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Abstract: Obesity is a complex neurobehavioral disorder that has been linked to changes in brain struc-
ture and function. However, the impact of obesity on functional connectivity and cognition in aging
humans is largely unknown. Therefore, the association of body mass index (BMI), resting-state network
connectivity, and cognitive performance in 712 healthy, well-characterized older adults of the Leipzig
Research Center for Civilization Diseases (LIFE) cohort (60-80 years old, mean BMI 27.6 kg/ m?+42SD,
main sample: n = 521, replication sample: n = 191) was determined. Statistical analyses included a multi-
variate model selection approach followed by univariate analyses to adjust for possible confounders.
Results showed that a higher BMI was significantly associated with lower default mode functional connec-
tivity in the posterior cingulate cortex and precuneus. The effect remained stable after controlling for age,
sex, head motion, registration quality, cardiovascular, and genetic factors as well as in replication analyses.
Lower functional connectivity in BMI-associated areas correlated with worse executive function. In addi-
tion, higher BMI correlated with stronger head motion. Using 3T neuroimaging in a large cohort of healthy
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older adults, independent negative associations of obesity and functional connectivity in the posterior
default mode network were observed. In addition, a subtle link between lower resting-state connectivity in
BMI-associated regions and cognitive function was found. The findings might indicate that obesity is asso-
ciated with patterns of decreased default mode connectivity similar to those seen in populations at risk for

Alzheimer’s disease. Hum Brain Mapp 38:3502-3515, 2017.

©2017 Wiley Periodicals, Inc.
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INTRODUCTION

Obesity is a complex neurobehavioral disorder resulting
from excessive energy intake and insufficient energy
expenditure. It has been associated with abnormal func-
tionality of homeostasis brain networks [Grill et al., 2007]
and some studies also reported differences in higher cog-
nitive functions such as reward evaluation [Amlung et al.,
2016; Stice et al., 2008], executive functions [Benito-Leon
et al., 2013; Gunstad et al., 2007] and learning and memory
[Cheke et al., 2017; Smith et al, 2011], yet underlying
mechanisms are far from understood.

Using task-based functional MRI (fMRI), several studies
revealed differences between lean and obese participants in
regional activation patterns during the processing of reward-
ing food and non-food stimuli [Rothemund et al., 2007; Stice
et al., 2008; Stoeckel et al., 2008]. In addition, using resting-
state fMRI, obesity has been linked to selective changes in
functional connectivity between brain areas, including atten-
tional and default mode resting state networks (RSN) [Garcia-
Garcia et al., 2013; Kullmann et al., 2012]. However, previous
findings of obesity-related changes in functional connectivity
are mixed [Kullmann et al, 2012] and mostly based on
small sample sizes in young participants using non-
standardized experimental conditions [Hsu et al, 2015;
Tregellas et al., 2011]. Recently, several studies have associ-
ated RSN connectivity strength with individual differences
in cognitive performance such as executive function [Gor-
don et al., 2015; Reineberg et al., 2015] and memory [Sala-
mi et al., 2016; Wang et al, 2010]. Thus, determining
changes in functional connectivity that are attributed to
obesity might help to better understand the link between
body weight and cognition in humans.

In the present study we therefore aimed to investigate the
association of obesity with RSN connectivity in a large
population-based cohort of healthy older adults. We hypothe-
sized that a higher BMI would be associated with changes in
obesity-related RSN such as frontal, attentional, or default
mode networks. As functional connectivity has been linked to
differences in cognition we also determined if changes in RSN
connectivity would correlate with cognitive performance.

METHODS
Participants

All participants took part in the LIFE-Adult-Study [Loef-
fler et al., 2015] and were randomly selected, community-

dwelling volunteers older than 60 years (see Fig. 1 for
details on sample selection). In total, 712 subjects were
included, thereof 521 subjects in the main sample (sample
1) and another 191 subjects in the replication sample (sam-
ple 2) (see Table I for demographics). Exclusion criteria
were stroke, cancer treatment in the last 12 months, neuro-
radiological findings of brain pathology, intake of centrally
active medication and a score below 25 in the Mini Mental
State Examination. All subjects underwent medical exami-
nation, anthropometric measurements, MRI assessment,
and neuropsychological testing.

Standard protocol approvals and patient consents

The study was approved by the institutional ethics
board of the Medical Faculty of the University of Leipzig
and all participants signed an informed consent form.

Neuroimaging

Brain imaging was performed on a 3T Siemens Verio
Scanner with a 32 channel head coil. T1-weighted images
were acquired using generalized autocalibrating partially
parallel acquisition technique [Griswold et al., 2002] and
the Alzheimer’s Disease Neuroimaging Initiative standard
protocol with the following parameters: inversion time,
900 ms; repetition time, 2.3 ms; echo time, 2.98 ms; flip
angle, 9°; band width, 240 Hz/pixel; image matrix, 256 X
240; 176 partitions; field of view, 256 X 240 X 176 mm?;
sagittal orientation; voxel size, 1 X 1 X 1 mm?; no
interpolation.

T2*-weighted functional images were acquired using an
echo-planar-imaging sequence with the following parame-
ters: repetition time, 2 s; echo time, 30 ms; flip angle, 90°%;
image matrix, 64 X 64; 30 slices; field of view, 192 X 192
X 144 mm?, voxel size of 3 mm X 3 mm, slice thickness of
4 mm, slice gap of 0.8 mm; 300 volumes; total acquisition
time, 10:04 minutes. For two participants only 299 volumes
and for one participant only 215 volumes were acquired.
Preprocessing was implemented in a reproducible pipeline
using nipype [Gorgolewski et al., 2011] which is available
to the public at https://github.com/fBeyer89/LIFE_ rs_
ICA_preprocessing.

After removal of the first five volumes in order to allow
the magnetization to reach steady-state, rigid body,
boundary-based coregistration with 6 degrees of freedom
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Figure I.

Flow chart of the study illustrating the exclusion
matched sample, and sample 2.

of the functional scan to the anatomical image, as well as
motion and EPI distortion corrections were calculated and
jointly applied in a subsequent step to each volume of the
functional scan. Scans were slicetime-corrected and non-
linearly transformed to MNI space using ANTS Symmetric
Normalization (SyN) registration algorithm [Avants et al.,
2011], resliced to 3 mm isotropic voxels and smoothed
with a gaussian kernel of 6 mm full-width-at-half-
maximum. Frame-to-frame head motion was estimated by
calculating framewise displacement (FD) [Power et al.,
2012]. We excluded 12 participants from sample 1 and 6

criteria for the selection of sample |, motion-

participants from sample 2 because of gross motion (maxi-
mal FD >3 mm). Mean FD was calculated across volumes
and used as a covariate to correct for head motion in sta-
tistical analysis.

All normalized functional images were visually checked
and compared with the MNI template which led to the
exclusion of 15 and four participants from sample 1 and 2
respectively because of major registration issues (large
ventricles, atrophy, or calcified falxes).

A mean functional image was created for the remaining
521 subjects from sample 1 and 191 subjects from sample 2

TABLE I. Demographic characteristics of sample | and 2

Sample 1 Sample 2
n = 521 n =191
(230 women) (96 women)

Age (y)

BMI (kg/m?)

Mean FD (mm)

qr

APOE status (% e4 carriers/non-e4 carriers/missing)
Arterial hypertension (% yes)

Diabetes (% yes)

Education (% no SS-LD/SS-LD/advanced SS-LD/university-entrance degree)

CES-D (score)/missing
Smoker (% current/previous/never/missing)

70.1 + 3.8 (60-79)
275+4.1 (16.8-41.4)
0.27 = 0.12 (0.05-0.87)
0.95 + 0.015 (0.86-0.97)
20.7/79.3/-
60.7
15.7
0.8/52.6/7.7/39
9.3+5.5 (0-34)/—
6.5/32.8/60.7 /-

68.8+ 5.4 (60-82)
28.1+4.5 (18.6-43.9)
0.28 + 0.14 (0.06-0.92)
0.93 * 0.02 (0.79-0.96)
7.3/27.2/65.4
58.6
15.7
1.6/654/11.5/21.5
112 + 5.6 (0-29)/47
8.4/29.8/37.7/24.1

Data are mean * SD (minimum-maximum).

BMI, body mass index; FD, framewise displacement; g,, registration quality; APOE e4, apolipoprotein E epsilon 4 allele; SS-LD, second-
ary-school leaving degree; CES-D, Center for Epidemiologic Studies Depression Scale.
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using the first volume of each subject’s time series. A reg-
istration quality index g, was calculated as the spatial cross
correlation of each of the subject’s first volumes with the
mean image and later used as a covariate describing the
accuracy of spatial normalization from functional to ana-
tomical subject and MNI space.

To assess RSN, we applied independent component
analysis (ICA) which has been shown to reliably identify
RSN across subjects [Damoiseaux et al., 2006] using the
GIFT toolbox [Calhoun, 2004]. A high number of n = 75
components was chosen because such decompositions
have been previously shown to yield detailed and non-
overlapping components [Abou-Elseoud et al., 2010; Kivi-
niemi et al., 2009]. Independent components were selected
as reliable RSN if their spatial cross-correlation with pub-
licly available templates [Allen et al., 2011] was higher
than 0.4 and they contained mainly low-frequency fluctua-
tions measured with a power ratio above 3 [Robinson
et al., 2009]. Subject-specific component maps were calcu-
lated using the GICA-approach implemented in the GIFT
toolbox [Erhardt et al., 2011].

Gray matter volume (GMYV) probability maps were
derived from T1-weighted scans using voxel based mor-
phometry in SPM 8 (www fil.ion.ucl.ac.uk/spm) and aver-
aged within thresholded ICA component maps to correct
for local gray matter volume differences within the resting
state networks.

Total intracranial volume, cortical white matter volume
as well as cortical and subcortical gray matter volumes
were derived using FREESURFER (http://surfer.nm.mgh.
harvard.edu/) and used to assess and correct for associa-
tions of global brain volume measures with BML

Neuropsychological Testing and Confounder
Definition

Neuropsychological testing was performed using the
CERAD-Plus test battery [Morris et al., 1989] and included
the trail-making test (TMT) part A and B, semantic and
phonemic verbal fluency and verbal memory. The trail-
making test is an indicator of speed of cognitive process-
ing and executive functioning [Sanchez-Cubillo et al.,
2009] while phonemic and verbal fluency tests measure
executive and verbal reasoning [Van Der Elst et al., 2006].
In the verbal memory test, learning was defined as the
sum of 3 consecutive learning trials, recall was defined as
the sum of correctly recalled words after a delay, in which
participants performed a nonverbal task, and recognition
was defined as the number of correctly recognized words
of a list of 20 mixed words presented afterwards. Test
scores were z-transformed and combined to create com-
posite scores for executive function, memory performance
and processing speed [Kerti et al., 2013; Van de Rest et al.,
2008]. This allowed us to reduce number of comparisons
and investigate specific cognitive domains. Composite
scores for executive function, memory performance and

processing speed were calculated as follows [Kharabian
Masouleh et al., 2016]: executive functions = [z_phonemic
fluency + z_semantic fluency +z_TMT(part B+ part A)/
part A]/3; memory = (z_sum_learning b z_recall p z_rec-
ognition)/3; processing speed = —z (TMT [part A]).

Arterial hypertension was defined as systolic blood
pressure >160 mm Hg, diastolic blood pressure >95 mm
Hg or diagnosis of hypertension or use of antihypertensive
medication [Biessels et al., 2006]. Diabetes and hyperlipid-
emia were binarily defined based on self-reported diagno-
sis or medication intake. Four levels of education were
defined: no secondary-school leaving degree (SS-LD),
secondary-school leaving degree (corresponding to 8 years
of school), advanced secondary-school leaving degree (cor-
responding to 10 years of school) and university-entrance
degree (corresponding to 13 years of school). Depression
score was measured using the Center for Epidemiologic
Studies Depression Scale (CES-D) [Radloff, 1977]. Smoking
status was defined using self-reported information as nev-
er smoker, previous smoker or current smoker. Genotyp-
ing of the APOE allele status (E2, E3, E4) was performed
on a Roche Lightcylcer 480 according to the method of
Aslanidis [Aslanidis and Schmitz, 1999]. APOE-e4 carrier
status was then defined as carrying none (0) or at least
one APOE-e4 allele (1).

Statistical Analysis

Statistical analysis of the association between obesity and
RSN functional connectivity was performed using a multi-
variate backward model selection approach [Allen et al,
2011] implemented in the MANCOVAN toolbox (http://
mialab.mrn.org/software). The primary design matrix con-
tained BMI, age and sex (Model 1). In a second model we
additionally added head motion measured by mean FD
(log-transformed) and registration quality measured by q,
(Fisher-Z-transformed) as covariates (Model 2). In order to
correct for multiple comparison across 18 different RSN
that were identified in our sample, the significance level for
model selection was set to 0.05/18 = 0.0028.

After covariate selection, univariate voxelwise testing of
multiple regression models was performed as imple-
mented in the MANCOVAN toolbox and results were cor-
rected for multiple comparisons within components using
false discovery rate correction (FDR) with « <0.05 [Benja-
mini and Hochberg, 1995].

In networks significantly associated with BMI we inves-
tigated intra-network connectivity using mean cluster con-
nectivity and network eigenvariate (EV) as proposed
previously [Glahn et al., 2010]. Statistical analysis on con-
nectivity measures was performed using multiple regres-
sion in SPSS 22.0 (IBM). Age, sex, APOE-e4 status,
hypertension, diabetes, education, smoking status, and
depression score were used as confounding variables.

Associations between BMI, BMI-associated differences in
functional connectivity and cognitive performance were
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Figure 2.
Correlation of body mass index (BMI) and mean framewise dis-
placement (FD) in the motion-matched sample (green) com-
pared with sample | (blue): the strong positive correlation
between BMI and mean FD has clearly been reduced. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

explored without correction for multiple comparisons
using bivariate and partial Pearson’s correlations.

Confirmatory analysis

In a replication approach we investigated a second sam-
ple including 191 participants who had not been used in
any prior analysis and had complete information of BMI,
arterial hypertension, diabetes and education (sample 2).
Subjects included in sample 2 were on average younger
(independent samples t-test, P = 0.005) while exhibiting a
comparable age range, and similar distributions of sex,
BMI, mean FD, hypertension and diabetes (independent
samples t-tests, Chi-squared test, all P>0.1) (see Table I
for details). Using FSL’s DUAL REGRESSION we calculat-
ed subject-specific spatial maps for sample 2 based on com-
ponents found in the main analysis of sample 1. We
extracted the EV of those components that were significant-
ly associated with BMI and calculated a multiple linear
regression using a model containing age, sex, BMI, diabetes,
arterial hypertension, and education. APOE-e4 status,
depression score and smoking status were not available for
all participants in the replication sample. Additionally, we
estimated a voxelwise multiple regression model with the
same covariates using permutation testing implemented in
FSL’s RANDOMISE. Results were corrected for multiple
comparisons using FDR correction with « < 0.05.

To overcome the collinearity between BMI and head
motion which was noticed during preprocessing, we sepa-
rated participants from sample 1 into three BMI-groups

(BMI<25 kg/m? 25 kg/m’<BMI<30 kg/m?
BMI>30 kg/m” and matched participants from each
group for mean FD with an uncertainty of 0.02 mm. This
yielded a sample of 186 participants in which BMI and
mean FD no longer correlated (motion-matched sample,
see Fig. 2). The resulting sample did not significantly differ
from the original sample 1 in age, sex, BMI, APOE-e4 sta-
tus, hypertension, diabetes, education, depression score,
and smoking status (independent samples t-tests, Chi-
squared test, all P> 0.1).

In order to verify that our results were independent of
the number of independent components used, we repeated
the analysis in sample 1 with 20 instead of 75 components.

RESULTS
RSN Components

Using independent component analysis, we identified 18
RSN components that belong to six commonly described net-
works, that is, attentional, default mode, frontal, sensorimo-
tor, auditory, and visual network (see Fig. 3 for overview).

Multivariate Results

Multivariate backward model selection analysis of mod-
el 1 (including BMI, age, and sex) detected BMI as a signif-
icant predictor of functional connectivity strength in the
default mode network components 29 and 42, and in the
visual network component 25 (see Fig. 4). Backward model
selection of model 2 including motion and registration
parameters (i.e., FD and g,) added g, as a significant pre-
dictor for the components 29, 42, and 25.

Univariate Results

Univariate analysis using model 1 showed that higher
BMI was significantly associated with decreased functional
connectivity within the spatial maps of default mode com-
ponents 29 and 42 (P <0.05, FDR-corrected, adjusted for
sex), more specifically in clusters located in the posterior
cingulate cortex (PCC) and precuneus in component 29,
and in the precuneus and left parietal cortex in component
42 (see Fig. 5).

We also found a BMI-associated increase of connectivity
in visual network component 25. This cluster was located
in the right precuneus and left lingual cortex (see Fig. 6).

For model 2 significant BMI effects on voxelwise net-
work connectivity were again found in the PCC and pre-
cuneus within the default mode component 29 (P <0.05,
FDR-corrected, adjusted for sex and g,). Effects in compo-
nent 42 did not survive FDR-correction.

Adding q, as a covariate into the model for visual com-
ponent 25 did not change the univariate result showing
positive correlations with BML
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Figure 3.

Spatial maps (SM) of the 18 components identified as resting state networks: SM are plotted as
t-statistics thresholded at t> |2 and displayed at the three most informative slices. Coordinates
refer to the maximal t-value in MNI-space coordinates. [Color figure can be viewed at wileyonli-

nelibrary.com]

Analysis of Intra-Network Connectivity

further known confounders, we used a multiple linear
regression on the intra-network functional connectivity of

In order to analyze if the association of BMI and posteri- the spatial maps and corrected for age, sex, APOE-e4
or default mode network connectivity was independent of status, diabetes, hypertension, education level, smoking
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Results from the multivariate analysis on |8 identified resting state network (RSN) components
using Model | including BMI, age, and sex (o < 0.0028). Colorscale indicates log(P), white cells
indicate that covariates were removed from the full model during backward selection. [Color fig-

ure can be viewed at wileyonlinelibrary.com]

status, and depression score. Accordingly, BMI was sig-
nificantly negatively associated with intra-network connec-
tivity of default mode component 29, even after adjusting
for confounders (f§= —0.148, P 0.001, Rgdjusted =0.075,
see Table II and Fig. 7). Age, smoking and APOE-e4 status
were all negatively associated with intra-network connec-
tivity (Age: f§=-0.14, P 0.002, smoking status:
f=-0.14, P = 0.001, APOE-e4 status: f= —0.1, P = 0.018),
while hypertension, diabetes, education, and depression
score did not contribute significantly to the model (see
Table II).

This result remained stable when additionally including
HbAlc as a covariate (N = 516, f= —0.14, P = 0.002, cor-
recting for HbAlc, age, sex, APOE-e4 status, diabetes,
hypertension, education level, smoking status, and

depression score) and correcting for presence of hyperlip-
idemia (N = 521, f=—0.15, P = 0.001, correcting for age,
sex, APOE-e4 status, hyperlipidemia, arterial hypertension,
diabetes, BMI, education level, smoking status, and
depression score). We also included mean GMV within
component 29 and total cortical GMV into the model to
correct for possible effects of reduced GMV in the region
of interest and globally, which did not attenuate the
results (f = —0. 145, P = 0.001, linear regression on EV of
posterior DMN 29, corrected for age, sex, diabetes, hyper-
tension, APOE-e4-status, depression score, smoking-status,
education, mean GMV in DMN 29, and mean global
GMYV). Total mean GMV was significantly associated with
BMI (partial correlation coefficient p=—0.12, P = 0.005,
corrected for age and sex) while mean GMV within

Figure 5.

Higher BMI is associated with decreased posterior default mode
network connectivity. A: Decreased functional connectivity in
default mode network component 29 is found in clusters in the
posterior cingulate cortex (PCC) and precuneus. Blue color
map represents log(P)-values of significant voxels (P < 0.05, FDR
corrected, using model |: main BMI effect correcting for sex).
MNI coordinates of peak voxel in component 29 in the PCC is
(—3, —33, 27). Red color map represents the spatial map of the

component. B: Decreased functional connectivity in default
mode network component 42 is found in clusters in the precu-
neus and parietal cortex. Blue color map represents log(p)-val-
ues of significant voxels (P < 0.05, FDR corrected, using model
I: main BMI effect correcting for sex). MNI coordinates of peak
voxel in the precuneus: (—3, —54, 26). Red color map repre-
sents the spatial map of the component. [Color figure can be
viewed at wileyonlinelibrary.com]
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Figure 6.

Association of higher BMI with increased connectivity: In visual
network component 25 higher BMI is associated with increased
functional connectivity. Green color map represents log(P)-val-
ues of significant voxels (P < 0.05, FDR corrected, using model
I: main BMI effect correcting for sex). MNI coordinates of peak
voxel is (15, —45, 22). Red color map represents the spatial
map of the component. [Color figure can be viewed at wileyon-
linelibrary.com]

component 29 was not (p = —0.023, P = 0.6, corrected for
age and sex). BMI was not significantly associated with
intra-network connectivity of the visual component 25
when correcting for age, sex, APOE-e4 status, diabetes,
hypertension, education level, smoking status, and depres-
sion score (8 =0.056, P = 0.22, R? =0.027).

adjusted

Associations with Cognitive Performance

Higher BMI was significantly correlated with lower
executive performance (r=—0.11, P = 0.015), even when
adjusting for age and sex (partial correlation coefficient
p=—0.10, P = 0.02). In addition, higher mean cluster con-
nectivity in the PCC of component 29 was associated with
higher executive function (p =0.10, P = 0.03, corrected for
age and sex) although the association became non-

TABLE Il. Results of multiple regression performed on
EV of DMN component 29 (standardized regression

coefficient B, t-value t, and P-value) (Rl ccq= 0.074)

p t P
BMI —-0.15 —3.35 0.001
Age -0.14 -3.16 0.002
Sex —0.04 —-0.78 0.44
APOE—e4 status -0.1 —2.37 0.02
Arterial hypertension 0.04 0.81 0.42
Diabetes —0.034 —0.78 0.44
Education 0.009 0.19 0.84
Smoking status -0.14 -3.21 0.001
Depression score —0.06 -1.23 0.21

EV DMN 29 residuals (unitless)

=10 -5 0 b 10 15
BMI residuals in kg/m?

Figure 7.

Association of higher BMI and reduced connectivity after con-
trolling for genetic and environmental confounders: Linear
regression of BMI and intra-network functional connectivity of
default mode network component 29, controlling for age, sex,
APOE-e4 status, hypertension, diabetes, education, smoking sta-
tus, and depression score. [Color figure can be viewed at
wileyonlinelibrary.com]

significant when additionally controlling for BMI
(p=0.075, P = 0.09). We also observed lower memory per-
formance to be associated with lower PCC cluster connec-
tivity (r=0.11, P = 0.009); however, without reaching
statistical significance when correcting for age and sex
(PCC-ROL p = 0.06, P = 0.17).

Confirmatory Analyses

In the replication sample, we found a significant associa-
tion of higher BMI and lower intra-network connectivity
of DMN 29¢.mpie2 (BMI: = —0.29, P <0.001, with age, sex,
diabetes, arterial hypertension, and education as covari-
ates). In an additional voxelwise analysis we found BMI-
associated connectivity reductions to be located mainly in
precuneus (significant at P <0.05, whole brain FDR cor-
rected, see Fig. 8) correcting for age, sex, diabetes, arterial
hypertension, and education.

We observed in part strong effects of the head motion
parameter mean FD on RSN connectivity in the multivari-
ate analysis and found BMI and mean FD to be highly col-
linear. We, therefore, conducted a sensitivity analysis in a
motion-matched sub-sample. Here again, according to lin-
ear regression, higher BMI correlated significantly with
lower mean connectivity in the cluster previously identi-
fied in the PCC (8= —0.18, t = —2.48, P = 0.014, correct-
ing for age, sex, APOE-e4 status, diabetes, hypertension,
education level, smoking status, depression score, and
mean FD). Mean FD was also negatively correlated with
reduced connectivity (f= —0.16, t = —2.1, P = 0.03).
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Figure 8.
In the replication sample 2, higher BMI is associated with
decreased connectivity of dual-regression derived DMN 29. Blue
color map represents p-values of significantly associated voxels
(P<0.05, FDR corrected, adjusted for age, sex, hypertension,
diabetes, and education). RSN spatial map is shown in red. [Col-
or figure can be viewed at wileyonlinelibrary.com]

We also repeated the ICA with a model order of 20 and
found higher BMI to be associated with reduced precu-
neus and PCC connectivity in a default mode network
component (data not shown), which is in line with our ini-
tial finding and shows that the result does not depend on
the number of extracted independent components.

DISCUSSION

In this study, we detected significant negative associa-
tions of BMI and DMN connectivity in the PCC and precu-
neus using 3T resting-state fMRI in a large cohort of
healthy older adults. These findings were independent of
age, seX, obesity-associated co-morbidities and other con-
founders, and remained stable in replication analyses. In
addition, posterior default mode connectivity correlated
with executive function.

Functional Connectivity and Obesity in Aging

Our main finding is a reduction of posterior default
mode connectivity with higher BMI. This effect was found
in the main sample (n = 521), in a ROI-based analysis of a
motion-matched subgroup (n = 186), as well as in an inde-
pendent replication sample in the same age range (n =
191), underlining the robustness of the association.

Our finding is in line with and extends a recent report
in which lower DMN connectivity was associated with
higher BMI in a young sample but no differences of DMN
functional connectivity in siblings with differing obesity
status were found, indicating the connectivity differences

to be subsequent, not prior to the development of obesity
[Doucet et al., 2017]. In addition, previous studies on car-
diovascular risk factors in middle-aged samples have
linked insulin resistance and type 2 diabetes to alterations
in default mode connectivity [Buckner et al., 2008; Kenna
et al.,, 2013; Musen et al., 2012]. Notably, decreased default
mode connectivity has also been reported in young indi-
viduals at risk for Alzheimer’s disease (AD) such as APOE
e4-carriers, and in older MCI patients [Sheline et al., 2010;
Sorg et al., 2007]; moreover several studies suggest that
modifiable AD risk factors are linked to alterations in
DMN connectivity [Buckner et al., 2008; Kenna et al., 2013;
Musen et al., 2012]. Thus, our results suggest an associa-
tion of obesity and connectivity changes similar to those
seen in populations at risk for AD, and support the view
of obesity being a risk factor for dementia [Beydoun et al.,
2008; Kivipelto et al., 2005].

This view, however, is controversially discussed. While
a recent meta-analysis reported that being obese below the
age of 65 increased the risk of dementia and being obese
above this age lowered dementia risk [Pedditizi et al.,
2016], it was also reported that the incidence of dementia
decreased with increasing BMI [Qizilbash et al., 2015] and
that weight loss in mid-age independent of weight status
was associated with increased risk of dementia three to
four decades later [Strand et al., 2017]. Selection bias and
reverse causation have been proposed to contribute to
these contradictory results: obesity is strongly associated
with cardiovascular risk factors which are themselves risk
factors for dementia [Skoog et al., 1996] as well as overall
mortality risk [Stevens et al., 1998] and weight loss 10-20
years before onset of dementia is well known [Knopman
et al., 2007]. Our sample solely comprised healthy, cogni-
tively intact older adults with a narrow age range between
67 (1. quartile) and 72 (3. quartile). Half of the sample was
younger than the postulated reverse point of 70 years
[Gustafson et al., 2009] and only very few were consider-
ably older. This leads us to believe that our sample repre-
sents subjects vulnerable to the adverse effects of obesity
on cognition who have not yet experienced prodromal
dementia-related weight loss. Other studies reporting BMI
to be associated with gray matter volume decline and cog-
nitive deficits in old-age [Kharabian Masouleh et al., 2016;
Walther et al.,, 2010] support this association of obesity
and brain damage in older subjects.

In line with the literature, we found APOE-4 genotype
to be independently associated with precuneus DMN con-
nectivity [Sheline et al., 2010]. Opposed to a previous find-
ing in individuals above the age of 70 years [Backman
et al., 2015], there was no significant interaction of BMI
and APOE-4 status. The modifiable risk factor obesity and
the genetic risk factor APOE-4 might thus be associated
with similar patterns of decreased posterior DMN connec-
tivity, hinting to a common mechanism such as dysregu-
lated lipid metabolism [Chouinard-Watkins et al., 2015;
Romas et al., 1999; Sheline et al., 2010].
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Our results remained significant when correcting for
age, sex, obesity-associated co-morbidities arterial hyper-
tension and diabetes, and other confounders. This indi-
cates that the association is not primarily due to
conditions frequently associated with obesity and known
to affect brain structure and function [Jennings and Zan-
stra, 2009; Moheet et al., 2015].

We found the association of BMI and reduced posterior
default mode connectivity to be independent of GMV
reductions in the context of pathological aging and did not
observe an association of DMN GMV with BML In the lit-
erature, mixed associations for BMI and precuneus/poste-
rior cingulate cortex gray matter volume have been
reported [Willette and Kapogiannis, 2015], leaving the
interplay of gray matter volume and functional connectivi-
ty strength a matter of debate. Functional connectivity
within the DMN is thought to be based on white matter
connections between its anterior and posterior regions
[Greicius et al., 2008] and decreased functional connectivi-
ty could thus be a result of decreased white matter fiber
integrity. Obesity has been shown to be associated with
reduced indices of white matter microstructure within the
limbic system and in other regions [Kullmann et al., 2015]
and recently higher BMI was associated with decreased
white matter volume in a stereotactic white matter mask
of the DMN [Figley et al., 2016]. Upcoming longitudinal
studies thus need to further disentangle if obesity-
associated white matter microstructural changes within the
DMN precede or follow observed obesity-associated
decreases in functional connectivity.

Concerning further associations of BMI and functional
connectivity, only the visual network was found to be
associated with higher BMI, but the extent of increased
connectivity was very limited. In our large cohort, we did
not observe previously reported increased putamen and
insula connectivity [Hogenkamp et al., 2016], decreased
insula—anterior cingulate cortex (ACC) connectivity
[Moreno-Lopez et al., 2016], increased salience network
connectivity [Figley et al., 2016; Garcia-Garcia et al., 2013],
reduced temporal lobe network connectivity [Kullmann
et al., 2012] or increased DMN connectivity [Kullmann
et al.,, 2012; Legget et al., 2016; Tregellas et al., 2011] with
higher BMI. Similar to our results, one study reported
reduced precuneus connectivity for obese compared with
lean participants, although the results might have been
confounded by the significant age difference between
groups [Geha et al., 2016]. In a recent study with 496 par-
ticipants, DMN cohesiveness has been shown to be
reduced in young, obese compared with lean individuals,
with highest effect size found for the posterior DMN com-
ponent which is in line with our results. A siblings analy-
sis suggested this to be a consequence rather than a
driving factor of obesity [Doucet et al., 2017].

Taken together, our results only partly replicate these
findings obtained in young participants (age <40 years);
this might be due to an interaction of obesity and aging in

the brain potentially involving changes in eating behavior
[Elsner, 2002] and levels of circulating hormones such as
leptin [Isidori et al., 2000; Moller et al., 1998]. Also, the
negative effects of obesity on the brain are probably not
detectable at young age but accumulate proportionally to
“obesity pack-years” [Abdullah et al., 2011].

The only study investigating obesity and resting state
connectivity in aged individuals showed that lower DMN
activity during a finger-tapping task in older obese com-
pared with lean participants predicted better working
memory performance 12 months later [Hsu et al., 2015].
The authors argued that functional connectivity of the
DMN might be a neuroprotective mechanism of higher
BMI. Considering the mean sample age of 75 years and
the steeper decline in cognitive scores within the normal
weight group, we would rather consider this to be an
effect of reverse causation. Interestingly, baseline cognitive
scores were significantly lower for the overweight and
obese groups compared with the lean group which fits to
the notion of higher BMI exerting negative effects on the
brain in mid-to-late-life.

Cognitive Performance

We observed BMI-associated connectivity changes in a
region which is considered to be affected early during cog-
nitive decline [Sorg et al., 2007]. Our results show that
both higher BMI and lower mean connectivity in the BMI-
associated cluster within the PCC of DMN 29 correlated
with slightly worse performance in the memory and more
so in the executive domain. Several studies indicate that
the DMN plays an important role not only in episodic
memory, but also in executive function, as its successful
deactivation is predictive of performance in attention and
working memory tasks [Daselaar et al., 2004; Wang et al.,
2007; Weissman et al., 2006]. Thus, we speculate that a
higher BMI in older age might exert negative effects on
posterior DMN connectivity, which eventually translate
into subtle cognitive impairments. Future longitudinal
studies are needed to further test this hypothesis.

Effects of Head Motion

As motion has been shown to exert massive and wide-
spread effects on connectivity [Power et al., 2015] we
aimed to account for motion by (1) adding mean FD as a
covariate into the multivariate backward model selection
and by (2) selecting a sub-sample in which motion and
BMI were not correlated. Notably, BMI was retained in the
backward model selection process even after including
mean FD as a covariate and it remained a significant pre-
dictor of reduced PCC intra-network connectivity in the
motion-matched sample. This leads us to conclude that
there is an association of BMI with posterior default mode
connectivity independent of confounding motion effects.
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It has also been suggested that by using the common
approach of strictly correcting for the effects of motion one
might remove information related to the phenotype under
study. Along this line, inter-individual differences in
motion have been explained by a neurobiological trait of
long-range default mode connectivity [Zeng et al., 2014]
and head motion has been shown to positively correlate
with impulsivity [Kong et al., 2014]. As elevated BMI has
been linked to increased impulsivity [Braet et al., 2007],
the BMI-related motion increase found in our cohort might
not be simply due to increased discomfort during the scan
(thereby confounding BMI-related analyses), but reflect an
obesity-related trait. This is further supported by recent
findings of common genetic factors associated with head
motion and BMI that have been reported in two large
cohorts [Hodgson et al., 2016]. Thus, disentangling the
effects of BMI and motion remains difficult and merits
careful investigation in future studies.

Limitations

Several limitations should be considered when interpret-
ing our results. First, our cross-sectional data does not
allow us to draw conclusions on the causal relationship
between BMI and posterior default mode connectivity and
the underlying mechanisms should be carefully studied in
longitudinal designs. We demonstrated that the described
association of BMI and connectivity was not solely driven
by head motion differences, however head motion was a
major confounder in this study and it remains unclear
whether it is inherently associated with obesity. Physiolog-
ical parameters [Glover et al., 2000] were not measured
and related noise could thus not be controlled for.

In addition, spatial normalization accuracy might be
limited in large samples like ours which might have
biased our results. However, besides controlling for regis-
tration quality as a confounder, we generally achieved a
high registration quality through state-of-the-art registra-
tion tools [Klein et al., 2009] and careful visual inspection
that led to exclusion of subjects with morphological altera-
tions such as calcifications or atrophies/large ventricles as
well as brain extraction failures. Another limitation is the
definition of obesity by BMI, as this does not reflect age-
related changes in body composition, such as conversion
of lean body mass to fat [Zamboni et al., 2005]. A more
precise measure of body fat (such as MRI-assessment of
abdominal fat) would have allowed us to characterize the
relationship between obesity and resting-state connectivity
more specifically. Our analysis of the associations between
BMI, connectivity and cognitive performance was explor-
atory and should thus be expanded to gain more insight
into the cognitive implications of our result. An important
strength of this study is that it relies on a large sample
size of community-based well-characterized healthy older
adults, supplemented by a homogenous replication sam-
ple. Also, various potential confounders were

comprehensively assessed and controlled for. Our results
remained significant when correcting for age, sex, hyper-
tension, diabetes and other confounders, but the high
covariance of BMI and obesity-associated comorbidities
make it difficult to disentangle their contributions to func-
tional connectivity differences in our cross-sectional
design.

CONCLUSION

In the current study we showed that higher BMI is asso-
ciated with reduced connectivity of the default mode net-
work in the PCC and in the precuneus in a large sample
of healthy older adults. This finding was independent of
obesity-related comorbidities, changes in regional gray
matter volume and APOE-e4 genotype. Moreover, our
results indicate that regional changes in default mode con-
nectivity translate into subtle differences in cognitive
performance.

Thus, our results support the view that obesity might
independently contribute to accelerated brain aging in
older individuals without incident dementia, as lower
default mode connectivity has been detected in popula-
tions at risk for AD, and it has been proposed as an early
biomarker for emerging AD [Sorg et al., 2007]. The modifi-
able risk factor obesity might thus share the pattern of
decreased posterior default mode connectivity with the
unmodifiable risk factor APOE-e4 allele [Sheline et al.,
2010]. Future studies should further investigate potential
mechanisms underlying the association of obesity and rest-
ing state connectivity and infer obesity-preventing strate-
gies to maintain cognitive function in aging.
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