alkaline buffer conditions. Since higher fractions
of molecules in a non-fluorescent state reduce the overall brightness, the beha-
vior of CPP as a function of pH (b) is a mirror image of the progressivity of the
blinking fraction Tbl.

(a)

typical std.d.:

(b)

typical std.d.:

Figure 5.8.: Blinking is not related to a diffusional process.
Blinking fraction (a) and blinking time (b) were obtained from correlation curves
recorded at two different focal volume sizes (0.7 µm and 1.0 µm) at identical
excitation intensities. The blinking dynamics in mNeonGreen are unrelated to
diffusion or photobleaching as the blinking time (b) is not affected by the size of
the observation volume. Consistently, also the blinking fractions (a) under the
two conditions tested match within the error margin.

41



5. Fluorescence Spectroscopy of Monomeric GFP Variants

(a)

typical std.d.:

(b)

typical std.d.:

Figure 5.9.: Interdependency of blinking fraction and blinking time on laser irra-
diance as well as pH.
Blinking fraction (a) and blinking time (b) were obtained from correlation curves
recorded at two different laser irradiances (0.1 kW/cm2 and 0.6 kW/cm2) in a de-
tection volume with a beam waist ω0 = 1.0µm. The blinking fraction as well as
the blinking time is dependent on the laser irradiance over the whole pH range
similarly to the power series (see fig. 5.5) at pH 8, i.e. that the blinking fraction
increases while the blinking time decreases with illumination power.
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mNeonGreen Tandem Proteins

With this in mind, mNeonGreen tandems with up to five copies were successfully

cloned and purified. To evaluate the suitability of multimerized mNeonGreen con-

structs for future single-molecule applications in TIRFM and FCS, the yield of fluor-

escence output which can be achieved is quantified. Additionally, the effect of oligo-

merization on the fluorescent lifetime and on the diffusion coefficient is determined

in in vitro and in vivo assays.

6.1. Diffusional Properties of mNeonGreen Oligomers

FCS Measurements in Aqueous Solution

Correlation functions of mNeonGreen oligomers diluted to 5 nM in 10 mM potassium

phosphate buffer pH8 were recorded at power densities ranging from 0.1 − 2 kW/cm2.

The acquisition time was set to 60 s, and each measurement was repeated 15 times.

The experiments were performed at room temperature at 23 ◦C, the temperature in

the sample is assumed to be slightly warmer due to the applied laser irradiation

((25±1) ◦C).

Figure 6.1 shows the correlation function of monomeric and pentameric mNeonGreen

at the lowest and highest irradiance irradiance tested in this assay. The increased

molecular size of the pentamer shifts the correlation function rightwards to longer

times as the diffusion time through the observation volume increases. This is also

observed for the correlation function measured at 2 kW/cm2 but the increase in diffu-

sion time appears to be less compared to the shift seen at 0.1 kW/cm2. This suggests

that the pentameric mNeonGreen is more affected by photobleaching than the mono-

meric mNeonGreen, either intrinsically or simply caused by the longer residence time

in the detection volume and thus, longer exposure to the laser light.

The change in diffusion as the power increases was plotted in figure 6.2a. First of all

it is evident that the diffusion time increases step-by-step with the multimerization

state.Secondly, one can also identify a change in the progressivity of the diffusion

times with increasing laser irradiances for the oligomers. While diffusion time of
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(a) (b)

Figure 6.1.: Exemplary correlation curves of monomeric and pentameric
mNeonGreen.
The effect of excitation intensity on the shape of the correlation function is
shown for the lowest, 0.1 kW/cm2 (a) and highest irradiance, 2.0 kW/cm2 (b).

multimerized mNeonGreen gradually drops more for longer chains, the trend seen as

the power increases for the monomer is inverted in terms of that is fairly constant

or even slightly increasing. This suggests that while photobleaching is the dominant

effect in mNeonGreen chains, monomeric mNeonGreen is mainly affected by satura-

tion in the low irradiance regime.

To minimize photophysical influences in the derivation of diffusion coefficients, the

diffusion time of each mNeonGreen oligomer was linearly extrapolated to zero light

conditions (solid lines). The waist of the detection volume was determined to ω0 =
0.72µm by a reference measurement of ATTO488 assuming a diffusion coefficient of

400 µm2/s at 25 ◦C (Kapusta, 2010) and a fixed structural parameter of SP = 5. Fig-

ure 6.2b shows the calculated diffusion coefficients for mNeonGreen of varying chain

lengths. Treating the mNeonGreen chain as perfect spheres, one expects a decrease

of the diffusion coefficient proportional to n−1/3, where n stands for the number of sub-

units in the chain (n = 1−5). Despite the simple assumption made, the corresponding

model fits the data surprisingly well (red line).

FCS Measurements in cellulo

The diffusion coefficients of mNeonGreen oligomers were also quantified when ex-

pressed in living HEK293T cells growing on chambered glass slides.

The realization of FCS measurements in cells is impaired by the much more complex

environment compared to in vitro assays, making it demanding for the experiment-

alist to record correlation functions of decent quality. A crucial requirement for suc-
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(a)

1xmNG

2xmNG

3xmNG

4xmNG

5xmNG

(b)

Figure 6.2.: Diffusion coefficient of mNeonGreen oligomers in the low irradiance
regime observed in FCS.
(a) With increasing laser power, the diffusion time τdiff of the multimerized
mNeonGreen is dominated by photobleaching and decreases, whereas the dif-
fusion time of the monomer stays constant or slightly rises due to saturation.
The diffusion time of each oligomer was extrapolated to zero light conditions in
order to obtain diffusion coefficients that are unaffected by photophysics (b). The
dependence of the diffusion coefficient on the chain length n is well described by
a model assuming a spherical shape with a radius growing proportional to n−1/3.

cessful intracellular FCS measurements is the positioning of the observation volume,

both in the x-y-plane and in the z-direction (optical axis). Adjusting the focus posi-

tion too high or too low will cause the the detection volume to stand out of the cellular

compartment or to penetrate into the cover glass surface, which will in either case

distort the shape of the detection volume and therefore affect the obtained diffusion

time and fluorescence emission per molecule (CPP). Bearing in mind that in a con-

focal setup the length of the diffraction limited observation volume along the optical

axis is about 1 µm and the height of a cell typically 4 µm − 10 µm, one has only a little

margin for the focus position of at best 1 µm at central positions, but much less at

peripheral regions.

Additional complication in intracellular FCS measurement is caused by the fact that

the observed system is vivid and far from being in a steady-state or in an equilib-

rium as opposed to a aqueous buffer solution. Cellular compartments like vesicles

or autofluorescent components in the cytoplasm may diffuse through the observation

volume and cause additional fluctuating spikes in the fluorescence intensity time

trace or lead to a slow decrease in overall signal due to continuous photobleaching of

autofluorescent contaminants. This problem is accounted for by proficient placement

among the cellular compartments and by reducing the measurement time in return

of more repetitions.
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(a) (b)

Figure 6.3.: Diffusional properties of mNeonGreen oligomers in the nucleus and
cytoplasm.
The higher viscosity inside cells prolongs the diffusion time of monomeric
mNeonGreen about 4-fold compared to an aqueous solution (compare with fig.
5.1a) as seen by the correlation curves (a) and by the diffusion coefficient (b).
Moreover, larger particles undergo significantly more steric hindrance in cells,
reducing the diffusion coefficient more drastically with chain length (∝ n−0.7)
compared to diffusion in phosphate buffer (∝ n−0.33). Correlation curves were
recorded with an acquisition time of 15 s and repeated 5 times for each cell
(n = 10) and position (nucleus/cytoplasm). The beam waist was determined to
equal 0.23 µm from a reference measurement of ATTO488 in water at 25 ◦C,
which was used to estimate the laser irradiance according to fig. 5.2 as well as
to calculate the respective diffusion coefficients. The applied laser irradiance
was about 0.4 kW/cm2, temperature and refractive index mismatches due to the
cellular environment were neglected.

For this reason, a total of 10 cells with low to moderate expression levels were se-

lected, recording five runs with an acquisition time of 15 s for each construct at room

temperature (23 ◦C). Excitation intensity was adjusted so that monomeric mNeonGreen

has a CPP of about 2 kHz in a diffraction limited detection volume, which lies in the

low irradiance regime (≈0.4 kW/cm2) to minimize photobleaching and photophysical

artifacts to the fluorophores as well as to prevent photodamage to the cells.

Figure 6.3a shows representative correlation curves for monomeric, trimeric and

pentameric mNeonGreen, all normalized to 1 at a lag time of 10 µs for better compar-

ability. Due to the low excitation intensity used for the intracellular measurements,

the contribution of singlet-triplet transitions was neglected and the correlation func-

tions were fitted to a model describing the fluctuations due to diffusion and blinking

only, whereby the latter was restricted to a time regime within 10−300 µs based on

the results from the in vitro experiments.

As described in the previous section, the size of the observation volume was de-

termined by measuring the diffusion time of ATTO488 in water, resulting in a beam
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diameter of ω0 = 0.23µm. Neglecting potential temperature differences between the

reference measurement at 25 ◦C and the measurements in cells, as well as corres-

ponding refractive index mismatches due to the slightly increased refractive index in

cells (≈ 1.37, Choi et al., 2007) compared to the immersion water (1.333), the corres-

ponding diffusion coefficients of the mNeonGreen oligomers in the nucleus and in the

cytoplasm are shown in fig. 6.3b. It is immediately noticeable that the progression

of diffusion coefficients with chain lengths is significantly steeper compared to the

situation in aqueous media, indicating a increased sterical hindrance especially for

the larger molecules. The shift of diffusion coefficient of the monomeric mNeonGreen

from 90µm2/s down to ≈ 20µm2/s serves as an indicator for the roughly 4.5 times

higher viscosity in cells compared to an aqueous solution.

6.2. Effect of Oligomerization on Molecular Brightness

FCS Measurements in Aqueous Solution

Analogously to section 5.1, the fluorescence emission per molecule (CPP) for each

mNeonGreen oligomer was determined from the correlation data and plotted versus

laser irradiance on a double-logarithmic scale (see fig. 6.4a). For a more direct quant-

itative comparison, fig. 6.4b shows the CPP normalized to the molecular brightness

of a monomeric mNeonGreen as a function of illumination power.

The FCS analysis is complicated by the fact that each mNeonGreen molecule has a

certain probability to be completely non-fluorescent due to deficient folding or matur-

ation, which was determined by single-molecule bleaching step analysis to be 24%. If

one assumes that this fraction, gained from the special case of a trimer, is a property

of the (monomeric) mNeonGreen itself and not affected by the process of oligomeriz-

ation, the examined solution of multimers is a mixture of multimers with binomially

distributed numbers of fluorescent and non-fluorescent subunits. This affects not

only the fluorescence signal, but also the amplitude of the correlation function and

therefore the derived quantities like molecular brightness (see calculations in section

2.2.3 for details).

FCS Measurements in cellulo

As a primary observation it can be stated from looking at exemplary fluorescence

microscope images (fig. 6.5a) that the mNeonGreen monomer shows a homogeneous

distribution among the cells comparable to that of EGFP and AcGFP when expressed

in the cytoplasm without any visible aggregation or clustering artifacts.

To address the performance regarding molecular brightness of the monomeric GFP
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(a) (b)

Figure 6.4.: Derived molecular brightness (CPP′) of freely diffusing mNeonGreen
oligomers measured at different laser irradiances in an enlarged ob-
servation volume (a).
Assuming an inherent probability p = 76% that a random mNeonGreen
monomer lacks fluorescent ability as seen in single-molecule TIRF, each chain
itself consists of a mixture of molecules with binomially distributed numbers of
fluorescent and non-fluorescent subunits. This complication was accounted for
by weighting the amplitude of the diffusional part of the correlation function
GD(0) based on the brightness of each species according to eq. 2.17.
The first three data points are fitted to a power law of type axb (dashed lines).
Normalization of the CPP′ data to the fit of the monomeric CPP illustrates the
proportional increase of brightness according to chain lengths, independent of
the excitation intensities tested (b). Values are mean ± std.d.
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(a) (b)

Figure 6.5.: Molecular brightness of AcGFP, EGFP and mNeonGreen oligomers ob-
tained in intracellular FCS measurements.
The absolute value of 1xmNeonGreen, to which the plot is normalized to, is
2.58 kHz. Each dot corresponds to the mean CPP calculated for a single cell, ob-
tained from 2 − 5 correlation curves recorded with a duration of 15 s depending
on data quality. In the fitting routine, singlet-triplet transitions were neglected
and blinking contributions were restricted to a time range between 10 µs and
250 µs according to in vitro experiments. Noticeable scatter of CPP-values re-
flects the complication of FCS analysis by the complex cellular environment in
addition to cell-to-cell differences in background contributions (b) caused by cel-
lular autofluorescence.

variants and the mNeonGreen chain inside cells, FCS measurements positioned in

the nucleus and in the cytoplasm were performed. For each variant, a total of 10

cells with low to moderate expression levels were selected, recording five runs with

an acquisition time of 15 s each. Excitation intensity was adjusted so that monomeric

mNeonGreen has a fluorescence of about 2 kHz per molecule, which lies in the low

irradiance regime (≈0.2 kW/cm2) to prevent photobleaching of the fluorophores as

well as photodamage to the cells.

6.3. Effect of Oligomerization on Fluorescence Lifetime

Fluorescence lifetime measurements were repeated analogously to section 5.2 to test

the influence of cellular environment and of multimerization on the fluorescence life-

time on the GFP constructs.
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As figure 6.6 shows, the fluorescence lifetime decreased for all constructs when moved

form PBS to cells. The differences in fluorescence lifetime due to the different en-

vironmental conditions seems to be more pronounced for mNeonGreen compared to

EGFP and AcGFP. Therefore, the ratio of fluorescence lifetime measured in PBS to

the lifetime measured in cells was calculated and plotted in figure 6.7a, which il-

lustrates the above-mentioned observation. Further, the fluorescence lifetime of the

mNeonGreen seems to be reduced by a constant factor of 0.93 for both the in vitro
and the in vivo measurements with increasing chain length. This finding reflects the

fact that the increase of FRET efficiency E = 1−τda/τd occurring with an increase in

mNeonGreen chain length is independent of the two conditions tested (see fig. 6.7b)

and probably caused by multimerization only. The overall decrease in fluorescence

lifetime is low and thus, the FRET efficiency reaches only up to 8%. This can be

explained by the high quantum yield reported for mNeonGreen (N. C. Shaner et al.,

2013), which makes non-radiative de-excitation pathways improbable.

6.4. Blinking Dynamics in Multimerized mNeonGreen

Besides the increase in diffusion time in the correlation curves shown in fig. 6.1 due to

the increased chain length, one can further observe a difference in the blinking beha-

vior between the monomer and the pentamer at 2 kW/cm2. At low excitation intensity

there is practically no contribution from a dark state present in both mNeonGreen

constructs displayed. At high laser irradiance one can see that oligomerization seems

to reduce the fraction of molecules undergoing blinking. To look into the depend-

ence of the blinking process on the state of multimerization, the fraction of molecules

undergoing blinking was plotted for 1x − 5x mNeonGreen as a function of excita-

tion intensity (see fig. 6.8a). While Tbl increases monotonously for the monomeric

mNeonGreen as already seen in section 5.3, the progressivity is far less pronounced

for the dimeric mNeonGreen and completely independent (3x mNeonGreen) on illu-

mination power or even reversed in a sense that the blinking fraction decreases with

laser power (4x/5x mNeonGreen).

The blinking time τbl decreases for all oligomers with excitation intensity, and seems

to be systematically shorter the more subunits are present in a chain (see fig. 6.8b).
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in vivo
(filled symbols)

in vitro
(open symbols)

Figure 6.6.: Fluorescence lifetime of GFP monomers and mNeonGreen chain as
measured with TCSPC in vitro and in vivo.
Scatter plot showing the lifetimes in PBS (n = 4 − 5) and in HEK293T cells
(n = 20 − 39) obtained from fitting. The time trace of fluorescence emission is
well described by a mono-exponential decay both in PBS pH7.5 and in cells
for all constructs as can be seen from three exemplary curves in (a). Scatter
plot showing the fluorescence lifetimes in PBS (n = 4 − 5) and in HEK293T cells
(n = 20 − 39) obtained by TCSPC. While AcGFP and EGFP have similar fluor-
escence lifetimes with a minor discrepancy between the two conditions tested,
the lifetime of mNeonGreen is about 25 % longer with a significant drop when
moving from PBS to cells.
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(a) (b)

Figure 6.7.: Homo-FRET occurring in mNeonGreen tandems increases with chain
length.
The proportionality of quantum yield to fluorescence lifetime indicates a reduced
fluorescence emission per molecule by approximately 7 % for mNeonGreen, in-
dependent on the chain length, 4 % for EGFP and 2 % for AcGFP (a). The short-
ening of fluorescence lifetime by multimerization is used to estimate the frac-
tion of FRET occurring in each oligomer, reaching up to 8 % in the mNeonGreen
pentamer.

(a) (b)

Figure 6.8.: Dependence of blinking amplitude and blinking time on excitation in-
tensity for mNeonGreen multimers (1x−5x).
For the mNeonGreen monomer the blinking fraction Tbl (a) increases linearly
with laser power in a logarithmic plot as seen in fig. 5.5a, whereas in a mul-
timerized protein chain the amplitude seems to be independent or only weakly
dependent on excitation intensity. Even though the data is subject to variation
at low excitation, relaxation from the blinking state τbl (b) seems to be accel-
erated in the multimerized constructs. At higher excitation intensities, the re-
spective blinking times converge progressively and coincide at about 60 µs. Val-
ues are mean ± std.d. of 15 measurements with an acquisition time of 30 s.
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In this study, purified fluorescent proteins EGFP, AcGFP, mNeonGreen, and mul-

timerized tandems of mNeonGreen were characterized with single-molecule tech-

niques. Applying FCS in free solution, variation of pH as well as excitation power

revealed significant differences between mNeonGreen and the two other GFP vari-

ants, thus reflecting the phylogenetic distances between the source organisms. The

molecular brightness of mNeonGreen is increased 1.4-fold with respect to EGFP and

2.0-fold with respect to AcGFP under the same 488 nm excitation. This ratio was

maintained over the whole range of typical excitation intensities (0.1-2 kW/cm2). The

1.4-fold increase is slightly less than what one would expect based on extinction coef-

ficient and quantum yield (1.63) reported for mNeonGreen (N. C. Shaner et al., 2013).

This discrepancy might be explained by the onset of saturation effects even at mod-

erate laser powers due to the exceptionally high extinction coefficient. Consistent

with mNeonGreen to be prone to ground state depletion, the fluorescence lifetime

of mNeonGreen (3.2 ns) is slightly longer than for EGFP (2.5 ns). Alternatively, a

reduced molecular brightness may be a result of photobleaching. Single-molecule

TIRF microscopy showed that mNeonGreen decays three times faster than EGFP or

AcGFP, although improved photostability was claimed based on wide-field microscopy

(N. C. Shaner et al., 2013). A statistical analysis of bleach-steps in single-molecule

imaging with trimeric mNeonGreen constructs allowed to estimate that 76% of the

mNeonGreen domains were fully matured and fluorescent after purification.

As it is known for long, both AcGFP and EGFP show characteristic quenching in

acidic buffers due to highly populated dark states, of up to 90% in pH 4.0 (Haupts et

al., 1998; Widengren, Terry and Rigler, 1999). Surprisingly, mNeonGreen showed a

much different behaviour. The magnitude of blinking fractions leading to a quenched

total fluorescence never exceeds 25%. In stark contrast, the progression of pH-dependence

is reversed: a negligible fraction of molecules occupy dark states under acidic condi-

tions, blinking amplitudes are constant between a pH value of 5 and 10, and finally

rise in the basic regime. This behaviour is inconsistent with the canonical view of

external protonation dependent conformational changes. It seems protons cannot

enter the mNeonGreen barrel to protonate the phenolic hydroxy group of the cent-

ral Tyrosin in the chromophore (Haupts et al., 1998). Once a crystal structure will
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be available, it would be interesting to clarify, whether the topology of the hydrogen

bonding network excludes transfer of protons from the surface into the interior of the

protein. Finally, spectroscopic studies on point mutants targeting the chromophore

environment may uncover why the pH-depen-dence of mNeonGreen is so much differ-

ent than that of EYFP, although both proteins share the same amino acid sequence

undergoing cyclization (GYG) (Schwille et al., 2000).

One obvious strategy to improve the signal-to-noise in single-molecule applications

is the use of multimeric fluorescent proteins as fluorescent labels. Here, we studied

constructs with up to five mNeonGreen domains connected by a short linker. The

normalized molecular brightness as reflected by CPP-values in FCS indeed showed

a linear rise with a slope of almost one. Recently, a similar brightness standard

was introduced based on a tetrameric EGFP chain, albeit with a smaller brightness

increment (Vamosi et al., 2016). This means, with mNeonGreen, each additional FP

domain in the tandem construct increased the signal by a quantum corresponding

the fluorescence yield of the monomer. Typical limitations as inner filter effects or

reduced quantum yield due to homotypic FRET seem to be negligible. This property

was reproduced even inside cells, in the cytoplasm and the nucleus, where larger

viscosity aggravates photobleaching especially of larger protein constructs. Because

the molecular brightness scales linearly with the number of mNeonGreen domains

in the protein such chains could be used as a reference to address the stoichiometry

of complex binding reactions.
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A.1. TIRFM

1xmNeonGreen 3xmNeonGreen

5xmNeonGreen4xmNeonGreen

2xmNeonGreen

Figure A.1.: TIRF images of mNeonGreen oligomers.
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A.2. FCS

(a) (b)

(c) (d)

Figure A.2.: Triplet fraction and time of monomeric GFPs and the mNeonGreen
chain
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