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Abstract

The modern metaphor of the brain is that of a dynamic information processing device. In the current study we investigate
how a core cognitive network of the human brain, the perceptual decision system, can be characterized regarding its
spatiotemporal representation of task-relevant information. We capitalize on a recently developed information theoretic
framework for the analysis of simultaneously acquired electroencephalography (EEG) and functional magnetic resonance
imaging data (fMRI) (Ostwald et al. (2010), NeuroImage 49: 498–516). We show how this framework naturally extends from
previous validations in the sensory to the cognitive domain and how it enables the economic description of neural
spatiotemporal information encoding. Specifically, based on simultaneous EEG-fMRI data features from n = 13 observers
performing a visual perceptual decision task, we demonstrate how the information theoretic framework is able to
reproduce earlier findings on the neurobiological underpinnings of perceptual decisions from the response signal features’
marginal distributions. Furthermore, using the joint EEG-fMRI feature distribution, we provide novel evidence for a highly
distributed and dynamic encoding of task-relevant information in the human brain.
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Introduction

The modern metaphor for the human brain is that of a

dynamic, information processing device [1]. By means of its neural

activity, the brain is thought to represent information about the

external state of the world, internal expectancies about incoming

sensory information, as well as the formation and execution of

decisional processes [2,3]. A first step in understanding how neural

activity represents this set of variables is to quantify the

spatiotemporal dynamics of information representation in the

brain. It is generally believed that knowledge about the

information-carrying features of neuronal activity will lead to a

better understanding of the dynamic principles that underlie brain

function in health and disease.

A promising new methodology to accumulate this knowledge

non-invasively from human observers carrying out cognitive tasks

is the simultaneous recording of EEG and fMRI data (hereafter

referred to as EEG-fMRI) [4]. The technical limitations of

acquiring EEG-fMRI data have been largely overcome, owing

to the development of improved EEG recording hardware and

gradient- and ballistocardiogram-artefact removal techniques

[5,6]. However, a remaining obstacle preventing the full

exploitation of the potential spatiotemporal resolution of EEG-

fMRI in identifying information-carrying features of cortical

activity is the uncertainty about how to integrate the two

modalities. To this end, recent work has underlined the

importance of single-trial fluctuations in EEG and fMRI data

features in terms of their information content regarding stimula-

tion and task performance, and the effect of ongoing brain activity

on evoked responses [7–10].

We have previously proposed an information theoretic

framework for the quantification of single-trial variability in

EEG-fMRI integration [11,12]. Information theory, and its core

quantity of mutual information, allows inferences about which

neuronal activity features probabilistically discriminate between

experimental variables of interest. As the calculation of mutual

information is explicitly dependent on the estimation of the joint

stimulus EEG-fMRI signal probability function from single-trial

responses, an information theoretic approach has the potential to

take advantage of the full data variance, while relaxing the

linearity and Gaussianity assumptions of standard methods for

EEG-fMRI integration by prediction [13]. Importantly, for the

case of non-simultaneous EEG and fMRI recordings, the joint

stimulus-EEG-fMRI signal distribution can only be approximated

as a factorized joint distribution which provides the crucial

motivation for analyzing EEG-fMRI data using an information

theoretic approach [14].

Previously, this framework has been validated based on EEG-

fMRI recordings of passive sensory stimulation, i.e. identifying

informative neural activity features about an external variable. In

the current study we investigated how the information theoretic

framework for EEG-fMRI data analysis can be applied to

questions of cognitive neuroscience, involving external as well as

internal and behavioural experimental variables (Figure 1).

Specifically, we show how the proposed framework naturally
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extends to the cognitive neuroscience setting and exemplify its

application using a visual perceptual decision paradigm with

spatial attention modulation.

Perceptual decisions are arguably one of the core cognitive

functions [15] and can be defined as the selection of one among a

set of possible interpretations of a sensory event [16–19]. Previous

research indicates that perceptual decisions are based on the

accumulation of sensory evidence over time [20–23]. Electrophys-

iological research in primates has led to the concept of neural

integrators thought to implement such accumulation [24], while

functional brain imaging studies have identified areas potentially

involved in the processing of perceptual decisions [16,22,25–27].

However, these areas, here referred to as the human perceptual

decision system, have as yet not been characterized in a principled

manner with respect to the information they represent about

external stimulus variables (e.g. stimulus quality), decision-

modulating internal states (e.g. spatial attention), nor behavioral

variables (e.g. reaction times). The information theoretic frame-

work for the analysis of EEG-fMRI data is highly suited to achieve

this characterization as it capitalizes on a) the appropriate

temporal and spatial scales of cortical activity, namely events on

the millimeter and millisecond scale, and b) the appropriate

ecological scale, namely the neural activity on the single-trial,

based on which the brain is forced make a decision.

Finally, despite its many advantages, EEG-fMRI recording has

detrimental effects on EEG data quality. While recent approaches

allow the MR scanner induced EEG artefacts largely to be

corrected, EEG data quality remains lower than for EEG

recordings outside the MR environment. Given the subtle nature

of the expected EEG effects, in addition to combined EEG-fMRI

data acquisition, EEG data were also acquired for the same

paradigm outside the MR environment. This allowed to determine

the effect of poorer EEG quality on the information theoretic

quantity patterns calculated from the combined EEG-fMRI data

set.

In sum, the current study brings together the advances in EEG-

fMRI recordings during performance of an ecologically meaning-

ful cognitive task with the perspective provided by an information

theoretic framework. While this approach results in methodolog-

ical considerations that are perhaps more detailed than in standard

reports on the neural underpinnings of perceptual decision

making, we feel that these are necessary to allow the reader to

assess how we are able to derive statements on the neuroscientific

aspects of this study. Specifically, we demonstrate how the

information theoretic framework is able to reproduce findings on

the neural correlates of perceptual decisions based on the

response-signal marginal distributions (i.e. based on unimodal

EEG and fMRI data, respectively). Critically, we furthermore

show how the high-dimensional EEG-fMRI data set can be

collapsed economically onto spatiotemporal information surfaces

summarizing the neurobiological underpinnings of perceptual

decision making and thereby providing novel evidence for

dynamical and distributed information encoding in the human

brain.

All custom written Matlab (The Mathworks, Natick, MA) code

used in this study is available from http://www.buic.bham.

ac.uk/downloads/EEG_FMRI_ITQ/EEG_FMRI_PD_Analysis.

zip and the data are available from the corresponding author upon

request.

Materials and Methods

Subjects
Seventeen subjects (8 female, mean age 25.9 years, range 20–33

years, 2 left-handed) were recruited from the University of

Birmingham campus and paid for their participation. All observers

had normal or corrected to normal vision, no history of

neurological disorders and gave written informed consent. The

study was approved by the Science, Technology, Engineering and

Mathematics Ethical Review Committee of the University of

Birmingham.

Figure 1. Conceptual Framework. A system view of the human brain implicates neuronal processes in the representation of information about
external states (e.g., stimulus informativeness, stimulus category, etc.), internal states (e.g., spatial attention, task, motivation, etc.), as well as
behavioural states (e.g., response appropriateness, reaction time, etc.). All state variables are assumed to contribute to an observed information
theoretic spatiotemporal EEG-fMRI signature in a given neuroimaging experiment. For the current study, these variables have been operationalized as
stimulus category and informativeness (external state), spatial attention/prioritization (internal state) and the observer’s decision and response time
on a given experimental trial (behavioural state).
doi:10.1371/journal.pone.0033896.g001

Information Theoretic EEG-fMRI of Decisions

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e33896



Complete data sets (2 experimental runs of EEG alone, 5

experimental runs of simultaneous EEG-fMRI (see below)) were

acquired from 13 of the 17 subjects (for two of the four subjects

who did not have complete data, incomplete EEG data were

recorded outside the MR scanner; for one of the four incomplete

psychophysical data were recorded inside the MR scanner; while

for the remaining subject the EEG data recorded inside the MR

scanner were strongly contaminated by movement artefacts of the

reference electrode due to contact with the head-coil). All

information theoretic analyses (outside and inside MR scanner

EEG data, fMRI data, and EEG-fMRI data) are based on the 13

complete data sets. To identify regions of interest for the

information theoretic analyses with maximum detection power,

a total of 16 fMRI data sets were included in the GLM-group

analysis. One subject’s fMRI data were excluded from the GLM

analysis because no psychophysical data could be recorded.

Experimental design and paradigm
In a 262 factorial within-subject design, observers performed a

perceptual decision task, similar to that described in [19,22,26]

(Figure 2A). On each trial, a visual stimulus depicting either a face

or a car was presented in one visual hemifield (left/right

eccentricity of stimulus centre 11 degrees of visual angle, stimulus

extension 9 degrees of visual angle) for 200 ms and the observer

was asked to indicate via a button press whether a face or a car

stimulus was presented. For the button presses, observers used

their right index and middle finger for the two categories, and the

mapping from stimulus category to response button was

counterbalanced across observers. The informativeness of the

visual stimulus was manipulated by altering the phase coherence of

its spatial frequency spectrum resulting in low and high

informative trials (see below). On half of the trials, a cueing arrow

shown continuously for 1 s prior to the stimulus indicated in which

hemifield the stimulus would be presented (Figure 2B). The

observers were asked to allocate their spatial attention to the

respective hemifield, while maintaining steady central fixation

(spatial prioritization condition). On the other half of the trials, the

two-headed cueing arrow was uninformative and the stimulus was

presented randomly in either hemifield (no spatial prioritization

condition). Face and car stimuli were equally distributed over the

four experimental conditions. The order of stimulus presentation

was randomized. Observers were asked to respond as quickly and

accurately as possible with an emphasis on responding as quickly

as possible and to maintain stable fixation of the central fixation

cross throughout the experiment. Analyses of eye-movement data

(Figure S1) obtained during the combined EEG-fMRI data

acquisition in six subjects indicated that good fixation was

achieved.

For the EEG only recordings outside of the scanner, data from

72 trials for each of the four conditions (half of them face stimuli)

were recorded with an inter-trial interval randomized between 0–

300 ms. The data acquisition was split into two experimental runs

of approximately 10 minutes each. For the combined EEG-fMRI

recordings data from 90 trials for each of the four conditions (half

of them face stimuli) were recorded with an inter-trial interval

discretely randomized between 10 s and 12 s (5 or 6 TRs). This

long inter-trial interval was chosen to obtain reliable recordings of

single-trial haemodynamic responses. The 90 trials were split into

five experimental runs, each lasting approximately 14 minutes.

Prior to the EEG recordings the observers also completed two

practice runs to familiarise themselves with the task.

Stimuli
The stimulus set consisted of 18 pictures of cars and 18 pictures

of faces, similar to the stimulus set used in [19,22,26]. The car

images were obtained from http://liinc.bme.columbia.edu/

mainTemplate.htm?liinc_downloads.htm while the face images

were obtained from the Max Planck face database [28]. The

image categories were matched for the number of frontal, and left

and right lateral views. All images were converted to bitmap

format (.bmp) and the corresponding 2566256 matrices saved

with 8 bit depth. The two stimulus sets were matched for their

mean driving luminance and contrast as assessed by a one-way

ANOVA with factor ‘image category’ and levels ‘face’ and ‘car’

(mean driving luminance: F(1,34) = 0.08, p = 0.78, contrast:

F(1,34) = 0.22, p = 0.64). To manipulate the informativeness of the

images, the spatial phase spectra were linearly weighted with a

phase spectrum of a Gaussian noise image using the weighted

mean phase technique as described in [29]. With the original

phase of an image given by wimage, the final phase wfinal was

computed as follows:

wfinal

arctan S
C

� �
Cw0

arctan S
C

� �
zp Cv0,Sw0

arctan S
C

� �
{p Cv0,Sv0

8><
>: ð1Þ

where

S~w:sin wimage

� �
z(1{w):sin wnoiseð Þ ð2Þ

C~w:cos wimage

� �
z 1{wð Þ:cos wnoiseð Þ ð3Þ

and wnoise is the phase of uniform random noise and w [ 0,1½ � is

the signal-to-noise weighting coefficient. Based on a psychophys-

ical pilot study (Figure S2), stimuli with weighting coefficients

w1~0:9 (high informativeness) and w2~0:5 (low informativeness)

were chosen for the experiment in order to elicit reliable

differences in the response times for either stimulus class, while

still allowing accurate performance of the task.

Data acquisition
EEG data were recorded using a 64 channel MR compatible

EEG system (BrainAmp MR Plus, Brain Products, Munich,

Germany), which incorporates current limiting resistors of 5 kV at

the amplifier input and in each electrode. The EEG cap consisted

of 62 scalp electrodes distributed according to the 10–20 system

[30] and two additional electrodes, one of which was attached

approximately 2 cm below the left collarbone for recording the

ECG, while the other was attached below the left eye (on the lower

orbital portion of the orbicularis oculi muscle) for detection of

eyeblink artefacts. Data were sampled at 5000 Hz. Impedance at

all recording electrodes was less than 20 kV. For simultaneous

EEG-fMRI recordings, the EEG data acquisition setup clock was

synchronised with the MRI scanner clock using Brain Product’s

SyncBox, resulting in exactly 10,000 data points per EPI-TR

interval (see details of the fMRI sequence below). The EEG set-up

was identical for the recordings outside and inside the MR

scanner. In the following, the EEG data set recorded outside the

MR scanner will be referred to as EEG only, while the EEG data

set recorded simultaneously with the fMRI data will be referred to

as EEG-fMRI data.

The simultaneous EEG-fMRI experiment was conducted at the

Birmingham University Imaging Centre using a 3T Philips

Information Theoretic EEG-fMRI of Decisions
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Achieva MRI scanner. An initial T1-weighted anatomical scan

(1 mm isotropic voxels) and T2*-weighted functional data were

collected with an eight channel phased array SENSE head coil.

EPI data (gradient echo-pulse sequence) were acquired from 32

slices (36364 mm resolution, TR 2000 ms, TE 35 ms, SENSE

factor 2, flip angle 80u). Slices were oriented parallel to the AC-PC

axis of the observer’s brain and positioned to cover the entire brain

space.

Eye-movements were monitored for six observers while

performing the task in the MR scanner using an ASL 6000 Eye-

tracker (Applied Science Laboratories, Bedford, MA).

Data pre-processing
EEG data acquired outside the MRI scanner were referenced to

electrode FCz, partitioned into data acquisition sessions, band-pass

filtered from 0.5 to 25 Hz and down-sampled to 500 Hz using

Brain Vision Analyzer 2.0 (Brain Products, Munich, Germany).

EEG data acquired inside the MR scanner were referenced to

electrode FCz, partitioned into data acquisition sessions and the

MR gradient and ballistocardiogram artefact removed using Brain

Vision Analyzer 2.0, band-pass filtered from 0.5 to 25 Hz, and

down-sampled to 500 Hz. To identify artefactual non-cerebral

EEG components (i.e. eye-movements, muscular movement,

environmental noise and, in the case of the EEG data acquired

simultaneously with the EPI data, residual MR and BCG artefacts)

a semiautomatic ICA-based procedure was employed [31,32].

Upon rejection of the artefactual independent components and

back-projection of the remaining independent components into

channel space, all trials with maximum or minimum amplitudes

outside a physiological range of 2100 mV to 100 mV were

discarded prior to further analyses.

SPM5 [33] was used for fMRI data pre-processing, and

included anatomical realignment, slice scan time correction

(reference slice 16), re-interpolation to 26262 mm voxels,

anatomical normalization to MNI space and spatial smoothing

(5 mm FWHM Gaussian kernel).

EEG data analysis
EEG data were analyzed in electrode space using custom-

written Matlab code (The Mathworks, Natick, MA). Specifically,

event-related potentials were computed using a 100 ms pre-

stimulus baseline and 500 ms post-stimulus window. Because the

stimuli were presented lateralized and occipito-parieto electrodes

were considered of primary interest for the analysis, data for a

given trial (left or right hemifield presentation) were allocated to

the respective contra-lateral electrode set and collapsed over

hemispheres for subsequent analyses. Grand averages of event-

related potentials were computed across all trials of a given

condition and subjects for pooled electrodes O1, O2, PO3, PO4,

PO7 and PO8.

Upon the identification of time-windows of interest based on

visual inspection of the grand average EEG data (see Results) and

previous studies [19,22,27,34–36], single-trial amplitude estimates

were extracted from the EEG time-course for five discrete, non-

overlapping time-windows of interest covering the entire 2100 to

500 ms peri-stimulus period. For the EEG only data, these time-

windows consisted of the intervals 2100 to 58 ms, 60 to 120 ms,

122 to 154 ms, 156 to 370 ms, and 372 to 500 ms. As the

equivalent neuronal and behavioural responses were slightly

delayed for the combined EEG-fMRI data acquisition, the

corresponding time-windows for the EEG-fMRI data were

determined as 2100 to 58 ms, 60 to 140 ms, 142 to 188 ms,

190 to 400 ms and 402 to 500 ms. For each time-window, except

the third, the maximum amplitude on each single trial was

extracted. For the third time-window, which encompassed a

negative potential deflection, the minimum amplitude was

extracted. These time-domain features were extracted from a set

of eight parieto-occipital electrodes (O1/2, PO3/4, PO7/8, P1/2,

P3/4, P5/6, P7/8 and TP7/8), whose selection was based on the

topography of the grand average event-related potential (see

Results). Upon feature extraction and information estimation, the

information theoretic results for the EEG marginal features and

EEG-fMRI joint features were averaged across these electrodes to

yield the final information estimates.

fMRI data analysis
To identify fMRI regions of interest (ROIs), the experimental

data of each individual voxel was modelled using the standard

univariate GLM approach in SPM5 [33]. A total of 16

experimental regressors were used, corresponding to the 8 stimulus

Figure 2. Experimental Design and Paradigm. A. 262 factorial experimental design with factors informativeness (high, low) and spatial
prioritization (yes, no). On each trial of the experiment, the observer was presented a face or car stimulus, which had been manipulated according to
visual informativeness, and the observer was prompted to either spatially prioritize the stimulus display or not. The stimulus category (face or car),
which the observer was asked to discriminate, was manipulated orthogonally to the other factors. B. Single experimental trial outline. Prior to the
presentation of the stimulus, either a one-headed arrow indicated the hemifield of the subsequent stimulus presentation, or a two-headed arrow was
uninformative in this respect. The cueing arrow was shown continuously for 1 s pre-stimulus, the stimulus itself for 200 ms. The observer was asked
to respond as quickly and as accurately as possible with no restrictions on the response window. The inter-trial interval was 0–300 ms for the EEG
only and 10–12 s for the combined EEG-fMRI recordings.
doi:10.1371/journal.pone.0033896.g002
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conditions (2 coherence62 prioritization62 stimulus category

levels) and 2 presentation locations (left and right visual

hemifield). Voxel time-courses were modelled in an event-related

fashion using regressors obtained by convolving each stimulus

onset unit impulse with a canonical haemodynamic response

function and its first temporal derivative. Additional nuisance

covariates included the realignment parameters to account for

residual motion artefacts and session specific means. A mixed-

effects analysis was then implemented using a summary statistics

approach to allow inferences at the population level [37,38]:

upon estimation of the model parameters for each subject, a

subject-specific contrast image for each effect of interest was

computed. Contrast vectors for the following effects of interest

were used: all stimuli . fixation, left hemifield stimuli . right

hemifield stimuli, right hemifield stimuli . left hemifield stimuli,

high coherence stimuli . low coherence stimuli, low coherence

stimuli . high coherence stimuli and face stimuli . car stimuli.

The contrast images were then subjected to a one-sample t-test at

the second level (group level).

For the information theoretic analysis filtered and whitened

data were extracted from a sphere of 2 mm radius centred on the

subject specific peak for the relevant contrast. The subject specific

peak for each ROI was uniquely identified by visual inspection as

the coordinates of the peak of the significantly activated cluster

that was closest to the group mixed effects analysis coordinates.

The average deviation across ROIs and observers from the group

coordinates was 15 (61 SEM) mm. Upon time-course extraction,

single-trial event-related haemodynamic responses were computed

as percent signal change with respect to a baseline comprising two

pre-stimulus data points. The single-trial fMRI amplitude feature

was then determined as the maximum over the 10 s post-stimulus

period. The HRF amplitude was chosen as the only fMRI data

feature as a) it was shown to be marginally more informative

compared to the other fMRI data features in [11], b) the fMRI

data features of [11] did not vary substantially, and c) to simplify

the analysis and prohibit exponential growth in the number of

EEG-fMRI data feature combinations.

It can be argued that an inter-stimulus interval of 10–12 s is too

short to extract single-trial HRF maximum estimates without the

use of an HRF deconvolution model. However, for the current

stimulation protocol group average BOLD signal responses

returned to baseline approximately 8–10 seconds post-stimulus

and strong post-stimulus undershoots were not observed (data not

shown, but see Figure S3 for a single subject example). Further,

previous studies on the effect of the inter-stimulus interval indicate

that inter-stimulus intervals can be reduced down to 6 s with very

little change in HRF effect size [39,40]. Given these consider-

ations, extracting the single-trial HRF maximum amplitudes

without deconvolution is appropriate in the context of the current

study.

Information theoretic EEG-fMRI feature integration
The calculation of information theoretic quantities from EEG-

fMRI data features involves the estimation of probability mass

functions, which in the current context was accomplished with a

histogram approach as discussed below and in more detail in [41].

Here, only those aspects that are specific to the current

experimental paradigm will be discussed.

To elucidate the spatiotemporal information representation

signature for perceptual decisions, mutual information quantities

were formulated relating to external, internal and behavioural

state variables. Here, the external and internal variables are

equivalent to experimental manipulations, i.e. stimulus variables.

Specifically, the interest lies in a) the informativeness of the

stimulus (spatial coherence), b) the stimulus category (face or car)

and c) the observer’s attentional state, parameterized by spatial

prioritization. Let S denote the respective stimulus variable. The

following quantities were computed with respect to the different

response variable features

IN S; Rð Þ~
X

s[S

X
r[R

pN (s,r)log2

pN s,rð Þ
pN sð ÞpN rð Þ

� �
ð4Þ

where the variable R indicates either an EEG or fMRI data

feature, and

IN S; R1,R2ð Þ~
X

s[S

X
r1[R1

X
r2[R2

pN (s,r1,r2)log2

pN s,r1,r2ð Þ
pN sð ÞpN r1,r2ð Þ

� �
:
ð5Þ

where the variable R1 indicates an EEG and the variable R2 an

fMRI data feature.

Intuitively, the quantity IN S; Rð Þ in equation (4) represents the

relative distance of the observed stimulus-response joint distribu-

tion pN (s,r) from its factorized counterpart pN sð ÞpN rð Þ which

embeds the assumption of stimulus-response variable indepen-

dence for a univariate response feature. Similarly, IN S; R1,R2ð Þ in

equation (5) represents the same distance for a bivariate response

feature, here comprising an EEG and an fMRI feature.

Analogously, with respect to the observer’s behaviour, interest

lies in 1) the subject’s response time, and 2) the subject’s

categorical decision. Let B denote the respective behavioural

variable, then

IN B; Rð Þ~
X

b[B

X
r[R

pN (b,r)log2

pN b,rð Þ
pN bð ÞpN rð Þ

� �
: ð6Þ

where the variable R indicates either an EEG or fMRI data

feature, and

IN B; R1,R2ð Þ~
X

b[B

X
r1[R1

X
r2[R2

pN (b,r1,r2)log2

pN b,r1,r2ð Þ
pN bð ÞpN r1,r2ð Þ

� �
:
ð7Þ

where the variable R1 indicates an EEG and the variable R2 an

fMRI data feature. The expressions with respect to the stimulus or

the subject’s behaviour are obviously analogous. However, it has

to be noted that the marginal stimulus distribution p(s) is usually

determined by the experimenter and uniform, while the marginal

behaviour distributions p(b) are experimentally observed, resulting

in larger experimental uncertainty for the latter.

To estimate the information of a given EEG or fMRI feature or

a feature combination about each of the variables of interest, the

trials associated with this variable were sorted according to the

respective variable categories and collapsed over all other stimulus

categories. For example, to estimate IN S; R1,R2ð Þ with respect to

stimulus informativeness, trials were grouped into low stimulus

spatial coherence s1 and high stimulus spatial coherence s2, the

joint observed probability distribution pN (s,r1,r2) estimated and

the informativeness of the signal features with respect to s assessed.

An analogous procedure was carried out for the information about

the stimulus category (face vs. car) and about the observer’s

attentional state (spatial prioritization vs. no spatial prioritization).

Figure S3 depicts an empirical example of the single-trial feature

distributions for EEG and fMRI.

Information Theoretic EEG-fMRI of Decisions
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For the behavioural state variables, a similar procedure was

carried out in a slightly modified manner: first, regarding the

information about response times, all trials across all conditions

were considered, and the joint probability distribution pN (b,r1,r2)
estimated, where b represents the continuous random variable

response time. The small number of trials on which observers did

not respond within 1 s of stimulus onset (average of 10.8% per

subject) were excluded from the analysis to render the estimation

of the joint probability distribution less prone to outliers (the

histogram grid is adjusted to include the maximum and minimum

values of each response variable, hence single outliers can have

strong effects on the overall response space partitioning, which is

to be avoided).

Finally, with respect to the observer’s decision, only low

coherence trials were considered in order to decouple the

distribution of the observer’s decision as much as possible from

the physical stimulus category, i.e. pN (b,r1,r2) was estimated

where b represents the distribution of the discrete random variable

decision (face vs. car) on low spatial coherence trials. The current

experimental paradigm was not optimized to study the informa-

tiveness of features with respect to the observer’s perceptual state

as the high accuracy of performance (see psychophysical results

below) indicates that for most of the trials the physical stimulus

category and the observer’s perception matched. Future studies

using near-threshold paradigms [42] might elucidate the informa-

tiveness of joint EEG-fMRI signal features about the observer’s

perceptual state in more detail. For the current study, it follows

that the estimation of information about the observer’s decision is

more error prone compared to the other variables, as it proceeds

based on half of the number of trials.

Based on the single-trial signal feature values extracted from the

data, the respective probability distributions were estimated non-

parametrically using a two-dimensional histogram approach with

the number of bins set to floor
ffiffiffiffiffiffiffi
NC

2
p� �

, where Nc denotes the

number of trials per condition [43,44]. Entropy and mutual

information values were then computed using the respective

equations and bias corrected for limited sample sizes using a

combination of PT-, shuffling (1000 permutations)- and Gaussian

null model (1000 simulations)-correction [41]. For expressions (6)

and (7) the estimation of the marginal behavioural variable

distributions is required. This entails a three-dimensional histo-

gram analysis with the number of bins set to floor
ffiffiffiffiffi
N3
p� �

where N
denotes the total number of trials evaluated. Given the non-

Gaussianity of response time distributions [21] and the binary

nature of the perceptual decision, the pure Gaussian null model

bias correction employed for stimulus-response signal relationships

was not appropriate. Hence, the respective null models for bias

correction were based on sampling from three independent

random variables (1000 simulations), two of which were Gaussian,

representing the response signals, while the third, representing the

behavioural variable, was either a Gamma distribution (response

time null model) or a Bernoulli distribution (decisional variable

null model).

The chosen numbers of response bins are relatively high and

non-conservative, i.e. they maximize sensitivity to informative

aspects in the data while decreasing specificity (i.e. increasing the

risk of false-positives). Bias control procedures were employed to

decrease the risk of false positives. However, the uncertainty about

the absolute value of information in the current analysis is reflected

in the fact that, in the following, only between-feature information

comparisons are evaluated (i.e. the analysis focuses on relative

information estimates) and no tests are performed for the

difference of the information values from zero (i.e. the analysis

does not focus on absolute information estimates).

Statistical comparisons of the estimated information quantities

were carried out using one- or two-way repeated measures

ANOVA models with Greenhouse-Geisser correction when

appropriate, i.e. a significant result of Mauchy’s test for sphericity

followed by pairwise comparisons based on the estimated marginal

means (least-significant differences) in SPSS (SPSS Inc, Chicago,

IL).

Results

In the following, traditional psychophysical, event-related

potential and fMRI-GLM analyses are presented prior to the

information theoretic analyses. These analyses serve the following

purposes: 1) to make the reported IT results more comparable to

similar studies of perceptual decisions, 2) to determine whether the

experimental manipulations resulted in behavioural modulations,

3) to guide the identification of data features of interest, i.e. time-

windows of interest for the EEG data and regions of interest for

the fMRI data based on group results, and 4) to allow data quality

assessment and inspection prior to single-trial feature distribution

estimation.

Subsequently, the information represented in the data features

of interest about the external, internal and behavioural variables of

interest is presented successively for the EEG domain, the fMRI

domain and finally the combined EEG-fMRI domain.

Psychophysical results
Figure 3 depicts the psychophysical results for EEG only and

simultaneous EEG-fMRI experiments. In both cases, faster

median response times were observed for high informative

compared to low informative and spatially prioritized compared

to not spatially prioritized stimuli (Figure 3A). Equivalently,

response accuracies increased with stimulus informativeness and

spatial prioritization (Figure 3B). The observed behavioural

pattern was identical between the EEG only and simultaneous

EEG-fMRI experiment. However, the MRI scanner environment

lead to an overall increase in response times and decrease in

performance accuracy (mean response time across conditions: 441

(622 (Standard Error of the Mean (SEM))) ms EEG vs. 740 (638

SEM) EEG-fMRI, accuracy across conditions: 90 (62 SEM) %

correct EEG vs. 84 (62 SEM) % EEG-fMRI). Possible

endogenous sources for this baseline shift to longer response times

and lower accuracies include the noisy scanner environment, the

uncomfortable scanning position, and fatigue, as the simultaneous

EEG-fMRI data acquisition always followed the EEG data

collection outside the MR environment. Possible exogenous

sources include the lower quality of the visual projection as well

as potential signal delays due to differences in the response button

set-up and fibre optic conduction. Impairment in behavioural

performance in psychophysical tasks for inside the MR scanner

compared to outside the MR scanner have been reported

previously (see [45] for a review).

To quantitatively assess the reliability of the experimental

manipulation on the behavioural responses, a two-way repeated

measures ANOVA with factors stimulus informativeness and

spatial prioritization was carried out. For response times on correct

response trials, this ANOVA revealed significant main effects of

stimulus informativeness (EEG: F(1,12) = 39.6, p,0.001, EEG-

fMRI: F(1,12) = 17.4, p = 0.001) and spatial prioritization (EEG:

F(1,12) = 12.1, p = 0.005, EEG-fMRI: F(1,12) = 30.6, p,0.001). No

significant interaction was observed (EEG: F(1,12) = 1.1, p = 0.31,

EEG-fMRI: F(1,12) = 0.1, p = 0.81). For accuracy, significant main

effects of stimulus informativeness (EEG: F(1,12) = 54.9, p,0.001,

EEG-fMRI: F(1,12) = 146.7, p = 0.001) and spatial prioritization
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(EEG-fMRI: F(1,12) = 7.8, p = 0.01) were observed, but not for

spatial prioritization using the data recorded outside the MR

scanner (F(1,12) = 3.0, p = 0.10). There was no significant interac-

tion (EEG: F(1,12) = 0.1, p = 0.70, EEG-fMRI: F(1,12) = 2,9,

p = 0.11).

These results indicate that the experimental manipulation

reliably evoked differential behavioural responses, while both

experimental factors appear to act on independent cognitive

substrates as no significant interaction was observed.

Time course analysis of EEG data
To assess the data quality, to identify time-windows of interest,

and to select electrode regions relevant for the current study, a

traditional event-related potential (ERP) analysis was performed.

Figure 4 depicts the grand average EEG time-courses for a set of

parieto-occipital electrodes for both EEG only (Figure 4A) and

combined EEG-fMRI data (Figure 4B). Given the hemifield

presentation of the stimulus, these data were extracted from

electrodes O2, PO4 and PO8 for left hemifield trials, from

electrodes O1, PO3, and PO7 for right hemifield trials, and

collapsed according to the experimental conditions. In line with

similar previous studies [19,22], no substantial potential deflec-

tions were observed after 500 ms post-stimulus, hence the focus of

the analyses was on the 2100 to 500 ms peri-stimulus time

window.

With respect to the temporal expression of evoked EEG effects,

for both data sets and all conditions, early (,100 ms), and late

(,270 ms) positive potential deflections were identified (Figures 4A

and 4B). These positive deflections, referred to as P100 and P300,

respectively, were separated by an intermediate negative deflection

(,140 ms, N140), which was more prominent in the EEG only

data. The most obvious condition-specific effects were an increase

of the P100 amplitude with spatial prioritization and an increase of

the P300 amplitude with a decrease of stimulus informativeness.

These effects were clearly observed for both the EEG only and,

with slightly diminished prominence, for the simultaneous EEG-

fMRI data (Figures 4A and 4B). A clear stimulus condition specific

effect on the N140 deflection was not observed.

Besides these stimulus evoked effects, we note that the EEG only

data exhibited a higher degree of high frequency content than the

simultaneous EEG-fMRI data. Identical filter settings were used

during data pre-processing, so this temporal smoothing effect is

likely due to the additional processing performed on the EEG-

fMRI data (MR and BCG correction, ICA-based residual artefact

removal) and the more efficient line-noise shielding of the MR

scanner environment. Similar effects of artefact correction on the

EEG power spectrum have previously been reported [46].

With respect to the spatial expression of evoked EEG effects,

topography plots of the grand mean show that the strongest

positive deflections for the identified time-points of interest were

observed for posterior parieto-occipital electrodes (Figure 4, lower

panels). These positive deflections were clearly visible for both the

EEG only and simultaneous EEG-fMRI data. This motivated the

joint selection of electrodes O1/2, PO7/8, P7/8, PO3/4, P5/6,

TP7/8, P1/2 and P3/4 as spatial region of interest for the

subsequent information theoretic analyses of both data sets. While

the topography plots for the EEG only and EEG-fMRI data were

in general similar, some differences remain. Specifically, we

observed a smaller expression of the parietal dipole field at 140/

162 ms and a weak leftward lateralization of the dipolar field at

440 ms for the EEG-fMRI compared to the EEG only data. These

differences are likely due to residual artefacts in the EEG-fMRI

data and possibly between-session effects. However, given the

overall similar pattern of evoked effects for both data sets, the

employed EEG-fMRI artefact correction has worked satisfactorily

for the current purpose of evaluating relative information estimates

for different data feature combinations.

In summary, the observed spatiotemporal pattern of peri-

stimulus EEG responses motivated the information theoretic

analysis of data extracted from parieto-occipital electrodes in five

non-overlapping time-windows: 1) The pre- and early post-

stimulus baseline, 2) the positive deflection around 100 ms

(P100), 3) the negative deflection around 140 ms (N140), 4) the

positive deflection around 270 ms (P300) and 5) the remaining

time. These time-windows are indicated by the pattern of shaded

and unshaded areas underlying the time-courses in Figure 4.

Figure 3. Psychophysical Results. A. Response Times. Bars depict the average (mean) median response times across observers, error bars 6
standard error of the mean (SEM) B. Response accuracy. Bars depict the average (mean) median response times across observers, error bars 6
standard error of the mean (SEM). The light grey bars (EEG) represent the EEG data set recorded outside the MR scanner, the dark grey bars (EEG-fMRI)
represent the EEG data set acquired simultaneously with the fMRI data.
doi:10.1371/journal.pone.0033896.g003
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General linear model analysis of fMRI data
To identify regions of interest for the subsequent information

theoretic analyses a group level GLM analysis of the fMRI data set

was performed. The aim of this analysis was to explicitly identify

areas previously implicated in perceptual decision processes

[17,27,47].

Figure 5 and Table 1 depict the results of the group-level GLM

analysis of the fMRI data. Of all possible main effect contrasts, the

main effect of prioritization was omitted as no significant

activation was detected for this contrast at the group level. This

was potentially due to the fact that the task demand (attention

allocation) was high for both the prioritized and non-prioritized

conditions. For the contrasts of left vs. right and right vs. left

hemifield stimulus presentation, lateralized activity was detected in

the occipital cortex, while higher level cortices did not display

lateralized activity. This provides some validation for the use of

single hemispheric signal features for occipital (striate cortex,

extra-striate cortex, lateral occipital sulcus) regions of interest in

the information theoretic analyses reported below.

The set of regions identified as significantly activated (p,0.001

(cluster level, corrected)) for the high coherence vs. low coherence and

low coherence vs. high coherence included superior frontal sulcus,

pre-central sulcus, anterior cingulate gyrus, insula and frontal-eye

fields, all of which have previously been implicated in the processing

of visual perceptual decisions [16]. Additionally, given the known role

of the intra-parietal sulcus in cognitive tasks [48,49], the most active

voxels in this region for the low vs. high coherence contrast were also

identified and selected, although they were not significantly activated

at the voxel level even at p,0.001 (cluster level, corrected). Finally, as

observers performed a face vs. car categorization task, face responsive

cortex of the fusiform gyrus (fusiform face area (FFA), [50]) was

identified using the face vs. car stimulus contrast.

While not all of these regions reached family-wise error

corrected statistical significance (Table 1) at the cluster-level, their

previous implication in the perceptual decision process motivated

their selection. As the motivation of the GLM analysis was to

determine ROIs for the IT analysis, a relatively liberal threshold

was used to avoid missing informative voxels.

EEG-fMRI integrated information theoretic analysis
Temporal information representation. Figure 6 displays

the information about the external, internal and behavioural state

variables for the EEG features of interest (R). The columns of the

figure represent the different stimulus and behavioural variables of

interest (external, internal and behavioural state). For each

stimulus/behavioural variable of interest (S/B), the average

information estimate IN (S; R)=IN (B; R) across subjects 6 SEM

is depicted for each of the five time windows of interest, in light

grey for EEG only and in dark grey for the EEG-fMRI data sets.

Overall, it can be observed that the information estimates for both

EEG only and EEG-fMRI data sets, while being lower for the

EEG data acquired simultaneously with fMRI data, show similar

patterns. The lower information estimates for the EEG data

acquired inside the MR scanner reflect its lower single-trial SNR.

Figure 4. ERP analysis. A and B. EEG grand average. EEG grand average time-courses for contralateral trials pooled over electrodes electrodes O2,
PO4, PO8 (left hemifield trials) and O1, PO3, PO7 (right hemifield trials) for the EEG only (A) and combined EEG-fMRI (B) data acquisition. The pattern
of shaded and non-shaded areas reflects the five non-overlapping time-windows used for the subsequent information theoretic analyses. C and D.
EEG grand average topography. Topography plots of the entire EEG electrode set show potentials for time-points 100, 140, 260 and 440 ms post-
stimulus. The main positive deflections at all time-points were observed for a set of parieto-occipital electrodes (O2, O1, PO8, PO7, P8, P7, PO4, PO3).
doi:10.1371/journal.pone.0033896.g004
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For both data sets, the earliest time-window around stimulus

onset yielded the lowest information estimates across features for

most stimulus/behavioural variables, in agreement with the fact

that information about the stimulus can only be extracted upon

stimulus-presentation. With respect to the external state, the

information about the stimulus informativeness increased from

140 ms onwards to reach its maximum in the final time-window.

This effect was present in both data sets, although slightly

diminished and delayed for the data acquired in the MR

environment. For the EEG data acquired outside the MR scanner,

a trend for a significant effect of the time-window on the

information estimate was observed (F(4,48) = 2.24, p = 0.07). The

information estimate in the 450 ms time-window was marginally

different from the information estimate in the 0 ms time-window

(p = 0.06) and significantly different from the information estimate

in the 100 ms time-window (p = 0.04). Similarly, for the EEG data

acquired simultaneously with the fMRI data, a marginally

significant main effect of time-window was observed

(F(4,48) = 2.42, p = 0.06), while the comparisons between the fifth

and the first, second and third time windows approached statistical

significance, or were statistical significant (p = 0.08, p = 0.03, and

p = 0.02, respectively).

These results suggest that information about the stimulus

informativeness, or equivalently, the difficulty of the decision, was

represented rather late in the EEG response. This is in

concordance with the observed grand average effect of stimulus

informativeness depicted in Figure 4 and previous studies on the

task-difficulty and reaction time sensitivity of the P300 deflection

[27,34]. It should be noted that for the current experimental

design and analysis strategy, task difficulty, reaction time and P300

amplitude co-vary, and the activity dependent information

theoretic analysis discussed above cannot dissociate these three

concepts.

The other external stimulus attribute that was manipulated in

the experimental paradigm was the stimulus category. Category-

selective responses for faces compared to other stimuli have been

Figure 5. Group-level fMRI GLM results. The respective statistical parametric maps (thresholded at p,0.001 (uncorrected, voxel level), extent
threshold 15–20 voxels) are overlaid on the group MNI template.
doi:10.1371/journal.pone.0033896.g005

Table 1. Group-level fMRI results.

Region x y z z-score peak p-value

Right . Left

L. Striate Cortex 215 281 215 5.66 ,0.001

L. Extra-Striate Cortex 227 272 215 5.45 ,0.001

L. Lateral occipital sulcus 246 280 10

Left . Right

R. Striate Cortex 12 284 23 5.32 ,0.001

R. Extra-Striate Cortex 21 275 212 5.73 ,0.001

R. Lateral Occipital Sulcus 51 275 9 4.34 ,0.001

High Coherence . Low
Coherence

L. Superior Frontal Sulcus 221 27 39 4.22 0.001

L. Cuneus 215 269 12 4.29 ,0.001

L. Pre-Central Sulcus 233 12 45 3.79 0.083

Low Coherence . High
Coherence

R. Anterior Cingulate Gyrus 12 21 39 3.90 0.102

R. Insula 33 24 29 5.01 ,0.001

R. Frontal Eye Field 48 3 27 4.02 0.083

L. Frontal Eye Field 245 6 24 3.40 0.156

R. Intra-Parietal Sulcus 30 260 42 2.32 1.000

L. Intra-Parietal Sulcus 224 269 30 3.21 0.961

Face . Car

L. Fusiform Gyrus 227 251 224 5.04 ,0.001

R. Fusiform Gyrus 27 245 221 4.74 ,0.001

The MNI coordinates, z-scores of the cluster peak voxel and family-wise
corrected p-values (cluster level) are displayed.
doi:10.1371/journal.pone.0033896.t001
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described previously [19,36]. In the current study, for both EEG

data sets, the largest estimate for represented information about

the stimulus-category was observed in the 260 ms time-window,

i.e. in the interval of 150 to 370 ms post-stimulus onset. This is in

concordance with the maximal discriminative time-windows for a

similar stimulus set identified by [19]. This finding is substantiated

by a significant effect of time-window on the information estimates

for the EEG acquired outside the MR scanner (F(4,48) = 6.01,

p = 0.001) and statistically significant differences for the fourth

time window in comparison to all others (p,0.05), except the fifth

(p = 0.08). For the EEG data acquired inside the MR scanner, the

main effect of time-window was not significant (F(4,48) = 1.53,

p = 0.20). However, the information estimate for the fourth time-

window showed marginal statistically significant differences from

that in the first and second windows (p = 0.05 and p = 0.06,

respectively). The most information about the category of the

stimulus was thus observed in a time-window 150–370 ms post-

stimulus and declining thereafter.

In comparison to the information about the stimulus, the

information estimates about the internal state, i.e. the spatial

prioritization of the stimulus, were expressed earlier, with effects

from 100 ms post-stimulus onwards. This is in line with the well-

known attentional modulation effect on the P100 [35]. For the

current data sets, the largest information about the attentional

state of the observer was observed in the early time-windows of

100 and 140 ms and then, after a decrease in the fourth time-

window, again in the last time-window. For the data recorded

outside of the scanner, no statistically significant main effect of

time-window was observed, consistent with the observation that

the information estimates were similar for the time-windows from

100 ms on. The pairwise comparison between the fifth and the

first time-window was marginally significant (p = 0.05), while the

others were not. Again, for the EEG data acquired inside the MR

scanner no significant main effect of time-window was observed,

while the pairwise comparison between the fifth and the first time-

window was the most reliable (p = 0.16).

Finally, with respect to behavioural state, for the response time

the information estimates increased with time. This effect was

significant for the EEG only dataset (F(4,48) = 5.9, p = 0.001), but

not for the EEG data acquired simultaneously with the fMRI data

(F(4,48) = 1.6, p = 0.18). This pattern is reminiscent of that observed

for the information about stimulus informativeness, which is to be

expected given the longer response times for low informative trials.

Unfortunately, these two processes cannot be dissociated in the

current paradigm. For the observer’s decision, all EEG time-

windows appear equally informative. Consistent with this

observation one-way ANOVAs for both behavioural variables

and EEG data sets indicated no statistically significant effects for

both data sets (EEG only: F(4,48) = 0.40, p = 0.80), EEG-fMRI:

F(4,48) = 0.04, p = 0.99). As the estimated information values for

later time windows did not appear particularly different from those

at the earliest time-point, it may be that the number of trials was

too low or the electrode set chosen not appropriate, to detect a

decisional effect on the basis of the marginal EEG data

distributions. A possible reason for the observed larger information

estimates for the EEG-fMRI data set is of methodological nature:

while we aimed to reduce the number of outliers (see Methods), by

design, the EEG-fMRI data set is more outlier prone with respect

to behavioural variables. For our analysis this has the immediate

effect that the partition of the data feature space is coarser than if

all data feature combinations cluster in a smaller region of data

feature space. However, coarser histogram sampling is known to

entail larger estimation biases [51]. Future work on efficient outlier

Figure 6. Temporal information representation. The data are ordered columnwise according to the variables of interest, external, internal and
behavioural state. For each variable of interest, data from the five time-windows identified based on the grand average are displayed. The light bars
represent information estimates IN (S; R)=IN (B; R) from the EEG data set acquired outside the MR environment, while the dark gray bars represent
information estimates IN (S; R)=IN (B; R) from the simultaneous EEG-fMRI data recordings. All bars reflect group averages (n = 13) and the error bars
indicate the standard error of the mean.
doi:10.1371/journal.pone.0033896.g006

Information Theoretic EEG-fMRI of Decisions

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e33896



control, e.g. using the diffusion model framework [52,53] may help

to obtain better information estimates about the behavioural state.

In summary, the following picture of temporal representation of

information for visual perceptual decisions emerges: in concor-

dance with previous studies, information about the state of the

stimulus is represented in the EEG response later than that about

the subject’s attentional state. With respect to behaviour, later time

windows represent more information about the response time, in

agreement with their involvement in the representation of

uncertainty about the stimulus. The same patterns of results was

observed for both data sets, although they were more reliable for

the data recorded outside of the scanner. However, it is apparent

that the observed single-trial information differences appear larger

than those observed on the signals’ grand averages. This motivates

the future evaluation of novel methodologies for the improvement

of EEG quality in combined EEG-fMRI recordings on the single-

trial level [54].

Spatial information representation. Figure 7 displays the

information about the external, internal and behavioural state

variables for each fMRI region of interest (R). The columns of the

figure represent the different stimulus and behavioural variables of

interest (external, internal and behavioural state, S/B). For each

stimulus/behavioural variable of interest, the average information

estimate IN (S; R)=IN (B; R) across subjects 6 SEM is depicted for

each of the regions of interest identified based on the group fMRI-

GLM analysis. The regions of interest of each panel are ordered

according to an approximate occipital - frontal (or ‘‘early sensory -

higher cognition’’) gradient from left to right, in line with Figure 8.

Overall, the information of relevance for the perceptual decision

task employed in this study was spatially distributed across the

cortex. Both anterior (higher) and posterior (lower) cortical areas

were implicated in the representation of stimulus related

information, while information about the internal state was slightly

more strongly represented in posterior brain areas.

The areas primarily implicated in the representation of

information about the stimulus informativeness or task difficulty

comprise a network of frontal (insula, left frontal eye field, pre-

central), parietal (left intraparietal sulcus) and occipital-temporal

(extrastriate and fusiform) cortex. The most information about the

stimulus informativeness was represented in insular cortex, with an

estimate approaching a significant difference with respect to the

cuneus and lateral-occipital cortex (p = 0.07, p = 0.04, respective-

ly). Insular cortex has been implicated in perceptual decision

making previously (e.g. [55]). Moreover, due to the involvement of

insular cortex in a wide variety of cognitive processes (e.g.

interoception, self-recognition, emotional awareness, time percep-

tion, attention, cognitive control and performance monitoring), it

has been proposed that insular cortex plays a pivotal role in the

neurobiological representation of awareness [56]. In the current

study insular cortex appeared to be involved in the representation

of task difficulty at the single-trial level, which could potentially be

reconciled with this view, in the sense that insular cortex activity

differentiates different states of the stimulus-dependent awareness

induction.

Nevertheless, the distributed nature of the represented infor-

mation is substantiated by the absence of an overall main effect of

region of interest on the information about stimulus informative-

ness (F(12, 144) = 0.78, p = 0.67). It should be noted that most areas

were selected according to the contrast of high vs. low and low vs.

high stimulus coherence, i.e. on the basis of being informative

about stimulus coherence in the sense of a GLM contrast.

Categorical information about the stimulus was mainly

represented in a network of frontal (superior frontal gyrus, frontal

eye fields, pre-central) and parietal (intra-parietal sulcus (IPS))

Figure 7. Spatial information representation. The data are ordered columnwise according to the variables of interest, external, internal and
behavioural state. For each variable of interest, information estimates IN (S; R)=IN (B; R) from all regions of interest identified based on the GLM
group analysis are displayed. All bars reflect group averages (n = 13) and the error bars indicate the SEM. (V1: Striate Cortex, V2: Extrastriate Cortex,
LO: Lateral Occipital Complex, CU: Cuneus, FF: Fusiform Gyrus, PL: Left Intra-Parietal Sulcus, PR: Right Intra-Parietal Sulcus, PC: Left Post-Central Gyrus,
AC: Right Anterior Cingulate Cortex, IN: Right Insula, FL: Left Frontal Eye Field, FR: Right Frontal Eye Field, SF: Left Superior Frontal Gyrus).
doi:10.1371/journal.pone.0033896.g007
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regions, with some contribution from the fusiform gyrus. This

finding is in concordance with the known roles of the IPS and

superior frontal gyrus or dorso-lateral prefrontal cortex (DLPFC)

in perceptual decisions [16,17,24]. While again the information

appears to be distributed across regions of interest (F(12, 144) = 1.01,

p = 0.43), the pairwise comparison of the information estimate for

the right IPS showed significantly higher information estimates in

comparison to extrastriate visual (p = 0.03) and anterior cingulate

cortex (p = 0.04).

A pair of occipito-parietal regions encompassing the cuneus and

right parietal sulcus was most informative about the observer’s

state, i.e. the spatial prioritization of the stimulus. For the right

intra-parietal sulcus, a post-hoc pairwise comparison of the

information values across subjects reached marginal significance

with respect to the right intra-parietal (p = 0.04), right frontal eye

field (p = 0.04) and superior frontal gyrus (p = 0.06). This result is

in line with previous studies using fMRI to study spatial attention

[49,57–60]. The involvement of a dorsal frontoparietal network of

regions implicated in spatial attention in these studies was

substantiated by the absence of a significant main effect of region

of interest on information estimate (F(5.4, 64.7) = 0.74, p = 0.60).

For the behaviour related information, no significant main

effects of region of interest, or pairwise comparisons between

regions were observed for response time (F(5.0, 60.5) = 0.24,

p = 0.94). The widespread network of regions implicated as being

informative regarding response time is consistent with GLM-based

fMRI studies [61]. With respect to the subject’s decisional

variable, the largest information values were observed for the

superior frontal and the pre-central gyrus. This implicates a shift of

stimulus categorical information towards more frontal regions in

comparison to the representation of physical stimulus category

discussed above. The pairwise comparison of the superior frontal

gyrus with the insular cortex, right intra-parietal, fusiform gyrus

and cuneus reached statistical significance (p,0.05) while no

overall main effect of region of interest was observed (F(4.5,

53.7) = 1.0, p = 0.38). While it is tempting to speculate that this

indicates a more high level cognitive (rather than low level

perceptual) determination of the decision on low coherence trials,

it should be noted that physical and perceptual stimulus attributes

were not completely dissociated in the current study.

In summary, the following picture of spatial representation of

information for visual perceptual decisions emerges: with respect

to the stimulus, information about differences in stimulus

informativeness appears to be represented in a distributed manner

throughout the cortical regions studied, while information about

the (physical) stimulus category showed a maximum in parietal

cortices. Occipito-parietal areas were implicated in the represen-

tation of information about the observer’s attentional state, while

no clear pattern emerged with respect to the speed of the response.

On low coherence trials, the superior frontal gyrus was most

informative about the observer’s decision.

Spatiotemporal information representation. Figure 8

displays the spatiotemporal information surfaces related to the

external, internal and behavioural state variables for the combined

EEG (R1) and fMRI (R2) feature variables of interest. The

information estimates IN (S; R1,R2)=IN (B; R1,R2) for the

Figure 8. Spatiotemporal information representation. The data are ordered columnwise according to the variables of interest, external,
internal and behavioural state. For each variable of interest, information estimates IN (S; R1,R2)=IN (B; R1,R2) from all joint distributions of all features
of interest combinations, i.e. EEG time-windows 6 fMRI regions of interest are displayed. The tiles of the surface reflect the group averages. (V1:
Striate Cortex, V2: Extrastriate Cortex, LO: Lateral Occipital Complex, CU: Cuneus, FF: Fusiform Gyrus, PL: Left Intra-Parietal Sulcus, PR: Right Intra-
Parietal Sulcus, PC: Left Post-Central Gyrus, AC: Right Anterior Cingulate Cortex, IN: Right Insula, FL: Left Frontal Eye Field, FR: Right Frontal Eye Field,
SF: Left Superior Frontal Gyrus).
doi:10.1371/journal.pone.0033896.g008
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respective EEG time-window x fMRI region-of-interest pairings

are depicted as the tiles of the surfaces. The regions of interest of

each panel are ordered according to an approximate occipital -

frontal (or ‘‘early sensory - higher cognition’’) gradient from left to

right, in line with Figure 7 and the time windows of interest

according to an early - late gradient from bottom to top.

Each of the information data points (group average, n = 13) has

been estimated from the respective joint distribution pN (v,r1,r2),
where v represents the state variable of interest, r1 the EEG

amplitude in the respective time-window and r2 the fMRI signal

amplitude for the respective region of interest. It is hence

determined by the signal features’ joint distribution, i.e. both

dependencies between the signal features and the variable of

interest and the dependencies between the signal features (both

stimulus conditional and non-conditional) themselves.

Overall, the results implicate a complex spatiotemporal pattern

of information representation for perceptual decisions in the

human brain. For all variables and regions the information

estimates are lowest at stimulus onset. Thereafter, information can

be observed to flow and accumulate in a distributed manner across

time and brain space. The information represented about the

stimulus informativeness across all regions of interest differed

significantly over time (F(4,48) = 8.8, p,0.001), but not over space

(F(12,144.4) = 0.5, p = 0.90). For most regions, the information about

the stimulus informativeness over time showed a rebound-pattern:

following high early information estimates, a decrease was

observed for the 140 ms time-window, followed by a later

increase. A significant interaction was not observed (F(8.4, 101.7) =

0.6, p = 0.74). With respect to the regions involved at the final

time-point, both high (insula, pre-central) and low (extrastriate

visual cortex) areas showed the largest information estimates.

With respect to the perceptual decision task, the most important

question concerns the representation of information about the

stimulus category on a given experimental trial. The most

prominent finding from the spatiotemporal information surface

with respect to this variable is the parallel increase of information

in both high-level (superior frontal gyrus, frontal eye fields) and

low-level (striate, extrastriate cortex) areas over time. This is

surprising at least with respect to the low-level areas, as the

marginal distributions discussed above did not indicate this. This

effect might hence be strongly driven by the joint analysis of

occipital electrodes and fMRI regions of interest. Again, the main

effect of time-window was significant (F(2.0, 24.2) = 4.2, p = 0.02),

the main effect for region of interest and the interaction were not

(F(12, 144) = 0.7, p = 0.68, F(8.3, 99.7) = 0.9, p = 0.46, respectively).

The largest information estimate for the left frontal eye field was

observed at the latest time point considered, i.e., immediately

before the initiation of the observer’s motor response. Consistent

with previous studies implicating the superior frontal gyrus or

DLPFC in the representation of a decision variable [25,26,47,62],

this region demonstrated a build-up of information over time.

Finally, at the latest time-point, the fusiform gyrus was also

informative about the stimulus category. However, it did not show

the incremental build-up of information seen in the frontal areas.

It is tempting to speculate that the observed behaviour of

information representation for this low-level area could be

explained by recurrent feedback from higher areas [3,63].

With respect to the internal state, the information surface

indicates that early in the decision process mostly low and mid-

level cortical areas (extra-striate, the cuneus and the anterior

cingulate gyrus) were involved, while later in the decision process

both low and high level areas were implicated. Again, the main

effect of time-window was significant (F(4,48) = 7.8, p,0.001), but

not the main effect of regions of interest or the interaction

(F(5.2,68.9) = 0.8, p = 0.50, F(7.6,90.9) = 0.7, p = 0.65, respectively).

Three areas, the extrastriate visual cortex, the cuneus and the

left frontal eye field were implicated in the representation of

information about the response time throughout the decision

process, indicating a sustained process involved for response speed

in these areas. Overall, the main effect of time-window was

significant (F(4,48) = 7.9, p = ,0.001), the main effect of region of

interest and the interaction were not (F(3.1,38.3) = 0.43, p = 0.74,

F(7.5,90.5) = 0.74, p = 0.64, respectively).

Finally, comparing the representation of the decisional state to

the representation of the physical stimulus category showed some

differences: firstly, for the physical stimulus category, both high

and low level areas showed larger information estimates both early

and late during the decision process, while for the observer’s

decisional variable, this effect was stronger for the high level areas

(superior frontal gyrus and left frontal eye field). Interestingly, the

most positive deflection for some areas was observed for mid-

latency time-windows, as for example in the anterior cingulate and

the fusiform gyrus. However, given the supra-threshold nature of

the experimental design, a clear dissociation between the subjects’

perceptual state and the physical stimulus property at low spatial

coherence cannot be obtained in the framework of the current

study. Statistical evaluation revealed the usual pattern of

significant main effect of time-window (F(4,48) = 4.1, p = 0.005)

and non-significant effects of region of interest (F(4.8, 58.3) = 0.5,

p = 0.75) and interaction (F(7.7, 92.7) = 1.3, p = 0.24).

In summary, the following picture of spatiotemporal represen-

tation of information for visual perceptual decisions emerges: with

respect to the external state variables, both low and high level

cortical areas were involved in the representation of information

with a temporal rebound pattern mainly observed for the

informativeness of the stimulus. For the stimulus category, both

high and low level areas increased their information content over

time, the specific areas being complementary to those implicated

in the representation of stimulus informativeness. Regarding the

representation of information about the observer’s internal state,

additional mid-level cortical areas were of relevance. A set of three

brain regions was informative about the observer’s response time

throughout the decision process. Finally, with respect to the

categorical decision, the data indicate a stronger involvement of

high level cortical areas over time compared to the representation

of the physical stimulus category, which implicated both higher/

anterior and lower/posterior areas.

Discussion

This study supports the view that the brain represents

information about external, internal and behavioural states in a

highly distributed, parallel and dynamic manner. No single brain

region or single time-point in the first 500 ms of the perceptual

decision process was identified to be of sole relevance. In general,

most information was represented in both low (visual cortex) and

high (frontal cortex) level regions towards the time of the execution

of the decision, with the possible exception of information about

the internal state. Finally, some dissociation between the

representation of the physical stimulus category and the observer’s

perceptual interpretation could be identified with a shift of

information representation to higher cortical areas in the latter.

What does the current study add with respect to previous studies

on visual perceptual decision making? Firstly, in employing an

information theoretic framework, the emphasis of the current

study is on the information that is represented in the neuronal

response on the single-trial level, not averaged over multiple
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observations. It is hence describing the perceptual decision process

at the ecologically most meaningful level, as the brain has to make

optimal decisions upon single representation of the perceptual

evidence. Secondly, using simultaneous EEG-fMRI recordings,

the current study uses state-of-the-art brain imaging methodology

to assess the joint EEG-fMRI signal feature probability distribu-

tions. Most previous studies, with the exception of [27], employed

non-simultaneous or single modality data acquisition schemes and

hence are susceptible to between session effects, such as changes in

the observer’s vigilance, attention, or learning effects. While not a

focus of the current communication, future evaluations of the same

data set will allow to gain insight into the between-modality

dependencies that contribute to information encoding [14]. Here,

the degree of the multimodal link directly affects the degree of

synergy and redundancy a given feature combination provides

with respect to the independent variable of interest. However, at

this point, the estimation of synergy is too unreliable to be derived

by a simple histogram based probability mass function estimation

approach, which is why it is not assessed in the current study.

Nevertheless, the principled approach to the joint analysis of EEG-

fMRI data opens the door to the investigation of these important

questions. Thirdly, the current study explicitly manipulated the

observer’s internal state by adding a spatial prioritization/

attention component to the perceptual decision process. In [26],

the authors proposed a spatiotemporal diagram of the processes

involved in perceptual decision making based on an EEG-

informed analysis of fMRI data. The current study proposes the

following additions to this scheme: a) the regions implicated in

early temporal visual perception are modulated by the observer’s

internal state and represent both top-down and bottom-up factors

related to perceptual decisions and b) the implication of higher

cortical areas in the representation about the observer’s decision

emphasizes the idea of recurrent feedback loops in the entire

network.

Some notes of caution for the interpretation of the results of this

study are necessary. First and foremost, the problem of

information bias correction for EEG-fMRI experiments remains

unresolved. Reasonable precautions not to overestimate informa-

tion based on the PT-, shuffling-, and null model-correction

schemes have been taken in this study. Unfortunately, this highly

conservative subtraction procedure occasionally results in theoret-

ically impossible negative information estimates (e.g. for

IN (B; R1,R2)). Importantly, however, the focus of the current

study is on the relative information content between different

signal features and feature combinations, which is robust to shifts

in the absolute information baseline [41]. Nevertheless, future

applications of the information theoretic framework to EEG-fMRI

data sets should strive to optimize existing discrete-data entropy

estimation procedures for the specifics of continuous signals [64].

Secondly, any analysis of univariate features is sensitive to the

feature selection process. Here, a route informed by the signals’

group averages was taken. For some of the comparisons, namely

those in which the selection criteria were not orthogonal to the

comparison of interest, this entails the danger of circular analysis,

which was noted in the discussion of the results [65]. Thirdly the

focus of this study was on the amplitude of signal features in the

time-domain, and many other features (e.g., EEG frequency

components or HRF basis function parameters) are conceivable.

Additionally, only the first 500 ms of the perceptual decision

process were assessed, and often the highest information estimates

were obtained for the final time-window. The focus on the first

500 ms is partly justified by the fact that the observer’s response

has generally been made by this time-point and by the behaviour

of the grand-average ERP, which returns to approximately

baseline at this time. However, working memory and error

monitoring processes following the decision and response

presumably require information representation about the percep-

tual decision process. Future studies might elucidate the brain’s

spatiotemporal information representation profile with respect to

these. Finally, it can be argued, that other data reduction/feature

selection approaches would be more suited to the information

theoretic approach for EEG-fMRI. However, for the current study

we reasoned that, because the information theoretic approach is

not an established framework, for its validation in the context of

cognitive paradigms it is first sensibly applied to data features

which we expect to be involved in the neural representation of

decisional processes. As the literature on the neural underpinnings

of perceptual decisions is dominated by GLM analyses of fMRI

data and electrode space EEG analyses, these were the primary

features we worked with. Only if the IT framework reproduces

results comparable to earlier findings can it be sensibly suggested

and applied as a stand-alone method for EEG-fMRI analyses. This

demonstration is exactly what the current manuscript is provides.

In conclusion, the current study extends our previous

experimental validation of the EEG-fMRI information theoretic

approach to the cognitive neuroscientific domain and reinforces

the notion of brain networks being dynamically involved in the

representation of task-relevant information for perceptual deci-

sions. Finally, the information theoretic results provide a guide for

the future development of comprehensive forward models for the

analysis of simultaneous EEG-fMRI data and a constraint for the

spatiotemporal complexity these models will need to achieve.

Supporting Information

Figure S1 Eye-movement data. Eye-movement data were

recorded from 8 observer’s partaking in the combined EEG-fMRI

data acquisition using the long-range ASL 6000 Eye-tracker

(Applied Science Laboratories, Bedford, MA) at a sampling

frequency of 60 Hz. Eye-tracking data was exported using the

Eyenal software (Applied Science Laboratories, Bedford, MA) and

imported into Matlab (The Mathworks, Natick, MA). For each

subject, samples for which both the pupil circumference and the

corneal reflex were not detected were excluded from further

analysis. These samples correspond to blinks and recording setup

noise. Two observers were excluded from further analysis as the

number of invalid samples was too substantial. For the remaining

subjects, the session time-series was partitioned into experimental

trials comprising the onset of the attention cue (arrow) at

0 seconds, the onset of the stimulus at 1 second and the remaining

post-stimulus 2 second period. Mean eye-movement traces around

fixation (corrected to 0 degree of visual angle) are shown in Figure

S1.A for the stimulus conditions and S1.B for left- and right-

hemifield trials, respectively. Data are displayed for both the

horizontal and the vertical eye-position (upper panels). Addition-

ally, Figures S1.A and S1.B display the SEM across trials averaged

over observers for both horizontal and vertical eye position (lower

panels). For none of the eye-position time-series systematic

variability upon the onset of the prioritization cue (at 0 s) or

stimulus (at 1 s) could be detected, indicating steady fixation

throughout the experimental trial. It should be noted that the

centre of the peripherally presented stimulus was at 11 degrees of

visual angle. Towards the end of the time-series investigated, the

variability of the vertical eye position increased slightly, potentially

indicating eye-blinks. Based on these data it is unlikely that

observer’s did not maintain steady fixation and condition specific

effects could be explained by eye-movements.

(DOCX)
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Figure S2 Psychophysical pilot study. To establish that the

given stimulus and behavioural manipulations of the perceptual

decision task discussed in ‘Materials and Methods’ was successful

in evoking a differential behavioural response pattern (response

times and accuracy effects), a psychophysical pilot study according

to the specification in ‘Materials and Methods’ for the EEG only

recordings was conducted with 9 participants (mean age 27.3

years, range 22–37 years). Three of the participants also

participated in the main EEG-fMRI experiment approximately

four months later. The results of the pilot psychophysical study are

shown in Figure S2. As for the main experiment, an increase in

stimulus informativeness and spatial prioritization of the stimulus’

location led to faster response times and higher response accuracy.

Specifically, a two-way repeated measures ANOVA for the

median response times including all trials revealed a significant

main effect of stimulus coherence (F(1,8) = 20.6, p = 0.002), a

significant main effect of prioritization (F(1,8) = 8.3, p = 0.02) and

no significant interaction (F(1,8) = 1.9, p = 0.21). Similarly, for

median response times on correct response trials only, a significant

main effect of stimulus coherence (F(1,8) = 22.2, p = 0.002), a

significant main effect of prioritization (F(1,8) = 7.8, p = 0.02) and

no significant interaction (F(1,8) = 1.8, p = 0.21) were detected.

Finally, for response accuracy, a two-way repeated measures

ANOVA revealed a significant main effect of stimulus coherence

(F(1,8) = 22.6, p = 0.001), a significant main effect of prioritization

(F(1,8) = 3.2, p = 0.11) and no significant interaction (F(1,8) = 2.0,

p = 0.19). The paradigm was hence judged adequate for the

subsequent EEG-fMRI data acquisition.

(DOCX)

Figure S3 Feature Extraction. The information theoretic

analyses reported in the current study capitalise on the evaluation

of the probability distributions of signal features. These distribu-

tions are estimated non-parametrically from the extracted single-

trial feature data. Figure S3.A displays an example for a single

subject and shows the single-trial time-courses for the electrode

and brain regions from which the single-trial estimates were

obtained. Inspection of the plots indicates that on most individual

trials, a reliable ERP/HRF could be observed. As the last column

of averages indicates, the profiles of potential deflections across

conditions vary over electrodes, but are qualitatively similar.

Likewise, Figure S3.B displays the extracted feature distributions

across the experimental conditions. As can be seen, the

distributions for the respective features overlap. Similarly, Figures

S3.C and S3.D display the extracted feature distributions across

the experimental conditions for the fMRI modality in an

analogous manner to Figures S3.A and S3.B.

(DOCX)
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