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ARTICLE INFO ABSTRACT
Article history: Previously, modulations in power of neuronal oscillations have been functionally linked to sensory, motor and
Accepted 30 July 2013 cognitive operations. Such links are commonly established by relating the power modulations to specific target

Available online 15 August 2013 variables such as reaction times or task ratings. Consequently, the resulting spatio-spectral representation is

subjected to neurophysiological interpretation. As an alternative, independent component analysis (ICA) or alter-

gg;w ords: native decomposition methods can be applied and the power of the components may be related to the target var-
MEG iable. In this paper we show that these standard approaches are suboptimal as the first does not take into account

Oscillations the superposition of many sources due to volume conduction, while the second is unable to exploit available in-
SPoC formation about the target variable. To improve upon these approaches we introduce a novel (supervised) source
separation framework called Source Power Comodulation (SPoC). SPoC makes use of the target variable in the
decomposition process in order to give preference to components whose power comodulates with the target var-
iable. We present two algorithms that implement the SPoC approach. Using simulations with a realistic head
model, we show that the SPoC algorithms are able extract neuronal components exhibiting high correlation of
power with the target variable. In this task, the SPoC algorithms outperform other commonly used techniques
that are based on the sensor data or ICA approaches. Furthermore, using real electroencephalography (EEG) re-
cordings during an auditory steady state paradigm, we demonstrate the utility of the SPoC algorithms by
extracting neuronal components exhibiting high correlation of power with the intensity of the auditory input.
Taking into account the results of the simulations and real EEG recordings, we conclude that SPoC represents
an adequate approach for the optimal extraction of neuronal components showing coupling of power with con-
tinuously changing behaviorally relevant parameters.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY -NC-ND license.

Source power comodulation
ASSEP

Introduction

Neural oscillations as measured by electro- and magnetoencepha-
lography (EEG/MEG) have long been associated with sensory, motor,
as well as cognitive processing (Buzsdki and Draguhn, 2004) and
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information transfer within the brain (Colgin et al., 2009; Womelsdorf
and Fries, 2007).

In particular, it is widely believed that the amplitude/power modu-
lation of these oscillations reflects the amount of spatial synchronization
among neurons corresponding to different brain states (see (Rieder
etal, 2011) for a review).

Cognitive phenomena, that have been shown to correlate with band
power modulations, include e.g. attention (Basar et al., 1997; Bauer et al.,
2006; Brovelli et al., 2005; Debener et al., 2003; Haegens et al., 2011a;
Kaiser et al., 2006; Klimesch et al., 1998; Tallon-Baudry et al., 2005),
memory encoding (Jensen et al,, 2007; Klimesch, 1999; Osipova et al.,
2006), vigilance in operational environments (Gevins et al, 1995;
Holm et al,, 2009), sleep stages (Darchia et al., 2007; Demanuele et al.,
2012), perception (Gonzalez Andino et al, 2005; Jin et al, 2006;
Makeig and Jung, 1996; Plourde et al., 1991; Thut et al., 2006), and deci-
sion making (Haegens et al,, 2011a, 2011b). In Transcranial Magnetic
Stimulation research it has also been shown that the excitability of the
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motor (Sauseng et al., 2009) and visual cortices (Romei et al., 2008),
measured in terms of the amplitude of alpha oscillations, can also be
predictive of muscular motor evoked potentials and visual perception,
respectively. In the field of Brain-Computer Interfaces (BCI), voluntary
modulation of EEG band power is used to control computer applications,
such as text entry systems (Blankertz et al., 2007, 2008). It has been
shown recently that variability in BCI control-performance can be par-
tially explained by the variability of spectral power across subjects
(Blankertz et al.,, 2010), as well as within subjects (Grosse-Wentrup
et al,, 2011; Maeder et al., 2012).

For the purpose of this paper, we introduce the concept of a target
variable (in the following denoted by z), which in principle can be any
scalar function of time. In the present neuroscience context, this target
variable will typically represent a behavioral measure as the final output
of the central nervous activity (e.g. reaction time, sensory detection,
task rating, motor evoked potentials, etc.) or parameters of external
stimuli (e.g. when studying how amplitude modulation of neuronal os-
cillations correlates with stimulus properties).

In general, we want to investigate the relation between EEG/MEG
spectral power and such z variable in order to find a possible functional
relationship between neuronal amplitude modulations and a behavior
or stimulus. There are two standard approaches for establishing this re-
lationship. In the first one, the spectral power is computed for each
channel/sensor. A correlation to the target variable is then either
assessed per channel, or using a multivariate regression approach. In
the second approach, a linear projection from a sensor space into so-
called source space is performed and further processing is performed
therein. As we will show later in detail, neither of the two common ap-
proaches can be expected to yield optimal performance with EEG/MEG
data both in terms of the maximized correlation scores and the accuracy
with which the underlying sources are extracted, thus limiting the sub-
sequent neurophysiological interpretation of the results.

This paper explains the drawbacks of the conventional analyses and
suggests the novel Source Power Comodulation (SPoC) framework,
which provides a theoretically sound and mathematically optimal solu-
tion to the problem of relating EEG/MEG data to a given target variable.

The remainder of this article is organized as follows. In the Methods
section we recall the EEG/MEG forward model, discuss standard ap-
proaches to obtaining correlations between band power and a target
variable, and thereafter introduce the SPoC framework and two specific
SPoC algorithms. The new approach is validated in simulations and with
real world data, both described in the Validation section. Results are
presented in the Results section and we conclude with a discussion in
the Discussion section.

Methods
The generative model of EEG/MEG data

Electro- and magnetoencephalography are non-invasive techniques
allowing to measure macroscopic neuronal activity of the brain. While
EEG measures scalp electrical potentials caused by neuronal activity,
MEG measures the corresponding magnetic fields. Due to the volume
conduction in the head, the neuronal signals are spatially smeared
while propagating to the EEG/MEG sensors. For the frequencies of inter-
est in the analysis of brain oscillations (which are typically below 1 kHz)
this superposition is linear and instantaneous (Baillet et al., 2001; Nunez
and Srinivasan, 2006; Parra et al., 2005). Thus, the following linear
model holds for EEG/MEG data:

X(t) = As(t) + €(t). (1)

The vector x(t)SRM here denotes the measured data in sensor space
(electrical potential or magnetic field) at time t, with N, being the num-
ber of recording channels. The measurement is a linear superposition of
N; sources (or components) with individual time courses s;(t) and fixed
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Fig. 1. Illustration of the problem setting. The unobservable source space signals (e.g. oscil-
latory brain sources) are mixed to constitute the sensor space signals (e.g. EEG/MEG). The
time course of the observed target variable z (e.g. stimulus intensity, reaction times) cor-
responds to the power (or envelope) modulation of one of the sources.

spatial patterns a'€RM, where s(t) = (s(t), ...,sn,(t))" contains the
time courses of the individual sources, A = (a', ...,a":) contains the re-
spective spatial patterns in the columns, and ¢(t) models additive noise.
Generally, the time courses of the sources are assumed to be
uncorrelated and to have unit variance. Furthermore, the noise term
can be absorbed into the product As by adding additional columns in
A and respective dimensions in s. Therefore we will omit the noise
term in the following considerations.

Here we are interested in neural oscillations whose power time
course comodulates (e.g. is correlated or anti-correlated) with an exter-
nal variable. These neural oscillations are however not unambiguously
observable on the sensor level. Instead, they are superimposed with
the background brain activity and noise according to Eq. (1). This prob-
lem setting is illustrated in Fig. 1.

Conventional approaches

Correlating the power of single sensors

Due to the source mixing, each sensor signal is generally a linear sum
of (1) the signal-of-interest s, whose power correlates with the target
variable z and (2) noise' sources n, whose power does not correlate
with the target. This implies that the correlation between z and the
band power at any electrode is in fact a correlation between the power
of s with z, normalized by a term that grows monotonically with the
squared mixing coefficients of both the signal and noise sources, as
well as with the variances of their band power time courses (see
Appendix A). This illustrates the major drawbacks of the univariate
approach:

* Low signal-to-noise ratio. The true correlation between the power of s
and z may be heavily underestimated in the presence of strong noise
sources with high power.

Lack of interpretability. The noise contribution may differ across elec-
trodes, introducing a channel-specific bias in the correlation coeffi-
cients. Hence, topographic maps of sensor-space correlation may not
give a good indication of where the signal-of-interest is strongest
and are thereby hard to interpret in neurophysiological terms.
Disregard of the generative model. It is practically impossible to disen-
tangle signal and noise contributions by looking only at single elec-
trodes. More generally, this approach does not provide a factorization
of the measurement x(t) into A and s(t) according to the generative
linear model of EEG/MEG data (see Eq. (1)).

! The term noise sources subsumes all signals whose power is not related to the target
variable. Specifically, this also includes actual brain sources which are different from e.g.
measurement noise.
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Correlating linear combinations of sensor power

Instead of correlating the band power of individual channels with z,
multivariate approaches can be applied, in which the target variable z is
correlated with a weighted sum of the channel-wise band power. Usu-
ally, the weights are chosen by regressing the band-power with the tar-
get variable, thereby effectively maximizing the correlation. Using this
approach, it is generally possible to achieve a high correlation (on the
data used to train the weight vector) if a sufficient amount of training
data is available. This may achieve superior performance compared to
univariate correlation in low signal-to-noise scenarios, thereby improv-
ing upon the first point in the list above. However, in principle the other
two drawbacks remain:

* Lack of interpretability. The regression weight vector does not neces-
sarily contain neurophysiologically interpretable information about
the location of the underlying correlating source, because it is again
a function of both the signal-of-interest and the noise (an explanation
for this can be found in (Blankertz et al., 2011)).

« Disregard of the generative model. Linearly regressing power values
violates the underlying generative model for EEG and MEG data,
because it is linear in the ‘raw’ data, not in the squared data.

Blind source separation methods

A transformation into source space can be obtained by way of
so-called blind source separation methods (BSS). These methods
usually estimate a linear projection of the data x(t) onto a set of
weight vectors, which are represented here by the matrix WeRNNs |
where W = (w',...,wi,...,w"), wieRM, and N; corresponds to the
number of estimated sources S;(t). In accordance with the literature,
we refer to these weight vectors w' as spatial filters. Each of the spatial
filters is meant to extract the signal from one source while suppressing
the activity of the others, such that the resulting projected signal is a
close approximation of the original source signal, i.e. 5;(t) = wiTx(t).
Band power correlations are then computed using 5;(t) instead of
Xk(t). Popular BSS approaches, such as ICA, are in line with the genera-
tive model of EEG/MEG and can thus in principle deliver results that
are interpretable within this model.

Note however that, by design, BSS methods are unsupervised learn-
ing methods. They do not make use of a target variable z but optimize
other objectives instead, such as statistical independence, for example.
This lack of optimizing for the desired target z leads to a suboptimal per-
formance of BSS methods if:

* There is a low signal-to-noise ratio,

« There are more sources than channels,

« The target and the independence assumption contradict one another due
to dependencies between the sources.

The SPoC approach

The core idea of the SPoC framework is to (i) decompose the multi-
variate EEG/MEG data into a set of source components and (ii) to use the
information contained in the target variable to guide the decomposition.
The result of this approach is a set of spatial filters, W, which directly op-
timize the comodulation between the target variable z and the power
time course of the spatially filtered signal. Fig. 2 illustrates the contrast
between regression of channel-wise band power features, BSS methods,
and the SPoC approach.

In the following subsection, we describe two algorithms that imple-
ment the SPoC framework and we refer to these two methods as SPoC;,
and SPoC,. The difference between SPoC,, and SPoC, lies in the exact
definition of comodulation between band power and z: SPoC;, directly
optimizes correlation, while SPoC, optimizes covariance subject to a
scaling constraint on the spatial filter. However, both algorithms invert
the generative model given in Eq. (1) prior to the computation of band
power and thereby avoid pitfalls that were outlined above.
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Fig. 2. lllustration of different approaches to relating spectral power to a target variable.
The input to all three approaches is the EEG/MEG data x(t) and the target variable z. Pro-
cessing steps are organized from top to bottom. Left: an approach that is based on regres-
sion. First, spectral power is computed on each sensor. Then the power time courses are
linearly combined to resemble z as close as possible. Middle: an approach that is based
on blind source separation (BSS) methods. A BSS method such as ICA tries to estimate
the sources prior to computation of spectral power. This approach is in line with the gen-
erative EEG model and in principle could have the potential to find the true source. How-
ever, BSS techniques do not make use of the information contained in z and is bound to fail
for low SNR or if the number of sources is larger than the number of channels. Right: Our
novel SPoC approach method makes use of z to guide the source estimation and to give
preference to sources whose power time course resembles z. Spectral power is computed
on the estimated sources.

The SPoC algorithms

This subsection describes two possible ways to implement the SPoC
idea outlined above. While the following definitions and derivations are
important for understanding how the actual SPoC algorithms work, the
mathematically less inclined reader may skip ahead to the Validation
section without missing out on the main message of this paper.

Assumptions and definitions

We assume that the EEG/MEG data x(t) has been band-pass filtered
in the frequency band of interest already. Thus, the power of the
projected signal wx(t) within a given time interval is well approximated
by the variance of w'x(t) within that interval. We refer to such time in-
tervals as epochs and assume that the EEG/MEG data can be divided up
into consecutive or overlapping epochs of suitable length.? Epochs will
be indexed by the index e.

We assume the target variable z to only have a single value per
epoch, which can be achieved by appropriate resampling. Furthermore
we assume without loss of generality that z has zero mean and unit var-
iance, which can be achieved by normalization.

It is our goal to approximate the target variable z with a quantity that
we denote by z, which depends on a spatial filter w. Let Varfw'x(t)](e)

2 Working with epoched data instead of continuous data does not represent a loss of
generality, because all of the following derivations can be reformulated for continuous da-
ta as well, provided that the target variable changes slowly enough. We choose to work
with epoched data because it resembles the format of data obtained in trial-based
experiments.
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denote the variance of w'x(t) in a given epoch e. This epoch-wise
variance of the projected signal will serve as the approximation of z.
However, in the following we will slightly modify this quantity
such that it has zero mean by definition. First, we note that
Var[w'x(t)](e) = w'C(e)w, where C(e) denotes the covariance matrix
of x(t) in the eth epoch. Then we define the mean covariance matrix

C:=(C(e)), )

where () denote the average across epochs. With these definitions we
can now define our quantity of interest as

Z(e) := Var {wa(t)] (e)—w'cw

! 3
=w (C(e)—C)w.

Accordingly, the first two moments of Z can be expressed in terms of
the weight vector and epoch-wise covariance matrices as:

(z(e)) = <wT e)—C)w>
=" (Cle)w—w'cw (4)
=W CW—wW Cw

C; = (Cle)z(e)), (6)

which helps to conveniently express the covariance between Z and z as

Cov[z(e).z(e)] = ((z(e)—(z(e >) (e)—(z(e))))
- {(w cer-cm)ze) .
—w’ (C(e)z(e))w— (W cw) (z(e))
= TCZw,

where in the transition from line 1 to line 2 of this equation we
have used the fact that (z(e)) = = Oand substituted the definition
forz(e). The next line is the result of factormg out. Finally, we made use
of (z(e)) = 0 again and applied the definition for C,, given in Eq. (6).

In the following subsections we formulate the objectives optimized
by the two algorithms that implement the SPoC approach. For ease of
notation, the derivations are given for a single weight vector weRM:,
but generalize naturally to multiple filters providing a full-rank decom-
positions of the data matrix.

Optimizing source power correlation

We are interested in positive as well as negative correlations and
hence choose to maximize the squared correlation between z and Z.
We refer to this SPoC algorithm as SPoC;, and maximize the following
objective function:

fia = Corr[z(e). z(e))?
- Cov[”zv(e),z(e)]2

" Var[z(e)|Var|z(e)]
(WTCZW> 2

((w'cer-cw)’)

In the last equality of Eq. (8) we have used Egs. (7) and (5), and the fact
that Var(z(e)] = 1.

The weight vector w that maximizes f» cannot be found analytically.
It should therefore be found using iterative optimization methods such
as gradient descent for example.

Optimizing source power covariance

Here we approximate the previous objective function by optimizing
the covariance betweenz and z. As we will show shortly, this leads to an
objective function that has a number of computationally desirably prop-
erties. We refer to this algorithm as SPoC,. Unlike the correlation, the
covariance is affected by the scaling of its arguments. Thus far we have
assumed z to have zero mean and unit variance, i.e. that the scaling of
z is limited. Since we have only assumed Z to have zero mean, it is fur-
thermore necessary to limit the scaling of z. In SPoC\ we impose a con-
straint on the norm of w and thereby limit the scaling of Z. Specifically
we choose the constraint such that the output of the spatial filter has
unit variance. With these definitions we arrive at the following objective
function:

fr = Cov[z(e),z(e)] =w'C,w, 9)

with respect to the following norm constraint:
Var [wa(t)] —wew=1. (10)

This constraint optimization problem can be solved using the method of
Lagrange multipliers. Setting the first derivative of the corresponding
Lagrangian to zero leads to the following generalized eigenvalue
equation:

C,W = ACW, (11)

where the eigenvalue N\ corresponds to the value of f\ evaluated at the
respective eigenvector w. Thus \ can directly be interpreted as the co-
variance between Z and z.

Finding the solution to optimizing f\ is not as time consuming as it-
erative optimization procedures and the obtained solution is unique, i.e.
no restarts are necessary. Furthermore, the result of solving the general-
ized eigenvalue problem is a full set of weight vectors, i.e. a matrix W
with the eigenvectors in its columns. This matrix contains a column vec-
tor w that maximizes f, as well as a different column w that minimizes
the same objective function. After sorting the columns of W according
to their respective eigenvalues, one finds these weight vectors in the
first and last column of W. The matrix W has full rank but its columns
are not mutually orthogonal, as is the case in PCA for example.

Spatial patterns

Our modeling approach (i.e. the SPoC objective functions) allows for
a meaningful interpretation of the results. Since we are seeking a linear
spatial filter w, we are able to derive the corresponding spatial pattern,
which we denote with the vector a. By spatial patterns we refer to the
columns of the mixing matrix A (see Eq. (1)), which can, for example,
be obtained by inverting the full filter matrix W. If the full filter matrix
is not available, estimates for a spatial pattern a corresponding to indi-
vidual spatial filter w can be obtained via the relation

aocZ x(t) (wa(t)> (12)

o<CW

See (Parra et al., 2005) for further details. The spatial pattern of a filter w
can be interpreted as the scalp projection of the source whose activity is
extracted via w. In accordance with (Parra et al., 2005) and (Blankertz
et al., 2011) we suggest to visualize the spatial patterns rather than
the filters in order to interpret the results.
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Validation

SPoCis designed to find a spatial filter that extracts an oscillatory sig-
nal whose power modulation follows a given target variable. We tested
this ability in high dimensional and noisy environments by applying
SPoC as well as linear regression and a BSS method (here we used
ICA) to simulated as well as real EEG data. In the simulations, the time
course of the source signal (and therefore also its power modulation)
are known. Thus the results of the methods can be compared to the
ground truth. For the real EEG data, we choose an auditory steady
state paradigm in which the near linear relationships between stimulus
intensity and neuronal amplitude modulations have been reported be-
fore (Picton et al., 2003).

Simulated data

Data generation. Simulated 58 channel EEG data was created according to
the generative model outlined in The generative model of EEG/MEG data
section. The mixing matrix A and the source time courses s were created
separately. For A we used realistic spatial patterns obtained from placing
dipoles with random orientations at random locations in a head model
and then computing the respective scalp projections. Oscillatory source
time courses with controlled spectra and known band power modula-
tions were created using the inverse Fourier transform. A single target
source and 100 background sources were created in this manner and
the SNR between them is controlled by a parameter, which we denote
by <. See the Appendix of this manuscript for a detailed account on
how the simulated data was generated and how the SNR is controlled.

In a given simulation run, a total of 850 s (i.e. approximately 9 min)
of data were simulated. Using an epoch length of 1 s, the data was seg-
mented into 850 non-overlapping epochs. Of this data, the first 250
epochs were used for training the algorithms, while the remaining
600 epochs we used for testing. The training signal for linear regression
and the two SPoC algorithms consisted of the power time course of the
target source.

In order to assess the robustness of the algorithm with respect to
noise, the outlined simulation procedure was repeated for different levels
of the SNR parameter 7, while keeping the amount of data constant (i.e.
250 training and 600 test epochs). For each value of vy, the simulations
were repeated 500 times, each time with newly created data (i.e. new
source time courses and new patterns). Thereby a distribution of correla-
tion values was obtained for each of the methods at each SNR level.

Furthermore, the effect of the amount of available training data at a
fixed SNR level was investigated.

The SNR level used in these simulations was set toy = 10%4 ~ 2.5.
The amount of testing epochs was the same as above (600 epochs), but
the number of epochs used for training was varied systematically from
10 to 200, in steps of 10. For each number of training epochs, the simu-
lations were repeated 500 times, each time with newly created data,
also yielding a distribution of correlation values for each method.

Data analysis. Two metrics were used to quantify the quality of the
recovered filter w. The first metric was the correlation between
the known true power time course z and the estimated power time
course z. The second metric was the similarity between the true spatial
pattern and the estimated spatial pattern. This similarity was quantified
via the absolute value of the spatial correlation between the true and the
estimated pattern. Please note that in contrast to SPoC;,, SPoC, does not
explicitly optimize correlation but covariance instead. However, here
we evaluated all algorithms with respect to correlation in order to
have a common metric for comparison between them.

For the linear regression, channel-wise variance features of the
training and test data were computed. The regression model was fit to
the training data and the resulting weights were applied to the test
data. It is common practice to use PCA as a preprocessing before ICA.
This type of preprocessing for ICA was adopted here as well, retaining

enough PCA components to contain 99% of the variance.® In the case
of ICA and SPoG,, an entire set of weight vectors (components) is
obtained, and for ICA these resulting components are not ordered a
priori. Therefore the estimated target source was identified on the train-
ing data as follows: the ICA component whose power time course corre-
lated maximally with the target variable on the training data was
chosen for evaluation on the test data. For SPoC,, on the other hand,
the resulting components were ordered with respect to the respective
eigenvalues. After ordering the SPoC component set obtained from the
training data, the first component was used for evaluation on the test
data. For SPoC;, only one weight vector was obtained by optimizing
the respective objective functions on the training data.

Real EEG data

In order to compare the analysis methods on real EEG data, an exper-
iment on steady-state auditory evoked potentials (SSAEPs) (Picton
et al, 2003) was conducted with 11 participants, of which N = 7
showed a SSAEP. The data from the remaining 4 participants was not
used in this analysis.

Experimental paradigm. The auditory stimulus consisted of a sinusoid
with a carrier frequency of 500 Hz which was amplitude modulated
with a 40 Hz raised cosine, thus resulting in the steady-state modulation.
The resulting sound stimulus is referred to as the steady-state stimulus. It
has been shown that such a stimulus induces a reliable steady state re-
sponse in the auditory system, i.e. a significant increase in EEG/MEG
power at the stimulation frequency (Galambos et al., 1981; Hari et al.,
1989; John et al,, 2003; Picton et al., 2003; Plourde et al, 1991). The
SSAEP literature suggests a positive correlation between the amplitude
of the evoked EEG response and the intensity of the steady-state stimu-
lus when measured in decibel (dB) (Plourde et al., 1991; Rodriguez et al.,
1986).

In our paradigm, we realized a continuous amplitude modulation of
the sound stimulus by multiplying it with a slowly varying function,
which we refer to as the intensity modulation. This function modulated
the loudness of the stimulus between 10 and 35 dB relative to the
subject- and ear specific hearing level (HL). The intensity modulation
was created by low-pass filtering white noise with a cut-off frequency
of 0.05 Hz, which yields a random, yet smoothly varying fluctuation. Be-
fore applying the intensity modulation to the sound stimulus, we equal-
ized the histogram of the intensity modulation such that all sound
intensity levels appear with equal probability. The beginning and the
end of the sound stimulus were faded in/out to minimal intensity
using a half cosine window of 10 s duration. Fig. 3 illustrates the exper-
imental setup, including the construction of the sound stimulus.

The experiment consisted of 3 blocks of 5 min continuous stimula-
tion. Between each block, there was a short pause (less than 1 min) for
the participants to rest briefly. The sound stimulus was delivered using
in-ear headphones and during the EEG recording participants were
instructed to relax but keep their eyes open and to focus on the sound.

Data acquisition. EEG signals were recorded using a Fast'n Easy Cap
(EasyCap GmbH) with 63 wet Ag/AgCl electrodes placed at symmetrical
positions based on the International 10-20 system. Channels were
referenced to the nose. Electrooculogram (EOG) signals were recorded
in addition but not used in the present context. Signals were amplified
using two 32-channel amplifiers (Brain Products) and sampled at 1 kHz.

Data analysis. For the offline analysis in MATLAB, the signals were low-
pass filtered with a cutoff frequency of 90 Hz and subsequently down-
sampled to 250 Hz. Additionally a notch filter around 50 Hz was applied
to attenuate line noise. The down-sampled and notch filtered EEG data
were then band pass filtered with a 3 Hz pass band centered on the

3 ICA without PCA preprocessing was also tested but the resulting performance was
worse compared to ICA with PCA preprocessing.
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Fig. 3. Auditory stimulus and experimental setup. (A) Three minute excerpt of the intensity modulated steady state stimulus. A 500 Hz sinusoid was multiplied with a 40 Hz raised cosine
(see the 0.5 s and 0.05 s excerpts in A1 and A2, respectively). The slowly varying intensity modulation (green line in A, A1, and A2) was applied to the full length steady state stimulus.
(B) Participants received the sound stimulus via in-ear headphones and EEG was measured concurrently. (C) The raw EEG was analyzed offline to extract an estimate of the intensity

modulation (D).

steady-state frequency of 40 Hz, yielding a pass band from 39 to 41 Hz.
The band pass filtered data was then segmented into consecutive
epochs of 2 s length and 1 s overlap.

The SSAEP literature suggests a linear relationship between the
stimulus intensity (measured in dB) and EEG amplitude at the stimulus
frequency. Since the SPoC algorithms and linear regression work on
power features (i.e. squared amplitude), we used the squared stimulus
intensity as the target variable z.

Similar to the analysis on simulated data, a PCA preprocessing (di-
mensionality reduction, retaining 99% of the variance) was employed
for ICA as this improved the results compared to using ICA without
PCA preprocessing.

In order the get an unbiased estimate of each of the methods' ability
to model the stimulus intensity modulations, we employed a 10-fold
chronological cross-validation procedure (Lemm et al, 2011). This
means that the whole data was split up into 10 equally sized folds, of
which 9 folds served as training data while the remaining fold was
used for testing. This training/testing split was repeated such that each
fold became the test fold once, yielding a correlation value for each
split. Cross-validation was performed for all methods. The obtained cor-
relations were transformed using Fisher's z-transform, averaged, and
the mean z-value was then transformed back into a correlation value
using the inverse of Fisher's z-transform.

Results
Simulations

Fig. 4 shows the results of the simulations. In all plots in the figure
the recovery of the correlations becomes better as one moves along
the x-axis from left to right (i.e. the SNR or the amount of training data
increases). In plots (A) and (B) of that figure, the y-axis indicates the
correlation between z and Z, ie. the power time course correlation,
whereas in plots (C) and (D) the y-axis indicates the correlation be-
tween the true source pattern and the pattern found by the respective
method, i.e. the pattern correlation. Please note that all reported correla-
tions are obtained on test data that was not used to train the algorithms.

Plots (A) and (C) in Fig. 4 display the performance of the methods as
a function of SNR. It can be seen, that for higher SNRs all methods have
satisfactory performance, i.e. they are able to extract the target power
time course from the data with a high degree of correlation. In terms
of pattern reconstruction, ICA and the SPoC algorithms reach near per-
fect performance at high SNR regimes. This metric is not applicable for
the regression, because the regression weights cannot be interpreted
as the field pattern of a neuronal source.

However, in lower SNR regimes the SPoC algorithms clearly
outperform ICA and regression. Comparing the performance of the
SPoC methods, we find that the performance of SPoC;, is consistently
higher than the performance of SPoC,. This is true for both performance
measures and does not come as a surprise because only SPoC;, is actu-
ally optimizing the correlation. The difference in performance between
SPoC,, and SPoC, is strongest in the correlations between z and zin high
SNR regimes. In terms of pattern correlation the differences between
SPoC;, and SPoC, are non-negligible but not as pronounced as the dif-
ferences between the SPoC variants and ICA.

Plots (B) and (D) in Fig. 4 show the performance of the methods
as the amount of training data is varied. The amount of test data is
the same for all conditions and the signal-to-noise ratio was fixed to
v =10 =~ 2.5 (compare with the SNR plot). If only very small
amounts of training data are available (i.e. less than 50 epochs), the
plots show that SPoC;, is outperformed on the test data by its contes-
tants. In those regimes the algorithm exhibits a tendency to overfit to
the training data and consequently it may generalize less well with re-
spect to the test data. However, as more training data becomes avail-
able, the performance of the two SPoC algorithms rises faster than ICA
and regression. The performance of SPoC,, and SPoG, is already close
to maximum after about 150 to 200 epochs of training data, while the
performance of ICA and regression is still considerably lower with the
same amount of training data.

Fig. 5 shows the results obtained from a representative simulation
run with y = 10°? ~ 1.5. As in the SNR simulations, there were 250
epochs in the training and 600 epochs in the test data. The scalp plot
in Fig. 5(A) depicts the true spatial pattern of the simulated target
source. Underneath we show as a scalp map the correlations between
channel-wise band power time courses and the power time course of
the target source. Note how little the correlation pattern resembles
the spatial pattern of the simulated source. In Fig. 5(C), the estimated
patterns from SPoC,,, SPoC,, and ICA, as well as the weights of the linear
regression are depicted. Regression weights should not be interpreted
with respect to the spatial pattern of the source of interest. Yet, they
are plotted here in order to make the point explicit. A scatter plot be-
tween the true source power time course (z) and the estimated power
time courses from the respective methods (Z) is shown underneath
each scalp pattern.

Real EEG data
Fig. 6 depicts the results obtained from the auditory steady state ex-

periment with a slowly changing intensity (i.e. loudness) modulation.
Each colored line in the left part of the figure corresponds to a single
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Fig. 4. Simulation results: power time course correlation as a function of signal-to-noise-ratio (A) and as a function of the amount of training data (B). Pattern correlation (similarity be-
tween simulated and recovered spatial patterns) as a function of signal-to-noise ratio (C) and as a function of the amount of training data (D). For plots (A) and (C) the number of training
epochs was 250. For plots (B) and (D) the SNR was set to y = 10%4 = 2.5. All correlations are obtained on test data, which was not used for training the algorithms.

participant, while the right part of the figure shows the average across obtained from the extracted component that had the highest correlation
participants. The SPoC algorithms and ICA return several components between its power time course and the sound intensity modulation. It
and therefore the plotted values refer to the cross-validated correlations can be seen that SPoC;, and SPoC, outperform ICA and regression in
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Fig. 5. Simulation results: an example simulation run using 250 training epochs and an SNR of y = 10°? ~ 1.5. (A) The true spatial pattern of the simulated target source. (B) The cor-
relations between channel-wise band power and the band power of the target source, plotted as a scalp map. (C) The scalp patterns of best correlating components and the corresponding
scatter plots between true and estimated source power for the different methods.
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Fig. 7. Real EEG data results: spatial patterns obtained by SPoC,, for each participant. The
spatial patterns correspond to the filters that maximize the correlation between power
time course and stimulus intensity.

the majority of subjects. The SPoC algorithms yield statistically signifi-
cant larger correlations between power time courses and the sound in-
tensity modulation than ICA or regression (p < 0.05, Wilcoxon rank
sum test). Furthermore, on this data set the performance of SPoGC, is sta-
tistically indistinguishable from the performance of SPoC,,.

Fig. 7 shows the spatial patterns (see last paragraph of the
Optimizing source power covariance section) corresponding to the
best spatial filters for each subject. Best spatial filter here means the spa-
tial filter w that yielded the largest correlation between the power time
course of w'x (i.e. the power time course of the filtered signal) and z.
Please note that the polarity of the spatial patterns (as well as of the cor-
responding filters) is arbitrary. For each pattern, the polarity was set
such that the pattern value at EEG electrode Cz is positive.

Fig. 8 shows more detailed results for a representative participant
(VPnaj). These plots show channel-wise correlations plotted as a scalp
map; the spatial patterns of highest correlating SPoC,,, SPoC,, and ICA
components; as well as the power spectra of a single EEG channel (Fz)
and the spectra obtained after spatial filtering with the corresponding
SPoC;,, SPoC,, or ICA filter. Please note that for all subjects the SPoC, fil-
ter that maximized the covariance (i.e. the objective function of SPoCy)
also exhibited the maximal correlation between the power time course
and stimulus intensity. It can be seen that the channel-wise correlations
are low in magnitude and that the pattern of correlation values shows
little resemblance with the components obtained from the spatial filter-
ing methods. Between SPoC;,, SPoCy, and ICA, the obtained patterns are
quite similar, indicating that the same source (or set of sources) has
been extracted by the algorithms. The second row of plots in Fig. 8
shows the offset-aligned power spectra of EEG channel Cz and the re-
spective best SPoC;,, SPoCy, and ICA components (corresponding to
the spatial patterns above). The spatial filtering methods show a much
clearer peak at the steady-state frequency compared to the individual
recording channel. The peak is most pronounced in the component
extracted by SPoC,,, thus yielding the highest signal-to-noise ratio for
this particular participant.

Discussion

We presented a novel approach for the extraction of oscillatory
sources showing a comodulation of their power with the target func-
tion, the latter being for instance reaction time, hit rate or some physical
properties of the sensory stimuli (e.g. intensity). The SPoC approach is
the first to explicitly address the problem of component extraction for
band power correlation/covariance. Using two implementations of our
approach (the SPoCy and the SPoC,, algorithm) we were able to show
that it performed better than other methods commonly used for the in-
vestigation of a relationship between behavioral measures and a power
of oscillations (sensor space regressions, ICA).
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Fig. 8. Real EEG data results: spatial patterns and power spectra for a representative participant (VPnaj). (A) Channel-wise correlation between band power and sound intensity. (B) Spatial
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SPoC showed promising results in the extraction of auditory sources
generating steady-state responses. The extracted patterns were consis-
tent with ERP-type analysis of auditory steady state responses in the
40 Hz range. Herdman et al. (2002) investigated the source activity
underlying the responses to 39 Hz modulated tones. They found a ver-
tically oriented dipolar pattern with maxima (minima) at mid-frontal
electrode positions and corresponding minima (maxima) at posterior
neck positions, where the sign of minima and maxima depends on the
phase of the stimulus. The obtained spatial SPoC patterns corresponded
well with the findings of (Herdman et al., 2002).

Comparing the results obtained on the real EEG data to those
obtained on the simulated data, we find that the performance differ-
ences between SPoC and ICA on the real data are comparable to those
found in simulations with moderately high SNR. This indicates that the
sources activated in the auditory steady state paradigm are relatively
strong compared to background activity in the frequency band of inter-
est. However, the significantly larger correlations obtained with SPoC
underline its ability to extract the signal of interest while effectively sup-
pressing unrelated noise sources at the same time. This makes SPoC a
valuable tool in scenarios in which the time course of the target variable
is to be predicted from ongoing EEG in an online manner.

Below we elaborate on some technical aspects of the SPoC algo-
rithms. If an analysis setting requires the exploration of one or more pa-
rameters and thereby multiple runs of the analysis method, then
processing speed of the method might be an issue. Some BSS methods
require a number of iterations which may take minutes to converge
on a standard computer. For a single run only, the range of minutes
should not, however, be a problem. However, if the number of runs in-
creases greatly (e.g. for bootstrapping (Meinecke et al., 2002)) minutes
can easily become many hours on single processors. Thus it is important
to point out that the generalized eigenvalue computation in the SPoCy
algorithm takes only fractions of a second, and that is why SPoC,
unproblematically allows for (a) extensive parameter studies, or (b)
bootstrapping efforts or (c) online evaluations within a time window
within only moderate processing time demands.

As a technical side remark we would like to also mention that the
SPoC, algorithm is intimately related to the Common Spatial Pattern
(CSP) algorithm family (Blankertz et al., 2008). CSP is the current most

popular method in Brain-Computer Interface systems, which are
based on oscillatory brain signals (Blankertz et al., 2007; Lemm et al.,
2011). When the target variable z is binary, classical CSP is obtained as
a special case of SPoC,. One may thus view SPoC, as a regression exten-
sion of CSP to continuous target variables. In such a regression scenario,
CSP could still be used but it would require a form of binning of the tar-
get variable (e.g. mean- or median split, or using percentiles), which
might be arbitrary. Both SPoC algorithms, however, are specifically
designed for continuous target variables and therefore do not require
such preprocessing.

The SPoC approach is intended to be used on multichannel EEG and
MEG data. However, it is not limited to the application of non-invasive
imaging methods and should perform equally well for invasive record-
ings. A specific application scenario for SPoC would be studies with
intra-cortical electrodes in epilepsy patients and recordings obtained
from deep brain structures such as Globus Pallidus and Subthalamic
Nucleus in patients with Parkinson's Disease. In fact, given a special clin-
ical interest in understanding brain mechanisms of the neurological dis-
orders, a precise localization of pathological neuronal networks would
be a great advantage, such as for instance in clarifying the neuronal gen-
erators of tremor in patients with Parkinson's Disease (Wichmann and
Delong, 2011). In this case a tremor can be used as a target variable in
order to extract corresponding sources of beta or high-frequency oscil-
lations in the thalamo-cortical-basal network.

Reaction time is a standard and widely used measure in a large num-
ber of psychophysiological studies (see for review: Maki and [lmoniemi
(2007) and Meyer et al. (1988)). Often the differences between the
studied experimental conditions are very small. Finding associated dif-
ferences in the power of oscillations is thus quite challenging and there-
fore refined extraction of task relevant neuronal processes is required.
When using SPoC, reaction times can be used as a target variable thus
allowing an extraction of task relevant neuronal oscillations. Moreover,
given that SPoC provides extraction of both positive and negative corre-
lations one can find oscillatory components showing reciprocal contri-
bution to reaction times. Another important area for SPoC application
is research on combined use of EEG and Transcranial Magnetic Stimula-
tion (TMS (Ilmoniemi et al., 1997; Nikulin et al,, 2003)). One of the in-
triguing findings in TMS research is a large variability of Motor Evoked
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Potentials (MEPs) produced by the stimulation of the motor cortex. This
variability in MEPs most likely reflects changes in cortical excitability,
and thus analysis of pre-stimulus oscillatory activity might allow unique
opportunity to trace the nature of neuronal processes responsible for
changes in excitability. Previous research on this topic has primarily
been performed in sensor space (Maki and Ilmoniemi, 2010; Sauseng
et al,, 2009), where a mixture of multiple sources was a major draw-
back. The use of SPoC would allow extraction of specific oscillatory
sources associated with the changes in cortical excitability. Another sce-
nario where SPoC can be used is for studying cortico-muscular rhythmic
interactions. They are usually studied with phase synchronization mea-
sures (so called cortico-muscular coherence (Baker, 2007)). However, it
becomes increasingly clear that not only phase-to-phase but also
amplitude-to-amplitude neuronal interactions (Bayraktaroglu et al.,
2013; Daffertshofer and van Wijk, 2011) are important for understand-
ing brain functioning. The use of SPoC would allow studying neuronal
sources showing amplitude-to-amplitude interactions, which is indica-
tive of interactions between local dynamics in the cortex and spinal cord
(Bayraktaroglu et al., 2013).

The ability to gain understanding about the results of a parameter
optimization is an important aspect of machine learning methods
(Montavon et al., 2013). Note that SPoC properly implements the com-
monly accepted generative model of EEG/MEG and therefore it is possi-
ble to meaningfully interpret its results within this generative model.
This also allows subsequent source localization (Baillet et al., 2001;
Haufe et al., 2008, 2011) or further multimodal processing (BiefSmann
et al,, 2011; Fazli et al., 2012) — aspects that we will pursue in a future
research effort towards a better understanding of cognitive brain
function.

In summary, SPoC is an approach that enables a reliable and fast ex-
traction of neuronal oscillations, whose power time course comodulates
with an external target function. Because of SPoC's superiority to other
standard techniques, we advocate its use for recovering associations be-
tween cognitive/motor variables and neuronal activity.
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Appendix A. Correlating the power of single sensors

Let us for simplicity assume that s is the only source whose power is
correlated to the target, and there is only one noise source n, whose
power is not correlated to the target. The measurement at electrode k
is then expressed as xi(t) = a,s(t) + byn, where a, and by, are the re-
spective mixing coefficients. The band power at x, is given as the vari-
ance over time, which simplifies as

Var|x,(t)] = azVar[s(t)] + biVar[n(t)]
—a +b}

due to the uncorrelatedness and unit variance properties of s and n. Let
us now assume the data has been divided up into (subsequent) epochs,
and the strengths of the signal and noise sources depend on the epoch.
In the following we will adopt the convention that Var{‘], Cov[‘],
and Corr[*] will be evaluated across the index of their arguments, e.g.

Var|g(t)] is the variance of some function g across the time index t and
Cov|g(e), fle)] is the covariance of two functions f and g across epochs.
Let Var[x,(t)](e) denote the variance of x,(t) in the epoch with index
e, thus making Var[x,](e) a function of e. The correlation between z(e)
and the band power at channel k across epochs is then given by

Corr[Var(x,(t)](e),z(e)]
Cov {aﬁ(E) + bi(e)vz(e)] (A1)

B \/Var[aﬁ(e) + bk (e)]Var(z(e)] .

Without loss of generality we can assume that Var[z(e)] = 1. More-
over, since the noise power b#(e) is neither correlated to the signal
power a(e) nor to the target z(e),

Var[aZ(e)) (A-2)
Var|aZ(e))

Var [bﬁ (e)]

" Var [aZ(e)] (A3)

q=

That is, the correlation between z and the band power at channel k is
the desired correlation between z and the band power of the signal
source s normalized by a factor ¢ which depends on the ratio of the
band power variation of the signal and noise sources (and hence also in-
directly on the strength of the mixing coefficients aZ(e) and bZ(e)).
Hence, only for zero noise contribution b,(e) = 0,Ye or for zero noise
power variation Var{bZ(e)] = 0 the desired correlation can be recov-
ered. If both these quantities are nonzero, the correlation score will be
discounted by a factor which differs for each channel.

Appendix B. Simulated EEG

Simulated EEG data was created using the following steps. Firstly, we
generated time courses of Nug + 1 hypothetical band-limited EEG
sources (1 target source and N, + 100 background sources). For illus-
trative purposes we chose the a-band as the frequency band of interest,
i.e. 8 to 12 Hz. The oscillatory signals were created individually by
constructing the amplitude and phase spectrum and then using inverse
Fourier transform to obtain the time-domain signal. In the amplitude
spectrum, the coefficients of the alpha band were set to 1, whereas
the amplitudes of all other frequencies were set to zero. The phase spec-
trum was chosen randomly for each source time course. Once the time-
domain signals were constructed, their envelopes were normalized to 1.
Thereafter the signals were multiplied with an amplitude modulation
function that consisted of low-pass filtered white noise (filter cut-off
below 0.5 Hz). An offset was added such that the slow amplitude mod-
ulation was always larger than zero. Squaring the amplitude modula-
tion function of a source yields the power modulation of that source.
This constitutes the EEG data in ‘source space’.

Physiologically plausible spatial patterns were generated via a realis-
tic EEG forward model (Fonov et al,, 2011; Nolte and Dassios, 2005).
Specifically, we placed model neural sources (i.e. electrical dipoles,
here with randomly chosen orientation) at randomly chosen locations
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in 3D voxel space and computed the resulting scalp projections, which
we denote with the vector a’€RM: for the ith source, where N, = 58 de-
notes the number of simulated EEG channels. Using these scalp projec-
tions, we separately constructed the sensor space representation of the
target source (denoted by X;) and the sensor space representation of
background neural activity (denoted by Xyg):

X, (£) = a's(t)

Npg

Xpg(t) = > a's;(t).
i=1

Additionally we added Gaussian distributed noise (zero mean and
unit variance), which is spatially as well as temporally uncorrelated.
The noise vector is denoted by (t). These three constituents (source sig-
nal, background activity and sensor noise) were stored in respective
data matrices (e.g. X; = [X(1), , X¢(T)], where Xpg as well as X, are de-
fined accordingly). Finally, the data matrices were combined according
to the following parameterized equation

X = yXt + Xbg + Y X

[Xell B.1)

where ||X{||r denotes the Frobenius norm of the matrix X;. The parame-
ters vy and vy, control the relative weightings of the signal constituents:
VY. controls the strength of the sensor noise, while <y controls the
strength of the target source. The value of -y, was fixed to 0.1 for all sim-
ulations and the value of 'y was varied.
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