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Abstract

Molecular crystals are at the forefront of research to find new technologies and to

probe emerging phenomena such as superconductivity. Their studies are, there-

fore, important but also challenging, especially in the field of atomically-resolved

dynamics due to low damage thresholds and other factors. Two such crystals,

showing different phenomena, were the focus of this work.

The dynamics of photochemical reaction in ultrathin crystals of spirooxazines

were studied using a home-built transient absorption setup and 266 nm light for

excitation. They were found not to be completely photochromic in crystalline

state, in contrast to their behaviour in solution and amorphous films. A tran-

sient emerges after excitation, which evolves to form planar trans-merocynanine

product within 80 ps in solution, but due to steric restrictions in the crystal,

only the ring-opened form of spirooxazine was created without undergoing iso-

merisation. For these experiments, a methodology was developed to tackle the

issue relating to the permanent formation of the photoproducts in crystals, which

severely hampers reversibility. It made use of an additional ultrashort beam,

making it a three-beam approach, with the third beam acting to arrest the ac-

cumulation of the products by removing them from the probe volume via the

back photoreaction. Using this approach, it was possible to achieve over 10,000

pump-probe cycles, enabling time-resolved spectroscopy of this system and opens

up prospect for femtosecond diffraction experiments.

Femtosecond electron diffraction study was carried out on EDO-MeEDO, a

doped crystal of EDO-TTF. The response of the system was found to be different

to what is known for the pure EDO-TTF crystal; our findings could not confirm
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the occurrence of a cell doubling phase transition. At acoustic time scales, it

is hypothesised that cooperative effects play a role, which lead to pronounced

phonon signals. Further studies are needed to understand the dynamics of this

system.
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Chapter 1

Introduction

“Seeing is believing” —the idiom from the seventeenth century holds a special

meaning across many scientific disciplines [1]. A major part of our understanding

of the world today is due to the ability to observe and measure different states of

matter. The discoveries of the nuclei by Rutherford in 1890 [2] and electrons by

J.J.Thompson in 1897 [3], amongst others, were a confirmation for the existence of

atoms and became a catalyst for many exciting developments, both in theory and

experiments. Experimentally, the invention of the laser [4, 5] and the development

of diffraction and microscopy techniques were a major advance. Today, it is

possible to “see” individual atoms using a scanning tunneling microscope (STM)

[6]. Many physico-chemical phenomena involve displacement of atoms of some

sort happening at the molecular level. It is therefore interesting to be able to see

these displacements as they happen. As Muhammad Ali once boasted about his

speed in the boxing ring, “His hands cannot hit what his eyes cannot see”. In a

similar vein, one cannot control what one cannot observe. Controlling molecular

processes generally requires detailed knowledge of the underlying physics and the

associated structural changes, which can be acquired by studying them at the

atomic level. This endeavour represents the main goal of the field of ultrafast

structural dynamics and also of this thesis work.
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1.1 The need for atomic scales

This section discusses the need for atomic level probing and also defines the

atomic scale. Fig 1.1 provides a guide to the typical length and time scales that

are characteristic of different objects and processes. As can be seen from the

length scales, that, in order to peer at atoms and molecules, we must venture

into the Ångstrom scale (1 Å= 10−10 m). The eye is a powerful apparatus in the

human anatomy that is responsible for vision, but it is unable to resolve objects

smaller than 0.001 mm. Microscopy is the field concerned with viewing objects

that are too small for the eye to detect [7]. The optical microscopes using visible

radiations are able to, at best, magnify and resolve objects of sizes down to 250 nm

(1 nm = 10 Å) [8]. The main limitation to achieving a better resolution than this

is due to diffraction, which smears out the features smaller than λ/2. This is also

known as the Abbe resolution limit [9]. Recently, techniques known collectively as

super-resolution microscopies have been developed that circumvent the diffraction

limit and effectively bring the resolution into sub-20 nm domain [10, 11]. Stefan

Hell, Eric Betzig and William Moerner shared the 2014 chemistry Nobel prize

for their pioneering research that led to the development of these techniques [12].

But, despite this incredible improvement, the resolution has still not reached the

atomic level. If, however, the visible light is replaced by any source that emits

radiation that has a wavelength comparable with or smaller than the typical inter-

atomic distance then it can, in theory, be used to investigate atoms and molecules.

Neutrons, x-rays or electron all have wavelengths that are well suited for this

purpose and have conventionally been used to elucidate structures of molecules

using diffraction techniques. It should be pointed out that other techniques do

exist, such as nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy

to name a couple, that can also be used for structure determination, but methods

involving x-rays and subatomic particles provide much higher resolutions as they

are direct probes of molecular structures.

The interest in determining the structure of molecules is due to the wealth

of useful information that can be obtained from it. For example, measuring the
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Figure 1.1: Orders of magnitude (images from various sources).

energy levels of molecules, by means of spectroscopy, can provide information

on the electronic structures, which can be used to predict reactivity. Similarly,

the knowledge of molecular structures can help to understand the tendencies of

molecules towards forming certain bonds. For instance, a molecule with a hy-

droxyl (OH) functional group can form a hydrogen bond with an oxygen or other

highly electronegative atom. In fact, a statement is often made which relates the

structure directly to function: structure defines function. Therefore, determin-

ing (electronic or molecular) structures are considered imperative to understand

the properties of many systems. Most structural determination techniques are

able to provide only time-averaged (static) structural information. While clearly

useful for characterisation purposes, if the goal really is to understand what is

occurring at the molecular level, so as to control processes, e.g., to devise tailored

materials, then the information on only the static structures is not sufficient and

the dynamic aspect of the system must be considered.

To get an appreciation for the need for dynamic information consider, for ex-
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ample, a football match played between two teams, A and B that ends with team

A scoring six goals and team B scoring none, therefore the scores at the begin-

ning (zero all) and the end are well-determined. Anyone who had not watched

the match can only hazard a guess (which may or may not be correct) as to what

might have transpired in the match. For instance, one might be able to guess who

the goal scorers were based on the form of the players leading up to the match

or speculate some poor decision from the referee owing to some past history. In

any case, only by watching the replay of the match can one truly learn about

the key moments that played out and defined the final outcome. This football

match analogy is a reasonable one when discussing the need to follow the dy-

namics. Often well-defined structures of the molecules that form the reactants

in a chemical reaction are available and it is possible to fully characterise the

products. But, how can one make the connection between the two when there

can be a myriad of possible routes from the reactant to the final products? In

other words, what is the reaction mechanism? Traditionally, chemical knowledge

and intuition have aided this exercise. But, as has already been emphasised, the

specific motions that define a reaction outcome cannot be deduced a priori from

the time-averaged structures and in order to determine the structural dynamics,

probing in the relevant timescales is necessary. To establish the atomic times-

cales, let’s consider the dissociation of a bond as an example. The timescale in

question is then that of atoms moving approximately 1 Å along the dissociation

coordinate at the speed of sound (typically 103 m s−1 in solids). This equates

to about 100 femtoseconds (1 fs = 10−15 s). This is just one example and there

are certainly other processes occurring on either slower or faster timescales. For

example, the vibrational period of the OH stretching in water was determined to

be roughly on the order of 10-150 fs [13]. Nevertheless, the 100 fs serves as a good

figure for the time resolution that must be achieved if the molecular motions are

to be tracked.
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1.1.1 Making molecular movies

Any experiment that measures the evolution of molecules with atomic spatial

and time resolutions can be referred to as the ‘molecular movie’. As already

mentioned, x-rays and subatomic particles are suitable for probing structures

with atomic spatial resolution, but what about the required time resolution?

The camera that would be needed to capture the molecular motions must have

an effective shutter speed on the order of 100 fs or shorter. To justify that it is

the shutter speed that will be important, see Fig 1.2 which shows photographs

of a fountain taken with a camera with fast speed of the shutter (panel a) and

with slow shutter speeds (panel b). As can be seen, with higher shutter speeds of

the camera, the drops of the water flowing out of the fountain are more clearly

distinguished than with lower shutter speed, in which case they are completely

smeared out. This is of course a macroscopic example, so what can be said about

the cameras needed for capturing molecular motion? No electronic detector is

fast enough to approach the figure needed to capture molecular motions in real

time. Indeed, it was thought inconceivable to reach the time resolution necessary

to probe ultrafast phenomena until the advent of ultrashort laser technology over

three decades ago [14]. Nowadays, it is quite routine to produce and characterise

laser flashes that have durations as short as a few hundred attoseconds (1 as =

10−18 s), so that the ‘shutter speed’ required to freeze molecular motions is no

longer elusive, i.e. ultrafast lasers can act as molecular cameras. Such ‘cam-

eras’ have been used in probing matter using pump-probe approaches in which

one pulse of light is used to initiate the dynamics of interest and another pulse

—that is delayed from the first one, is used to capture images at different stages

of the molecular process and these images can be treated like frames of a film

that can be stitched together to give a sense of a ‘movie’. When ultrafast light

pulses are used as the probe, the technique is termed time-resolved spectroscopy.

Being spectroscopic techniques, they measure the transitions in rotational, vi-

brational and electronic energy manifolds of molecules depending on the whether

microwave, infrared or ultraviolet (UV) light is used, respectively. Time-resolved
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b)a)

Figure 1.2: Photographs of a fountain taken with a) fast shutter speed and b)

slow shutter speed. Notice the difference in the exposure. Taken from [15].

spectroscopies have provided very useful insights on many different ultrafast phe-

nomena, in many area of physical sciences and today form an indispensable tool

for any laboratory concerned with ultrafast studies of matter. The interpretation

of the experimental results from such techniques and reconstruction of molecu-

lar structures, however, often requires support from theory and/or simulations.

Construction of potential energy surfaces (PES) —a multi-dimensional surface

that describes the change of the potential energy of the molecule as a function of

some internal coordinate, of all the relevant (electronic) states of a system is often

undertaken and dynamic simulations are performed on these surfaces to model

the data. For small molecules, such as diatoms with 3N -5 internal coordinates

(where N is the number of atoms in the molecule)1, this can be done at a high

level of theory (both ab initio methods or density functional theory (DFT) can

be used), but for large, complex systems the calculations can rapidly become

intractable. Moreover, spectroscopy can only probe states which do not involve

non-radiative pathways, i.e. it can not detect dark states.

Diffraction techniques, on the other hand, provide atomic level detail on the

molecular structure and can even detect dark states, but are traditionally time-

averaged measurements. By combining the strengths of ultrafast spectroscopy

and diffraction techniques, one can follow the evolution of structures in actual

time. The marriage of the two fields gives rise to time-resolved diffraction.

13N -6 internal coordinates in the case of nonlinear molecules.
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1.2 Electrons as structural probes

The choice of the structural probe for time-resolved diffraction experiments is

usually between electrons and x-rays. The production of neutron beams requires

nuclear reactors or spallation facilities, which makes them a less attractive option

and furthermore no known facility has reported on the production of femtosecond

bunches of neutrons 2, therefore the discussion in this section will be limited to

x-rays and electrons only. Both have their merits and shortcomings and these

should be considered when choosing between the two as structural probes. Elec-

trons differentiate themselves from x-rays by how strongly they interact with

matter. Being charged particles, they ‘feel’ the electrostatic potential around

the atoms whereas the x-rays are electromagnetic waves that are only scattered

by the electron density. If the wavelength remains unchanged in the scattering

process, it is referred to as elastic scattering (Thompson scattering for case of

x-rays) and conversely it is called inelastic scattering (Compton scattering for x-

rays) when the wavelength is changed. Due to the different degree of interaction,

the scattering cross-sections for electrons and x-rays are different. Electrons are

(elastically) scattered a factor of 106 times more strongly than the x-rays [17].

This has some implications, such as for the flux (number of photons/electrons

per second per unit area) that is needed to obtain a sufficiently high quality dif-

fraction pattern, in particular from weak scattering systems or dilute samples.

The flux requirement is largely reduced in the case of electrons compared to the

x-rays. Indeed, for gas-phase diffraction studies in which the low density of the

gaseous molecules is often the limiting factor to obtain a diffraction pattern with

high signal-to-noise (S/N) ratio, electrons are the preferred choice. Similarly,

for solid samples, the higher scattering cross-sections favour the use of electrons

as the ‘dose’ can be kept to a tolerable level, especially when studying sensitive

specimens, e.g. proteins and viruses. The x-rays are notorious for causing radi-

ation damage [18] when high doses are used —as would typically be needed to

obtain high quality data. The origins of the radiation damage is mainly in the in-

2Pulsed picoseconds neutron beams were recently generated. See [16].
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elastic scattering events, which deposit a large amount of energy into the sample

[19]. This problem is less severe with electrons as there are far fewer inelastically

scattered electrons per scattering event.

One elegant way to fulfill the flux requirement and also prevent radiation

damage is to use ultrashort bunches of x-rays, emitting from an x-ray free electron-

laser (XFEL plural: XFELs) [20]. The flux from an XFEL is typically on the order

of 109 photons per pulse (can also be higher), which is sufficient for obtaining a

good quality diffraction pattern in a single shot, but the time span of the pulse is

also short enough that it is possible to override the damage. An experiment that

exploits this feature is referred to as “diffract before destroy” experiment [21].

The production of femtosecond x-ray beams by an XFEL is, however, non-trivial

and requires large, expensive facilities such as those found at DESY in Hamburg

[22] and LCLS in USA [23], with linear accelerators that are typically a kilometre

or longer.

A possible cause of concern with the use of XFEL beams is the shot-to-shot

fluctuation in the generated narrow-band, x-ray beam spectrum brought about

by the generation process that uses self-amplified spontaneous emission (SASE),

which is stochastic in nature [24]. When compared with XFELs, a synchrotron

—which employs a ring accelerator, is able to provide a much more stable, broad-

band beam of hard x-rays, but the shortest pulse durations from these sources

are on the order of several picoseconds, which limits their scope for many ul-

trafast studies. The shot-to-shot fluctuations of a FEL can be accounted for

by performing normalisation of the data, by measuring the spectrum of every

x-ray shot. Recently, seeding them with an optical laser has been proposed as a

possible solution to this issue [25]. Furthermore, a FEL is made up of many inde-

pendent components such as undulators (a periodic structure of dipole magnets)

and accelerators that must be made synchronous with one another and also with

the external laser (excitation source for the pump-probe experiments) to be able

to precisely clock the dynamics. This requires optical synchronisation control

schemes [26], which not only add to the overall cost of running of a FEL, but
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also can be time-consuming and challenging to implement. Moreover, one needs

to apply for beam times to use these facilities for experiments, which not only

can be a lengthy process, but also does not guarantee 100 % success rate. Lab-

based sources producing femtosecond x-rays pulses from laser-generated plasmas

are available and have been used to conduct femtosecond x-ray diffraction ex-

periments with [27], but the hard x-ray intensity (efficiencies are on the order of

10−8) is still not that which would make them a mainstay in the field.

Electrons beams, on the other hand, can be produced in femtosecond bunches

fairly straightforwardly using laser-triggered photocathodes in table-top setups

[28]. The laser used to generate the photoelectrons is always used to derive the

pump beam, therefore electron probe beams are intrinsically synchronised with

the pump laser. The wavelengths of the electrons are a lot shorter than x-rays

(0.0335 Å for 120 keV compared to 0.1033 Å for x-rays) which, in theory, means

higher spatial resolution. Furthermore, the charged nature of the electrons also

makes them amenable to manipulation by electrostatic or magnetic fields, i.e.

electron optics can be made to control and shape the beams, e.g. for imaging

experiments such as in a transmission electron microscope (TEM). Imaging with

the x-rays, on the other hand, is challenging because the focusing optics need to

be fabricated in such a way that very small focal spot sizes (<10 nm) are realised

at the sample position to achieve very high resolutions. This is made difficult

by the high penetration depths (due to the scattering cross-sections) of the x-

rays, which simply pass through most materials without bending. Focusing of

the x-rays has typically been achieved by reflections off curved mirrors at grazing

incidences or by multilayer Laue lenses (zone plates), which are mirrors that use

layers of material off which the x-rays are diffracted. While progress is being

made to make better and better optics, x-ray microscopes are yet to demonstrate

atomic resolution 3. However, the higher penetration depths of the x-rays gives

them an advantage over the electrons; it is possible to perform experiments with

thicker samples (> 0.5 µm) and therefore, sample preparation for x-ray diffrac-

3The best resolution achieved to date was on the order of 5 nm [29].
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tion experiments is less challenging. While on one hand, the charged nature of

electrons can be advantageous, on the other it can pose some problems. Strong

Coulomb repulsion between particles (space-charge effects) can lead to the loss of

phase relationship (coherence) and can act to broaden the pulses, which can res-

ult in reduction of time resolution in time-resolved experiments [30]. In addition,

the loss of coherence also means that time-resolved studies using electrons are,

so far, only limited to crystals with unit cell dimensions on the order of few tens

of angstroms (see chapter 5). Recently, Baum et al used single electron pulses to

make the electron beam more coherent [31]. While, the space-charge effects can

most certainly be eliminated by using very low beam currents, it comes at a cost

of a huge reduction in flux and necessitates accumulations with multiple shots

(often at high repetition rates to keep the acquisition times short) to buildup

signal. This poses little to no problems for static measurements, but for time-

resolved studies only completely reversible or rapidly exchanging samples (such

as in gas-phase experiments) can be used. Other approaches to make the coherent

electron beams concentrate on development of point-like sources [32, 33] and/or

using high accelerating voltages [34]. X-rays remain the choice for ultrafast stud-

ies of large molecules, especially proteins using diffraction techniques. For the

purposes of this thesis work, electron were used as the structural probe.

1.3 Development of time-resolved electron dif-

fraction techniques

The first report of time-resolved diffraction studies using photoelectrons appeared

in the early 1980s following the work by Mourou and Williamson [35]. In their

experiment, an electron beam was used to probe the dynamics induced by a UV

laser pulse in an aluminium foil. The pulse duration of the electron beam was on

the order of 20 ps, as measured with a streak camera. This followed the efforts

of Ishchenko et al to produce a short stroboscopic electron probe [36]. The

Zewail group in Caltech produced femtosecond electron bunches for gas-phase

10



Chapter 1. Introduction

electron diffraction studies and managed to achieve picosecond resolution [37].

The main limitation to achieving femtosecond time resolution in their studies

was the velocity mismatch between the laser pulse and the electron probe. The

first study that brought the time-resolution to the sub-picosecond domain was the

work of Siwick et al in 2003, who developed the concept of compact femtosecond

electron sources, which when used with high accelerating voltages (60 kV in

their case) made femtosecond electron diffraction (FED) experiments possible

[38]. Since then, there have been a number of groups that have used femtosecond

electron diffraction for studying number of interesting phenomena, from ultrafast

melting in solids to chemical reactions in gas phase, with temporal resolutions

ranging from a few picoseconds to one hundred femtosecond [39–43]. One study

in particular that is both impressive and also relevant for this thesis work was

that by Jean-Ruel et al, who studied the structural dynamics of diarylethene

ring-closing reaction in the crystalline state [44]. Nowadays, ultrafast electron

source development is an active area of research and many groups around the

world are working towards improving the characteristics of electron beams for

better temporal and spatial resolutions.

1.4 This thesis work

In the course of this PhD, a range of projects were undertaken, but the main focus

of the thesis was on extending the capabilities of FED to study chemical reactions

in crystalline media. The system chosen for this purpose was a spirooxazine

compound that undergoes a photochromic reaction in the solution phase (see

chapter 4). This project required the development of specific optical tools and

acquisition schemes to control various aspects of the experiment. The approach

that was developed was successfully tested in a proof-of-principle study using

femtosecond spectroscopy. This forms an important part of the thesis report.

Also reported are some results from a preliminary FED study of an organic salt,

EDO-MeEDO-TTF that is believed to undergo a photoinduced phase transition.

11



Chapter 1. Introduction

The novelty of this system is that it is a ‘doped’ organic crystal, containing a

stoichiometric mixture of two EDO salts.

1.4.1 Why solid state?

The preference of the solid state in the reported study over that of gas and liquid

phases warrants some justification. For the case of the diffraction experiments,

much higher signal-to-noise ratios can be achieved with solid samples, due to

much higher density of molecules in a crystal than in gas or liquid phases. Due

to the high achievable S/N and periodicity of the crystal lattice, it is possible to

extract structural information with much higher resolutions. Moreover, except

for only a couple of reported cases in the gas phase, femtosecond time resolution

has mainly been achieved using crystalline materials. Liquid state FED is still

largely in the development stage and as of yet, no time-resolved liquid phase FED

experiment has been reported.

1.4.2 Organic crystals: challenges

Working with organic crystals is not without its challenges. Organic crystals

consist typically of molecules made up of atoms with low atomic number (Z ),

such as nitrogen, carbon, oxygen and hydrogen, but sometimes may also contain

heavy atoms like sulphur. Due to the relatively low density of the electron cloud

surrounding these atoms, the interaction of the incoming electron beam with the

charge cloud is much weaker when compared with molecules consisting of high

Z atoms. As a consequence, these crystals generally scatter poorly. Moreover,

the molecules in these crystals are held together by weak intermolecular forces,

such as the Van der Waals forces. These forces are a result of fluctuating charge

distributions which induce a dipole moment in the neighboring molecules. Due

to the weak interactions, the molecules in the crystal can retain their individual

character and so the crystals are sometimes termed as molecular crystals. These

crystals are typically characterised by low melting points, poor thermal and elec-

trical conductivities and moderate volatility, which makes them liable to thermal
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and electrical damage. In order to work with these systems, different aspects,

therefore, need to be managed. As the sample is irradiated with laser pulses to

initiate the dynamics, it must be done at rates that allow the crystal to cool

down/relax between shots. Typically, repetition rates below 100 Hz are used 4.

Moreover, the crystals need to be coherently excited to a level that the time-

resolved signal can be recovered with sufficiently high signal-to-noise. Often, this

requirement results in the fast onset of crystal damage and reversibility becomes

a major issue (see chapter 4 for further discussion). All of this and the ultrashort

pulse duration of the beam —which, recall, is analogous to the shutter speeds

and results in low exposure (compare two cases in Fig 1.2), places a severe re-

quirement on the flux. Very high density (high brightness) electron beams (> 105

electrons per pulse) must be used in order to provide adequate signal-to-noise in

the experiment.

1.4.3 Thesis structure

This thesis is organised as follows. In chapter 2, an introduction to the ba-

sic physics behind ultrafast laser pulses is provided along with a discussion of

the optical conversion schemes and a description of the laser system that drives

the experiments. Chapter 3 details the theory underpinning transient absorp-

tion spectroscopy and introduces the experimental setup used in the thesis work.

In chapter 4, details of the transient absorption measurements on crystalline

spirooxazines are presented and the results are discussed in light of possible FED

study. Chapter 5 provides a basic introduction to crystallography and reviews

the theoretical and experimental methodologies of FED. Chapter 6 provides a

description of femtosecond electron diffraction (FED) experiments performed on

the EDO-MeEDO samples and finally chapter 7 concludes the thesis with an

outlook on future experiments.

4Based on empirical observations.
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Chapter 2

The Optical Setups

Almost all of the setups that are used in this thesis work rely on a femtosecond

laser system providing short bursts of light, e.g. to trigger reactions, prepare

states of interest and for the generation of photoelectrons for diffraction ex-

periments. This chapter first introduces the basic concept of ultrashort laser

pulses before providing a description of the laser system and nonlinear conver-

sion schemes. The optical elements discussed here will become relevant in the

subsequent chapters.

2.1 Ultrashort laser pulses

Ultrashort laser pulses are so called due to their extremely short pulse durations,

which range in the picosecond (1 ps =10−12 s) or shorter timescales. They have

some interesting characteristics that distinguish them from pulses of other lasers.

For example, they possess only a few optical cycles; an 800 nm laser pulse with

a duration of 25 fs has a total number of 9 optical cycles. They also exhibit

inherently broad spectrum due to the energy-time uncertainty1 and can reach

very high peak powers (Ppeak = pulse energy (J)
pulse duration (s)

, units Watts (W)).

1This differs from the quantum mechanical uncertainty as time is not an observable and has

no quantum mechanical operator.
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Figure 2.1: A graphical representation of an ultrashort pulse having a Gaussian

profile. The electric filed, E (t) is plotted in black and the electric field amplitude,

A(t) is shown in red.

The pulses can be described by the real electric field, E(t) as

E(t) = A(t) cos(ωot− φ(t)) (2.1)

where A(t) is the temporal envelope function that gives the absolute value of the

electric field, φ(t) is the temporal phase, sometimes referred to as the carrier-

envelope phase (CEP), which determines the relationship between the electric

field and the envelope function and ω0 is the carrier frequency, which is related

to the colour (wavelength/frequency), υ0 of the pulse

ω0 = 2πυ0 (2.2)

When φ(t) = 0 (see Fig 2.1), there is no phase delay between the electric field and

the carrier envelope. It should be pointed out that most detectors (photodiodes,

spectrometers) respond only to the intensity (I(t) = |E(t)|2) of the pulses.

The field can equally be represented in the frequency domain by taking the

Fourier transform of E(t)
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E(t) =
1

2π

∫ +∞

−∞
E(ω)e−iωtdω (2.3)

and

E(ω) =

∫ +∞

−∞
E(t)eiωtdt (2.4)

The equivalents of the intensity and temporal phase in the frequency domain

are the spectrum and spectral phase [45]. The spectral phase, therefore, con-

tains the frequency versus time information. In order to characterise the pulse

completely, i.e. determine the pulse duration and the phase, spectral phase and

time-dependent electric field must be known. Fortunately, techniques have been

developed that are able to measure one or both of these two quantities. Most

common ones are autocorrelation [46], frequency-resolved optical gating (FROG)

[47] and spectral interferometry for direct electric-field reconstruction (SPIDER)

[48].

A quantity, known as the time-bandwidth (TBW) product, is often quoted to

indicate how close a given pulse is to being transform limited.

∆ω∆t ≥ K (2.5)

where ∆ω and ∆t are spectral bandwidth and time duration measured at full

width at half maximum (FWHM), respectively. The value K is different for

different type of pulses as listed in Table 2.1.

Beam profile K

Gaussian 0.441

Hyperbolic secant 0.315

Lorentzian 0.142

Table 2.1: Values of K relating to different pulse profiles.
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A 25 fs Gaussian pulse (K = 0.441) has a bandwidth-limited spectral width of

17.6 THz (1 THz = 1012 Hz or s−1).

2.1.1 Group velocity dispersion

As a natural consequence of their broad bandwidths, ultrashort pulses undergo

a phenomenon known as group velocity dispersion (GVD), when they propag-

ate through materials. In the medium, different frequency components of the

ultrashort pulse experience different refractive indices causing them to travel at

different speeds. These wavelength-dependent indices are responsible for vari-

ations in the temporal profile of the pulse such that the redder frequencies (longer

wavelengths) travel at different velocities than the bluer (shorter wavelength)

ones. When a transform-limited pulse propagates in a dispersive medium, it is

said to become ‘chirped’ 2. There are two scenarios depending on whether the

material, through which the pulse propagates, is normally or anomalously dispers-

ive. The pulse is said to become positively or up-chirped when passing through

material with normal dispersion properties or negatively (down) chirped, when

traversing an anomalously dispersive medium. In the latter case, the bluer fre-

quencies travel faster than the redder frequencies. The GVD can be an undesir-

able effect, but fortunately can be compensated for by use of diffraction gratings

[49] or prism pair [50].

2.1.2 Synthesis of ultrashort pulses

The synthesis of ultrashort laser pulses is accomplished by a process known as

modelocking [51]. This process requires an optical resonator (or cavity) [52]. In

the simplest case, the resonator cavity consists of two highly reflective, flat mirrors

(of which one is slightly transmissive) that are placed in a linear arrangement and

a gain medium for the generation and/or amplification of light, that is placed in

between them. Light in the cavity is reflected back and forth making many passes

through the gain medium. In the case, when the electromagnetic waves add up

2The chirp refers to case when φ0 > 0.
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Figure 2.2: The cavity longitudinal modes selection by the gain medium.
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constructively inside the resonator, a discrete set of standing waves, known as

the cavity longitudinal modes are generated. The length of the resonator cavity,

L defines the frequency separation between two adjacent modes (∆ν) as

∆ν =
c

2L
(2.6)

where c is the speed of light. The repetition rate at which a laser operates is

related to the round-trip time, T (where T =
2L

c
). The selection of modes for

amplification is determined by the natural bandwidth of the gain medium. As Fig

2.2 illustrates, only those modes that fall within the bandwidth of the medium

will get amplified.

The large number of modes present in the cavity (which fluctuate randomly

in the CW operation) must be made to oscillate in phase in order for them to

interfere constructively, i.e. modelocking. This can be achieved by installing an

acousto-optic modulator (AOM) [53] or a saturable absorber [54] inside the laser

cavity. These optical devices (through different mechanisms) cause the phases of

the modes to be locked, leading to formation of ultrashort pulses. The process is

said to be active or passive modelocking depending on whether the AOM (active)

or a saturable absorber (passive) is used. A type of passive modelocking, known

as Kerr-lens modelocking (KLM) [55], was discovered by Silbet et al in 1990

which does not require any saturable absorber [14]. Many ultrafast lasers today

employ this scheme of modelocking. This method will be explained later on in

the section on self-focusing.

2.2 Nonlinear optics

A rigorous treatment of the field of nonlinear optics is beyond the scope of this

thesis. Only a general description of the relevant aspects will be provided to aid

in understanding of the nonlinear conversion schemes.

Nonlinear optics is mainly concerned with the study of light-matter inter-

action, particularly when the intensity of the optical field interacting with the
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material is sufficiently high —such as that may be found in a laser beam, that it

distorts the electron density within the material causing it to become polarised

[56]. Due to the induced nonlinear polarisation of the material, novel optical

phenomena can be observed. For the case when the strength of the light field is

low, the induced polarisation is written as [57]

~P (t) = ε0χ
(1) ~E(t) (2.7)

where ε0 is the vacuum permittivity and the second term, χ(1) is the linear electric

susceptibility 3. However, when the light field is of very high intensity then the

induced polarisation can be written in form of power series as

~P (t) = ε0

[
χ(1) ~E(t) + χ(2) ~E2(t) + χ(3) ~E3(t) + · · ·

]
(2.8)

where χ(n) is the nth order nonlinear susceptibility. Higher order terms than χ(3)

are possible, but are less commonly encountered. Only processes relating to χ(2)

and χ(3) will be described next.

2.2.1 Second harmonic generation

Second harmonic generation (SHG) is a process that is widely used throughout

in the nonlinear optics field [58, 59] and many areas of physical sciences [60, 61].

The first discovery of the SHG process was made by Franken [62] in 1961, soon

after the invention of the laser. In this process, two photons of frequency ω, via

transitions involving virtual states in a nonlinear medium, are destroyed and a

single photon of twice the frequency as that of the original photons is created.

The energy is conserved in this process as illustrated in Fig 2.3a.

It is a χ2 process that requires a second-order nonlinear polarisation to be

induced in the medium

~P 2(t) = χ2E2(t) (2.9)

3Simply, the electric susceptibility describes how strongly a material gets polarised when

exposed to an electric field.
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Figure 2.3: Energy level diagrams for different processes. a) The SHG process b)

The SFG process c) The OPA process.

For any χ2 nonlinear process to occur, the medium must be non-centrosymmetric,

i.e. it must lack an inversion centre. Looking at Fig 2.3b, which shows the en-

ergy diagram for sum frequency generation (SFG)—also a χ2 process, the energy

conservation condition is written as

ω1 + ω2 = ω3 (2.10)

which is also valid for SHG. In fact, SHG is a special case of SFG in which

ω1 = ω2 and ω3 = 2ω1 [63]. When the second harmonic wave, 2ω is created in a

medium, it does so with a perfect phase relationship with the ω wave. For the

process to be efficient, the two waves must maintain this phase relationship, i.e.

their phase velocities must be equal and remain constant otherwise destructive

interference will make this process extremely inefficient. If a wave vector, ~k is

assigned to the two fields to describe their propagation in the crystal, then the

condition for conservation of momentum (phase matching) in SHG is given by

~kω2 = 2 ~kω1 (2.11)

and since ~k =
ωn

c
(c is the speed of light), the condition can only be fulfilled
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when

n(ω) = n(2ω) (2.12)

This is clearly not possible because the dispersion effects will prevent this from

ever happening. A possible solution to overcome this limitation is in the use of

birefringent crystals. This along with other practical aspects relating to SHG will

be discussed further in the section on phase matching.

2.2.2 Optical parametric amplification

Optical parametric amplification [64] is the process in which a high intensity,

high frequency photon, ωpump transfers energy to a low frequency signal photon

at ωsignal and a lower frequency idler photon is emitted at a difference frequency

ωidler (Fig 2.3c). As before, the energy and momentum are conserved.

ωpump = ωsignal + ωidler

~kpump = ~ksignal + ~kidler

(2.13)

A device that makes use of parametric amplification is called an optical parametric

amplifier (OPA plural : OPAs). OPAs have been widespread in many areas of

optical sciences, especially as sources of broadband tunable pulses [65].

2.2.3 Self-focusing

When the intensity of the laser beam reaches a so-called critical power, Pcritical,

a process known as self-focusing takes place in which the beam comes to a focus

within the medium in which it is propagating [66]. This process is also called the

Kerr-lens effect and is a consequence of the intensity dependent refractive index

of the medium given by [67]

n(I) = n0 + n2I (2.14)

where n(I) is the intensity dependent refractive index, n0 the intensity independ-

ent refractive index and n2I term denotes the second order nonlinearity. The
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Figure 2.4: The Self-focusing effect.

critical power is given by

Pcritical =
λ2

2πn0n2

(2.15)

Consider a beam of a Gaussian intensity profile traveling through a nonlinear

medium. As Fig 2.4 shows, the transverse intensity of the beam is not constant:

the intensity is highest at the centre than at the peripheries, which leads to an

increase of the refractive index of the medium at the centre, according to Eq

2.14. The non-uniform refractive index distribution across the medium causes it

to act like a focusing lens4. Self-focusing is believed to be the triggering step in

the generation of a supercontinuum [68, 69]. As was mentioned previously, the

Kerr-lens effect can be used in the modelocking of the laser. This is described

below.

To understand how the Kerr-lens effect can play a role in modelocking, it is

useful to understand how passive modelocking using a saturable absorber works.

The saturable absorber is often a semiconductor that responds to the intens-

ity variation of the pulse by changing its transmission: absorption coefficient of

the absorber decreases with increasing intensity, i.e. the absorber becomes more

4The origin of the word self-focusing is therefore due to this self-induced focusing by the

pulse.
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transparent at higher intensities. Therefore, a saturable absorber is used to sup-

press background (low intensity) fluctuating modes and permit only the modes

that are of high intensity to be transmitted. Thus, the saturable absorber func-

tions like a shutter and aids in the initiation of pulsing. In KLM, a Kerr-lens

is created inside the gain medium leading to tight focusing from high intensity

regions of the beam (reduction of the transverse mode size) and loose focusing

at the wings (with corresponding CW powers). If an aperture is placed inside

the cavity such that only the most intense part of the pulse is selectively focused

by the Kerr-lens, a better overlap between the pump and the intracavity beam

can be realised favouring pulsed operation. The aperture in this case is the gain

medium itself and is called a soft aperture [70]. Lasers employing KLM are usu-

ally not self-starting, meaning that they do not spontaneously modelock [71].

Often a disturbance, introduced by jolting one of the end mirrors of the cavity

for example, is needed to kick-start modelocking.

2.2.4 Self-phase modulation

Self-phase modulation (SPM) is yet another χ3 process that occurs when a laser

pulse propagating inside a transparent medium modifies the materials refractive

index, which in turn modifies the phase of the pulse —differently for different

frequency components contained in the pulse [72]. The results is a modulation

the pulse spectrum. Again, this is a self-induced process and does not require

the material to be dispersive (though they always are). The intensity dependent

phase is defined by

φ(t) =
n2I(t)ωL

c
(2.16)

where L is the length of the medium. The change of the phase in time as the

pulse propagates in a medium is related to a change in frequency and so a concept

of instantaneous frequency is developed. The instantaneous frequency is simply
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the time derivative of the phase and is given by

∆ω(t) = −n2
dI(t)

dt

ωL

c
(2.17)

What Eq 2.17 essentially tells us is that as the pulse propagates in a medium, it is

frequency shifted by an amount that is dependent on the intensity. Fig 2.5 shows

the SPM of a pulse with a Gaussian intensity profile. The temporal variation in

refractive index (due to temporal intensity changes) causes the leading edge of

the pulse to experience a positive refractive index gradient and the trailing edge

to experience a negative refractive index gradient. The pulse is slowed at the

leading edge (frequency is decreased) and sped up at the trailing edge (frequency

is increased), causing the overall spectrum to change and broaden. SPM is the

main contributor to broadening in white light (WL) generation (see chapter 3).

 I
(t
)

I0

t

0
0

ω
(t
)

0

ω
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Figure 2.5: Self-phase modulation. a) The temporal intensity distribution of a

Gaussian pulse b) The associated frequency shift. The leading edge is red-shifted

and the trailing edge is blue shifted.
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2.3 Phase matching

For the cases mentioned throughout this thesis, phase matching is achieved in a

nonlinear solid-state optical medium 5, therefore, it is useful to discuss the sym-

metry aspects in relation to the crystals that can be used for harmonic generation.

Crystal symmetries can be determined either by applying a set of operations that

leave them unchanged using the group theory or by performing crystallographic

measurements. Crystals are either isotropic, i.e. the index of refraction does not

depend on the polarisation of the optical field or anisotropic in which the refract-

ive index is polarisation dependent. Crystals that belong to the cubic system

are always isotropic6. The anisotropic optical media are said to be birefringent

because they exhibit the phenomenon of birefringence (double refraction) due

to their polarisation dependent refractive indices. Keeping the discussion to bi-

refringent crystals only, one typically encounters two types: uniaxial and biaxial

birefringent crystals. Whether a crystal is uniaxial or biaxial depends on whether

it possesses one or two optical axes, respectively. A beam travelling in a uniaxial

crystal will get decomposed into two components: one will experience a constant

refractive index, referred to as the ordinary refractive index, no whilst the other

will experience a refractive index that is dependent on the angle which the beam

makes with the optical axis, called the extraordinary refractive index, no. When

no > ne, the crystal is a negative uniaxial and conversely when no < ne, it is

called a positive uniaxial. It is quite routine to draw out a geometrical figure,

called an indicatrix, to show how the refractive indices in an anisotropic medium

differ from each other. As can be imagined, the indicatrix of an isotropic crys-

tal will be spherical, because the refractive index is the same in all directions,

but forms an ellipsoid for anisotropic crystals. Light incident at an angle to the

5A special case of phase matching called quasi-phase matching occurs in gases. High har-

monic generation (HHG) is an example of this phenomenon [73].
6Due to the GVD, these material are unsuitable for phase matching.
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Figure 2.6: An indicatrix representation of the refractive indices in a negative

uniaxial. For the SHG process, the angle θ can be exploited to fulfil the phase

matching condition. The ellipses for the second harmonic wave are also drawn.

optical axis will experience a refractive index that is given by

1

ne(θ)2
=

sin2 θ

n2
e

+
cos2 θ

n2
o

(2.18)

Now that we have defined what a birefringent crystal is, let’s see how it can be

used to create proper phase matching conditions for SHG process, i.e. n(2ω) =

2n(ω). We shall consider a negative uniaxial such as beta barium borate, (β-

BaB2O4, BBO), as it is the most common type used for SHG. Fig 2.6 shows the

indicatrix with the ellipses corresponding to all the refractive indices of the waves

that are involved in the process. As can be seen, by exploiting the angle θ that the

incoming wave makes with the c-axis, the refractive index of the ordinary wave

(fundamental) and the extraordinary wave (second harmonic) can be matched

(the intersection point is shown with a black dot in the figure).

It should be pointed out that for SHG, two types of phase matching schemes

can be realised in birefringent crystals: type I and type II. In type I phase match-
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ing, the two input pulses have the same polarisations, whereas in type II, they are

orthogonal. For example, for the SHG process the two phase matching schemes

can be written as

no(ω) + no(ω) = ne(2ω) (Type I)

no(ω) + ne(ω) = ne(2ω) (Type II)
(2.19)

Either scheme of phase matching can be utilised, but which is eventually used

will depend on the requirements for the desired application. To help one decide

the scheme, the so-called effective nonlinear coefficient, deff (units pm/V), which

describes the efficiency of the nonlinear interaction, can be looked up in any

optical crystals handbook or from the excellent, free software called SNLO [74].

For example, for SHG of 800 nm, according to SNLO the deff is 2 pm/V for type

I phase matching and 1.09 pm/V in case of type II phase matching. Therefore,

type I phase matching is the favourable choice.

2.4 The laser system

The femtosecond laser in our lab is a commercial Legend Elite system from Co-

herent that uses Brewster-cut titanium doped sapphire (Ti:Sa) crystals as its

gain media. It is comprised of an oscillator (Micra-5) producing a train of femto-

second pulses by Kerr-lens modelocking and a regenerative amplifier for pulse

energy amplification. The oscillators gain crystal is pumped by the frequency-

doubled output of a high power CW laser (Verdi, 1064 nm, 40 W), which employs

a diode-pumped Neodymium Yttrium orthovanadate (Nd : YVO4) crystal as the

gain medium. The frequency doubling of 1064 nm light takes place inside a

temperature-controlled lithium triborate (LBO) nonlinear crystal. The doubled

output (532 nm) is strongly absorbed by the Ti:Sa crystal and results in the

emission of light in the mid-infrared (MIR) region of the electromagnetic spec-

trum, i.e. 680-1100 nm. The pulse energies are on the order of 3-4 nJ. Table 2.2

lists the output of the Micra-5 oscillator. As mentioned above, the pulses from

the oscillator are amplified in the regenerative amplifier system, which contains a
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Central wavelength (nm) 800

Repetition rate (MHz) 85

Spectral bandwidth (nm) 100

Pulse duration (fs) 30 (FWHM)

Table 2.2: The Micra-5 oscillator output.

stretcher, whose function is to temporally elongate the pulses from femtoseconds

to picoseconds duration, a regenerative cavity where the actual amplification takes

place and finally a compressor to return the pulses back to femtosecond durations.

The pulse stretcher uses all reflective optical elements to prevent chromatic aber-

rations and is designed from a single diffraction grating, a spherical mirror and a

set of plane mirrors. Fig 2.7 shows the schematic of the pulse stretching system.

A femtosecond pulse incident on the diffraction grating is spectrally dispersed,

vertically displaced by the curved mirror and via reflections off the plane mirrors

makes four passes through the stretcher. The grating is configured so that the

short wavelength component travels further through the stretcher than the long

wavelength components, thus lengthening the pulse. This step of stretching the

pulse before it enters the regenerative amplifier cavity is necessary because with

femtosecond laser pulses (due to their ultrashort pulse durations), very high peak

intensities (up to 700 GW cm−2) can be attained during the amplification pro-

cess, which could lead to damage of the optical components and the gain crystal.

In the amplification stage, the chirped pulse is introduced into the regenerative

cavity made up of yet another Ti:Sa crystal placed in an optical resonator, a pair

of optical switches to control the injection and extraction of the beam and some

polarising elements. The schematic of the regenerative amplifier is depicted in

Fig 2.8.

An electro-optic modulator (EOM) called the Pockels cell, synchronised with

the pulse train of the oscillator, in combination with polarisation optics, picks

and traps a single pulse from the train of pulses for amplification in the resonator

cavity. The pump for the Ti:Sa crystal in the cavity is derived from an intracavity
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ultrashort pulse elongated pulse

FM

FM

Figure 2.7: Femtosecond pulse stretching principle. Beam entering the stretcher

is spectrally dispersed by the grating and after multiple passes leaves the stretcher

with the red part exiting first. DG: diffraction grating; FM: flat mirrors; CM:

curved mirror.

doubled output of a Neodymium-doped yttrium lithium fluoride (Nd : YLF)

based Q-switched laser, which delivers 532 nm nanosecond pulses with pulse

energies up to 12-20 mJ, operating at 1 kHz repetition rate, to the crystal. The

trapped seed makes multiple passes through the Ti:Sa rod, extracting some energy

from the pumped crystal with each pass. Once most of the stored energy has been

extracted, the Pockels cell changes the polarisation of the amplified pulse, such

that it exits the cavity. After amplification, pulses with energies on the order of

a few millijoules are compressed back to the femtosecond durations by a dual-

grating compressor. The final output of the regenerative amplifier is as follows:

λcentral = 800 nm, 4 mJ at 1 kHz and 40 fs pulse duration 7. This process of

amplification by first stretching (chirping) the pulse is known as chirped pulse

amplification (CPA) [35].

7This value is quoted from the factory specifications. It was not measured.
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Figure 2.8: The schematic of the regenerative amplifier.

2.5 Non-collinear optical parametric amplifier

The first demonstration of a non-collinear optical parametric amplifier (NOPA,

plural : NOPAs) was provided by Gale and co-workers [75]. It differs from the

collinear case of OPAs in that it can be used to generate ultrabroadband, and

hence, extremely short pulses. This section explores different aspects relating to

the construction of the NOPA. The main reason for building the NOPA will be

revealed in the subsequent chapters.

2.5.1 The pump

Energy conservation dictates that only those photons which have frequencies

lower than the pump are amplified. Therefore, the choice of the pump will depend

on the application, i.e. what frequencies one wishes to generate and amplify. The

NOPA in our lab was build to be tunable in the visible region (450-700 nm)

of the electromagnetic spectrum and, therefore, a pump of wavelength 400 nm,

generated by SHG of the fundamental frequency of the amplifier output, was

chosen. The required SHG crystal angle was calculated by rearranging Eq 2.18
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for θ

θpm = sin−1

√(
ne(2ω)2 (no(2ω)2 − no(ω2)

no(ω)2 (no(2ω)2 − ne(2ω2)

)
(2.20)

Inputting the values of the polarisation dependent refractive indices (Table 2.3)

into Eq 2.20, yielded a value of θpm = 29o.

Index of refraction Value

ne(ω) 1.5462

ne(2ω) 1.5687

no(ω) 1.6614

no(2ω) 1.6934

Table 2.3: The values of refractive indices used in Eq 2.20. The values were taken

from [76].

2.5.2 The seed

The seed in the NOPA is a broadband supercontinuum or white light (for spec-

trum in the visible). The WL generation is a result of several χ3 nonlinear

processes, some of which were discussed in previous sections including SPM and

self-focusing, taking place concurrently. Other processes that are thought to also

play a role include Raman scattering [77] and four-wave mixing [78]. The choice

of the medium supporting these processes must be such that it gives the desired

white light spectrum. Sapphire (Al2O3) was chosen in our case because it is the

most commonly used material for a stable continuum in the visible region and

has a large transparency window (0.17 µm to 5.5 µm).

2.5.3 The mixing crystal

To achieve phase matching in the parametric process, the refractive index exper-

ienced by the pump in the mixing medium needs to be smaller than that of the

seed and idler beams, i.e. anomalously dispersive conditions are needed or else the
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Figure 2.9: The mixing geometry used in the NOPA. OA is the optical axis.

phase overlap will be quickly lost. Therefore, the choice of the crystal should be

such that it meets the above requirement. As alluded already, using a birefrin-

gent crystal will take care of this condition. Moreover, the crystal should not

absorb the generated idler and signal photons: it needs to be transparent across

all colours of idler and signal photons and it must (ideally) have a high damage

threshold and respond weakly to environmental factors, such as temperature and

pressure.

A BBO crystal satisfies all of the above requirements for the mixing medium

and was, therefore, used for amplification of the seed light. The required angle

needed to amplify in the visible region was calculated by using the expression

given in [79] for the geometry shown in Fig 2.9.

θpm = sin−1

[(
n2
op

n2
p

− 1

)1/2

·
(
n2
op

n2
ep

− 1

)−1/2
]

(2.21)

where np is given as

np =
λp
λs
nos

(
cos (αint) +

√
λ2
s

λ2
i

n2
oi

n2
os

− sin2 (αint)

)
(2.22)

The subscripts s, p, i correspond to the parameters relating to signal, pump and

idler photons, respectively. The refractive indices of the signal and idler photons
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Figure 2.10: Calculated phase matching curves for different internal angles. With

an internal angle of 3.7◦ corresponding to an approximate cut angle of θp = 31.75o,

broadband amplification can be achieved as indicated by the dotted line.

were calculated using Sellmeier equations for a BBO crystal [80]. The calculated

phase matching curves are plotted in Fig 2.10 for different internal angles, αint

which is the angle that the pump beam makes with the signal inside of the crystal.

As can be seen, to achieve broadband phase matching (the curve with the flattest

region over a large wavelength range), a crystal cut at approximately θpm = 32◦

is required.

The external angle that the pump beam should make with the seed beams is

then easily calculated by applying Snell’s law

θext = sin−1

(
nBBO(λpump,o) sin(αint)

nair

)
(2.23)

which results in a value of approximately 6 degrees. Therefore, the optimum cut

angle of a BBO crystal is 32◦ and the external angle between the seed and pump

beams should be 6 degrees.
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2.5.4 Other considerations

The sizes of the pump and probe beams should be comparable, with the seed beam

spot size at the crystal slightly smaller than the pump beam size. One should be

aware that when very small beam sizes are used, the fluence (F = pulse energy (J)
spot area (m2)

)

can become very high, which can lead to instabilities in the output and can

also damage the crystal. The beam sizes should, therefore, be chosen wisely.

The optics used to achieve the necessary beam size can be transmissive (lens)

or reflective (spherical mirrors), depending on what is available and acceptable.

Transmissive optics will introduce more chirp (but are easier to align) to the beam

than reflective optics and consequently, the output spectrum will be narrower

than in case of reflective optics. With spherical mirrors, the chirp is completely

avoided 8, but the alignment can be more challenging and require more space.

Finally, the mixing crystal thickness is another factor that needs to be taken

into account. A compromise between the efficiency and the GVD is sought, so

that one gets the maximum efficiency and the shortest pulse possible. While one

can certainly perform simulations to determine the optimum thickness, a 1 mm

crystal was used in our NOPA.

2.5.5 The NOPA Setup

The design principles of building a NOPA were discussed above. This section

provides details of its construction. The NOPA design was mainly based on the

one from Riedle [82]. The schematic of the NOPA setup is presented in Fig

2.11. A fraction of the fundamental output of the regenerative amplifier (800 nm,

200 µJ, 40 fs pulse duration) having horizontal (denoted p, for parallel) polarisa-

tion was sent through a half-wave plate (HWP1) to change the polarisation state

to vertical (denoted s, from German ‘senkrecht’ meaning perpendicular). The

s-polarised beam was then split into two arms using a beam splitter (BS), with a

splitting ratio of 90 % and 10 % for transmission and reflection, respectively. The

8Though not all mirrors will do that. Chirped mirrors for instance introduce negative GVD

and are used in some commercial ultrafast compressors [81].
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Figure 2.11: The schematic of the NOPA built in the lab. BS: beam splitter

HWP: half-wave plate, VND: variable netural density filter,L1= 75 mm, L2= 35

mm, L3= 750 mm, DL: delay line, F: cut-off filter.

transmitted beam was sent to the SHG stage for pump generation and the reflec-

ted 10 % was directed towards a delay stage (DL) and used for the creation of the

seed. The reflected beam was selected for seed generation to avoid dispersion.

The SHG stage consisting of a BBO crystal (BBO1, 29.3◦, 1 mm, type I)

generated the 400 nm pump with an efficiency of 30 %. The power of 400 nm

in this arm was controlled by using a HWP as follows: The s-polarised 800 nm

was sent to the BBO1 for harmonic generation and the output was optimised by

angle tuning of the crystal. After maximum efficiency was achieved, the crystal

was fixed and not rotated anymore and a HWP2 was installed before the crys-

tal. By rotating the HWP2 now, only the 800 nm photons that had the correct

polarisation for efficient phase matching through the BBO1 generated 400 nm

photons. This allowed to control the power of the generated beam that now had

p-polarisation. The residual 800 nm was filtered out by using a set of dichroic

mirrors optimised to reflect 99 % of 400 nm light. In the seed arm, the WL su-

percontinuum was generated by focusing 800 nm beam into a sapphire disc (Sa,

2 mm) using a fused silica convex lens (L1, focal length = 75 mm) mounted on

a translational stage. A variable neutral density (VND) filter and an iris were
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placed in the path of the beam to adjust the pulse energy and change the beam

diameter, respectively. Initially, very low pulse energies (<1 µJ) were used to

generate the supercontinuum. The iris was left fully open at this stage, but the

focal spot of the input beam at the sapphire was adjusted by translation of the

lens L1 until a weak yellow-whitish spot started to appear behind the crystal. At

this stage, the translation of the lens was stopped and the VND filter wheel was

rotated to increase the pulse energy until a uniform white beam, with a green

outer ring around it, was formed. The iris was closed slightly to remove the outer

ring and produce a single stable filament. The energy of the pulse used to gen-

erate the filament was measured to be approximately ∼ 2 µJ. Fig 2.12 shows the

spectrum of the generated continuum. The residual 800 nm was filtered off using

a short-pass filter (F, λcut-off = 700 nm) and the resultant seed was focused at

the amplifier crystal using a fused silica lens (L2, focal length = 30 mm). Once

both the pump and the seed beams had been generated, it was time to mix them

in the amplifier crystal, which in this case was another SHG crystal for 800 nm

(BBO2, 30◦, 1 mm, Type I)9. However, before doing that, the pump was focused

(L3, focal length = 750 mm mounted on a translational stage) ∼ 20 mm 10 be-

fore the amplifier crystal in the absence of the seed. By adjusting the focal spot

through translation of the lens, and varying the pump power 11 (by increasing it

slightly), weakly coloured rings behind the crystal became visible (see Fig 2.13b).

The rings were optimised (made brighter) by rotating the crystal and combined

to give one solid-red ring by tilting the BBO2 crystal about the vertical axis.

This was done by keeping the pump power constant. The rings appear due to a

process known as superfluorescence and hence are called superfluorescence rings

[83]. It is a result of the pump photons spontaneously splitting to give signal

and idler photons that extends out of the crystal in a cone. Considered to be a

9This was the only crystal available at the time in our lab that closely matched the required

cut angle. The crystal was tilted slightly for optimum interaction. A crystal with cut angle of

32◦ was ordered later.
10focusing the pump beam inside the crystal was avoided lest it got damaged.
11the pulse energy was not exceeded above 25 µJ.
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Figure 2.12: a) The schematic of white light generation process where L1= 75 mm

and L2 = 30 mm. b) Spectrum of the generated supercontinuum. The sharp cut-

off is due to the short-pass filter. The inset shows a photograph of the projection

of the continuum on a screen.

completely quantum mechanical effect with no classical analogue, this process can

conveniently be used to assist with the alignment of the pump with the seed. By

spatially overlapping the seed beam with the pump beam on the crystal surface

and also ensuring that it lies on the superfluorescence cone behind the crystal, the

mixing angles can be correctly set. This process does require several iterations of

correcting the overlap inside the crystal and adjusting the pump-signal angle so

that the seed is always on the superfluorescence ring.

After the crossing angles had been properly set (∼ 6◦), the delay of the white

light seed with respect to the pump was changed using the DL, until temporal

overlap with the 400 nm pump inside the crystal was established. This led to

an amplification of the seed in the range from 510-700 nm and disappearance of
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Figure 2.13: a) The schematic of generation of the fluorescence ring by focusing

the 400 nm pump in the BBO crystal and b) A photograph of the ring generated

in the setup. The central part shows the residual pump beam.

the fluorescence ring as shown in Fig 2.14. A colour filter ( λcentre = 600 nm,

bandwidth = 25 nm FWHM) was added at the exit to select the frequencies of

interest needed for experiments in the chapter 4. The energy of the pulses after

filtering was measured to be ∼ 0.8 µJ.

39



Chapter 2. The Optical Setups

seed

pump

amplifier

crystal

signal residual

pump

Figure 2.14: The amplification process. The superfluorescence ring is significantly

depleted and the seed is amplified.
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Chapter 3

Elements of Transient Absorption

Spectroscopy

Ultrafast transient absorption (TA) is a nonlinear optical 1 spectroscopic tech-

nique that has been employed for studying many photochemical and photophys-

ical processes that are of interest in physical and material sciences [84]. It is

capable of providing dynamical information on the ultrafast processes with ex-

tremely high temporal resolution. The objective of this chapter is to introduce

various concepts relating to transient absorption and also to describe the setup

that was used to carry out experiments reported in chapter 4 of this thesis. The

chapter is structured as follows: the first section provides a basic introduction

to photochemistry and a section outlining different photochemical processes fol-

lows it. Afterwards, detailed descriptions of the transient absorption and related

setups are provided and finally sections regarding the characterisation of the setup

conclude the chapter.

1 Transient absorption can also be performed using a beam of x-rays as the probe.
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3.1 Photochemistry

The study of chemical reactions that occur due to absorption of light is called

photochemistry. Atoms and molecules can absorb a photon if the energy separ-

ation between the ground and excited states of the system matches exactly the

energy of the photon. One uses the time-independent Schrödinger equation to

calculate the energies of the states

ĤΨ(~r, ~R) = EΨ(~r, ~R) (3.1)

where Ψ(~r, ~R) is the total molecular wave function, ~r and ~R represent, respect-

ively, the coordinates of all electrons and nuclei, E is the energy and Ĥ is the

Hamiltonian of the system defined as

Ĥ = T̂N + T̂e + V̂Ne + V̂ee + V̂NN (3.2)

In Eq 3.2, T̂N is the kinetic energy operator for the nuclei and T̂e is the kinetic

energy operator for electrons. The last three terms are the potential energy op-

erators relating to the Coulombic interactions (attraction and repulsion) between

the nuclei and electrons, electrons with electrons and the nuclei with nuclei, re-

spectively. Eq 3.1 is an example of an eigenvalue equation.

It turns out that solving Eq 3.1 is not possible for systems consisting of more

than one electron without invoking some approximations, i.e. analytical solutions

only exist for one electron systems. A powerful approximation used in quantum

chemistry is the Born-Oppenheimer (BO) approximation, which essentially takes

note that the electrons are about three orders of magnitude lighter than the nuclei

( me = 9.1× 10−31 kg, mp = 1.67× 10−27 kg ;
mp

me

∼ 1835 .16) and can respond

much more quickly as compared to the motions of the nuclei [85]. This makes it

possible to factorise (separate) the molecular wave function into electronic and

nuclear parts as

Ψ(~r, ~R) = χN(~R)ψe(~r; ~R) (3.3)
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χN is the nuclear wave function and ψe(~r, ~R) denotes the electronic wave function.

The electronic wave function depends on the coordinates of the electrons, ~r and

also parametrically on the nuclear coordinates ~R, i.e. there is a different electronic

wave function for each arrangement of the nuclei. The Hamiltonian can be now

written by considering only the electronic wave function.

Ĥψe(~r, ~R) = E(~R)ψe(~r; ~R) (3.4)

By applying the BO, the potential energy surfaces can be constructed by calcu-

lating the electronic wave function as a function of R. The BO is sometimes also

called the adiabatic approximation and breaks down whenever there is mixing

between electronic states, resulting in conical intersections, which facilitate radi-

ationless decay [86]. A related concept to BO is the Franck-Condon rule, which

states that due to the large disparity in masses, the nuclei remain stationary dur-

ing electronic excitations and only rearrange after the transition has taken place

[85, 87]. This implies that, if the equilibrium geometry of the excited state dif-

fers from that of the ground state, the molecule will find itself in a vibrationally

excited level. The population of the vibrational states in the excited electronic

state is governed by the overlap between the vibrational wave functions in the

ground and excited electronic states.

3.1.1 Photochemical pathways

When a molecule absorbs a photon, it acquires a new energy state that has a

finite lifetime. The photophysical pathways available to the molecule after it

has been excited are summarised in an energy level scheme called the Jablonski

diagram, shown in Fig 3.1 [88, 89]. Four different electronic states are depicted

as thick lines and additionally for each state, a stack of levels are drawn on top.

These correspond to the vibrational states, characterised by vibrational quantum

numbers, υ. In addition to the vibrational states, there are also many rotational

states with designated rotational quantum number J, but they have been omitted

from the diagram.
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Figure 3.1: The Jablonski diagram showing different photochemical pathways.

VR: vibrational relaxation; IC: internal conversion; ISC: inter-system crossing;

Fl: fluorescence; Ph: phosphorescence; S: singlet state; T: triplet state.

Following the absorption process, an electron is promoted from the lowest-

lying state (often the ground vibrational state of the ground electronic state,

which for closed-shell systems is a singlet state, i.e. total spin is zero, denoted S0)

to a higher energy state. The figure shows that the absorption process takes the

molecule from the ground electronic state to the second excited singlet state via

a S0 → S2 transition. Excitations to levels lying lower or higher in energy than

S2 will depend on the energy of incoming photon. It should also be mentioned

here that, in reality, the electronic states are not necessarily well separated in

energy as they are shown in the figure. For the sake of introducing concepts and

terminologies, it is also assumed that the excitation to the S2 populates a high

energy vibrational level of the state. Highly excited vibrational states are often

referred to as ‘hot’ states. Vibrationally hot molecules will tend to release the

excess vibrational energy and relax to the lowest vibrational level in a given elec-

tronic state. This process is known as vibrational relaxation (VR) and proceeds
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without release of a photon. In the condensed phase, the released energy can lead

to fast thermalisation of the environment (the bath), especially in case of strong

system-bath coupling or the energy goes mainly to the internal modes of the mo-

lecule, in which case the process is called intramolecular vibrational relaxation

(IVR). Another deactivation process closely related to VR is internal conversion

(IC). This process involves a vibrational transition between two electronic states

of the same multiplicity, i.e. the spin state is preserved in the process. The

probability of the process depends on the Franck-Condon overlap as discussed in

the previous section. It should be mentioned that internal conversions between

electronically excited states generally occur faster than from S1 → S0 because

the energy gap between S1 and S0 is often larger than between high-lying states.

IC is often followed by VR, which demotes the electron to the lowest vibrational

level of the S1 state. As with VR, internal conversion is a radiationless transition.

From this point, there are two pathways that are accessible to the molecule. It

can either make a transition to the lowest electronic state, S1 → S0, in which

case the process is known as fluorescence (Fl) or it can change its spin state and

make a transition to a triplet state (a state in which the spins of two electrons are

parallel) via S1 → T0, in which case the process is called inter-system crossing

(ISC). Fl always results in the emission of a photon, while ISC is a non-radiative

process. The selection rules actually forbid the transition from a singlet to a

triplet state, making ISC extremely inefficient, but the process can occur (and

also be fast) if the spin-orbit coupling between the states is strong. This is com-

monly encountered in molecules containing heavy atoms, like bromine. From the

T0 state, the molecule can return to the ground electronic state, S0 by an emissive

process known as phosphorescence (Ph). Fl and Ph occur predominately from the

lowest-energy excited states of a given multiplicity of the molecule. This is the

Kasha’s rule [90]. The typical timescales of the photochemical processes are given

in Table 3.1. It should be kept in mind that electronic transitions also involve

vibrational transitions, termed vibronic. Rotational transitions also accompany

vibronic transitions, but they are often unresolved in experiments involving con-
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Process Timescale (s)

Absorption 10−15

Vibrational Relaxation 10−10

Internal Conversion 10−14 − 10−11

Intersystem Crossing 10−8 − 10−3*

Phosphorescence 10−4 − 10−1

Fluorescence 10−9 − 10−7

Table 3.1: Photochemical processes and their approximate timescales. * may also

be faster.

densed media.

3.2 Transient absorption spectroscopy

As has been mentioned already, transient absorption is a pump-probe technique

in which one beam (the pump) is used to create an excited state population and

another (the probe) is used to measure the absorption spectrum of the transient

species. A transient absorption signal is obtained by measuring the optical density

(OD) of the sample before interaction with the pump laser, ODOFF correspond-

ing to the absorption of the ground state and comparing it with the absorption

spectrum of the pumped sample, ODON (see Eq 3.6).

The expression for optical density is given by the Beer-Lambert law [91]

OD = − log

(
I

I0

)
= εcl (3.5)

where I0 and I are the intensity of the reference (incident) beam and the beam

that interacts with the sample, respectively, l is the thickness (or path length)

of the sample, c is the concentration of the absorbing solution and ε is called

the molar extinction coefficient (commonly given in units of mol−1cm2), which

provides a measure of the strength of optical absorption.
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A transient absorption spectrum can be measured by recording the difference

optical density as a function of wavelengths and time delays as

∆OD(λ,∆t) = ODON −ODOFF

= log

(
IOFF(λ)

ION(λ,∆t)

) (3.6)

where ∆t is the time delay. ∆OD(λ,∆t) is often plotted as a 2D map, in which

the wavelengths (λ) are arranged as rows and the columns represent the time

delays. A trace taken along a selected wavelength is called a kinetic trace and

provide the time evolution information, while a 1D plot taken at a particular time

delay (also called a spectral trace) gives the transient absorption spectrum.

3.2.1 Types of signals

The transient absorption spectrum contains four main types of signals, distin-

guished by the region of the spectrum at which they appear and/or the signs

of the ∆OD. When the sign of ∆OD is positive, it corresponds to an increase

in the absorption and it is negative due to an overall decrease in absorption.

It is important to understand what photophysical processes contribute to these

signals. A simple scheme is shown in Fig 3.2 that relates the type of signal to

the photophysical processes. The signals that can be observed are: ground state

bleach (GSB), excited state absorption (ESA), stimulated emission (SE) and pho-

toproduct absorption (PA). Ground state bleach and stimulated emission have

negative signs of ∆OD, while the excited state and photoproduct absorption are

positive signals.

3.2.1.1 Ground state bleach

Ground state bleach refers to the process in which the population of the molecules

in the ground electronic state is depleted (due to the absorption process) and

higher energy states are populated. As a result, the concentration of the species

in the ground state capable of absorbing photons from the probe laser is reduced,

which leads to ODON < ODOFF and therefore, ∆OD becomes negative. This
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GSB signal is observed in the wavelength region of the ground state absorption

of the molecules under investigation.

3.2.1.2 Stimulated emission

An excited molecule can radiatively decay to a lower energy level by a process

known as spontaneous emission. However, if during this time, a photon should

arrive with energy that matches the energy gap between the populated excited

state and the ground state, a process resulting in the emission of a photon takes

place. It is known as stimulated emission. In TA spectroscopy, SE is induced by

a photon from the probe beam. The emitted photon travels in the same direction

as the probe beam, towards the detector, leading to an increase in the number

of photons impinging on it —such as would be in the case of reduced absorption,

so that the ODON is again lower than ODOFF resulting once more in the negative

sign of the ∆OD. The spectral profile of the emitted signal follows that of the

fluorescence spectrum of the species being studied and is typically red (Stokes)

shifted with respect to the ground state bleach.

3.2.1.3 Excited state absorption

Electrons in the excited states can be promoted to even higher states, if they

absorb photons of appropriate energy from the probe beam. This leads to the case

where ODON > ODOFF in the region of excited state absorption and a positive

∆OD signal is observed. The ESA signal need not only come from the singlet

excited states absorbing photons. States of other multiplicities, e.g. triplet states

(if they can be accessed) can also absorb a photon from the probe and will give

a positive signal in the TA spectrum.

3.2.1.4 Photoproduct absorption

Products from a photochemical reaction can give rise to the emergence of yet

another positive feature in the transient absorption spectrum provided that the

probe beam has photons with energies in which the products absorb.
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Figure 3.2: Typical signals observed in a transient absorption spectrum.

Generally, the signals mentioned above are observed as overlapping to some

extent with each other, which complicates the interpretation of dynamics from

the transient spectra. It is therefore important to separate out the underlying

components by modelling the transient absorption data. A good starting point is

to use the steady (ground) state absorption/fluorescence spectra to assign some

of the signals, but a more rigorous (global and target) analysis is often necessary

[92, 93].

3.2.2 Sample preparation

Before describing the instrumentation relating to the optical pump-probe setup,

the method for sample preparation is presented. Almost all of the experiments

reported in this thesis either require or make use of crystalline samples. The

crystals for the experiments are typically grown in-house —except in the case

that they are supplied, and sliced to sections thinner than 500 nm (the reason for

this will be explained later). In order to cut the crystals, we use a crystal thinning

technique widely used by electron microscopists, called ultramicrotomy [94]. The
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Figure 3.3: The microtomy process. The microtome arm moves towards the knife

edge until contact is made with the surface. The arrows indicate the directions

of motion of the microtome arm.

microtomy process is illustrated in Fig 3.3. The ultramicrotome in our lab is

equipped with a sample holder assembly, a movable stage, a microtome knife for

cutting the crystals and an optical microscope for viewing. It is fully automated

and can perform cuts as thin as 30 nm. The procedure for cutting the samples

is as follows: the crystal to be cut is first glued onto an end of a trimmed (in

shape of trapezoid) epoxy resin block, which is then inserted in the sample holder.

For small crystals (< 0.5 × 0.5 mm (W × H), assuming rectangular shape), a

pyramidal shaped substrate is used together with the epoxy block and the crystal

is fixed to pyrimids apex. After mounting the sample, the holder is attached to the

microtome arm supplied with a goniometer (an instrument which allows precise

360◦ rotation of the specimen). The boat (anodised rectangular block with a

trough) is placed on a movable stage, with the knife edge facing the sample, and

clamped. The knife edge is made of diamond. Different types of knives can be

used depending on the hardness of the material being cut. Diamond is the choice

for our work as it can be used for cutting various materials with different values

of hardness. For coarse adjustment, the boat is manually translated to bring

the knife edge to within a millimeter of the crystal surface. The crystal can be
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Figure 3.4: The ultramicrotome in action. Shown are the sections of the

spirooxazine crystals.

rotated using the goniometer and is aligned with respect to the knife edge. After

the orientation of the crystal is set and the knife edge properly aligned with one of

the crystal faces, the trough is filled with clean water until the level is just on the

edge of the knife. If too much water is added, a lint-free tissue paper is used to

draw some water from the boat. The objective is to produce a low meniscus with

the edge of the knife. The desired settings (thickness, cutting speeds) are entered

in the controller and the cutting process is initiated. The sample holder starts

moving towards the knife in step sizes defined by the desired crystal thickness

as set by the user. After each step, the microtome arm moves up and down in

a pedal-like fashion. Once the contact between the crystal surface and the knife

has been made, sections are created that slide into the boat and can be picked

up with a picking tool (a stainless steel loop) for mounting on a glass slide or a
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TEM mesh (for diffraction experiments). Fig 3.4 shows the ultramicrotomy of

spirooxazine crystal —the system of interest in chapter 4.

3.2.3 Steady-state absorption measurement

It was stated before that the ground state absorption can be used as the first step

towards disentangling the different signal contributions in the transient absorp-

tion spectrum. For static (ground state) absorption measurements of the samples

in solution phase, it is routine to use a commercial spectrophotometer. By meas-

uring the transmission of light through the sample and separately through the

solvent used to make up the solution and by comparing the recorded intensit-

ies according to Eq 3.5, the absorption spectrum can be easily generated. A

spectrophotometer is typically composed of a light source (a continuous lamp),

a monochromator, a sample compartment and a detection system. The light

source can be chosen such that it emits radiations of the desired wavelengths.

The monochromator is made up of a grating, which disperses light into many

diffraction orders, and a slit to select the wavelengths. The monochromatic beam

passes through the sample and the transmitted beam intensity is measured by

a photoreceiver. An issue of using the commercial spectrophotometer in our lab

is that the size of the beam (which forms the shape of a vertical line) at the

sample position is about 10 x 1 mm. But, absorption measurements of crystals

require that the size of the beam be smaller than the physical dimensions of

the sample. This is because the probe light must illuminate the crystal evenly

and in cases when the beam sizes are larger than the crystal, only that portion

of the beam that passes through the sample is attenuated (due to absorption),

whereas the rest of the beam reaches the detector unaltered (assuming that the

scattering is ignored), leading to erroneous measurements. Large beams can be

shaped to small sizes by using a small pinhole (placed in front of the sample), but

this inevitably leads to a significant reduction of the incident photon intensity.

The crystals used in this thesis work were much smaller than the sizes mentioned

above. Therefore, a spectrometer based on the design of Kirchner et al [95] was
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Figure 3.5: The spectrometer mainly designed for measurements of crystalline

samples. The sample is placed near the focal point of the off-axis mirror. Also

shown are two flat mirrors, which direct a laser beam entering from the top

left corner of the figure to the sample position for pump ON-OFF absorption

measurements. OAP: off-axis parabolic mirror.

built by Dr Corthey in order to measure absorption spectra of small crystalline

samples. Fig 3.5 shows a photograph of the spectrometer. The setup consists of

four aluminium 90◦ off-axis parabolic mirrors (OAP, focal length = 10 cm) moun-

ted on a breadboard and used for collimation or focusing of light. Using mirrors

of the same focal length allowed a one-to-one mapping of the beam sizes from the

input to the sample position. Two lamps: deuterium and halogen, function as the

light source, with the deuterium lamp emitting continuous radiation in the UV

range (215-400 nm) and the halogen lamp covering 400-2500 nm. An optical fibre

(100 µm core diameter) guides light from the lamps into the setup. The first OAP

collimates the input beam and directs it towards the second OAP, which focuses

it at the sample (placed near the focal point of the mirror). The light trans-
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mitted through the sample is collimated and coupled into another optical fibre

(400 µm), which sends it to a commercial spectrometer connected to a computer.

The fibres are mounted on a XYZ stage for precise alignment. The all-reflective

design allows a broadband wavelength coverage and the focusing can take place

without chromatic aberrations, i.e. tighter focus than with a lens. The spectro-

meter can also house more optics. For example, a laser beam can be coupled into

the setup and mirrors placed inside can be used to direct the beam at the sample.

This permits time-averaged pump-probe (laser ON and OFF) measurements. As

before, measuring the absorption spectrum involves recording the transmitted

intensities through the sample and through the substrate/solvent-filled cuvette.

All the measurements are performed in the transmission geometry.

3.2.4 Reversibility

It is often desirable to perform pump-probe experiments using multiple laser

shots at high rates of repetition because the intensities of the laser pulses tend to

be less fluctuating and therefore more correlated over short intervals, which can

yield good signal-to-noise ratios. In addition, the acquisition times are shorter,

which prevent situations such as laser drifts and sample decomposition (in case of

sensitive or volatile samples). Moreover, multi-shot experiments allow repeated

measurements for building up statistics. Having said that, it is not always pos-

sible to run (shot-to-shot) experiments at repetition rates higher than a few kHz.

The limitation comes from either the detection instruments, which have finite

data readout times, or due to the long relaxation times (after excitation) of the

system being studied. In any pump-probe experiment, the system under investig-

ation must return to its initial state between pump laser shots, within the period

of the repetition rate. This is the reversibility condition and must be satisfied in

all cases. This requirement is conveniently fulfilled for measurements involving

solutions or gas phase samples by flowing them fast enough so that the probe

volume is completely refreshed between laser shots. This is clearly not possible

for solids, making their studies much more challenging than gas or solution phase.
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Unsurprisingly then, a large body of work is available in literature in which transi-

ent absorption spectroscopy or similar pump-probe techniques have been applied

that use either solution or gas phase samples. Solid state materials are widely

used in ultrafast research in the field of condensed matter physics. However,

cases where the photodynamics of chemical reactions occurring in the solid state

are probed are rather scarce in comparison. In photochemical reactions, such as

those that lead to dissociation of bonds or those that involve structural transform-

ations, products are created that permanently blend with the original reactants

in the solid state. As mentioned above, the sample must be reversible to able to

faithfully study the dynamics of interest using pump-probe methods. The per-

manent buildup of photoproducts renders systems irreversible and the studies of

many chemical reactions in solid state intractable with multi-shot pump-probe

approaches. In addition, other factors that can compound the studies of chem-

ical reactions in solids are low optical and thermal damage thresholds. This is

particularly problematic in molecular crystals.

Photochemical reactions taking place in the solid state can be exploited to

fabricate dynamic devices, which may be controlled and used for many everyday

applications. Also, microscopic understanding of the reactions can provide chem-

ists with clues that can help them to create conditions that help steer reactions

towards desired pathways, thereby increasing yields in some solid state reactions.

Therefore, there is a need to develop methods that permit non-invasive ultrafast

studies of solid state chemical reactions. One approach for doing that calls for

translation of the sample, so that the pump laser interrogates a new portion of

the sample at every (new) shot. The sample can also be replaced completely

after (a few) laser shots. In either case, a large, homogeneous sample area for

probing (in the former case) or many high quality, identical samples (in the latter

case) would be required (a non-trivial task, especially if it requires synthesis of

exotic and complex systems). Samples that are completely irreversible, i.e. those

that are irreparably damaged after a single pump shot, must be studied with

single-shot methods. A single-shot scheme that has been used for ultrafast solid
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state studies of chemical reactions employs an echelon (a stepped grating) in the

setup [96]. In this scheme, the sample is pumped and the probe (to monitor the

change in the sample) is first dispersed into many delayed replicas by the echelon

(the delay between the pulses is generated due to the probe travelling a variable

amount through the echelon) and then imaged onto the sample. A large time win-

dow can be covered in a single shot. The strength of this method is that one avoids

measuring signals from damaged regions, but as can be imagined, a single shot

can not yield sufficiently high signal-to-noise ratios to unambiguously characterise

the sample response and consequently many runs are often required to buildup

signal well above the noise floor. Furthermore, the echelon limits the use of very

broadband probe pulses and the experiment must be repeated several times (over

a range of wavelengths) to obtain complete spectral information. That said, this

method is the only choice when experiments with irreversible systems need to be

performed. On the other hand, some systems are photoreversible, even in the

solid state, and by paying attention in ensuring that the buildup of products is

kept under check, can be studied using multiple-shot pump-probe methods. For

example, Jean-Ruel et al exploited solid state photoswitching to study the ul-

trafast ring-closing dynamics of diarylethene using pump-probe techniques [97].

They excited the system using a UV laser and measured the dynamical response

using a WL or electron probe, but before repumping, used a CW helium-neon

(HeNe) laser to convert the molecules back to their original form, thereby ensur-

ing reversibility up to at least 1000 pump laser shots. A couple of aspects were

critical for the success of their experiments, namely the repetition rate and the

degree of the structural change associated with the reaction. The repetition rate

of the pump laser was kept very low (effectively 1.9 Hz) in their experiments,

which allowed ample time for the CW beam to convert molecules back and fur-

thermore, the structural change in the crystal was fairly moderate, which would

have helped preserve the periodic order. Unfortunately, applying this strategy is

not possible for every photoreversible system; other systems exist (of which one is

the topic of the next chapter) that show a much larger structural transformation,
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which calls for the extension of the approach of Jeal-Ruel in order to make a

generic method for ultrafast studies of solid-state photoreversible reactions. This

will be discussed further in chapter 4, but next the setup is described.

3.3 The transient absorption setup

The transient absorption experiments were performed using a home-built setup,

featuring a broadband probe to simultaneously monitor different photophysical

processes (by covering a large spectral window) and a NOPA (see chapter 2).

The design of the setup was fairly flexible in that it could be used to run both

crystalline state and solution phase experiments. It was also possible to integrate

a third (NOPA) beam into the setup as will be described below. A schematic

of the setup is shown in Fig 3.6. A portion of the fundamental output of the

regenerative amplifier (800 nm, 40 fs) operating at 1 kHz was divided into two

beams using a beam splitter (BS1). One of the beams was used to pump the

NOPA and the other beam (henceforth referred to as the main beam) was sent

to the transient absorption setup. This created two independent arms that not

only allowed running the experiments with more than two beams, but also with

beams having different repetition rates with respect to each other. The repetition

rate of the main beam carrying approximately 200 µJ of energy was modulated

after sending it through a series of two synchronously running optical choppers

(rotating wheels with slots in them).

This beam was then split by another beam splitter (BS2) into two parts. The

reflected part of the beam carried 90 % of the energy (180 µJ) and formed the

pump arm of the TA setup, while the 10 % transmitted beam (20 µJ) was used

to generate the probe light.

The weak beam was guided by a set of reflective dielectric mirrors towards a

computer controlled mechanical delay line (DL, 30 cm travel range). The delay

line —used to vary the optical path length of the probe beam with respect to the

pump beam, consisted of a gold-plated retroreflector mounted on a movable stage.
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Figure 3.6: The transient absorption setup. BS: beam-splitters; CC(1 & 2):

chopper-controller; PD: photodiode; DL: delay line; VND: variable neutral dens-

ity filter; SC: supercontinuum; OAP: 90◦ off axis parabolic; DDG: digital delay

generator; DAQ: data acquisition card; F: cut-off filters; L: lenses; CM: curved

focusing mirror.
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Figure 3.7: The white light continuum spectrum generated by focusing 800 nm

in water.

The beam made three reflections inside the retroreflector before being sent in the

direction of the WL generation stage. Prior to WL generation, the intensity of

the beam was attenuated using an absorptive neutral density filter (VND) to a

pulse energy of approximately 2 µJ before being focused inside a cuvette (SC, 2

mm path length), filled with ultrapure water, by a lens (L2, focal length= 50 mm)

to generate a stable WL beam with wavelengths spanning 390-900 nm (see Fig

3.7). The size of the beam before the lens was controlled by an iris. The diverging

WL was collimated by a 90◦ off-axis parabolic mirror (OAP, focal length = 50

mm) and a short-pass filter (F1, λcut-off = 700 nm) removed the residual 800 nm

light. A concave mirror (CM, focal length = 150 mm) was used to focus the

supercontinuum at the sample. Reflective optics were used for collimation and

focusing of the WL beam in order to prevent further broadening/chirping. In

the pump arm, the fundamental light was frequency-tripled in a process referred

to as third harmonic generation (THG), by mixing 800 nm and 400 nm beams

inside a BBO crystal as follows: The diameter of the 800 nm beam was first
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reduced from 10 mm to 5 mm 2 using a Galilean telescope made from two lenses

of focal lengths 200 mm and -100 mm and separated by 100 mm from each other.

After the telescope, the 800 nm laser beam was frequency-doubled in a doubling

crystal (BBO-SH, θcut = 29.3◦, 1 mm, Type I). The doubled output (400 nm) was

maximised by angle-tuning of the BBO-SH crystal and mixed with the residual

800 nm beam inside a sum frequency generation crystal (BBO-TH, θcut = 55.5◦,

1 mm, type II). To compensate for the mismatch in the propagating speeds of the

two beams prior to mixing in the BBO-TH crystal, a birefringent calcite crystal

(CaCO3, 1 mm, θcut = 45◦) was deployed in which the beams experience different

refractive indices, owing to their different wavelengths and polarisations 3. After

passing through the calcite crystal, the two collinear beams were sent into the

BBO-TH crystal and 266 nm photons were generated with an efficiency of 4 %.

The unconverted 400 nm and 800 nm beams were removed from the generated

266 nm beam using a combination of a short-pass filter (F2, λcut-off = 350 nm)

and harmonic separators. A VND was placed in the beam path to control the

intensity and in addition a manual shutter was used to let the beam pass and

hit the sample only during data acquisition. Focusing of the pump beam at

the sample was achieved by a lens (L1, focal length = 300 mm) mounted on a

translational stage.

The generation of the NOPA beam was discussed in the previous chapter.

The output of the NOPA was tuned to give the required central wavelength and

was focused on the sample using a lens (L3, focal length = 300 mm). The path

length of the NOPA beam was set such that it was delayed by approximately 10

nanoseconds (1 ns = 10−9 s) with respect to the probe beam. The reason why

this was done will become clear in the next chapter.

For solution phase experiments, an in-line UV quartz, flow cell (path length

0.5 mm) was used. The sample solution was flowed through the cell using a

miniature flow pump. The cell was mounted on a translational stage (which

2in order to increase the fluence at crystal to achieve high conversion efficiencies.
3Type I phase matching produces the output that has orthogonal polarisation with respect

to the input beam.
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allowed fine adjustment of the position) and placed near to the foci of the beams.

For solid state experiments, the cell was replaced by a cryostat. The microtomed

samples were mounted on a fused silica disc (thickness = 1 mm) and secured in

the sample holder of the cryostat (see Fig 3.8). The cryostat was used either to

run experiments at cryogenic temperatures (77 K) or it served as a ‘chamber’ in

which sensitive samples were kept and dry nitrogen gas was filled in to keep them

from oxidising.

The beams for the experiment were spatially overlapped with one another and

their sizes at the sample position were determined, e.g. for setting the fluence in

the experiment, by placing a set of apertures of known sizes and measuring the

transmitted intensity (or power) using a power meter. The FWHM beam sizes

(in µm) were calculated using the following formulae

w =

√√√√√ 2r2

ln

(
1

1− T

) (3.7)

and

spot size (FWHM) =
[
w ×
√

2 ln 2
]
× 106 (3.8)

where r is the radius of the pinhole in µm and T is the transmission through the

pinhole (T =
I

I 0

where I0 and I are the intensities of the unattenuated beam and

after passing through the pinhole, respectively). The spot sizes at the sample were

measured to be 140 µm (pump), 70 µm (probe) and 170 µm (NOPA). The pump

and the NOPA beams were blocked after passing through the sample, while the

transmitted probe beam was collected and directed towards a home-built Czerny-

Turner spectrograph for detection. The probe entered the spectrograph through

a slit (60 µm) and was collimated by a concave mirror (focal length = 150 mm),

diffracted by a grating (300 lines/mm) and then focused onto a low-noise, front-

illuminated linear CCD array (1× 2048 pixels) capable of shot-to-shot detection

rates of up to 2 kHz.

The data acquisition (DAQ) was controlled with a software developed by Dr
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a) b)

c)

Figure 3.8: a) The cryostat used the in the solid-state experiments b) The sample

holder for fused silica discs c) A photograph showing the microtomed samples

mounted on the fused silica disc.

Corthey and written in C# language. A Bayonet Neill-Concelman (BNC) cable

took a transistor-transistor logic (TTL) signal (1 kHz) from the laser as an input

(trigger) for the chopper controller (CC1). The CC1 was configured to reduce

the input frequency to exactly half. The output signal from CC1 was sent to the

chopping unit (consisting of a spinning motor to which the blade was mounted)

using an Ethernet cable. It also triggered the controller of a second chopping

unit (CC2), set up to change the repetition rate once again to 1/2 of the input

frequency. By adjusting the settings on the two controllers, the chopping units

were made to phase lock with one another and with the original laser frequency, so

that the main beam passed through the spinning blades without any clipping. By

using different chopping blades and settings of the controllers, different chopping

schemes could be realised. For example, when the main beam was required to
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pump
t

Δt

Figure 3.9: The graphical description of different time delays in the pump-probe

experiment. The red arrow points to the direction of propagation. At t = 0,

the temporal overlap between the pump and probe is established with the pump

interacting first with the shorter wavelengths of the probe beam.

have a repetition frequency of 1 kHz, both chopping units were turned off or when

500 Hz was desired, one chopper was run while the other stayed off. Inside the

TA setup, a beam splitter (BS3) in the probe arm reflected a small fraction (1 %)

of the beam into a photodetector (PD1), which generated a voltage signal that

was used to synchronise the chopper in the pump line using the controller CC3,

but also provided the trigger for the multi-channel digital delay generator (DDG).

A custom two-slot chopping blade was employed that reduced the pump beam

frequency to 1/8th of the probe repetition rate. The DDG was used to manage
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the triggering, delaying and synchronisation events in the experiment. An output

of the DDG was used to trigger the DAQ card and a separate output was used

to trigger the CCD camera. The software controlled all aspects relating to the

experiment including the hardware, e.g. delay line, CCD and also displayed the

data (as ∆OD) during experiments and stored it in a readable format in the

computer for later processing.

3.3.1 Data acquisition

The pump and probe experiment begins with the probe beam arriving at the

sample position before the pump beam (required to get a baseline) and for these

time points, referred to as negative time delays, no photoinduced signal is ex-

pected. As the delay line is translated, the probe beam is increasingly delayed

with respect to the pump and after some travel of the DL, the pump overtakes

the probe and a signal begins to be observed. The moment when the pump and

probe beams are exactly overlapped in time is referred to as the time-zero (or t =

0 and ‘t-naught’) and represents the onset of a photoinduced process. At positive

delays, the response of the system after excitation can be measured. Different

stages of the acquisition are depicted in Fig 3.9.

3.3.2 Calibration of the spectrometer

The CCD detector is a linear array made up of elements called pixels. Each pixel

in the CCD needs to be assigned to a wavelength in order to extract meaning-

ful information from the transmitted spectrum, i.e. it needs to be calibrated.

Wavelength calibration is always required when the spectrometers grating orient-

ation is changed, e.g. to change the wavelength range detected by the CCD or if

any optical element is removed and replaced from the spectrograph. A standard

lamp with a known spectrum can be used for this purpose and colour filters, that

have a sharp cut-off at certain wavelengths, can be used to check the goodness of

calibration. For our purpose, we used a mercury-argon lamp as the calibration

source, which emits radiations in the range 253.6-922.5 nm. The light from the
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Figure 3.10: a) Measured spectrum of the calibration source. The peaks are

assigned to wavelengths (printed in blue), identified with the help of the spectrum

of calibration source b) Plot of wavelength vs pixel number and the fit.
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lamp was diffracted by the grating in the spectrograph and imaged onto the CCD.

The measured spectrum (intensity vs pixels) shows peaks which can be identi-

fied by comparing them to spectrum of the calibration source. After peaks had

been assigned, a plot of the wavelengths against the corresponding pixel number

was created and fitted with a polynomial function. The function used to fit the

calibration trace was

λcalibrated = −9.6× 10−6pix2 + 0.277pix + 359 (3.9)

where the variable, pix is the number of the pixel element of the CCD array.

The fit function was saved in the acquisition software to correctly display the

spectrum in terms of wavelength. Fig 3.10 shows the measured spectrum of the

source and the fit.

3.4 Artifacts in TA spectroscopy

As ultrashort lasers feature heavily in transient absorption studies, the time-

resolved spectrum often contains two types of signals: from the sample itself

and from the solvent and/or cuvette/substrate. The latter can be a nuisance,

especially as the very fast dynamics of the sample (10-100 fs) can obscured by

them. Fortunately, some of these can be used for characterisation purposes, thus

turning them to the experimentalists advantage. The following sections discuss

two kinds of artifacts and how to use or counter them.

3.4.1 Cross-phase modulation

The first one is the so-called cross-phase modulation (XPM), which refers to the

time-dependent modulation of the refractive index of a medium by an intense

laser beam, the effect of which is ‘felt’ by another pulse that is spatially and

temporally overlapped with the intense beam [98]. This occurs without any net

energy transfer to or from the sample. In our experiments, the pump beam is

of sufficient intensity that it can modulate the refractive index of a transparent
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material and if the probe beam is spectrally and temporally overlapped with

the pump, it will experience a change in its phase, which can be mapped if the

probe beam is spectrally dispersed. Since the process occurs when the pump and

probe beam are temporally overlapped, a strong signal is seen at around the time-

zero. This was used to characterise the setup, by performing a cross-correlation

measurement in which the pump and probe beams were overlapped in a 1 mm

thick fused silica disc or a quartz cuvette filled with either ethanol or hexane.

3.4.2 Chirp correction

The concept of chirp was introduced in chapter 2. A chirped broadband probe

(390-900 nm) is used in the experiments and thus, the temporal overlap of the

pump beam with different wavelength components of the probe is different, i.e.

the time-zero is wavelength dependent. This is manifest in the 2D transient ab-

sorption spectrum as a strong curvature along the time axis and must be corrected

before any kinetic information is extracted from the 2D spectrum, e.g. by global

analysis methods. Fig 3.11 shows the cross-correlation measurement of the pump

(266 nm, 2.8 mJ cm−2) with the chirped probe.

Panel (a) of the figure shows the 2D TA spectrum from this measurement and

panel (b) shows the kinetic traces taken at selected wavelengths. As can be seen

from the figure, there is a clear timing offset in the peak positions of the differ-

ent wavelength components due to the chirp. Notice also that the signals from

shorter wavelengths appear before the longer wavelengths. This can be explained

by recalling that under normally dispersive conditions, the photons of longer

wavelengths travel faster in a medium than the ones with shorter wavelengths.

As the experiment begins with the probe beam arriving at the sample position

ahead of the pump, i.e. ∆t < 0 (see Fig 3.9) and as the shorter wavelength

photons in the probe beam form the trailing edge, they interact with the pump

beam before the longer wavelength photons as the delay between the two beams

is minimised and time-zero is reached and thus, the response is registered first in

the bluer region of the transient absorption spectrum.
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Figure 3.11: a) 2D TA spectrum from cross-correlation measurement in 1 mm

thick fused silica b) Kinetic traces at selected wavelengths showing temporal offset

due to the probe chirp.
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Figure 3.12: a). Plot of time delays against wavelengths (in pixels) from the

cross-correlation measurements and the fitting b) 2D spectrum after applying

the chirp correction.
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In order to correct the chirp, the peak positions (in time) of several different

wavelength components must be precisely determined (by fitting the peaks with a

Gaussian or some other appropriate function) and plotted against the correspond-

ing wavelengths to give a curve that can be fitted with a polynomial function of

the appropriate order 4 and used in subtraction to correct for the chirp as shown

in Fig 3.12. Finally, notice that the 2D map shows features that look like sharp

bands (for example, look across 600 nm). This structure is very unusual and

the origin of this is yet unknown, but most likely is a result of some imperfec-

tions of the optics, for example, surface coating; it is not due to any nonlinear

response of the medium. This was confirmed by performing the cross-correlation

measurements separately using water and sapphire, which had little effect on the

appearance (or location) of the bands.

3.4.3 Temporal resolution

The temporal resolution (also called the instrument response function, IRF) of the

pump-probe setup can also be determined by using the cross-correlation measure-

ment. Fig 3.13 shows a trace along a selected wavelength and fit. A second-order

derivative of a Gaussian was used to fit the trace and the full width at half

maximum was approximated as the time resolution of the instrument [99]. The

(average) time resolution, estimated from the fitting several kinetic traces, was

230 fs.

4A third-order polynomial was used to fit the data. The equation is given in Fig 3.12
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Figure 3.13: Result of cross-correlation of the 266 nm pump and white light

probe. The trace was fitted with a second derivative of a Gaussian.
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Chapter 4

Synchronised Photoreversion of

Crystalline Spirooxazines

The work reported here is motivated by the aim to perform femtosecond electron

diffraction studies on molecular systems in order to investigate the mechanisms of

photochemical processes, such as bond dissociation, isomerisation and pericyclic

rearrangements, in the solid state. This chapter present a method that has been

developed to achieve this goal. The chapter is structured as follow. First, the

system selected for a proof-of-principle demonstration will be introduced and its

photochemistry will be reviewed briefly. This will be followed by a section that

describes the method of synchronised photoreversion. Following that, the results

of the experiments will be presented and discussed before concluding the chapter

with some remarks.

4.1 Introduction to Spirooxazines

Spirooxazines (SOs) belong to a family of compounds that have the ability to

change conformation after absorbing a quantum of light and are able to con-

figure back to the original form through absorption of a photon of different

wavelength. Such light-responsive compounds are called photochromic systems

[100]. They typically possess two distinct absorption bands, characterising the
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two different conformations. Spiropyrans [101], spirooxazines [102], diarylethenes

[103], azobenzenes [104], fulgides [105] and their derivatives are all examples of

such systems. Accompanying the reversible photochemical change, is alteration

of, amongst others, fluorescence/absorption, magnetic properties, refractive in-

dex, dielectric constants and coordination [106]. As a result, these photochromic

systems have attracted huge interest for various potential applications, such as

memory storage devices [107], logic gates [108] and photoswitches [109]. The ap-

plicability of photochromic systems, such as the SOs, to these devices will depend

on the switching time scales and the respective quantum yields as well as on the

photofatigue resistance, that is to say the number of photochemical cycles that

they can perform before significant degradation of their photoactivity occurs.

Spiropyrans and spirooxazines have been known to undergo photochromic

reactions with ultrafast timescales which makes them suitable candidates for some

of the applications mentioned above. Spirooxazines are considered to be more

promising, however, because of their superior fatigue resistance as compared to

spiropyrans [110]; they were shown to undergo tens to hundreds of photochromic

cycles without any loss of photochemical activity [111]. This high photofatigue

resistance has been attributed to the stabilisation provided by the nitrogen atom

of the oxazine ring [112].

Of many SOs, Spironaphthooxazines (SNO) have been a subject of intense in-

vestigation by many groups over the last two decades or so. SNO consists of two

heterocyclic, nearly planar rings (indoline and oxazine) linked by an sp3 hybrid-

ised spiro carbon. Due to the orthogonal relationship (see the stereochemistry

of SNO in Fig 4.1) between the indoline and oxazine rings, the overlap of the

orbitals in the two moieties is poor, therefore the gap between the highest oc-

cupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO) is large (on the order of 3-4 eV) [113]. Consequently, a solution of

SNO shows strong absorption in the UV and appears colourless. Conjugation is

achieved through a structural change —that involves an almost 90◦ degrees rota-

tion of the oxazine unit relative to its position in the SNO, after absorption of a
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Figure 4.1: Photochromic reaction of spironaphthooxazine (SNO) to give mero-

cyanine (MC).

UV photon which alters the HOMO-LUMO gap (makes it smaller) and intense

absorption in the visible region of the electromagnetic spectrum occurs. The res-

ulting planar structure is known as merocyanine (MC). The MC can return to

the SNO form either thermally or photochemically. The reaction scheme of SNO

is shown Fig 4.1. An extensive body of theoretical [114–116] and experimental

work already exists on the photodynamics of SNO in solution [117, 118], poly-

mer matrices [119], including some studies performed in the gas phase [120] and

one ultrafast study in the solid state [121]. A general picture of the mechanism

of photochromism in SNO that has emerged from time-resolved solution phase

experiments is that, upon absorption of a UV photon, a rapid breaking of the

bond between the spiro-carbon (the one that joins the two rings) and the oxygen

in the oxazine ring takes place and leads to ring-opening and isomerisation to a

trans-merocyanine product. It has been shown that the photochromic reaction

of unsubstituted SNO occurs solely on singlet state surfaces, on account of very

fast rates measured for the ring-opening reaction and the lack of oxygen effects

observed on the formation and the decay rates of merocyanine [122].

Tamai and co-workers were one of the first to perform time-resolved absorption

experiments on SNO using femtosecond lasers. They conducted their experiments

in 1-butanol using a 355 nm laser light for excitation [123]. In their measurements,

a peak at 490 nm appeared after excitation and decayed over time to be replaced
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by a broad absorption band in the 550-700 nm region, with a maximum at 580

nm. This followed a shift of the band to shorter wavelengths in 2 ps. After 100

ps, a peak with a maximum at 610 nm and a shoulder at 575 nm remained. The

authors assigned the 490 nm absorption to S1 → Sn transition. They reported a

short lifetime of 700 fs for the peak at 460 nm and attributed it to the relaxation

of the S1 state of spiro form. Furthermore, the broad absorption was assigned to

a ring-opened nonplanar intermediate, X following the cleavage of the C-O bond

and the 610 nm absorption was ascribed to the relaxed form of the merocyanine.

Antipin et al reported similar findings as Tamai and co-worker after conduct-

ing their own transient absorption study on SNO, but chose 305 nm wavelength

for excitation [124]. They observed a signal at 490 nm emerging within 0.25 ps,

which they assigned to the absorption from the singlet excited state to higher

lying states. After 1 ps, the absorption decreased and a shift to the blue region

(460 nm) was observed, followed by a decay of the short-wavelength band and a

simultaneous increase of absorption at longer wavelengths. They modelled their

results based on a potential energy scheme in which the S1 surface has two min-

ima, where one of the minima corresponds to the equilibrium configuration of

the initial SNO form, i.e. with the C-O bond intact and the other, with slightly

lower energy, to the ring-opened species with parent geometry (intermediate X)

and this minimum lay directly above the barrier that separated SNO from the

MC in the ground state. They proposed that excitation from 305 nm (which pop-

ulates the S2 state of the SNO) results in a rapid internal conversion to excited

vibrational states of the S1 state, followed by relaxation to the potential well of

the S1, causing the formation of the intermediate X and the 460 nm absorption

was attributed to be from this structure. As time evolves, the intermediate X

is converted to merocyanine isomers, following a non-adiabatic transition to the

ground state surface (facilitated by a rotation of the bonds during isomerisation).

The resulting isomers absorb in the redder regions of the spectrum. The simul-

taneous drop of intermediate X and rise of merocyanine absorption appeared as

an isosbestic point (a point at which spectra momentarily merge) in their tran-
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sient spectra, leading them to hypothesise that intermediate X leads directly to

merocyanine products.

However, the notion that intermediate X could be the precursor to the MC

product was challenged by Buntinx et al [125], who performed experiments on

solutions of unsubstituted and substituted spirooxazines, prepared in different

solvents, to study the effect that it may have on the reaction dynamics and to

clarify the role of the intermediate X in the ring-opening reaction. They carried

out the experiments with 377 nm and 252 nm femtosecond lasers as the pump

source and used a supercontinuum generated from calcium fluoride (CaF2) to

monitor the changes in absorption after excitation. In the case of unsubstituted

SNO, they observed an instrument-response limited rise of a band lying in the 400-

550 nm region (referred to as the blue band in their paper) with, τSNOrise = 0.17 ps

that decayed as time evolved. Moreover, they observed that another band at 550-

650 nm, corresponding to the open merocynanine form, rose with a time constant

of τMCrise = 0.75 ps after excitation. The peak of this band shifted towards longer

wavelengths when the experiments were conducted with substituted SNOs. The

same trend was observed when they used more polar solvents in the experiment.

In addition to the two bands, they located another band above 700 nm in the

near-IR region. The kinetics of this band showed similar trends as the 400-500

nm band, leading the authors to ascribe it to the same transient species.

In their measurements using different solvents, the authors observed that the

decay of the blue band did not always coincide with the rise of the visible band.

This was especially apparent for acetronitile, where the MC band had formed

well before the complete decay of the blue band. Moreover, the quantum yields

for SNO→ MC reaction showed a trend towards higher MC yields with nonpolar

solvents than with polar solvents. Based on these observations, the authors con-

cluded that the previously believed X intermediate could not be the precursor of

the ring opened merocynanine. Furthermore, they hypothesised that the compet-

ition between processes (barrier crossing to potential minimum of SNO or MC)

should determine the fate of the reaction, i.e. whether it will lead to formation
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of MC or not. They theorised that vibrationally hot molecules would be able

to overcome the barrier to form the MC, while those whose energies are stabil-

ised, for instance by interaction with polar solvents, would return to the SNO

form. The underlying assumption in this rationale was that the barrier height of

X→ MC form is much higher than for X→ SNO. The authors backed up their

claims by referring to the calculations of potential energy surfaces by Maurel et

al, who used a combination of time-dependent density functional theory (TD-

DFT), complete-active space self-consistent field (CASSCF) and semi-empirical

methods for PES construction. They found that the X→ MC barrier was indeed

much larger, by an order of magnitude, than the X→ SNO [126].

Suzuki et al were the first to investigate the photochromic behaviour of crys-

talline spirooxazine using ultrafast pump-probe spectroscopy [127]. They grew

microcrystals of the unsubstituted SNO, crushed and placed them inside a 1 mm

path length cuvette. They developed a diffuse reflectance spectroscopy apparatus

(with instrument response on the order of a picosecond) to study the dynamics

induced by a femtosecond laser pulse on SNO crystals [128]. The excitation light

in their setup was the second harmonic of the fundamental of Ti:Sa amplifier,

i.e. 390 nm, operating at 10 Hz and a supercontinuum (produced from a water

jet) was used as the probe beam. They measured the reflectance changes of the

sample upon excitation and related them to % absorption. Two different fluence

regimes were explored by the authors: low fluence (< 1 mJ cm−2) and high flu-

ence regime (> 1 mJ cm−2). In order to avoid measuring signals from damaged

areas of the sample, they moved the probe spot to a new region after every 50

shots of the pump.

Under low excitation conditions (fluence of <0.5 mJ cm−2), they observed

a transient absorption feature which appeared immediately after excitation and

peaked at 500 nm and accompanying it was a broad absorption band extending

from 600 to 800 nm. They ascribed the 500 nm peak to the absorption of excited

singlet state to higher lying excited states, i.e. S1 → Sn. The absorption signal

decayed in about 3 ps. They reasoned that the long lifetime of this state, when
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compared to that in the solution (0.7 ps), was likely due to strong restriction to

structural changes of molecules embedded in a crystalline lattice. Even after the

S1 absorption band had decayed, peaks at 460 and 740 nm remained and these

were assigned to be from the nonplanar, open form of the SNO. The lifetime of

these bands was found to be 2 ns. No detectable absorption from the merocyanine

product was observed by the authors, even after irradiating the sample with

several thousand pump shots. They theorised that the constraints imposed by

the compact lattice environment would make the merocynanine production very

unlikely.

On the other hand, under high fluence conditions, clear absorption from mero-

cyanine was observed. The authors carried out experiments with varying excit-

ation densities and noticed that the MC absorption increased nonlinearly with

increasing pump powers. Moreover, at higher fluences, the spectral profile of the

MC band was sharper and narrower than when the fluence was lower, leading

them to propose that at lower excitations (above the merocynanoine production

threshold), a number of isomers contribute to the spectral profile, while at higher

fluences, only the trans-merocynanine, similar to that formed in solution phase, is

predominately generated. For the cases when the fluence was below 4 mJ cm−2,

multi-shot experiments were necessary to see the change. The authors specu-

lated that every pump pulse produces defects in the crystal (which accumulate

over time), until it becomes possible to trigger the production of trans-planar

merocynanine. This formed the basis of a cooperative model that they proposed,

wherein excitation with an intense femtosecond laser pulse induces bond break-

ing and ring-opening at multiple sites within the crystalline lattice, resulting in

local disorder, which ultimately creates free volume around the molecule, mak-

ing it possible for the excited species to undergo large structural changes to give

trans-planar PMC [129].
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4.2 Experimental section

4.2.1 Sample preparation

SNO 1 was purchased from Sigma-Aldrich (product # 322547) and used without

further purification. Crystals of SNO were grown by dissolving approximately

10 mg of powdered SNO (Mr = 328.41 g mol−1) in either high purity ethanol or

methanol or a mixture of the two, under mild heating (40◦ C) and slowly evapor-

ating the super-saturated solution in darkness2. Attempts to crystallise SNO by

dissolving the powder in nonpolar solvents, such as hexane, proved futile. The

bulk crystals had either bi-pyramidal or plate like morphology. Most crystals

showed a change of colour (colourless to brown) after being stored under atmo-

spheric conditions for a few days. The colour change was most likely the result of

oxidation, so it was decided to keep the crystals in a vessel filled with dry nitro-

gen. Crystals of the highest quality (inspected with an optical microscope) were

selected for experiments and sliced along one of the faces using ultramicrotomy.

The sections were mounted on a fused silica disc (1 mm thick). A sample thick-

ness of 500 nm was chosen for the transient absorption experiments. To check

whether the microtomed sections were (single or poly) crystalline, static electron

diffraction patterns were obtained using our home-built femtosecond electron dif-

fraction apparatus (see chapter 5). For this measurement, the thickness of the

sections was 100 nm (to ensure transmission of electrons) and the crystal films

were mounted on a copper TEM mesh, with 1000 square grids per inch. The

electron diffraction pattern showed discrete spots (see next chapter), revealing

that the thin sample was single crystalline.

1 1,3-Dihydro-1,3,3-trimethylspiro[2H-indole-2,3-[3H]-napth[2,1-b][1,4] oxazine].
2Dr Rossos and I worked on the SNO sample preparation and microtomy with help from

Drs Hayes and Murphy
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4.2.1.1 Crystal structure

The crystal structure of SNO is available in literature and has been determined by

Harada and co-workers using x-ray diffraction methods [130]. The SNO crystal

belongs to the orthorhombic crystal system with unit cell lengths: a = 17.16 Å,

b = 16.83 Å and c = 12.41 Å. Each unit cell contains a total of eight molecules

as shown in Fig 4.2.

a

c
b

Figure 4.2: A view of the unit cell of SNO represented in balls and sticks. Carbon

atoms are depicted by black balls, nitrogen with blue and oxygen with red balls.

Hydrogens are omitted from the figure for clarity. There are a total of eight

molecules in the unit cell.

4.2.2 Synchronised photoreversion

The importance of reversibility was discussed in the previous chapter. It was

emphasised that in a pump-probe experiment, the molecules under investigation

must return to their original form, to allow every pump pulse to induce the same

photoreaction and to prevent measuring erroneous signals. A short review of

some approaches that have been used in the past to tackle this issue was briefly

provided. It was hinted that the approach implemented by Jean-Ruel et al [97]
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to study diarytethenes was a particularly promising one, especially for ultrafast

studies of photoreversible solid state reactions, with multiple laser shots. The ap-

proach implemented in this chapter is an extension of their work and is described

below [131].

The idea is a simple one: trigger and probe the reaction of interest, but before

the next pumping cycle, stimulate the products back to the original configura-

tion, thereby preventing photoproducts from remaining in the probe region. As

can be imagined, this requires an additional laser beam to perform the back

pumping and that it must be done in a synchronous fashion. The inclusion of

an additional beam makes this a three-beam approach. Three-beam experiments

are not uncommon in ultrafast spectroscopy. In fact, a few schemes that exploit

three laser beams in TA setups have been developed for different purposes over

the years, such as the pump-repump-probe [132] and pump-dump-probe [133]

schemes to name a couple. The scheme implemented here can be referred to as a

“pump-probe-recover” scheme. The choice of the third beam (henceforth called

the photoreversion beam), i.e. what photon energy to use, will depend on the

system under investigation, but should have a wavelength that corresponds to the

maximum of product absorption. In addition, it must come from an ultrashort

laser source, ideally from the same laser from which the pump and probe beams

are derived, as precise synchronisation is then automatically ensured. The reason

for using ultrafast laser pulses as opposed to CW beams (or for that matter, a

nanosecond pulsed laser) is that they offer much higher beam flux, making them

much more effective for photoreversion, but also because ultrashort duration of

the pulses allows the photoreversion process to be driven faster than the deform-

ation of the crystal (due to the propagation of strain), the timescale of which

can be on the order of a few hundred picoseconds to nanoseconds [134]. This

approach, therefore, relies on “recovery before destruction” idea.
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4.2.3 Acquisition scheme

In order to implement the approach described above and to actively monitor the

state of the sample (whether it is damaged or not), a scheme for the acquisition

of the data, different from a more conventional (pumpON-PumpOFF) one, was

developed. The pump laser was chosen to run at a repetition rate of 31.25 Hz.

As was alluded to in chapter 1, repetition rates lower than 100 Hz are typically

required to keep the sample from getting thermally damaged. The choice of 31.25

Hz was made as it was found to be a good compromise between fast acquisition

and minimum sample damage and also because the appropriate set of chopper

blades happened to be available during the time the experiments were performed.

The probe, on the other hand, was made to run at 250 Hz and additionally, the

photoreversion beam (derived from the NOPA) was used in the experiments,

operating at 1 kHz as shown in Fig 4.3.

A pump and probe cycle comprised of a single pump pulse impinging on the

sample to initiate the dynamics and eight probe pulses hitting the sample, a set

time delay later. The very first probe pulse, i.e. the one which monitors the

transient absorption change in the sample, was labelled as 0 and the subsequent

pulses, with increasing delay in ms range, were labelled from 1 to 7. As the

repetition rate was 250 Hz, the probe pulses were separated by 4 ms
( 1

250 Hz
=

0.004 s
)

. The spectra of all the probe pulses were recorded. This permitted us to

follow how the sample was recovering (after the removal of the excitation pulse) in

milliseconds intervals. The delay line used in the experiments had a travel range

that provided a coverage of 1.5 ns, so in order to ensure that the photoreversion

pulses did not interfere with any pump-probe sequence in the time-resolved scan,

the optical path length of the NOPA beam was set so that it always arrived at

least 10 ns after the first probe pulse (with label 0). The NOPA beam was chosen

to run at a much higher repetition rate than the probe or pump to have maximum

chance of converting molecules back to their initial state. Thus, immediately after

the pulse 0, 32 NOPA pulses (4 between each probe pulse) separated by 1 ms,

hit the sample. Two sets of spectra were measured: one relating to the transient
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Figure 4.3: The synchronisation scheme used in the experiments involving crys-

tals.

absorption, ∆ODTR, recorded after the excitation event and other being the

buildup spectra, ∆ODM corresponding to the steady-state absorption measured

at ∆t + 4n ms after excitation, where n is the probe pulse number and n > 0.

The ∆ODTR was calculated as

∆ODTR(λ,∆t) = log

(
I7(λ,∆t)

I0(λ,∆t)

)
(4.1)

where λ is the wavelength of the probe, ∆t is the time delay of the probe with re-

spect to the pump, I0(λ,∆t) is the transmitted intensity of the pulse 0, measured

a time delay, ∆t after the pump pulse and corrected for background, I7(λ,∆t) is

the transmitted intensity of pulse number 7, which is measured 28 ms + ∆t after

the pump pulse. The buildup spectra, ∆ODM, on the other hand, was calculated

using

∆ODM(λ, s) = log

(
Iref(λ)

I7(λ, s)

)
(4.2)

where Iref(λ) is the transmitted spectrum through the crystal, measured before

any excitation and s denotes the number of pump shots. The following must

be ensured: the sample must be in the same state at pulse 7 as before starting
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the experiment. If this is not the case, then the sample is not reversible and the

buildup spectrum will correspond to the species that remain in the probe volume.

4.3 Transient absorption of SNO

Transient absorption experiments were performed in dilute solution of SNO and

on the crystalline samples. The apparatus used to carry out the experiments

was described in detail in the previous chapter. Solution phase experiments were

performed so that the results could be compared with transient absorption exper-

iments performed with crystalline SNO, but also to calibrate the performance of

the setup. The sample in this case was prepared by dissolving a measured amount

of SNO (Mr = 328.41 g mol−1) in hexane to make up 20× 10−3 M solution. The

data were collected using 266 nm light (produced by third harmonic generation

of the fundamental beam, 800 nm as described in the previous chapter), oper-

ating at 250 Hz, as the pump and the white light probe repetition rate was set

at 500 Hz, i.e. every second pump pulse was blocked. The sample was flowed

through a 0.5 mm cuvette at high enough flow rates that it was completely re-

freshed between pump laser shots. The relative polarisations of the probe and

pump beams was set to the magic angle (54.7◦). For each time delay, 250 pump-

probe spectra were collected and transient absorption spectra were calculated by

comparing the pumpON and pumpOFF intensities as

∆ODTR(λ,∆t) = log

(
IpumpOFF(λ,∆t)

IpumpON(λ,∆t)

)
(4.3)

4.3.1 Data analysis

The data were analysed by assuming that the kinetics of the system can be de-

scribed by a sum of exponential decays, convoluted with the instrument response

of the setup [92]. Eq 4.4 was used to perform the fitting by taking kinetic traces
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at selected wavelengths.

f(t) =

H(t− t0)) ·

 i∑
n=1

Ai · e

−t− t0
τi


⊗ IRF

f(t) = 0.5 ·

 i∑
n=1

Aie

−t− t0
τi


· e

 σ2

2τi


·
[
1 + erf

(
t− t0 − σ2/τi√

2σ

)]
(4.4)

In Eq 4.4, A is the signal amplitude, σ is the width of the IRF (which was mod-

elled with a Gaussian function), t0 is the time-zero and erf is the error function,

resulting from the convolution of the Gaussian with the Heaviside step function,

H (t− t0). The fittings were performed in the MATLAB environment using the

built-in least-squared curve fitting function (see Appendix). The least-squared

method works by minimising the sum of the squares of the residuals resulting

from the difference between the data and the model used to fit it.

4.3.2 Steady-State spectra

Fig 4.4 shows the steady-state spectrum of SNO measured in solution. MC was

produced after irradiating the SNO solution with the 266 nm laser light and

has an intense absorption band in the visible region. The measurements were

performed using the microspectrometer (see chapter 3), on 0.5× 10−3 M solution

of SNO in EtOH. The cuvette used had a path length of 1 mm. The optical

density at 266 nm is approximately unity and the extinction coefficient, therefore

is, 2×104 M−1cm−1. The vertical excitation energies for (isolated) SNO are given

in Table 4.1. The excitation energies were calculated by Dr Kochman (see later

for the employed computational method).
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Figure 4.4: Steady-state Spectra of SNO (brown) and MC (blue) measured in

EtOH. The MC is produced after 266 nm irradiation.

electronic state ∆E (eV) oscillator strength, f

S1 (ππ∗) 3.796 0.077

S2 (ππ∗) 4.093 0.020

S3 (ππ∗) 4.347 0.059

S4 (nNπ
∗) 4.599 0.004

S5 (ππ∗) 4.717 0.057

S6 (ππ∗) 4.945 0.033

Table 4.1: Vertical excitation energies and corresponding oscillator strengths for

some low-lying excited electronic states of SNO. Calculations were performed by

Dr Kochman.
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4.3.3 Solution phase experiments

4.3.3.1 Results and discussion

The transient absorption spectra ranging from -2.5 to 6 ps, measured with 100 fs

time steps and between 15 to 90 ps, measured in 1 ps intervals, are shown in the

Fig 4.5.
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Figure 4.5: 2D transient absorption spectra corresponding to short and large

steps (100 fs and 1 ps), respectively.

The spectra are an average of three separate runs of the experiment. The

pump fluence was 0.46 mJ cm−2. The colour bar reflects the magnitude of the

absorption change, where red corresponds to an increase in the absorption and

blue to a decrease in absorption.

In the short-delay range, two bands can be distinguished. A positive band

featuring in the 400-450 nm region forms within the width of the instrument

response and another, broad absorption band (500-600 nm) appears after about 1

ps. Fig 4.6 shows the kinetic traces taken for 430 nm and 600 nm. Bi-exponential

fits of the data were carried out. Two exponents were necessary to fit the data

in which one exponent was used to account for the decay or rise kinetics and
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the other to the dynamics beyond 6 ps. The coherent artifact contribution was

neglected in the fitting process. The decay constant of the 430 nm band was

found to be approximately 580 ± 34 fs, while the rise time of 600 nm band was

found to be about 800± 35 fs.

It is also interesting to note the spectral evolution in the visible region (Fig

4.7). Initially, a broad absorption band spanning all of the visible region is ob-

served after 1 ps. The band grows more strong and its bandwidth becomes in-

creasingly narrow for 80 ps, after which a constant state is reached that resembles

the steady-state spectrum of the ground state merocynanine product.

These results were interpreted as follows: the 266 nm excitation prepares the

SNO molecules in a high-lying singlet excited state (S5), from where they undergo

rapid internal conversion down to the S1 state, at a rate much faster than can

be measured by the instrument. The initial positive band at 400-500 nm region

then corresponds to the S1 → Sn absorption and the subsequent decrease is

attributed to the decay of the S1 state. The initially broad absorption in the

visible region is likely due to a distribution of isomers that are created, most

probably in hot vibrational state, which converge towards the most stable one

as time evolves, causing narrowing of the spectrum and shift to slightly longer

wavelengths (∆E = 351.7 cm−1 between 5 ps to 100 ps).

The evolution ends once the most stable configuration of the MC has been

assumed (the trans-MC isomer) in around 100 ps. This interpretation is in line

with literature [123, 125] results and verified that the setup was performing well.
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Figure 4.6: Kinetic traces for two wavelengths a) 430 nm and b) 600 nm. The

decay in a) is attributed to the decay of the singlet excited state and the rise

at 600 nm to the production of the merocynanine products. Note the offset in

time-zero. Fitting in this case was done without chirp correction.
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4.3.4 Solid state experiments

4.3.5 Reversibility in the solid state

To show that synchronised photoreversion is required to achieve adequate revers-

ibility, a control experiment was first performed, in which only two beams, namely

the pump and the probe were used. The pump and probe laser parameters, such

as repetition rates, pulse energies, were kept constant in the control and the three-

beam experiments. Again, 266 nm light was used to initiate the dynamics and

the fluence was set at 1.4 mJ cm−2, corresponding to 7 % excitation of the sample

(see calculation in Appendix A). The pump fluence was chosen keeping in mind

electron diffraction experiments, where a reasonably high fraction of excited mo-

lecules is required to confidently recover time-resolved signals. The polarisations

of the pump and the probe were horizontal with respect to the incidence plane

of the crystal. While the polarisations of the laser beams are very important, as

the absorption of light will be dependent on the orientation of the electric field

vectors relative to the direction of the transition dipole moment of the molecule

(maximum when parallel, zero when orthogonal), it was considered to be not

very critical for the SNO crystal, as the molecules assume different orientations

within the unit cell (see Fig 4.2). A polarisation dependence measurement was,

therefore, not carried out. Besides, the main focus here was to demonstrate the

effectiveness of the proposed three-beam method.

Fig 4.8a shows the measured 2D TA spectrum, ∆ODTR(λ,∆t), from the con-

trol experiment. Once again, the time step for the measurements was 100 fs and

over 800 averages of the probe (corresponding to 100 pump shots, as probe:pump

ratio = 8:1) were performed per time step. As the 2D map shows, immediately

after time-zero, a broad absorption feature spanning 400 nm to 500 nm is ob-

served, which then starts to decay after about 1 ps. Curiously, a negative feature

extending from 550 nm to 670 nm starts to appear after 2.5 ps and grows more

and more intense during the course of the time scan. Spectral slices at selected

time delays are shown in Fig 4.8b. The arrows in the figure indicate the trend in
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Figure 4.8: The results of two-beam experiment with 266 nm pump (1.4 mJ

cm−2) pump at 31.25 Hz. a) The 2D transient absorption spectrum and b)

selected spectral traces.
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the absorption change as a function of time delay. As was mentioned earlier, in

addition to the transient absorption spectrum, a spectrum to monitor the pho-

toproduct buildup was also measured and this is shown in Fig 4.9. Focusing our

attention to this figure, it can be seen that the absorption in the probe region

gradually grew with increasing number of pump laser shots hitting the sample and

a constant value was reached after exposure of approximately 104 pulses. Upon

reaching the steady-state, comparison with the spectrum of the MC measured in

solution revealed almost identical absorption profiles (see Fig 4.4), except that the

absorption maximum was shifted to longer wavelengths in the case of the crystal.

This clearly points to the production of the merocynanine form in the crystals and

importantly, needed nearly 1000 shots at this fluence before it could be detected.

This result indicated that the merocynanine products were not returning back to

the spiroform. The production of the MC form may be explained if one imagines

that, intense excitation will create many ring-opened species, thereby disrupting

the lattice somewhat and as more and more pump pulses impact the sample,

more ring-opened species are formed and soon the periodic order is lost. This

was indeed observed in diffraction experiments (performed prior to the transient

absorption measurements), where discrete spots diffused out to a ring after a few

hundred pump shots. While no information can be gleaned from the diffraction

pattern as to the existence of the merocynanine state, if the long-range order has

been lost, absorption spectroscopy can sensitively probe its formation because

the merocyanine product will absorb light regardless whether the crystallinity is

maintained or not. The slight loss of crystal order presumably provides some

SNO molecules with enough local free volume to undergo isomerisation and form

the MC. The MC which is then formed does not return to the spiro form (at least

within the timescale of our experiments) and remains trapped. This trapped MC

can get excited by subsequent 266 nm pulses, which results in the negative feature

(due to depletion of the ground state population), corresponding to the bleach

band seen in Fig 4.8.
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Figure 4.9: The results of two-beam experiment with 266 nm pump (1.4 mJ

cm−2) pump at 31.25 Hz. a) The 2D buildup map and b) the signal measured at

28 ms after excitation as a function of pump laser shots.
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Figure 4.10: The spectrum of NOPA. The spectrum has a bandwidth of about

20-25 nm (FWHM).

It is also important to mention here that the buildup was seen regardless of

the repetition rate used in the experiment. Measurements (not reported here)

were performed where the pump repetition rate was set to be as low as 2.5 Hz

(factor of 12.5 lower than that used above), but the absorption from merocynanine

products was still observed, though it took more pump shots to detect it. The

slow buildup in this case can be ascribed to longer relaxation time afforded to the

crystal (400 ms intervals between pump pulses as opposed to 32 ms), whereby

some ring-opened molecules can convert back to the spriooxazine form, but the

key point here is that there was still a significant population that remained and

their absorption was detectable, i.e. irreversible conditions.

After confirming that the conventional approach of using only two beams

does not guarantee reversible conditions in our experiments, the three-beam

experiment with the synchronised photoreversion scheme was performed. The

photoreversion pulse from the NOPA was tuned close to the maximum of the

photoproduct absorption (610 nm, see Fig 4.10 for NOPA spectrum) and the

pulse energy was adjusted to a fluence of 2.8 mJ cm−2. Fig 4.11 shows spectral

traces corresponding to the same number of pump shots as in Fig 4.8 for compar-
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Figure 4.11: The buildup spectrum using the photoreversion scheme showing that

even after 10,000 shots no significant population of photoproduct remains in the

probe region. Yellow area denotes the region covered by the photoreversion pulse.

ison. It can be clearly seen that no significant amount of the product remained

in the crystal, even after exposing the sample to over 10,000 pump shots. Indeed,

the only variation in the absorption change is due to the fluctuations of the white

light probe intensities and the NOPA beam, which is particularly noisy around

580-620 nm region. This result clearly demonstrates that an additional ultrashort

beam, when used with the synchronisation scheme described above, can provide

an effective way to arrest the amassing of the species (which do not revert back

to their initial forms) produced in a photochemical reaction.

The crystal was inspected after the experiments described above and remark-

ably, the region on the thin crystal used in the control experiment showed marked

colouration, due to permanent formation of merocyanine products, while the re-

gion that was used in the synchronised photoreversion experiment, could not be

distinguished from unexcited regions (see photograph in Fig 4.12).
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Figure 4.12: a) Photograph of the one of the samples used in the experiment.

The blue dashed circle marks the region due to pump beam damage in the case

of two-beam experiment and yellow circle corresponds to an unexcited region b)

steady-state spectra from regions marked in a).
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Figure 4.13: 2D transient absorption spectra of SNO crystal. The region due to

signal from NOPA is masked.

.

Having ascertained that the sample was returning to the original state before

each pump-probe sequence, transient absorption experiments were carried out.

The data were collected from three different regions on the SNO crystal, each

exposed to a total of 104 shots of the pump beam, and then averaged. Exper-

imental conditions were the same as before. The 2D transient absorption map

from the measurements is shown in Fig 4.13.

Similar to the two-beam experiment, a strong decaying absorption band (400-

550 nm) with a peak at around 500 nm is observed immediately after excitation.

Moreover, a positive absorption band is also detected at 650-700 nm, but it is

much less intense than the 500 nm band. Fig 4.14 shows how the spectrum evolves

with time. The 400-550 nm and the 650-700 nm bands decay after the initial rise,

though the decay in the 400-550 nm region is much more pronounced than the

600-700 nm spectral region.

The time profile of 500 nm absorption is shown in Fig 4.15 and was fitted

to yield a decay constant of 800 ± 32 fs. As was interpreted by Suzuki et al,
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.

this band is assigned to the decay of the S1 state and to the production of ring-

opened SNO, with orthogonal parent geometry, following the cleavage of the

C-O bond. A noticeable difference from the solution phase transient absorption

spectrum is the absence of absorption from merocyanine, which absorbs in 550-

600 nm region. In solution, molecules have much more freedom to switch from one

form to the other, but in the crystal, molecular packing will largely determine

whether the ring-opened SNO molecules are able to fully isomerise to the MC

form or not. As has been mentioned already, in a unit cell of SNO, a single SNO

molecule is surrounded by at least seven other SNO molecules, so unless pockets

of space are created in the crystal (due to product accumulation as in the two-

beam experiment), the restriction imposed by the lattice makes isomerisation to

planar MC highly improbable. Therefore, we arrive at a conclusion which agrees

well with Suzuki’s interpretation of their low excitation experiments.
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Figure 4.15: The kinetic trace for 500 nm absorption band and the corresponding

fit.

.

To support the experiments, quantum chemistry simulations were run by a col-

league in the group, Dr Kochman, on a single unit cell (selected from of a cluster

of cells called a supercell), constructed by using the lattice constants taken from

the crystal structure reported in [130] and placing eight symmetry-equivalent

SNO molecules (in their parent geometry) inside it. The periodic boundary con-

ditions were imposed, which made it possible to select one of the eight molecules

to be ‘excited’ (see Fig 4.16). The geometry of this molecule was optimised using

Møller-Plesset perturbation theory of the second-order (MP2), whereas other mo-

lecules were treated semi-empirically. Møller-Plesset is a post-Hartree-Fock (ab

initio) method in which correlations between the electrons —which are omitted

from the Hartree-Fock (HF) theory, are taken into account to improve on the HF

solution. The correlation is treated as a perturbation and added to the Hamilto-

nian of the system and results in the stabilisation of energy, bringing it closer

to the ‘true’ energy of the system. A cc-pVDZ basis set was used, where VDZ

stands for valence double-zeta and ‘cc-p’ denotes correlation-consistent.
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Figure 4.16: A unit cell with showing eight SNO molecules constructed for sim-

ulation. The molecule chosen for excitation is highlighted in violet.

.

Molecular orbitals (MO) describe the electronic behaviours of the molecules

and are constructed from a linear combination of atomic orbitals (LCAO) (where

an orbital is a one-electron function) [135]. The basis sets are functions (centered

on the nuclei) that describe the orbitals. The larger the basis set, the better the

description of the orbital and hence the electron density around an atom, but

equally high is the computational cost. The chosen method with cc-pDVZ basis

sets was found to describe well the packing of the molecules in the cell when com-

pared with experimentally determined crystal structure. Dr Kochman ran the

simulations using the computational chemistry software package, Turbomole ver-

sion 6.3.1 [136]. The C-O bond of the selected molecule was manually sliced and

the molecule was allowed to change its geometry without restriction. Geometry

optimisation was carried out using the methods described above. The results of

the simulation are shown in Fig 4.17.

As can be seen from the figure, the bond breaking resulted in the displace-

ment of the two rings from their original crystallographic positions, but still
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a)

b)

Before excitation

After excitation

Figure 4.17: The results of the simulation. a) The unit cell showing the selected

SNO molecule before bond-breaking and b) after bond-breaking and structural

change.
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maintained their orthogonal relationship. Some SNO molecules are also some-

what shifted from their original positions in the crystal, though it is not very

obvious due to congestion of molecules in the cell. Nevertheless, this simulation

clearly predicts the production of a ring-opened species, relating to excited SNO

molecules, which can not undergo isomerisation to planar merocyanine products.

Dr Kochman also computed the vertical excitation energies corresponding to SNO

and the ring-opened form (o-SNO) in the crystal and these are plotted in Fig 4.18

along with the oscillator strengths. Algebraic diagrammatic construction (ADC)

method [137] was employed and a def2-SV (P) basis set was used for this purpose.

An intense transition located at 450 nm can be seen, but transitions in 550-600

nm region are clearly absent. These results compare favourably with the experi-

ments in which the 550-650 nm spectral region lacked absorption signature. The

intermediate with 500 nm absorption peak is, therefore, assumed to be a ring-

opened form of SNO, in which the oxazine and indoline rings remain orthogonal

to each other.
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Figure 4.18: Plot showing the probabilities of transitions computed for SNO and

the ring-opened isomer (o-SNO) formed inside the crystal.
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Finally, what effect that the photoreversion beam can have on the sample,

other than converting products back, needs to be considered. Recall that, SNO

is completely transparent in the visible region (due to the orthogonal rings),

which means that the photoreversion beam will pass through (unexcited) SNO

crystal without being absorbed. This can, of course only be true if the peak

intensity remains within the limit of single photon absorption, i.e. below the

multi-photon absorption threshold. Though the pulse duration of the NOPA

(the photoreversion) beam was not measured, it is estimated to be around 500

fs, on account of the fact that no compression of the beam was attempted

and additionally it passed through a few transmissive optics en route to the

sample. Using this as our estimate for the pulse duration, the peak intensity(
peak intensity (W cm−2) =

fluence (J cm−2)

pulse duration (s)

)
at the fluence used (2.8 mJ

cm−2) works out to about 5.6 × 109 W cm−2, which is below the multiphoton

threshold (typically > 1010 W cm−2 in solids). The fact that no unusual features

appear in Fig 4.11 confirms this and shows that NOPA beam performs only one

function; that of photoreversion.

4.4 Conclusion

It was shown in this chapter that by using an ultrashort, post-excitation pulse,

it is possible to prevent the buildup of the photoproducts being formed in a

constraint environment such as a crystal. It was demonstrated that should the

photoproducts be allowed to accumulate, not only would the measured signals

contain contributions from unrecovered species (which can easily lead to wrong

assumptions regarding the dynamics), but it irrefutably leads to damage of the

crystalline sample. Ultrafast studies of photochemical reactions have largely been

limited to single-shot techniques due to this reason. Synchronised photoreversion

represents an alternative approach to single-shot methods as it can help cir-

cumvent product buildup issue and as such, provide an actual account of the

dynamics of the chemical reaction in solids. This “recover before destroy” ap-
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proach uses the ‘pump-probe-recover’ scheme and can be applied, in principle,

to any system as long as there is a well-defined absorption for the photoproduct

state that allows selective back pumping. Photochromic systems, of which there

are many, will readily fulfill this requirement. Furthermore, it is equally notable

that this method should provide the prospect of probing dynamics of the back

reactions (where applicable) and thus, can help to develop a complete picture of

bi-directional chemical processes.

That said, there is still room for optimisation and further avenues to explore.

For instance, it would be interesting to calibrate the effect of the photoreversion

beam once a significant population of the photoproducts has been accumulated.

For example, in the work mentioned here, due to the large difference in the rel-

ative repetition rates of the pump and the photoreversion beams, the population

of the unwanted species was removed whilst the pump beam was off for a signi-

ficant amount of time. If the photoreversion can be performed equally efficiently

with the pump beam operating at much higher repetition rates (so giving the

photoreversion pulse much less time to remove the species between pump shots),

then this would lead a great improvement in the signal-to-noise ratios, as more

data could be obtained from a single experiment. It will also be helpful to fully

characterise the photoreversion beam and to perform measurements with different

pulse durations of the beam to monitor the effect on the photoreversion process.

Finally, in the experiments described above, the photoreversion beam was almost

normal to the crystal surface and scattering from the crystal walls reached the

detector, obscuring the region of the beam spectrum. In this work, the spectral

bandwidth of photoreversion beam was narrow enough that it was still possible

to look for the signature (if any) of MC product absorption, but it may not be

true in other cases. Therefore, it would be important to eliminate the scattering

signal completely. A change of incidence angle will be attempted as a first step

to counter this issue.

Experiments with SNO crystals using synchronised photoreversion showed no

evidence for the formation of merocynanine, instead a transient that lived for the
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duration of the time-resolved scan was observed. The rationale given for this was

the constraint imposed by the crystal lattice, which allows bond breaking and ring

opening, but any large conformational changes are prohibited. The structure of

the transient is speculated to be close to that of the parent molecules, but with

the C-O broken and with slight displacement of the indoline and oxazine rings,

based on the results of the simulations carried out by Dr Kochman and from

what is predicted in the literature. It is anticipated that time-resolved electron

diffraction experiments should be able to shed more light on the intermediate and

are currently being pursued in the lab.
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Chapter 5

Time-resolved Crystallography:

Introduction and Methodology

A large part of the thesis work also focused on applying diffraction techniques to

study different systems, of which one forms the theme of the next chapter. Dif-

fraction is the bending of waves around an edge of an object, which then interfere

constructively (add up) or destructively (cancel out). Thomas Young discovered

the wave properties of light by performing his famous double-slit experiment in

1803 [138]. Later, Louis de Broglie in 1924 proposed the wave-particle duality of

matter [139] and Clinton Davisson and Lester Germer carried out an experiment

at Bell Labs in 1927 to measure the energy of the electrons, scattered from the

surface of a nickel crystal and observed diffraction, thus confirming de Broglie’s

hypothesis [140]. We exploit the wave nature of electrons in the femtosecond

electron diffraction experiments. Mostly, samples that we used were crystalline.

This chapter, therefore, introduces some concepts relating to crystallography and

also provides a description of the experimental setup.
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5.1 The crystal system

A crystal can be defined simply as a periodic arrangement of atoms or molecules,

held together by interatomic/intermolecular forces. Due to the periodicity, trans-

lational symmetry is an intrinsic property of crystals 1. A crystal can be represen-

ted by an infinite array of points called a real (or direct) lattice, where each lattice

point represents either an atom or molecule (a basis or motif, in crystallographic

terms) and has identical environment. Within this lattice framework, it is con-

venient to subdivide the lattice into small entities called unit cells, which when

translated in three dimensions can reproduce the original lattice. The unit cell is

then any parallelepiped whose vertices are the lattice points. It is characterised

by the three distinct lengths of the edges and three distinct angles, subtended by

the edge of the parallelepiped (see Fig 5.1), which collectively are known as the

lattice parameters or unit cell constants. To specify the location of an atom in a

unit cell, a lattice vector from the origin is defined

ri = xia + yib + zic (5.1)

where xi , yi and zi are fractional coordinates used conventionally in crystallo-

graphy and a, b and c are the basis vectors of the cell. Although there is no

restriction on the choice of the unit cell , e.g. on its shape, certain conditions

must be met. For example, the unit cell type should fill the space without leaving

any gaps. A polygon-type cell, with a five-fold rotational symmetry (it remains

unchanged if rotated by 72◦ about the rotational axis), will violate this condi-

tion and as such does not exist in crystallographic reading. It is noteworthy to

mention that symmetry will play a crucial role in determining which type of unit

cell will be allowed. The lattices formed by the unit cells that completely fill the

space are known as Bravais lattices. Thus, the crystallographic crystal system is

composed of unit cell types that can form the Bravais lattices. There are a total

of seven types that contain exactly one lattice point and are called primitive unit

1A special case is that of a quasicrystals, which lack the translational symmetry, but are

ordered [141].
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Figure 5.1: The definition of the unit cell parameters.

cells and seven non-primitive cells, which contain more than one lattice point per

unit cell. These have either a lattice point at the faces (face-centred) or in the

centre (body-centred).

Crystallographers often like to define a minimum set of atoms (ions or mo-

lecules) that, after applying the necessary symmetry operations, are able to re-

produce the whole content of the unit cell. The unit, that contains the set, is

known as the asymmetric unit. If the asymmetric unit is known then there is no

need to determine the position of every atom in the unit cell in order to describe

the complete crystal structure.

Aside from the concepts introduced above, another very useful one is that of

crystal planes. A crystal or lattice plane is one which consists of at least three

lattice points. In a diffraction experiment, the incident waves are scattered from

the crystal planes, the orientation of which can provide information about the

arrangement of the atoms. In order to label (index) a plane, Miller indices (h

k l) are used and h, k, l are all integers, which define the reciprocals of the

fractional intercepts, which the plane makes with the crystallographic axes. For

example, a plane with indices (h k l) cuts the a, b and c axes with 1/h, 1/k

and 1/l intercepts. Notice that, the indices of a plane are enclosed by round

109



Chapter 5. Time-resolved Crystallography: Introduction and Methodology

brackets, but for a family of planes2 curly brackets are used. A set of planes,

whose intersections are parallel, form a zone and the direction of intersection is

called the zone axis. The notation for a zone axis is [UVW], where U, V, W are

integers. As an example, a set of parallel planes with Miller indices (h k 1) belong

to the [001] zone axis.

5.2 Bragg’s Law

After the discovery of x-rays by Röntgen in 1895, it was soon realised that they

could be used to study structure of materials by exploiting diffraction. The first

x-ray crystal diffraction experiment was performed by Sommerfield in 1912 [142]

and Max von Laue laid down the theory of diffraction in crystals in the same

year, but it was the work of father and son duo of W.H.Bragg and W.L.Bragg in

1913 that elegantly described the process [143]. Together, they devised what is

now known as the Bragg’s law, which describes the geometrical conditions under

which diffraction can be observed. Fig 5.2 illustrates the law graphically.

Two rays that are initially in phase are incident upon a set of planes of atoms

in a crystal and are scattered. One of the rays is ‘reflected’ off an atom in the

outer plane and the other from an atom in the inner plane. The distance travelled

by the first ray is shorter than the second ray, which travels an extra distance

of BC + CD. Bragg’s law says that, if the two rays are to be in phase after

scattering, the extra distance must be an integral multiple of the wavelength λ ,

i.e. nλ = BC+ CD. Using simple trigonometry

BC = d sin θ. (5.2)

where d is the interplanar spacing. Recognising that BC = CD, Bragg’s law is

then given as

2Set of equivalent planes. For a cubic lattice, a family of plane is given by all possible

permutations of the h,k,l indices
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Figure 5.2: Illustration of the Bragg’s law.

nλ = 2d sin θ (5.3)

where θ is known as the Bragg angle.

A remarkable feature of Bragg’s law is that it can be used to describe diffrac-

tion not only with x-rays, but also electrons. As electrons are used in this thesis

work, it is useful to define some of the properties in relation to the experiments.

The de Broglie wavelength of the electrons is given by

λe =
h

mev
(5.4)

where h is the Planck’s constant (h = 6.02×10−34J s), me is the mass of electrons

and v is the velocity. At very high acceleration voltages, electrons travel close

to the speed of light and their mass is not the same as the rest mass, thus their

wavelength is worked out using relativistic theory.

λe =
h√

2emeV +

(
e2V 2

c2

) (5.5)

where V is the accelerating voltage, c is the speed of light ( c = 2.998×108 m s−1)

and e is the elementary charge (1.6 × 10−19 C). For electrons accelerated at the

voltage of 110 kV, the wavelength is 3.51×10−12 m (or 3.51 pm), which is several
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times shorter than the typical bond distances (100 pm).

5.3 The reciprocal space

Earlier, the concept of lattice was introduced which provided a convenient way to

describe the arrangement of atoms in the crystal. The description of the lattice

was given in relation to the real crystal or in the ‘direct space’. A lattice can also

be described in an imaginary space, known as the reciprocal space (also called

the momentum (k) or Fourier space), in which the relationship to the direct

lattice is a reciprocal one. That is to say, a large separation in the direct space

constitutes a small one in the reciprocal space. The existence of reciprocal lattice

is a consequence of the periodic nature of the direct lattice and is connected

through it by Fourier transformation. While the actual physical properties of a

crystal are related to the real lattice, the reciprocal lattice picture conveniently

describes how waves (x-rays or electrons) interact with the crystal.

The definitions of the basis vectors of the reciprocal lattice are

a∗ =
b× c

V

b∗ =
a× c

V

c∗ =
a× b

V

(5.6)

where a, b and c are real space lattice vectors and V is the unit cell volume given

by a · (b · c). Furthermore, the above relations show that a* is perpendicular to

the direct lattice vectors b and c, b* is orthogonal to a and c and similarly, c*

to a and b. A point in the reciprocal lattice is described by the reciprocal lattice

vector

ghkl = ha∗ + kb∗ + lc∗ (5.7)

where h, k and l are the Miller indices. An important property of the recip-
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rocal vector, ghkl is that it also has a reciprocal relationship with the interplanar

distance, d

ghkl =
1

dhkl
(5.8)

Therefore, each point in the reciprocal lattice can not only represent the direction

of a related crystal plane, but also the spacing between planes. The waves that

are diffracted by the crystal planes will appear as ‘peaks’ in the reciprocal space.

Moreover, the symmetry in the reciprocal space reflects also the symmetry in the

real space. If the direct lattice is primitive, the reciprocal lattice also becomes

primitive. Finally, a detector will measure the reciprocal lattice, if, it is placed in

the Fourier plane (this describes exactly the diffraction experiment), so it becomes

clear to see the usefulness of the reciprocal space concept.

5.3.1 The Ewald’s sphere

The Ewald’s (pronounced ‘A-valt’) sphere, named after the German crystallo-

grapher Peter Ewald, is a geometric construct that describes the conditions neces-

sary to observe diffraction in the reciprocal space as opposed to the direct space,

that is to say, it illustrates the fulfilment of Bragg’s law in the reciprocal space.

The Ewald’s sphere shows which sets of planes are at (or close to) their Bragg

angles for diffraction to occur. A two-dimensional representation of the Ewald’s

sphere, sketched over the reciprocal lattice, is shown in the Fig 5.3. Whenever

the sphere intersects a lattice point, the Bragg condition is fulfilled. A beam

incident on a crystal with wave vector, k0 and magnitude,
1

λ
will be scattered

and the scattered beam has the wave vector, ks. The energy and momentum are

conserved (elastic scattering) in the process so that

∆k = |ks − ki|

= 2
1

λ
sin θ

(5.9)

As the two waves have the same length, the scattering vector, ∆k must lie on the

surface of the sphere (radius
π

λ
). Because, ∆k = ghkl =

1

dhkl
(Eq 5.8), Eq 5.9 can
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Figure 5.3: The Ewald sphere construction.

be rearranged to show that it leads to Bragg’s law.

It should be said that, if the points in Fig 5.3 were truly points in the reciprocal

space (as they would be in case of an infinitely large, ideal crystal) and if the

beam were monochromatic (containing only a single wavelength) with the crystal

oriented along a zone axis, then the Ewald sphere may not intersect reciprocal

lattice points at all and diffraction will not be observed. However, in reality due

to several reasons, such as the mosaicity of the measured specimen, i.e. presence

of domains of different sizes or some other imperfections, not to mention the finite

dimensions, reciprocal points have finite dimensions and shapes. When very thin

samples are used (as in the case of electron diffraction experiments, see later)

the reciprocal points elongate to rods (and so are called relrods), as dictated

by Fourier transformation. Also, as the radius of the Ewald sphere depends on

the wavelength, a polychromatic beam or an beam with a wavelength (energy)

spread will produce a distribution of radii, which will act to thicken the sphere.
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And finally, because the radius of the sphere is a reciprocal of the wavelength,

electron with their far shorter wavelength as compared to x-ray produce a nearly

flat sphere. As a result, several lattice points are intersected by the sphere,

fulfilling the Bragg condition to a variable extent and causing the spots to be

observed in the experiment. By contrast, the Ewald sphere of the x-rays, with

their much longer wavelengths as compared to the electrons, is much more curved,

resulting in fewer reciprocal points cutting the sphere, which is why crystals need

to be rotated over many angles (often covering the whole 360◦) in order to collect

enough number of reflections to enable structural analysis.

5.4 The Structure factor

The structure factor, Fhkl is a central concept used to account for the observed

features in a diffraction pattern. It is the Fourier transform of the electron density

and, therefore, contains information on the locations of atoms within a unit cell.

The structure factor can be written as the sum of the Ai terms, where A = fie
iφ

, fi are the atomic form factors and represent the scattering power of atoms

(heavier the atoms, the higher the scattering power) and the exponential term

contains the phase information. The expression for the structure factor is

F(hkl) =
N∑
n=1

fne
iφn

=
N∑
n=1

fn(Z, dhkl)e
2πi(hxn+kyn+lzn)

(5.10)

where Z is the atomic number, N is the number of atoms per unit cell and

xn, yn, zn are fractional coordinates of the nth atom. The structure factor is a

complex quantity and as such, only the product of Fhkl with its complex conjugate

can be directly measured in a diffraction experiment

I = F∗hklFhkl = |Fhkl|2 (5.11)
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where the above relation shows that the measured intensity is proportional to the

square of structure factor amplitudes. Therefore, only the moduli of the struc-

ture factor amplitudes can be recovered from the diffraction experiment and the

phase information is lost. This is the root cause of the well known phase prob-

lem in crystallography [144], which is a hindrance for structural determination,

but fortunately many computer software exist today that use algorithms, which

are based on methods that can solve the phase problem [145]. Notice that, the

expression used for structure factor in Eq 5.10 did not include the effect of tem-

perature. Atoms are not stationary in crystals; they jiggle about their equilibrium

positions. An increase in temperature, however, can lead to displacements fur-

ther away from the equilibrium positions and should be accounted for. The form

factor due to temperature rise, fT is given by

fT = fe

−

B sin2

λ2


(5.12)

where B is often referred to as the temperature or Debye-Waller factor and is

given by B = 8π < u2 >, where u is the root mean square displacement of

the atom from its average position. Consequently, the structural factor, with

temperature effects included, becomes

FT(hkl) = F(hkl)e

−

B sin2

λ2

 (5.13)

An increase in the temperature factor, B reduces the structure factor.

Having discussed the concepts of reciprocal space, Ewald sphere and structure

factors, a short discussion on the features seen in a diffraction pattern is useful.

There is a lot of information that can be gleaned from a diffraction pattern

about a specimen. If the specimen is crystalline in nature, then the appearance

of the diffraction pattern can reflect the nature of the crystalline phases. For

example, a highly oriented (or single) crystal (those exhibiting an undisturbed

periodic structure over the whole area, i.e. no grain boundaries) specimen with

its zone axis oriented parallel to the electron beam direction will typically give
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a) b)

Figure 5.4: Two different patterns reflecting different nature of the crystal order.

a) diffraction pattern from a single crystal and b) a polycrystalline sample.

rise to a pattern that consists of a regular array of spots on the detector. The

intensities of the spots are determined by the corresponding structure factors. If

the specimen is polycrystalline (consisting of many small single crystals that are

randomly oriented), however, then rings (sometimes called Debye-Scherrer rings,

if the specimen is powdered) corresponding to an average of all the orientations

of the crystallites are produced. This is shown in Fig 5.4. Sometimes amorphous

films are used as substrates for some specimen. In such films, long-range order

is absent and their diffraction pattern consist of diffuse concentric rings. It is

also noted that in the diffraction pattern, there exists a centre of inversion. This

means that each point in the reciprocal space with indices h,k,l is related to an

equivalent point with indices, -h,-k,-l. This feature is present in the diffraction

pattern at all times (except in case of anamolous scattering) and according to

Friedel’s law, the related points form a pair that have equal amplitudes, but

opposite phases.

|Fhkl| = |Fh̄k̄l̄|

φhkl = −φh̄k̄l̄
(5.14)
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5.5 The FED setup

This section describes the FED setup3 which can be broken down into three

different parts: the electron gun chamber, the sample chamber and the detection

unit. A schematic of the setup is shown in Fig 5.5.

The electron gun chamber is a cylindrically symmetric stainless steel chamber,

pumped by a turbomolecular pump (VP) to pressures down to 10−8 mbar. It

is here that the generation of electrons takes place and therefore, houses the

photocathode assembly. The photocathode is made from a thin layer of Gold

(Au, 30 nm thickness), which is deposited onto a 1 mm thick round sapphire disk

by thermal vapour deposition. A 5 nm thin layer of chromium is coated on the

disk before the deposition. Chromium provides Au with the necessary adhesion to

cling to the disk whilst remaining completely transparent to the laser beam. The

reason for choosing sapphire as the material for the substrate is because it provides

high transmissivity of nearly 80 % over a large wavelength window (0.17-5.5 µm).

The cathode is placed inside a holder made from an insulating glass ceramic

material known as Macor. Besides providing good insulation, other advantages

of using a Macor are its excellent vacuum compatibility and easy machinability.

The holder is placed about 12 mm from the anode plate, which is made from

a highly polished thin-Silicon wafer (0.5 mm thickness) with a hole drilled at

the centre (700 µm diameter). A negative bias is applied to the cathode through

contact with a high-voltage (HV) feedthrough, which transfers high voltage from

the power supply (maximum voltage = 200 kV) to the cathode. A potential

difference is formed between the cathode and the earthed anode plate. When

a voltage of -110 kV is applied to the cathode, a field gradient of 9.17 MV/m

can be reached. High field gradients are important for achieving high brightness

and shorter electron bunches. High vacuum is also essential in order to maintain

high field strengths. A pinhole (120 µm diameter) is placed after the anode to

collimate the beam.

3The design and construction was undertaken by Dr Hayes. Other details relating to the

setup can be found in [146].
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Figure 5.5: The FED Setup. BS: beam-Splitter; VP: vacuum pump; ML: mag-

netic lens; SH: sample holder; DL: delay line; L1 & 2: lens; DDG: digital delay

generator; CCD: charge-coupled-device.
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The sample chamber is where the laser and the electron beams interact with

the crystalline sample. The crystalline sample is mounted on a TEM mesh (Cu)

or a silicon-nitride (SiN) window, depending on the experiment, and placed in the

sample holder (SH), made from a copper block (see Fig 5.6) with holes for sample

mounting. Once the samples have been mounted, a stainless steel cover is placed

on top to secure them. The SH is then attached to a commercial manipulator.

The manipulator is a three-axis stage that allows for precise movement (precision

= 10 µm, backlash = 50 µm) of the holder in three Cartesian axes (x, y and z).

The SH is moved only in x (vertical) and y (horizontal) directions in the lab

frame, with the z direction defined as the direction of electron travel. The ma-

nipulator also incorporates a cold finger, which offers the possibility to use liquid

nitrogen/helium in experiments that require cryo-cooling (4-77 K). Alternatively,

a Peltier element attached directly to SH, can be used to cool the holder down

to −50 ◦C. A proportional-integral-derivative (PID) controller is used to control

the temperature of the SH and hence the mounted samples. A platinum wire

makes a direct contact with the holder and when the temperature changes, the

resistance of the wire changes also. The PID calculates the difference between

the user set temperature and the actual temperature of the holder and applies

corrections accordingly. Further down is a solenoid magnetic lens (ML) used for

focusing the electron beam onto the detector. It sits on two stainless steel bars,

providing good thermal contact. The lens is made from winding a copper wire

(2000 turns) and passing current through the wires. The chamber is pumped by

an Edwards vacuum pump, backed by a scroll pump (Edwards). Pressure in the

chamber is maintained at 10−7mbar. The chamber also houses laser beam optics,

such as the turning mirrors, used to direct the pump beam at the sample posi-

tion. Furthermore, to measure the current of the electron beam, a Faraday cup

(not shown in Fig 5.5) is used. The cup is attached to a manual movable stage

for correct positioning in front of the detector. For measurement of the beam

current, the sample holder is moved completely out of the path of the electron

beam and the current is measured with an ammeter connected to the cup.
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The detection unit consists of a Phosphor screen and a fibre-optical taper

coupled to a CCD camera. The Phosphor used in the setup is a P43, which has

high conversion (electron to photon) efficiencies, but long fluorescence decay times

(approximately 1 ms to decay to 10 % ) and the camera consists of 2048× 2048

pixelated array with the pixel size of 25 µm. Electrons impinging on the phosphor

screen are converted into light flashes, which are imaged onto the CCD camera

with minimum loses by the optical taper. The complete detection assembly is

connected to the end of the sample chamber by a Conflat (CF) flange. The

CCD is coated with a 100 nm thick layer of aluminium to minimise detection

of scattered/stray background light from the laser. To prevent saturating the

detector, the main beam is blocked by a thin piece of aluminum placed in front

of the camera.

In order to generate photoelectrons, laser beam is required as mentioned

already. Electrons are emitted from the cathode via the photoelectric effect.

This requires that the laser wavelength closely matches the work function of the

cathode. The work function is defined as the minimum amount of energy an elec-

tron needs to escape from a metal surface. The application of the external electric

field results in the reduction of the photoemission barrier and hence lowering of

the work function. This is known as the Schottky effect [147]. The effective work

function is given by

φeff = φw − φSchottky

= φw − e
√

eFa
4πε0

(5.15)

where φw is the work function, Fa is the applied field and e is the electron charge.

For the case of Gold photocathode at 110 kV, the effective work function (φeff

= 4.72 eV, using the value of φw from [148]) is in the range of the 266 nm laser

beam photon energy (4.69 eV), which is easily generated by tripling the funda-

mental output of the Ti:Sa amplifier (800 nm). As with the optical pump-probe

setup, the probe beam path is varied, so the laser beam for electron generation is

made to travel through the delay line. The beam enters the electron gun cham-
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3 mm

25 mm

120 mm

Figure 5.6: The sample holder used in the FED experiments. A magnified optical

microscope picture of the TEM mesh with the sample is shown.

ber through a rear window (fused silica). Two turning mirrors, that form part

of a periscope assembly, direct the beam inside and are also used for alignment.

A lens (L1, focal length = 500 mm) is placed outside the chamber to focus the

beam at the photocathode. The cathode is thus back-illuminated. The intensity

of the laser beam is controlled by turning the ND filter wheel placed before the

periscope. Very high intensities result in high beam currents and consequently

strong space-charge effects and should be avoided. Typical 266 nm pulse energy

used is 0.5 µJ. Electrons are photoemitted from the cathode and accelerated by

the static electric field gradient, towards the anode. The electrons escape the gun

chamber and enter the sample chamber through the pinhole and interact with the

solid state sample approximately 1 cm downstream. Most of the electrons pass

the sample unscattered, but a small fraction that is scattered is focused by the

ML onto the detector, which then sends the data to the computer for processing.

In the pump-probe experiments, shutters are used to control the pump and

probe sequences. The time-resolved changes are monitored by recording diffrac-
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tion patterns of the sample a delay, ∆t after it has been pumped (pump+probe

image) and of the unpumped sample (probe only image). Subtracting the two

images yields a difference pattern with absolute changes at a particular time

delay. At negative time delays (probe arrives at sample before pump), signals

are not expected. However, if the specimen under investigation does not relax

back thermally before the next sequence or gets damaged by the pump, signals

might be observed before time-zero is reached. In case of sample heating, all of

the peaks go down in intensity due to the Debye-Waller effect mentioned above.

A sign of a structure change is when some peaks go up in intensity and some go

down. It must be kept in mind that, due to Freidel’s law, the peaks forming the

Friedel pair must follow the same trend (if one goes down, the other should also

go down in intensity and vice versa).

An important parameter concerned with femtosecond electron diffraction is

the coherence length. Coherence is the property that determines whether diffrac-

tion from molecules in a crystal is discernible or not. When two waves maintain

a degree of phase relationship, they are said to be coherent with one another and

the distance in which they remain in phase is known as the coherence length.

One distinguishes between longitudinal and transverse coherence of the electron

beam. The longitudinal coherence length, Lz is coherence length in the direction

of propagation and can be on the order of few tens of nanometers. Transverse

coherence length, Lx, on the other hand, is defined as the coherence of the elec-

trons in the direction perpendicular to the propagation of the beam and is more

critical for appearance of diffraction. In order to observe diffraction, the trans-

verse coherence length at the sample position must be larger than the unit cell

dimensions of the crystal being used in the experiment [149]. This is because

only such scatterers that lie within the coherence volume of the electron packets

can contribute to the contrast of a diffraction pattern. If the coherence length

is comparable to the unit cell length, the diffraction peaks start to overlap. The

transverse coherence length is given by [33]
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Lx ≈
~
σpx

(5.16)

where ~ =
h

2π
is the reduced Planck’s constant and σpx is the momentum spread

of the electron beam. For typical parameters used in our electron diffraction

setups, the transverse coherence length is on the order of a 1-3 nm nanometers,

which is sufficient for studying small molecular systems (with cell length of a few

tens of Å), but not proteins which form crystals with unit cell lengths of 5-10 nm.

Improvements to the coherence length can be made, for instance, by using small

spot sizes at the cathode for electron generation or by minimising the mismatch

between the wavelength of light and the work function of the cathode (thereby

reducing the energy spread). Other ways include replacing the cathodes with tips

to reduce the angular spread, but discussion of this goes beyond the scope of this

thesis and the reader is referred to the following articles for more details: [149,

150] .

Another important parameter (which can be set easily by the user) is that of

sample thickness. With electron energies used in our experiments (80-130 kV),

too thick a sample (> 250 nm) will not transmit electrons and too thin (< 50 nm

for an organic crystal) would result in weak diffraction. A compromise is sought,

but a few aspects need to be considered; the thickness should not exceed that

which would lead to multiple scattering. All of what has been discussed so far

assumed that electron is scattered only once as it interacts with the sample. This

is the basis of the kinematic theory of diffraction. Multiple scattering is certainly

possible, but must be avoided, if possible, as treating multiple scattering events

can be very complicated and requires invoking dynamical theory of diffraction,

which is much more involved than the kinematic theory. A useful figure which

can help decide what thickness to use in order to remain in the kinematic regime,

is the electron elastic mean free-path, which is defined as the average distance an
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electron travels before being scattered and is given by

Λelastic =
1

nσelastic

(5.17)

where n is the number density and σelastic is the electron elastic scattering cross-

section. Lets calculate it for Spirooxazine crystals. The crystal density is known

from literature to be ρ = 1217.59 kg m−3. As the molecule is organic and made

up of mainly carbon atoms with only a single oxygen, one nitrogen and few

hydrogens, we can treat it as if it were made up of only carbon atoms. The total

electron elastic cross-section for carbon at 100 keV is 8.8×10−19cm2 [151]. Using

Eq 5.17, this gives the mean free-path of 200 nm. Therefore, the crystal thickness

should not exceed 200 nm in order to remain in the elastic scattering regime.

5.5.1 Camera length calibration

Calibration of the camera length, Lcam is one of the most common experimental

procedures performed in electron diffractometers and microscopes, but also an

important one. Camera length is defined as the distance between the sample plane

and the centre of the detector (see Fig 5.7). For a fixed magnification, the camera

length is also fixed. Without any imaging system, i.e. lenses after the sample,

the camera length can be measured simply by using a ruler. However precise

calibration of the camera length is normally required as it allows for faithful

indexing of the diffraction patterns. Factors that can affect the camera length are

temperature of the sample holder or tilt. It should be pointed out that changing

the settings of the magnetic lens and hence the magnification will also lead to a

change in the camera length. Therefore, it is quite common to calibrate Lcam for

a number of magnifications. From Fig 5.7 the following geometric relationship

between the Bragg angle and the camera length can established

Lcam =
rpix

tan 2θ
(5.18)

where rpix is the distance of a Bragg peak from the centre of the detector. Recall

that the Bragg angle is given by θbragg = sin−1 λelec

2dhkl
, where dhkl is the interplanar
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Figure 5.7: The definition of camera length.

distance between planes of indices (h k l) and λelec is the electron wavelength,

which can be calculated using Eq 5.5 (0.0351 Å for 100 kV). Inserting, θbragg in

Eq 5.18 gives the following expression that can be used to calculate Lcam

Lcam =
rpix

tan 2

(
sin−1 λelec

dhkl

) (5.19)

The following procedure for camera length calibration was followed. The diffrac-

tion pattern of a standard sample with known lattice spacing, dhkl was measured

at a fixed magnification. A free-standing film of polycrystalline gold (Au) was

used for this purpose. A gold crystal has a face-centre cubic (fcc) unit cell with

a lattice constant of a = 4.08 Å [152]. After recording the image, a radial av-

erage4 of the pattern was computed and the peaks were indexed (see Fig 5.8)

by comparing the measured diffraction pattern with a one simulated using the

CrystalDiffract software [153]. The expression for dhkl for a fcc crystal is

dhkl =
a√

h2 + k2 + l2
(5.20)

where a is the lattice constant and h, k, l are the Miller indices of the allowed

reflections, which must be all odd or all even for a fcc lattice, according to crys-

4azimuthal integration at a fixed distance from the image centre.
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hkl rpix/pixels Lcam/mm

a 111 75 251.30

b 200 86 249.54

c 220 122 250.29

d 311 143 250.17

e 331 189 251.52

f 422 209 247.44

Table 5.1: Calculated values of camera length using a magnetic lens current of

0.98 Amperes and acceleration voltage of 110 kV (0.0351 Å).

tallographic rules. The camera lengths were calculated for peaks identified in Fig

5.8 and are tabulated in Table 5.1. The radii in pixels were converted to metric

units. The image was binned 2 × 2 during collection, giving the effective pixel

size of 50 µm. The camera length was found to be 250.04 mm.

5.5.2 Spatial overlap and time-zero

As has been mentioned before that in order for observe a time-resolved signal, it

is essential that the pump and the probe beams are spatially overlapped at the

sample position. Ideally, the electron beam should be within the width of the

pumped volume, so that it probes areas that are homogeneously excited. There-

fore, a pump size of about 2 or 2.5 times larger than the probe is desirable. The

electron beam size can only be changed in our setup by changing the pinhole on

the anode plate, which is a tedious operation. The pump beam size at the sample,

on the other hand, can be changed simply by varying the position of the lens used

to focus it, so it is this that is adjusted instead. The beam size measurement and

spatial overlap are carried out simultaneously. A small aperture with the hole

diameter of 50 µm is placed in one of the slots in the sample holder and is scanned

over the electron and laser beam profiles in x and y directions. The transmit-

ted beam intensities are measured by either the CCD camera (electron beam)
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Figure 5.9: a) A schematic of beam scanning measurement and b) an example of

measured intensity distribution.

or a CMOS camera (laser beam) looking in the chamber from the side window.

The intensity distributions resulting from the beam scans (see Fig 5.9) are fitted

with a Gaussian function to yield the mean and standard deviation, taken as the

coordinate(s) for sample position and FWHM beam size (after multiplying by a

factor), respectively.

For determination of time-zero, once more a free-standing polycrystalline gold

film (30 nm) was used. 800 nm laser beam (7 mJ cm−2) was used to pump the gold

sample and the response was measured with the electron probe. The difference

images from the experiment are shown in Fig 5.10. The drop in the intensity of

the rings is due to the increase of the lattice temperature and hence the Debye-

Waller factors. The zero-time determined in this way was accurate to within 0.5-1

ps. This gives a good starting point for its refinement, which must be performed

using the actual sample (if possible) that one wishes to investigate, as translating

the sample holder may cause a shift in time-zero due to tilt or simply by the

change of location.
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Figure 5.10: The time-zero determination using Gold film (30 nm)excited by 800

nm laser beam. The time delays refer to the delay on the translational stage.
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Chapter 6

Femtosecond Electron Diffraction

of EDO-MeEDO

This chapter reports on the ongoing efforts to investigate properties of an or-

ganic salt, EDO-MeEDO using static and time-resolved electron diffraction. This

chapter will set out to describe the experiments that have been performed to date

and present results and the current state of understanding on the system.

6.1 A short background

Molecular organic crystals have attracted a lot of interest due to their scope for

technological applications, such as in molecular electronics [154] and as poten-

tial light harvesters [155]. They have also become a target of many researchers,

amongst them synthetic chemists, wishing to functionalise them to build new

materials (a field of material design) and on the other hand, condensed matter

physicists wishing to understand the many exotic features (such as superconduct-

ivity [156, 157]) associated with some of these systems.

A particularly interesting class of organic crystals are the quasi-one-dimensional

crystals which can be fabricated by packing planar, conjugated molecules together

into stacks. The overlap of the π-orbitals between molecules along the stack res-

ults in one-dimensional electron transport, which not only makes them conduct-
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Figure 6.1: Schematic of phase transition in (EDO−TTF)2PF6. The b-axis al-

most doubles at 280 K (LT) due to Pierels distortion.

ing, but also gives rise to strong electron correlations. Conversely, the interstack

π-orbital overlap is weaker [158]. Strong correlations and crystal flexibility (due to

the relatively weak intermolecular forces binding the 1D chains) lead to interplay

between electrons and the lattice vibrations (phonons) and therefore these ma-

terials exhibit complicated electronic structures, complex phenomena and phase

diagrams [159]. Owing to the strong electron-electron and electron-lattice inter-

actions, they are also known as strongly correlated electron-lattice systems.

A system that is relevant to this work is 4,5-ethylenedioxytetrathiafulvalene

(EDO-TTF, Fig 6.1), whose complex with the PF6 anion, (EDO−TTF)2PF6 has

been studied extensively in the last decade by various ultrafast techniques, such as

femtosecond mid-infrared and infrared spectroscopies and femtosecond electron

diffraction [160–164]. In this charge transfer complex, EDO-TTF molecules act

as electron donors and form alternating head/tail stacks. From x-ray diffraction

and vibrational spectroscopy, it was determined that at room temperature the

charge distributes equally at each site in the complex and that all donor molecules

are planar. Furthermore, electrical conductivity measurements showed that this

complex had metallic character at room temperature. As the temperature was
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lowered, however, the resistivity increased and the complex became an insulator.

The change is referred to as a metal-to-insulator phase transition and occurs at a

temperature of 280 K. The insulating phase is brought about by a large structural

change based on the molecular deformation of EDO-TTF. Structural analysis of

(EDO−TTF)2PF6 crystals at 280 K showed that two EDO-TTF moieties bend

towards each other and together with other two EDO-TTF molecules, which

retain their planarity, form a tetramer (see Fig 6.1) leading to doubling of the

unit cell caused by Peierls distortion [165]. This is manifested in appearance

of new peaks (known as superlattice reflections) in the diffraction pattern that

emerge between rows of Bragg peaks seen at 298 K. Vibrational spectroscopy

also revealed that in the insulating phase, the charges are no longer uniformly

distributed between sites, instead a clear ordering of charge, (0110) where neutral

= 0 and cationic = 1, was observed which implies that charge ordering instability

also facilitates the phase transition. Aside from the thermal phase transition,

EDO-TTF also undergoes a highly efficient photoinduced phase transition (PIPT)

from low temperature phase, which make it a promising candidate for ultrafast

switching applications.

Recently, an attempt was successfully made to dope (EDO−TTF)2PF6 with

the intention to tune its properties by adding ‘impurities’ to the original salt [166].

Our collaborators at Tokyo Institute of Technology, Japan have undertaken the

task to study the ultrafast dynamics of this system using infrared spectroscopy

and we aim to perform time-resolved electron diffraction experiments to invest-

igate how the doping affects the physics of phase transition in this material.

6.2 Introducing the system

The system under investigation is a complex consisting of a mixture of two differ-

ent organic donor molecules namely 4,5-ethylenedioxy-4’-methyltetrathiafulvalene,

MeEDO-TTF and EDO-TTF (see Fig 6.2). The general formula of the salt is

[(EDO−TTF)1-x(MeEDO−TTF)x]2PF6, where x is the mole fraction of MeEDO-
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Figure 6.2: Schemeatic of EDO-TTF mixed crystal. Each MeEDO-TTF molecule

will replace one in 10 EDO-TTF molecule along the stack.

TTF donor molecule. For simplicity, the system will be referred to as EDO-

MeEDO henceforth. The properties of the salt were studied by Murata et al,

who first synthesised the mixed complex using different ratios of EDO-TTF and

MeEDO-TTF [166]. The authors characterised the resulting alloys by x-ray dif-

fraction, electrical conductivity measurements and Raman spectroscopy. They re-

ported that the incorporation of MeEDO-TTF into (EDO−TTF)2PF6 suppressed

all the main phase transition mechanisms that were present in (EDO−TTF)2PF6.

Especially, the charge ordering feature was strongly suppressed as x increased and

seemed to disappear in the x = 0.13 alloy. The results of electrical conductiv-

ities on the alloys as measured by the authors are shown in Fig 6.3. As can

be seen from the resistivity curves, at small x values, there is a sudden jump

in resistivity towards higher values as the temperature is lowered, corresponding

to the initially conducting phase undergoing a first-order phase transition 1 to

an insulating state. This behaviour is also found in (EDO−TTF)2PF6 crystals.

The arrows in the figure mark the temperatures at which the phase transitions

occur. When mole fraction is x = 0.13, the resistance change is no longer abrupt,

1First-order phase transition is one in which the first derivative of the free energy with respect

to the order parameter, i.e. temperature, conductivity, magnetic susceptibility is discontinuous.
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Figure 6.3: Resistivity curves for EDO-MeEDO crystals with a range of x val-

ues as a function of temperature. When x = 0.01-0.05, the case is identical to

(EDO−TTF)2PF6 crystals. Figure taken from [166].

but instead gradual (second-order phase transition) and the critical temperat-

ure is shifted to lower values when compared to EDO-TTF (with x = 0.01).

The authors also measured the temperature dependence on the x-ray diffraction

patterns of these EDO-MeEDO crystals and used direct methods to solve the

crystal structures. They found that the EDO-TTF rich alloys (x < 0.5) were

isostructural with pristine (EDO−TTF)2PF6 and when x > 0.5, MeEDO-TTF

molecules incorporate randomly in the stacking column, leading to an extension

of the lattice constants and elongation of donor-anion distance, which the authors

concluded was responsible for different physical properties of the complexes when

compared to the EDO-TTF rich alloys (x < 0.5). The unit cell parameters for

[(EDO−TTF)1-x(MeEDO−TTF)x]2PF6, where x = 0.13, as determined by the

authors are reported in Table 6.1. As the table shows, going from high temper-

ature (HT) to low temperature (LT), the unit cell parameters change. The most

notable change is in the formula number Z, which denotes the number of chem-
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Figure 6.4: 3D models of the crystal structure at HT and LT and the relationship

between them. Notice that by tilting the LT cell clockwise, the orientation of

molecules in both cells is identical.

ical units per unit cell and which was found to be doubled at LT. The volume

at LT also is twice that of the volume at HT. The 3D models of the crystal at

the two temperatures were inspected using software suite CrystalMaker [167] and

are shown in Fig 6.4. The red balls denote the oxygen atoms, yellow ones denote

sulphurs, black represent carbons and green corresponds to phosphorous of the

PF6 counter anion. Some of the atoms have been removed from the models for

clarity. It can be seen that at HT, there are only two molecules per unit cell

(each EDO-TTF molecule has two oxygen atoms), while at LT there are a total

of four. Furthermore, in order to compare the two cells, the LT model has to be

titled clockwise with respect to the HT origin, so that direction in which they

are viewed is the same. This suggest that different unit cell bases were used by

the authors in order to construct the structures and for a more meaningful com-

parison of the LT and HT structures, both unit cells need to be re-defined into a
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HT (300 K) LT (150 K)

a (Å) 7.21 9.55

b (Å) 7.35 10.82

c (Å) 12.02 11.95

α (deg) 93.61 101.84

β (deg) 75.37 99.19

γ (deg) 97.11 90.42

V (Å
3
) 611.8 1191.7

Z 1 2

Table 6.1: Muratas definition of unit cell parameters

common basis.

6.2.1 Unit cell basis transformation

The relationship between two unit cells axis vectors is drawn in the Fig 6.4. The

c-axis in the HT and LT phases have near identical lengths (see Table 6.1), but

opposite directions. Based on this, the following transformation was carried out

aHTnew = aHT + bHT

bHTnew = bHT

cHTnew = cHT

aLTnew = aLT

bLTnew = aLT − bLT

cLTnew = −cLT

(6.1)

In the above, aHTnew is obtained by projecting the aHT axis onto the aLT axis

through a vector sum of aHT and bHT. Similarly, bLTnew is a result of projection

of the bLT onto the bHT cell axis. Axes bHTnew, cHTnew, aLTnew are unchanged,

but cLT direction is reversed, so that all unit cell axes in the new basis have same
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HT (300 K) LT (150 K)

a (Å) 9.35 9.55

b (Å) 7.35 14.48

c (Å) 12.02 11.95

α (deg) 93.61 92.35

β (deg) 81.91 80.37

γ (deg) 47.92 48.97

V (Å
3
) 611.8 1191.7

Z 1 2

Table 6.2: Unit cell parameters after basis transformation.

directions. The new cell parameters after basis transformation are reported in

Table 6.2. The procedure for the transformation is the same as that used by the

authors in [164] to treat (EDO−TTF)2PF6 crystallographic data. The compar-

ison between the two unit cells can be made more easily now and it follows that

there is an elongation of the cell along the b-axis, which is the stacking direction

of the donor molecules. The resulting 3D models after basis transformation for

the two phases are shown in Fig 6.5.

The experiments described from the next section are aimed at understanding the

photoinduced structural dynamics in this complex.
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Figure 6.5: 3D models of the HT and LT crystal structure after unit cell trans-

formations to a common basis. The lengthening of the b axis in LT is now clearly

seen.

6.3 Experiments

The crystalline samples of EDO-MeEDO (x = 0.11) were supplied by our collab-

orators in Tokyo Institute of Technology. The crystals were shiny black needles

with an approximate area of 2× 1 mm2 and less than 0.5 mm in thickness. These

crystals were microtomed parallel to the longest axis (the stacking axis) in 100

nm sections. Diffraction patterns from most microtomed sections showed a strong

rotational disorder, seen as pronounced extended tails of the Bragg peaks. The

samples that showed the least distortion were selected for experiments.

6.3.1 Temperature dependence

At first, a temperature dependence measurement was carried out using the setup

described in the previous chapter in order to look for the signature of the cell

doubling transition. The temperature, beginning at 298 K, was lowered in 50 K

increments down to 100 K. After each increment, the sample holder was allowed to
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first stabilise thermally to compensate for any drifts and then a diffraction image

was recorded. Fig 6.6 shows the normalised diffraction patterns resulting from

subtraction of images taken at different temperatures. The difference patterns

showed shifts in peak positions due to electron beam shift (which can occur due to

temperature variation in the magnetic lens and/or laser pointing instability). An

attempt was made to correct for the shift by selecting at least four peak pairs and

locating their centres in x and y directions, by fitting with a Gaussian function.

The distances between the peak centres for each peak pair were computed and the

average bisector of the pairs was used as the new image centre. Unfortunately,

this did not work very well as some images still showed significant peak shifts,

presumably because the sample holder also shifted during acquisition (despite

allowing it to come to a steady temperature), which is difficult to estimate and

correct. Nevertheless, importantly no new reflections could be observed even

when the temperature was at 100 K (well below Tc). Instead, some peak pairs

showed sign changes with some going up and some going down in intensity, as

would be expected for a structural change (see Fig 6.6).

Another way to see the effect changing the temperature has on the peak

intensities is to plot relative intensity changes, normalised to the lowest recorded

temperature (100 K). The relative changes in intensity were calculated using the

expression below

∆I

I0

=
IT>100K − I100K

I100K

(6.2)

where IT>100K are the detector background-corrected intensities of selected peaks

from images recorded at temperatures higher than 100 K and I100K correspond

to the intensities of the peaks from the image recorded at 100 K. The results

for some selected peaks are shown in Fig 6.7. It can be seen from the relative

intensity change plots that some peaks go up in intensity while other go in the

opposite direction. This confirms the above observation that a structure change

did indeed take place after changing the temperature.
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Figure 6.6: Difference images from temperature dependence measurements. Also

shown is the room temperature diffraction pattern. Peaks circled show an increase

in intensity, while other peaks go down. The shift due to electron beam can also

be seen clearly in the most bright peaks.
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Figure 6.7: The relative intensity change for selected peaks as a function of the

temperature. Panel a) shows the diffraction pattern measured at LT.
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6.3.2 Time-resolved experiments

Time-resolved experiments were carried out to investigate the effect of photoex-

citation on the system held at 100 K. The fundamental output of the Ti:Sa laser

(800 nm, 100 Hz) was used to excite the sample, which corresponds to an ab-

sorption into a charge-transfer band of EDO-TTF. As the molecules stack along

a particular crystal axis, polarisation is an important factor to consider as those

molecules whose transition dipole moments are aligned parallel to the electric

field vector of the laser will get preferentially excited. Initially, to avoid any po-

larisation issues, a quarter wave-plate (λ/4) was installed to change the linearly

polarised 800 nm laser beam into circularly polarised light. A perfectly circularly

polarised beam contains two linear components (s and p) that are equal in amp-

litude, but have a phase difference of π/2 and which rotate the field in a circle

around the axis of propagation. The quality of the circularly polarised light can

be examined by placing a polariser after the quarter-wave plate and measuring

the transmission as the polariser is rotated. If the intensity of the transmitted

light remains unchanged then the polarisation state of the beam is perfectly cir-

cular. The polarisation of the pump beam was found to be somewhat elliptical

(≈ 25 %).

The results of the time-resolved experiments covering the first 100 ps of the

dynamics are shown in Fig 6.8. A step-size of 5 ps was used in the measurement

and the pump energy was tuned so that the fluence was 2.8 mJ cm−2, giving a

number for excitation fraction of about 10 % (OD at 800 nm = 0.3 for 300 nm

thick crystal 2).

The relative intensity changes were calculated using the equation below

∆I

I0

=
IPumpON − IPumpOFF

IPumpOFF

(6.3)

where IPumpON is the background-subtracted intensity measured in the pump

and probe sequence and IPumpOFF corresponds to the intensity measured when

the pump was off. Normalisation was performed to account for any changes

2Absorption measurements were performed by our collaborators.
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Figure 6.8: Result of a time-resolved scan. The delayed onset of the lower order

peaks is clearly seen.

in electron number during the course of the time-resolved scan. Comparisons

of the time-resolved plots with the results of temperature dependence measure-

ments shown in Fig 6.7 reveal similar trends for the selected peaks. Indeed, the

two measurements agree quite well, at least in terms of the signs of the relative

changes. Also, interestingly, very close to the time-zero region, a decay and rise

of the signal was witnessed for some higher order peaks (red and orange rings in

Fig 6.8a), but not for the most intense Friedel pair, which appear to change after

about 15 ps.

The rise in temperature due to laser absorption was also estimated. The

144



Chapter 6. Femtosecond Electron Diffraction of EDO-MeEDO

following relation was used [168]

∆T (K) =
Fabs

Cv × l
(6.4)

where Fabs is the absorbed fluence given in the units of J cm−2, Cv is the volu-

metric heat capacity with units J K−1cm−3 and l is the crystal thickness in cm.

For the present case, ρ (100 K) = 1.88 g cm−3, Cmolar = 575 J K−1mol−1 and

Mr = 673.35 g mol−1. This gave a value of about 87 K for the temperature rise.

Additionally, an experiment was performed in which the complete range af-

forded by the translational delay stage (approximately 1.5 ns) was covered. The

results of the measurement are presented in Fig 6.9 for the same peaks as those

plotted previously. Strong oscillations with a period of nearly 200 ps are clearly

observed. The oscillations become increasingly damped as time progresses and

after about 1 ns, they are completely washed out.

Finally, it was mentioned above that molecules stacked in a particular dir-

ection in the crystal should show a dependence for pump beam polarisation.

Therefore, a measurement was conducted to confirm this. Different polarisation

states of the laser were generated by replacing the quarter-wave plate with a half-

wave plate, which rotates the plane of polarisation of the laser beam by twice the

angle the beam makes with the fast axis of the plate. For each polarisation angle,

a time-resolved scan was run covering the first 100 ps. The images corresponding

to the last time-point of the scan, with different polarisation angles, are shown

in Fig 6.10. The most intense peak was selected for examination and relative

intensity changes were plotted as a function of the polarisation angle (θpol) as

displayed in Fig 6.11. The error bars were calculated by taking the standard

error of the mean as follows

s =
σ√
n

(6.5)

where σ is the sample standard deviation and n is the sample size. The standard

deviation, σ was calculated by using the following formula
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Figure 6.9: The relative intensity change of the first four Bragg peaks are shown.

The signature of the acoustic phonon is clearly seen.
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Figure 6.10: Difference images for different polarisation of the pump beam.
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Figure 6.11: Plot showing the polarisation dependence

σ =

√√√√ 1

N − 1

N∑
i=1

|Ii − µ|2 (6.6)

where Ii is the intensity of the ith measurement, N is the total number of

repeated measurements and µ is the mean of the sample given by

µ =
1

N

N∑
i=1

Ii (6.7)

There is a clear polarisation dependence on the magnitude of the changes.

6.3.2.1 Discussion

Thermal data show that structural changes take place when the temperature is

lowered, but unfortunately offer no clear indication as to the doubling of the cell

because of the marked absence of superlattice reflections in the diffraction pat-
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terns. This might be explained by the imagining the following possible scenarios:

the preparation of the samples which involves ultramicrotomy of the crystals to

produce ultra-thin sections suitable for diffraction experiments, disrupts the crys-

tal structure 3. The thermal phase transition measurements are then of samples

that are no longer in their ‘pristine’ state. This theory can be tested by using

(EDO−TTF)2PF6 crystals and following the same steps as for EDO-MeEDO

crystals. The other possibility could be that the superlattice peaks are actually

present and that the doubling of the unit cell does take place 4, but the super-

lattice reflections are simply too weak to be detectable. The ratio of absolute

intensities between the most intense peak and the weakest discernible peak in the

pattern was found to be 53. This means that it will not be possible to identify

reflections that are a factor of 53 weaker than the most intense Bragg peak.

The reason for the delayed intensity change seen for some of the peaks in the

time-resolved measurement is not known at this stage and warrants further invest-

igation. But, one could speculate that modification of charge distribution brought

about by a HOMO→ LUMO type excitation will lead to a local structural change

and fast thermalisation of molecules along the stack —owing to relatively strong

orbital overlap, which will cause some peaks to change in intensity, followed by

a slower thermalisation of the neighbouring stack. It should also be mentioned

that the sensitivity of the higher order peaks (those appearing at large diffraction

angles) as compared to the low order ones to local structural changes is typically

higher, which could also help to explain the above observation. Charging of the

sample, due to ionisation, can be safely ruled out as the peak intensities ( < 10

GW cm−2) used in the experiments are not that which can cause ionisation of

the sample.

When a few molecules simultaneously undergo structural changes, pressure

can build up inside the crystal which can puts it in a stressed state. The stress is

relieved by expansion of the lattice and propagation of a coherent wave travelling

through it, close to the speed of sound. This can be seen as an oscillation with

3As result of strain from the diamond knife during the cutting process.
4as expected according to [166].
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a period of hundreds of picoseconds depending on the crystal dimensions. The

onset of such an oscillation is typically ∼ 90-100 ps after excitation. Therefore

the oscillations seen in Fig 6.9 are assigned to acoustic phonons. The damping

of the phonons is attributed to the crystal returning to its pre-stressed state. It

is worthwhile mentioning here that in an organic material such as this one, the

oscillations are one of the strongest observed to the knowledge of the author.

The magnitude of the phonons can be an indicator of the strength of the in-

termolecular forces. As EDO-MeEDO is an organic crystal with Van der Waals

forces dominating the inter-stack interactions, it is surprising to see such strong

phonon signals. In (EDO−TTF)2PF6, which has very similar crystal structure

to EDO-MeEDO, the acoustic phonons were less pronounced [164]. This points

to the possibility of a cooperative mechanism, that may be responsible for the

enhancement of the oscillations via elastic feedback of the lattice, which in turns

leads to structural changes at acoustic timescales. This phenomenon in which

structural feedback during solid deformation leads to amplification of photoin-

duced transformation has been previously reported by Bertoni et al in a spin

cross-over crystal [169]. It is also not unreasonable to hypothesise that this could

be a feature of materials which show second-order phase transition behaviours as

they have been studied less commonly than the systems showing first-order phase

transition with ultrafast diffraction techniques. Lastly, the results of temperature

dependence measurements and time-resolved measurement are compared (see Fig

6.12) and from the similarities, it is predicted that the structural changes asso-

ciated with lowering of the temperature were similar to changes observed when

the sample was photoexcited.
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Figure 6.12: The comparison between the time-resolved images and the thermal

change. The similarity between the time-resolved and thermal difference pattern

in terms of signs of the peaks suggest that the photoinduced structural changes are

similar to the thermally driven changes. Some peaks are selected for comparison.

6.4 Conclusion

In this chapter, some results from femtosecond electron diffraction experiments

were presented. The aim of the experiments was to study the effect blending

MeEDO-TTF with EDO-TTF in a crystal has on the systems overall property. In

EDO-TTF crystals, the phase transition has been shown to involve near doubling

of the unit cell by Gao et al [164], but from our investigation of the mixed complex

using electron diffraction, there remains a degree of uncertainty if this occurs

or not. Time-resolved experiments also revealed interesting dynamics, such as

presence of large amplitude phonons and delayed onset of lower order Bragg

peaks. Further experiments (fluence dependence, for instance) and inputs from

spectroscopy/theoretical simulations are needed to gain a better understanding

of this intriguing system.

151



Chapter 7

Concluding Remarks and

Outlook

In this PhD work, photoinduced dynamics of two organic crystals were invest-

igated using time-resolved absorption spectroscopy and/or femtosecond electron

diffraction. One of the systems belonged to a photochromic family of compounds

known as spirooxazines and the other was a strongly correlated organic salt,

EDO-MeEDO.

The dynamics of chemical reaction in spirooxazines were studied in solution

and crystalline state following UV excitation using a home-built transient ab-

sorption setup. In the solution phase, the spirooxazines underwent ring-opening

and isomerisation resulting in the formation of merocynanine isomers within 1

ps post-excitation. The reaction reached completion with the formation of trans-

merocyanine species, which were found to emerge in approximately 80 ps, in good

agreement with previously reported studies on the system. For experiments on

crystals of spirooxazines, a new methodology was needed due to reversibility is-

sues associated with irrevocable accretion of products. To this end, an ultrafast

tunable laser source was built and integrated with the transient absorption setup.

The ultrafast and tunable nature of the source permitted fixing the wavelength

to the absorption maximum of the generated photoproduct molecules in order to

convert them back to the initial, ‘pre-excited’ state much faster than the mani-
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festation of the crystal damage. The methodology (synchronised photoreversion),

therefore made use of a non-collinear optical amplifier whose output pulses acted

as the photoreversion pulses. Naturally, a new acquisition scheme was required

to accommodate the additional beam. The implemented scheme —described in

chapter 4, not only allowed precise control of the arrival times of pump, probe

and photoreversion beams, but also enabled in situ monitoring of the product

buildup and hence crystal damage. Experiments performed under this scheme

established that spirooxazines molecules can not convert to the fully isomerised

trans-products, instead a transient with strong absorption at 500 nm forms after

excitation. Simulations on a spriooxazine supercell were performed in which the

geometries of the spirooxazine molecules prior to and after cleaving the C-O bond

were optimised using ab inito methods and these intimated that the transient was

likely a ring-opened version of the spiroform with the oxazine and indoline rings

bent inwards towards each other. This contrasts with results in solution in which

the spiroform is able to fully convert to the merocynanine form. This was ra-

tionalised by noting the lack of free volume in crystals, which prohibits large

structural changes. A very important result to come out his work was that, with

synchronised photoreversion, the damage due to product accumulation can be

greatly minimised. No degradation of the sample was observed for up to 104

laser shots at fluences that were conquerable to those that would be required for

femtosecond electron diffraction studies of this system.

A slightly different direction in terms of photophysics investigation was taken

with another molecular crystal, namely EDO-MeEDO. EDO-MeEDO (contain-

ing 89/11 % mixture of EDO-TTF/MeEDO-TTF molecules) undergoes a phase

transition as opposed to a chemical reaction. The authors who first synthesised

the system performed crystallography, Raman spectroscopy and electrical con-

ductivity characterisation of this mixed crystal system. Their work ascertained

that EDO-MeEDO undergoes a second-order phase transition in which the first

derivative of the order parameter is continuous. A near doubling of one of unit

cell axis (one that is parallel to the stacking direction) at the low temperature
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(< 200 K) was observed by the authors for this crystal. In the measurements

reported in chapter 6 to study the structural dynamics of phase transition of this

system, doubling of the unit cell —which would manifest in appearance of new

peaks, could not be unambiguously confirmed. Lowering the temperature below

the critical temperature resulted in a structural change, but any new peaks indic-

ating doubling of the cell were not observed. It was surmised that doubling of the

unit cell could have taken place, but the sensitivity of the instrument to detect

the new peaks (which would be much weaker in comparison to the original peaks)

may not have been enough. Alternatively, the sectioning of the crystals with the

ultramicrotome could have had an effect on the crystal as the strain from the knife

could potentially be detrimental. Nevertheless, the system was photoexcited at

low temperature (100 K) with 800 nm light resulting in time-resolved profile dis-

playing a delayed response of the lower order peaks when compared to the higher

order peaks. The offset was found to be approximately 15 ps. Two scenarios

were theorised that could help explain this observation; rapid thermalisation of

the stacking column after initial excitation causing some peaks to change in in-

tensity and a short time later, thermalisation of the neighbouring stack resulting

in other peaks undergoing intensity changes was imagined. The other noted that

higher order peaks can be more sensitive to structural changes than lower order

ones. Furthermore, very strong oscillation on 100 ps timescales were observed,

which for a soft-material with relatively weak intermolecular bonds was deemed

to be peculiar, especially since EDO-TTF which has been studied previously

with femtosecond electron diffraction showed much less pronounced oscillations

despite very similar crystal structure to EDO-MeEDO. It was postulated that

this could be a feature of the second-order phase transition materials since prior

to this diffraction study, most systems investigated by FED were the ones that

showed first-order behaviours. Another theory was that cooperative effects are

in effect at acoustic time scales, leading to a combination of structural changes

and crystal expansion. At the present stage of investigation, these results cannot

be considered complete or conclusive for these sorts of systems and more work
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is certainly needed, but it has nevertheless provided useful food for thought for

future experiments on these type of systems.

Outlook

The work presented in chapter 4 of this thesis has now opened up the prospect

to conduct pump-probe experiments to investigate photochemical reactions in

molecular crystals provided that they are suited for synchronised photoreversion.

The quality and quantity of data was good and sufficient enough to perform

analysis to extract the kinetics. A more thorough treatment of the data, i.e.

global and/or target analysis will now be undertaken to model the dynamics and

present a picture of the reaction mechanism. This will require more experiments

with finer time steps (< 50 fs) to get a more sampled view of the very early

dynamics (between 0-100 fs) and also extension of the measured range to at least

100 ps. This will be attempted with repetition rates that are higher than those

used in the present work to improve on data acquisition times and signal-to-noise

ratios. In terms of the modelling of the transient absorption data, aside from

the global analysis, molecular dynamics (MD) simulations are planned with Dr

Kochman.

The stage is now set to perform femtosecond electron diffraction experiments

with the aim to gain an atomistic perspective of the structural dynamics in

spirooxazines. At first, the forward photoreaction would be investigated to probe

the structural changes associated with the ring-opening process. As the elec-

tron diffraction experiments require that they be performed in vacuum, sample

evaporation can pose a potential hurdle. In order to avoid this issue, the crys-

talline samples will be cooled using either a Peltier element mounted directly to

the sample holder or with liquid nitrogen prior to evacuating the diffraction ap-

paratus. Afterwards, the data accumulated from diffraction experiments will be

analysed and modelled using the methodology developed by Dr Hayes and imple-

mented in [146] to develop a mechanistic picture of the reaction and to ultimately
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resolve the identity of the ring-opened product.

In addition, experiments on diarytethene crystals have also been planned.

Diarlyethene are arguably more promising than spirooxazines for industrial ap-

plications, for example as photoswitches, as they are totally photochromic in

the solid state and can undergo comparable number of photocycles. As was

mentioned in chapters 3 and 4, this system has been studied previously using

transient absorption and femtosecond electron diffraction by Jean-Ruel et al, but

their studies focused on only the forward reaction [44, 97]. In order to improve

the performance of diarytehene photoswitches, structural dynamics of the back

reaction will be very helpful as it could offer insight into what changes can be

made to the chemical structure, to make the system more robust and efficient.

With synchronised photoreversion, the back reaction would be investigated using

the two ultrafast techniques used in this thesis work.

Femtosecond electron diffraction on EDO-MeEDO will be repeated with new

(and fresh) samples, this time also with different orientations to gain more in-

formation on the system. Moreover, quasi-one dimensional molecular crystals

that undergo second-order phase transitions are also currently being sought for

comparisons with EDO-MeEDO, especially at acoustic timescales. Charge dens-

ity wave materials are a potential candidate for this purpose.
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Appendix A

Calculations of cross-sections and

excitation fractions

This appendix outlines the steps needed to calculate the absorption cross-sections

from steady-state absorption measurements and to estimate excitation fractions.

Cases of solution phase and crystalline will be treated separately.

A.1 Solution phase

The relationship between absorbance (or OD), concentration, c and path length,

l was met in chapter 3 and was given by the Beer-Lambert law

OD = εcl (A.1)

For the case of Spironaphthooxazine (C22H20N2O)

Mr = 328.40 g mol−1

OD = 1 (for λ = 266 nm)

l = 1 mm

c = 0.5 mM = 0.5× 10−3 mol dm−3
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Using the above, the molar extinction coefficient ε can be calculated

ε =
OD

c (mol cm−3)× l (cm)

=
1

0.5× 10−6 (mol cm−3)× 0.1 (cm)

= 2× 107 mol−1 cm2

Dividing ε by the Avogadro’s constant,NA gives the cross-section in cm2

σ =
ε (mol−1 cm2)

NA (mol−1)

=
2× 107 (mol−1 cm2)

6.022× 1023 (mol−1)

= 3.32× 10−17cm2

In order to calculate the fraction of excited molecules in a given experiment, the

experimentally set parameters, such as the pulse energy and the spot size at the

sample position need to be known. Solution phase experiments performed in

chapter 4 used the following parameters:

Excitation wavelength (nm) = 266

Measured laser power (mW) = 0.165

repetition rate (Hz) = 500

spot size (cm) = 330× 10−4

number of photons =
E (J)λ (m)

h (J s) c (m s−1)
(A.2)

where E is the energy per pulse, which can be calculated by the measured power

(units W or J s−1) and repetition rate (unit Hz or s−1).

E (J) =
power (J s−1)

repetition rate (s−1)
(A.3)
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The pulse energy is calculated as 330×10−9 J or 330 nJ and using this value in Eq

A.2, the total number of photons turn out to be 4.4×1011. As the cross-sectional

area (assuming a square) is spot size squared, dividing the number of photons

by the cross-sectional area gives the number of photons that pass through the

probe region, i.e. photon flux, which is equal to F =
(4.4× 10−11 photons)

(1.09× 10−3cm2)
=

4.06 × 1014 photons cm−2. Multiplying this number with the absorption cross-

section times 100 gives the percentage excitation.

% excitation = σ(cm2)F (photons cm−2)× 100

= (3.32× 10−17cm2) (4.06× 1014 photons cm−2)× 100

= 1.37 %

Therefore, at a fluence of 0.48 mJ cm2, the percentage excitation is found to be

approximately 1.35 %.

A.2 Crystalline State

To calculate the percentage excitation expected from pumping crystalline samples,

an additional detail is required, namely the crystal density. Below a calculation is

presented for spirooxazine crystal. Information from the steady-state absorption

measurement of the crystal can be used to calculate the absorption coefficient, α,

which is often quoted in units of cm−1 as

α =
OD

l (cm)
(A.4)

where l is the sample thickness.

The absorption coefficient is related to absorption cross-section by the following

relationship

σ =
α

n
(A.5)
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where n is the number density given by

n =
ρ (g cm−3)NA (mol−1)

Mr (g mol−1)
(A.6)

Here ρ is the density of the crystal in g cm−3, which can be obtained by solving

the crystal structure, NA is Avogadro’s constant in mol−1 and Mr is the molecu-

lar weight in g mol−1. Therefore, the number density has the units of molecules

cm−3 and when inserted in Eq A.5, gives the cross-section in units of cm2. Once

the absorption cross-section, σ has been calculated, the procedure outlined earlier

can be used to determine the fraction excitation. Care must be taken with the

units of different quantities in the formulae; consistency must be maintained in

numerator and denominator. Below is a worked example.

OD = 0.87 (for λ = 266 nm)

l = 100 nm = 100× 10−7 cm = 10−5 cm

ρSNO = 1.22 g cm−3 (taken from CIF data in [130])

The absorption coefficient, α in units of cm−1 is calculated to be 87000 cm−1

and the number density is found to be 2.24 × 1021cm−3. Using Eq A.5 gives

the value of 3.88× 10−17cm2 for the absorption cross-section. The following was

conditions were used in the experiments.

Excitation wavelength (nm) = 266

Measured power (µW) = 8.25

repetition rate (Hz)= 31.25

spot size (cm) = 137× 10−4

Therefore, the fluence is 1.4 mJ cm−2 and the photon flux is 1.8 × 1015 photons

cm−2. This corresponds to approximately 7 % excitation of the probed region.
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Another, often useful, calculation is that of the penetration depth, δ defined as

the depth at which the intensity of the incoming radiation inside the material falls

to
1

e
(about 37 %) of its original value and, therefore, is a measure of how deep an

electromagnetic radiation can penetrate into a material. It can straightforwardly

be calculated by taking the reciprocal of the absorption coefficient.

δ (m) =
1

α(m−1)
(A.7)

Therefore, a 266 nm laser penetrates about 114.94 nm in the SNO crystal.
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Matlab codes

B.1 Matlab code: phase matching calculation

c l e a r a l l ;

c l o s e a l l ;

c l c ;

% S e l l m i e r cons tant s (SC) taken from Opt .Commun. ,

184 ,485−491 (2000)

% Note : Only a p p l i c a b l e f o r BBO

% SC BBO ord inary ray

a = 2 . 7 3 5 9 ;

b = 0 . 01878 ;

c = 0 . 01822 ;

d = 0 . 01471 ;

e = 0 .0006081 ;

f = 0 .00006740 ;
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% SC BBO ext rao rd ina ry ray

g = 2 . 3 7 5 3 ;

h = 0 . 01224 ;

i = 0 . 01667 ;

j = 0 . 01627 ;

k = 0 .0005716 ;

l = 0 .00006305 ;

% Star t c a l c u l a t i o n s

v = 3e+8; % speed o f l i g h t

pumpWave = 400 ; % pump wavelength

n op = 1 . 6 9 3 4 ; % pump ord inary r e f r a c t i v e index

n ep = 1 . 5 6 8 7 ; % pump ext rao rd ina ry r e f r a c t i v e index

sigWave = 4 5 0 : 1 : 8 0 0 ; % s i g n a l wavelength

slambda = sigWave /1000 ; % s i g n a l wavelength in microns

nWavelength = length ( slambda ) ;
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f o r i i = 1 : nWavelength

sFrequency ( i i ) = v . / ( sigWave ( i i ) ) ;

pFrequency = v . /pumpWave ;

id l e rFrequnecy = pFrequency−sFrequency ( i i ) ;

idlerWave ( i i ) = v . / id l e rFrequnecy ;

ilambda ( i i ) = idlerWave ( i i ) . / 1 0 0 0 ;

% Solve S e l l m e i e r equat ions to compute r e f r a c t i v e

i n d i c e s

no squared = a+(b/( slambda ( i i ) .ˆ2−c ) )−d∗slambda ( i i ) . ˆ2

+ e∗slambda ( i i ) .ˆ4− f ∗slambda ( i i ) . ˆ 6 ;

n os ( i i ) = s q r t ( no squared ) ;

ne squared = g+(h/( slambda ( i i ) .ˆ2− i ) )−j ∗slambda ( i i ) . ˆ2

+ k∗slambda ( i i ) .ˆ4− l ∗slambda ( i i ) . ˆ 6 ;

n e s ( i i ) = s q r t ( ne squared ) ;

no i squared = a+(b/( ilambda ( i i ) .ˆ2−c ) )−d∗ i lambda ( i i )

. ˆ2 + e∗ i lambda ( i i ) .ˆ4− f ∗ i lambda ( i i ) . ˆ 6 ;

n o i ( i i ) = s q r t ( no i squared ) ;
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ne i squared = g+(h/( ilambda ( i i ) .ˆ2− i ) )−j ∗ i lambda ( i i )

. ˆ2 + k∗ i lambda ( i i ) .ˆ4− l ∗ i lambda ( i i ) . ˆ 6 ;

n e i ( i i ) = s q r t ( ne i squared ) ;

end

a i n t = 3 . 1 : 0 . 2 : 4 ; % d e f i n e i n t e r n a l ang l e s to compute

na = length ( a i n t ) ;

f o r kk = 1 : na ;

kk

f o r l l = 1 : nWavelength

n p = (pumpWave. / sigWave ( l l ) )∗n os ( l l ) ∗( cosd ( a i n t

( kk ) )+s q r t ( ( sigWave ( l l ) . ˆ 2 . / idlerWave ( l l ) . ˆ 2 )

∗( n o i ( l l ) . ˆ 2 . / n os ( l l ) . ˆ 2 )−s ind ( a i n t ( kk ) ) ˆ2) )

;

theta pm ( kk , l l ) = as ind ( s q r t ( ( n op ˆ2/ n p ˆ2)−1)

∗ ( ( n op ˆ2/ n ep ˆ2)−1)ˆ(−0.5) ) ;

end

end
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% Plot r e s u l t s

f o r nn = 1 : na

alpha = a i n t (nn) ;

fthetaPM = s g o l a y f i l t ( theta pm (nn , : ) , 3 , 31 ) ;

p l o t ( sigWave , theta pm (nn , : ) ) ;

x l a b e l ( ’ wavelength (nm) ’ ) ;

y l a b e l ( ’\ the ta {p} ( degree ) ’ ) ;

l e g end In f o {nn}=[ ’\alpha = ’ , num2str ( alpha ) ’\ c i r c ’ ] ;

l egend ( l eg end In f o )

hold a l l

l egend boxo f f

end

% External Angle ( Sne l l ’ s law )

nBBO o = 1 . 6 9 3 4 ; % ord inary r e f r a c t i v e index pump f o r BBO

na i r = 1 ; % r e f r a c t i v e index o f a i r

a i n t f = 3 . 7 ; % i n t e r n a l ang le

t h e t a e x t = as ind ( (nBBO o∗ s ind ( a i n t f ) / na i r ) ) % e x t e r n a l

% angle
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B.2 Fit Function

f unc t i on f = kinFitFun ( para , t )

% Equation used to f i t data .

comp1 = para (1 ) .∗ exp(−(t−para (2 ) ) . / para (3 ) ) . . .

.∗ exp ( para (4 ) . ˆ 2 . / ( 2∗ para (3 ) . ˆ 2 ) ) . . .

.∗(1+ e r f ( ( t−para (2 )−(para (4 ) . ˆ 2 . / para (3 ) ) ) /( s q r t (2∗ para

(4 ) ) ) ) ) ;

comp2 = para (5 ) .∗ exp(−(t−para (2 ) ) . / para (6 ) ) . . .

.∗ exp ( para (4 ) . ˆ 2 . / ( 2∗ para (6 ) . ˆ 2 ) ) . . .

.∗(1+ e r f ( ( t−para (2 )−(para (4 ) . ˆ 2 . / para (6 ) ) ) /( s q r t (2∗ para

(4 ) ) ) ) ) ;

sumComps = comp1 + comp2

F = ( 0 . 5 . ∗ sumComps) ;

end
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B.2.1 Matlab code: curve fitting

c l e a r a l l ;

c l o s e a l l ;

c l c ;

% Load data f o r f i t t i n g and save to v a r i a b l e s

f i l e = open ( ’D:\PhD\Theses\Khal id Thes i s \Matlab\data

f i t t i n g \ so l 430nm trace . f i g ’ ) ;

t = get ( gco , ’ xdata ’ ) ;

OD = get ( gco , ’ ydata ’ ) ;

% Provide r ea sonab l e gue s s e s

p1 = 4e−3; % A

p2 = −0.1; % t=0

p3 = 0 . 7 0 ; % tau1

p4 = 0 . 2 2 ; % i r f

p5 = 0 .5 e−3; % B

p6 = i n f ; % tau2

para=l s q c u r v e f i t ( @kinFitFun , [ p1 , p2 , p3 , p4 , p5 , p6 ] , t , OD) ;
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% Save f i t parameters

A = para (1 ) ;

t0 = para (2 ) ;

tau1 = para (3 ) ;

s i g m a i r f = para (4 ) ;

B = para (5 ) ;

tau2 = para (6 ) ;

y f i t = kinFitFun ( para , t ) ;

r e s i d u a l = OD−y f i t ;

[ beta , resnorm , r e s id , e x i t f l a g , output , lambda , J ] =

l s q c u r v e f i t ( @fitKin , [ p1 , p2 , p3 , p4 , p5 , p6 ] , t , OD) ;

c i = n l p a r c i ( beta , r e s id , ’ j a cob ian ’ , J )

% Plot r e s u l t s

p l o t ( t ,OD, ’ o ’ , ’ c o l o r ’ , ’ k ’ , ’ l i n ew id th ’ , 2 ) ;

hold a l l ;

p l o t ( t , y f i t , ’ c o l o r ’ , ’ r ’ , ’ l i n ew id th ’ , 2 )
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