Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mechanisms of vortices termination in the cardiac muscle

MPG-Autoren
/persons/resource/persons173541

Hornung,  Daniel
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons205256

Baig,  Tariq
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons188799

Berg,  Sebastian
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173574

Krinski,  Valentin I.
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173583

Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hornung, D., Biktashev, V. N., Otani, N. F., Shajahan, T. K., Baig, T., Berg, S., et al. (2017). Mechanisms of vortices termination in the cardiac muscle. Royal Society Open Sience, 4(3): 170024. doi:10.1098/rsos.170024.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-38A4-7
Zusammenfassung
We propose a solution to a long-standing problem: how to terminate multiple vortices in the heart, when the locations of their cores and their critical time windows are unknown. We scan the phases of all pinned vortices in parallel with electric field pulses (E-pulses). We specify a condition on pacing parameters that guarantees termination of one vortex. For more than one vortex with significantly different frequencies, the success of scanning depends on chance, and all vortices are terminated with a success rate of less than one. We found that a similar mechanism terminates also a free (not pinned) vortex. A series of about 500 experiments with termination of ventricular fibrillation by E-pulses in pig isolated hearts is evidence that pinned vortices, hidden from direct observation, are significant in fibrillation. These results form a physical basis needed for the creation of new effective low energy defibrillation methods based on the termination of vortices underlying fibrillation.