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1 Introduction

Integrability in planar four-dimensional N = 4 super Yang-Mills theory [1] and three-
dimensional ABJM theory [2] makes the non-perturbative computations in the planar limit
possible even for some non-supersymmetric quantities [3]. In both cases, the single trace
gauge invariant composite operators are mapped to states on a closed spin chain and the
anomalous dimension matrix (ADM) of these operators can be mapped to Hamiltonian
of the spin chain. The first evidence of the integrability came from the fact that the
Hamiltonians in the scalar sector obtained from the leading-order perturbation theory are
integrable [4-6].

In the four dimensional case, one can add flavors to this AV = 4 super Yang-Mills
theory or first perform some orientifold projections and then add certain flavors to obtain
N = 2 supersymmetric gauge theories. Here by flavors, we mean matter fields in the



fundamental or anti-fundamental representation of the gauge group. It was found that
both theories with flavors are integrable at one-loop order [7]-[9]. In these cases, the single
trace operators built only with fields in the adjoint representation of the gauge group are
still mapped to states of a closed spin chain. There are also gauge invariant composite
operators with fields in the (anti-)fundamental representation in two ends and fields in the
adjoint representation in the bulk.! These operators are mapped to states of an open spin
chain.

In the original ' = 6 ABJM theory, the gauge group is U(N.) x U(N,) and there
are matters in the bi-fundamental representation of the gauge group. We can add matters
in the (anti-)fundamental representation of either U(N.) group. After adding flavors, the
maximal supersymmetry one can achieve is three-dimensional ' = 3 supersymmetry [10—
12]. There was speculation that flavored ABJM theory should also be integrable [13],
however no progress has been reported in this direction. In this paper, we will fill the gap
and establish the two-loop integrability of this theory in the scalar sector.

For gauge theory with fundamental matters, there are two choices one can make when
the planar (large N.) limit is taken. One is the 't Hooft limit in which we let the number
of flavors Ny fixed. In this case, the contributions from Feynman diagrams involving
fundamental matter loops will be suppressed. Another choice is the Veneziano limit in
which we let Ny go to infinity as well and keep the ratio Ny/N, finite. In this case, one
should also include the planar Feynman diagrams involving fundamental matter loops. In
this paper, we will work in the ’t Hooft limit. This limit will simplify our computation
greatly comparing with the Veneziano limit.

As in four dimensional cases, there are two types of gauge invariant composite operators
one can consider in the scalar sector of flavored ABJM theory. The operator of the first type
is built with bi-fundamental fields only. It is just the trace of product of bi-fundamental
scalars placed alternatingly in the (N., N.) and (IN., N..) representations of the gauge group.
These operators are also the ones which appear in the scalar sector of ABJM theory and
can be mapped to states of an alternating closed spin chain. In the 't Hooft limit, the
computation of ADM of these operators is exactly the same as the one in ABJM theory, so
we no longer need to repeat the study here. This type of operator will be called ‘single trace
operator’. The second type of gauge invariant operators will involve (anti-)fundamental
scalars at two ends besides the bi-fundamental ones in the bulk. These operators will be
called ‘mesonic operators’ and they can be mapped to states of an open spin chain. The
main task of this paper is to compute the two-loop ADM of these mesonic operators and
show that the corresponding Hamiltonian of this spin chain is integrable. In the ’t Hooft
limit, the bulk part of the Hamiltonian is the same as the one in ABJM theory and thus we
only need to perform two-loop computations to get the boundary part of the Hamiltonian
which involves both nearest and next-to-nearest neighbour interactions. Among them,
there are two-site trace operators which do not exist in the total bulk Hamiltonian. The
boundary terms will break the original SU(4)r symmetry of the bulk interaction into

'Here and the following, by ‘bulk’, we mean the bulk of the composite fields. We hope this will not
cause any confusion with the meaning of the ‘bulk’ in the holographic gauge/gravity duality.



SU(2)g x SU(2)p. We tried a lot to prove or disprove the integrability of the Hamiltonian
based on algebraic Bethe ansatz, but we have not been successful yet.

This led us turn to the coordinate Bethe ansatz. In the context of AdS/CFT integrabil-
ity, the coordinate Bethe ansatz method has been applied in [14] to show the integrability
of an open spin chain model from giant gravitons. In this approach and for open chain,
one should compute the bulk S-matrix and the reflection matrix (boundary S-matrix) and
in order to show the integrability, one should check whether the Yang-Baxter equation
(YBE) and the reflection equation are satisfied. The bulk S-matrix is the same as the one
in ABJM theory which has already been computed in [15] to check the correctness of the
all-order S-matrix proposed in [16]. We confirmed that YBE is satisfied by this S-matrix.
As for the boundary reflection, we notice that it mixes magnons of different types and this
is quite different from the case in four-dimensional SYM with fundamental matters [7, 17]
where the boundary reflection is diagonal. By solving the eigenvalue problem of the to-
tal Hamiltonian in the one-magnon sector based on coordinate Bethe ansatz, we find the
boundary reflection matrix. Finally by verifying the reflection equations, we confirm that
the flavored ABJM theory is indeed integrable.

The paper is organized as follows. In the next section, we will review the action of
N = 3 flavored ABJM theory and re-write it into a manifestly SU(2)g invariant form.
Section 3 is devoted to the computation of the boundary part of the two-loop Hamiltonian.
Reflection matrix is computed in section 4 and integrability is proved in this section as
well. We will discuss some further directions in the final section of the main text. Three
appendices are included to provide some technical details.

2 The action of N = 3 flavored ABJM theory

In this section, we will study a variation of original N'= 6 ABJM theory by adding some
fundamental flavors which has been proposed in [10-12]. As discussed in these papers,
we focus on N/ = 3 case which has maximal supersymmetry after the flavors are added.
We will re-write the action into a manifestly SU(2)r ~ SO(3)g invariant manner by the
complete construction of the action in component fields including the fermionic part which
is absent in the former investigation [10].

2.1 The action in N = 2 superfield formulation

The flavored ABJM theory has the product gauge group U(N.) x U(N,) with the Chern-
Simons levels k and —k, respectively. The field content can be explicitly classified according
to different representations of the gauge group. There are two hypermultiplets 24, A =1, 2,
and Wpg, B = 1,2, in bifundamental representations and two gauge multiplets ¥ and V in
adjoint representations,

ZA4 € (N, N.), Wae(N,No), Vel(adjl), Ve(ladj). (2.1)



There are four kinds of flavors introduced by hypermultiplets belong to fundamental or
anti-fundamental representations of each gauge group

b € (1, N.), at € (1,N,), t=1,---, Ny, (2.2)
c® € (Ng, 1), ds € (Ng, 1), s=1,---, Ny, (2.3)

with arbitrary number of Ny and Ng,.
The total action S = Scs + Smat + Spot In N = 2 superspace can be formulated as the
sum of the following three parts:

e Chern-Simons part

Scs = —/d3xd49/ dttr VDa( YD,e" ) —VD* (etf/Dae_ﬂ})] , (2.4)
where the supercovariant derivatives are
Dy =0,+1 (’y“é)a Ous Dy = =0y — i (09"),, 0, (2.5)
e Matter part
Smat = /d3xd49 tr (—ZAe_VZAeﬁ — WAe_]}WAeV> (2.6)

+/d3xd40 (—Ese_vcs - Ete_f}bt —dge¥Vd® — atef}&t> )

e Superpotential part

Spot = /dedQG W(Z,W,c,d,b,a) + c.c., (2.7)
with the superpotential
2 2
W = 7% tr(ZAWa + ¢*ds)? + % tr(WaZ? + ba")?. (2.8)

2.2 The action in N' = 2 component field formulation

The component expansions of our superfields are?

a'(zr,0) = A" 4+ V20K + 6T, ai(zr,0) = f@mt 5212, (2.9)
bi(zr,0) = By + V20, + 0 Hy, v (zp,0) = Bt — 2ontt — 0?>HT, (2.10)
¢*(wr,0) = C° +V207° + 62 J°, s(zR,0) = CT — /2071 — 6271, (2.11)
ds(z1,0) = Es + V2005 + 0° K, P(xg,0) = B —v26u™ — 02KT5,  (2.12)
24z, 0) = Z4 + V20¢ + 02 F4, Za(zgr,0) = 2 — v20¢8, — 0*FF, (2.13)
Wa(zp,0) = Wa+V20wa + 602Gy,  WA(xg,0) = W — V200 — 02GT,  (2.14)
V = 2i000 () + 207"0A,(x) + V2i0%0%(x) — V2i0%0x(x) + 620°D(z), (2.15)

V = 2i005(z) + 207"0A,(z) + V2i0%0%(x) — V2i0%0%(x) + 6°6°D(z).  (2.16)

Notice that the expansions of the vector superfields are in Wess-Zumino gauge.

#We follow the convention in [18].



Following the treatment of deriving the component form of ABJM action [18], we
integrate out those auxiliary fields and then we find the total action becomes,

k 2 R A
Sns — / P <47rtr (A (Au&,A,\ n EZA#AVAA — A,0,4, - ;A#AVAA> (2.17)

—tr(D"2) D, 24 — tr(D*W) D, W4 — tr(D*C)ID,C* — tr(D*B) D, B,
—tr(D*E)*D,E, — tr(D“A)IDMAt —itr CLﬂ(A —itrw P wy —ite P e

—itrn" Py —itr oo, —itr ,'4;;f Kt — V}?OS — }erm — Dbos — Eerm> ,

where the covariant derivatives are defined as,

D04 = 9,04 +i4,0" —id14,,  for @€ (N, N.), (2.18)
Du¢® = 0,0° +iAu0", for — ¢* € (Ne, 1), (2.19)
,Duét = 8Mg£t + z’flqut, for ¢ € (1,Ne). (2.20)

We put the lengthy expressions of the potential terms in appendix A together with the
on-shell values of auxiliary fields.
2.3 The action in N' = 3 component field formulation

In order to obtain a manifestly SU(2)g invariant theory, we combine the component fields
into the following doublet form

ZA ZT wTAeiT"/4 w efzﬁr/zl
aA _ T A aA __ T A
X = <WTA> ’ XaA - (WA> ) & = (CAeiﬂ*/4 ’ é‘aA - CLeiw/Al ’

(2.21)

yas _ O v _ C;[ s — stezﬁ'r/él ¢T _ Use-—iﬂ/4
Ets | as E, ) Tse—zw/ll ’ as 7_SJ[617T/4 )

(2.22)
At AT ftgim/4 e—im/4
at _ T t at _ [T ' 7
" ‘<Bﬂ>’ M‘“‘<Bt>’ ' ‘(/ P = e )
(2.23)

where the explicit SU(2) gz R-symmetry index a is raised and lowered by the anti-symmetric
tensor €® and e, with €12 = —e15 = 1.3

In light of the work in [19] where an A/ = 3 Chern-Simons Yang-Mills theory was given,
we re-write the above action into a manifestly SU(2) g invariant form in terms of these new

3In the following we will also use %, 7, - - - as R-symmetry indices.



fields as

koo 2i ko (5 oa i 2 s
Sn=s = / 3z tr [Me" (AMOVAA + 3AuA,,A,\> - (Au&,A,\ + SA#A,,AA>
(2.24)
—D, X!, DX DYDY — D,MIDIFM® i€ B et i By 4 i0l P67

‘/ferm Vb 0s :| )

with the fermionic part of the potential®

vaerm - (225)

21
_%ebcfad <£aAXLb_XbA§La+¢aYJfb_waTa) (é»cBX;d_Xngg:_i_chtd_deTc)

o
+%Z€bc€ad (_ELaXbAJFXngaA_emeJrMTbea) <_§TBCXdB+XTBd§cB_QTch+MTd9c>

)
)

4
+ﬂ €ac (§“A£bA+w w*) (X(C|B|XT" 4y leyto)

_%Eac (é-;fAéaA_i_eZea) (XT( xbB MT(CMb)

and the bosonic part, which is first given in [10],?

Vbos -

472
3k2

—I-XaAXTAXbBXT XCMX;[ XTAxaAXT XbBX;[MXcM+4XaAXT XCMXTAXIJBX

[Y“YT YOy eyl M men] MMl ve—ay oy vey vyt —ani mb Mmoo ae

—6XeAXT XPEXT xMxT 13xeAxT XPEX] veviesx!, xeAx] X B mfme
—6xAX  XPEXT veyf-ex!, xP B X xAMIMe+9xAX] veyTvey]

+ox T xeAnvi M MIMe—6xAX]T vy ivey)—exT  x oA meni b (2.26)
—6x4X], vyfveyi—ex]  xtAmimemiverexeAx] vovivey)

+6XT, XA MeMIMe—6 XX Yeviviyi—6X] X AMI MM Me

—6xAx] veviviy—ex!  xtAMimeni Me—6x] YOy, x oA M me

+12XT YOVIX O AMI MO+ 12e 4 MV XAX] XOPXT VOV

+12eA P ey v X T, XM XT XN MM

where flavor indices are suppressed.

40ur convention for symmetrization is feaby = %(fab + fra) and faBp) = %(faBb + foBa)-
°In fact, there is a mistake in eq. (A.4) of the paper [10]: the second and the fourth terms should be
corrected as q3q;d5q;d5q: and —4q3q;d5q2d5q2, respectively.



Thus, we demonstrate the enhancement of the R-symmetry to SU(2)r by the explicit
construction of the action. Besides the SU(2)r symmetry, the theory also has SU(2)p
symmetry acting on the A index of X®4. The above action is the starting point of our
perturbative calculations.

3 Two-loop perturbative calculations and the Hamiltonian

In this section, we will compute the ADM of gauge invariant composite operators. We
will perform the calculations in the 't Hooft limt with N, — oo, k — oo while A =
Nc/k,Ny,, Ny, fixed.® Since the ADM of single trace operators is the same as the one in
the ABJM theory, we only need to consider the mesonic operators. We focus on two types

of mesonic operators,’
o A Ao .
0O = Y;Jf X 1Al XJQAQ ... X 2L—1420-1 XZTQLAQLYZ ’ (3'1)
A vyl yitAr T ior,—1Aar,—1 y 1 i A T
O =yixuAix] | ... XleroAznoaxl o yiaeeden (3.2)

where L > 2 and the contraction of the color indices is implied. We note that these
composite operators are built up without trace operations since they are bounded on both
sides by (anti-) fundamental matters. Our aim is to extract the ADM from the two point
correlation function through 2-loop Feynman diagram computations. The calculations
concerning only the bi-fundamental fields in the bulk are the same as those for the single
trace operator tr(X X' .- X XT) in ABJM theory and have been carried out carefully in [5,
6].> Here we will concentrate on the boundary part and show the details of the derivation
of ADM of O. For the operator (', the whole procedure is identical and we will give the
result directly in the end.

3.1 Boundary three-site scalar interactions

First we compute the contribution of the six-point vertex on the left boundary shown in
figure 1. The relevant interaction terms in the N’ = 3 Lagrangian are:

472

Vi = ﬁXaAXlAXbBXJBYCYcTa (3-3)
2 8% aa T xbB -t

Vg = ——g XX, pX X!yeyd, (3.4)
5 167° MN ycA vyt yaByt vbyt

Vi = —geape’ VXX XX YV (3.5)

Let us analyze these interaction vertices separately and mainly focus on the flavor structure
as follows:

SWe will further set Ny, = Ny, = 1 without loss of generality and then neglect the flavor indices for
simplicity.

"There exist two other types of composite operators sharing essentially the same structures as those
considered in the main text, namely, MXTX. ... XTXM"and MXTX .- XTXXTY, and we will not repeat
the similar analysis here.

8In 8- and ~-deformed ABJM theories, similar calculations have been performed in [20, 21].
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Figure 1. The contribution of six scalar interaction vertex on the left boundary.

. V)
0561 073 00, 08,002 0420% 078 61 = 6151167 - 54162 (3.6)

o V2:
510680 64 60,05, 6726204 67, = 61611672 55162 (3.7)

. Vi
61000L 31 08,05, 5705705, 08, eane ™ = —o07 6% - (052041 — o410%2) . (38)

We will use dimensional regularization to isolate the divergence and set d = 3 — € with the
relation: e~! = log A?> where A is the momentum space cutoff. The two-loop integral in
figure 1 reads

A% d¥ 1 11 1
—i)3[i] - 42 = log A .
(=07} - / @r)d 2md (k+ )2k2 12~ 1672 0 (39)

3 comes from the scalar

where the factor [i] comes from the six-point vertex and (—i)
propagator. The rest part of the above formula is a loop integral evaluated in Euclidean
space and the factor i* accounts for the Wick rotation. There is also a factor N2 from the
contraction of color indices. Putting these together and noting that the contribution to the
operator renormalization is negative of the quantum correction, we find the left boundary

three-site scalar interaction gives

B\J»i1A1,j2B2 A2 it i L A B S L A B
P - 2% (s - o) o 2 (oo o) o]
(3.10)
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Figure 2. The contribution of Yukawa interactions on the left boundary.

The contribution from the right boundary can be obtained simply by some replacements
of indices and we get

. . . 2 . .
(HB>'L2L71A2L717]2LBQLJI _ A |:<6l:;6]:2L sler-1 _ 4513L715i" 5j2L> 5B 5A2L71
J

T Jjor—1Bor_1,iorAar,j _Z J"VjeL—1"%2L jor—1%a2r ) “Bar_1"Aop,
(3.11)

i/ sjor si2n—1 i21,-1 gjar, 5if By, sA2r—1
—2 <5j/6i2L 5]'21471 n 25j' 5i2L 6j2L—1> 5A2L 532L-1] :
3.2 Boundary two-site Yukawa type interactions

The Feynman diagram of the boundary two-site contribution consists of two Yukawa type
vertices and a fermion loop depicted in figure 2. The involved interaction vertices are listed

below:
Vi = TExePxliele], (312)
VR = — TR XXl (313)
Vi = - IR xBXefel (3.14)
Vi = -ZlyeyPeld, (3.15)
Vi = -ZlveyPeied, (3.16)

We have ignored the diagrams whose internal fermions belong to the fundamental flavors
because such diagrams will be generically suppressed by a factor of N¢/N, in the 't Hooft
limit. Now let us investigate the flavor structure arising from all possible combinations of
the above vertices.

° V;@V;:

Ol empeane™ 01 - 965505105, = 6116 871, (3.17)



° V;@‘N/ﬁ%:

Ot emacone" 01t - 670355155, = (03100 + 87,1 ) o, (3.18)

e VEi® f/]%
0 empeane™ 7€ - 0G50 p 05, = 267 870!, (3.19)

o V2@ VA
O emacone" 051t - 076455155, =2 (~a10] + o7, 1 ) o, (3.20)

e Vi® VI%
O enpame™ 051t - 036500155, = 2 (=017 + 81 6), ) o, (3.21)

e Vi® ‘71%
0 enaCome™ 1T - 0G5H0p 08, = 261151 O (3.22)

The remaining loop integral is

2 o , dk dfl 1 YA (k+1D,\ 1
SUNORUCE I B ea <k2>2”( A )_16W21ogA, (3.23)

where the factor 2/2! is from the coefficient of the second order expansion of the interaction
terms and (—i)?2, (i), [i]* come from the scalar and fermion propagators and the vertices
respectively. The factor (—1) is from fermion loop accounting for the Fermi-Dirac statistics.
Gathering all these data, we find the final counter-term contributing to the dilatation
operator is

.. . 2
F\Ji1A1,52B2 A i1 sd jcit1\ sj2 A1 <Ba
(M) e = 5 (20000, — o0y ) ool (3.24)
For the right boundary, it is
. . . 2
Fy\i2L—1A2r—1,j2LBar,i’ A Jor, i i cjar ) st2rL—1 ¢Bor sA2r—1
( r )jQL—lBQL—lyiQLAQLyj/ 9 (25j’ 51'2L o 5j’5i2L 5j2L—15A2L 5BQL—1' (3‘25)

3.3 The two-loop Hamiltonian

There is another two-site diagram concerning the exchange interaction of gauge bosons,
however, this Feynman diagram can only give constant contribution since the gauge prop-
agators do not carry flavor indices. As for the various one-site diagrams representing the
wave function renormalization, it is easy to see that they also lead to constant pieces. Note
also that the two two-bulk-site trace operators in ’HZB and HZ are canceled by the bulk
two-site interactions. And this cancelation makes the whole bulk Hamiltonian to be in the

~10 -



same form as the one derived from the single trace operator in ABJM theory. Finally, the
two-loop Hamiltonian associated with the ADM of the composite operator O reads

H=H;+H, + Hpux + o, (3.26)
with
jg1A1,j2Ba 2 A B A1 ¢B J2 ¢i1 57 A1 ¢By i1 5] s
(MLl = o2 [ (o41007 — opnokz ) - oP ool + apiale - alal, 2], (3.27)
tor,—1A2r—1,j2r.Bar,t’ |2 By, Aar—1 Bap, cA2r—1 1201 sjor 54’
(Hr)j2L7132L71,i2LA2L,j' =A |:<5B§L715A2L B 5A§L 5B2L71) ) 5]" 5i2L 6j2L—1 (3‘28)
Bop, ¢A2L 1 ¢i2n—15i  cjaL
+5A§L 5B2L71 ‘5j2L—15i2L5j/ } )
2L—2 1 1
_ )2 _ - -
Hpuk = A ZZ; <]Il,l+1 Py + 2]P’l,l+2Kl,l+1 + QKZ,Z+1Pl,l+2) ;

(3.29)

where the basic operators I, P and K are defined as

iA,j' B’ i 57’ SA B’ iA, i A! i sil A SA/ iA, j' B i 5j' sA B/
(HL[+1);~B’]7;IA/ == (5;(551 63614/7 (PL[+2);B’Z‘/B/ == 5;/5; 5B/5B 5 (Kl7l+1);‘B,]i’A/ == (52/(5:77 514’53 5
(3.30)
and the exact value of the coeflicient a will be determined later by the BPS condition of
the corresponding vacuum state. For operator O’, the two-loop Hamiltonian is

H =H; +H, + Hi + L (3.31)
where
H) = H,, (3.32)
I\JerBarior+1A2n4+1.3" (2 Aor41 sBor,  ¢Aornq15Bar\ | sioL 2041 55
( T)i2LA2L7j2L+lBQL+17i/ =A 5A2L 6BQL+1 6BZL+1 5A2L 61" 5j2L+15i2L (3'33)
Agr41 ¢Bor  slarn41 5’ Jor
+5B2L+1 5A2L 51" 5j2L+15i2L )
2L—1 1 1
/ 2
Hie = A2 > <Hl,z+1 = Priso + SPuaKi + 2Kl7l+1Pl,l+2) :
=1

(3.34)

We would like to mention some features of the boundary interaction. It breaks the SU(4)
symmetry of the bulk interaction into SU(2)r x SU(2)p. It includes both nearest and
next-to-nearest neighbour interactions, especially the two-site trace operators’ which do
not appear in the bulk interaction.

4 Integrability from coordinate Bethe ansatz

In this section, we will prove the integrability of flavored ABJM model by showing that the
boundary reflection matrices satisfy the reflection equations. These reflection matrices are

9These involve the boundary site and the nearest bulk site.
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obtained by the concrete constructions of Bethe ansatz solutions of the Hamiltonian. We
begin with the composite operator O which naturally corresponds to an open spin chain
state and the vacuum or the Bethe reference state is chosen to be

Q) = vy X1 X5, XXV, (4.1)

For the case of single impurities, the Hamiltonian in eq. (3.26) reduces to

2L—-2
H=H+H+0ol+ XD (D41 —Prisa). (4.2)
=1

In appendix B, we will demonstrate that the vacuum is a BPS state, so its scaling dimension
receives no quantum corrections. This determines o to be 2A\%2. We now use a conventional
way to label the bulk fields as A and B types as follows, '’

XM =4, xBZ=4, x¥=pBI, x2=Bl (4.3)

There are three types of one-particle excitations,

bulk A type: Y, (A1By)---(AsBy)--- (A1 By)Y'!, (4.4)
Y (A1Bp) - (B]Bs) - (A1 By)Y", (4.5)

bulk B type: Yy (A1 By)--- (A1 Ab) -+ (41 By)Y?, (4.6)
Y, (A1By) -+ (A1By)--- (A By)Y'", (4.7)

boundary: Y] (A1By)--- (A1Bs) -+ (A1 By)Y, (4.8)
Y, (A1By) -+ (A1By)--- (A1 By)Y?. (4.9)

After scattering at the boundary, these pseudo-particles will transform into each other.
Under the action of H;,

Hil1)a, = N*[1)p,, (4.10)
Hil1) gy = N[y, (4.11)
Hil1) 45 = =Ny, (4.12)
Hill) B, = A?|1) 4, (4.13)
Hill)ys = =N2[1) 41 + N[y + A1) (4.14)
Hilz) = —)N2|x), x#1, (4.15)
and under the action of H,.,

HeL)a, = N°|L) B, (4.16)
HolL) gy = =N*[r)y2, (4.17)
HrlL) g = Ar)ye, (4.18)
H,|L)p, = N*|L)a,, (4.19)
Helr)yz = —A2|L>B; + M%)y + V\L>A;, (4.20)
Helz) = —N%|z), x # L, (4.21)

9This convention is the same as the one in [15], though it is different from the one in section 2.
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where the spin chain is symbolised as [I(1)(2) - - (z) - - - (L)r) with every site (z) containing
two fields. We use the excitation with its position to label the state and use |z) without
e |x) B Here we see the novelty of our model
where different states can mix and nontrivial boundary reflections will appear unlike those
parallel studies in SYM with fundamental matters [7, 17]. Then we find that only the

superposition of several different one-particle spin wave functions can be constructed as

subscript to denote any of |z)4,, |z)p,, |T)

an eigenstate of the Hamiltonian and we can extract the boundary reflection matrix by
solving the corresponding eigenvalue equations.
4.1 Two-particle mixed sector

We consider the superposition of the spin wave functions of particles As and B as follows,

L

[1(k) = Y (f(@)|2)a, + 9(2)|2),) (4.22)

z=1

where the Bethe ansatz for the wave functions are

f(x) = Fe'k®  Fe~the, (4.23)
g(z) = Ge** 4 Ge~k=, (4.24)

Using our Hamiltonian, we find that
Hilf(x):E)Ag = N f(D)I1)p, + N F(L)|L) B, + 22 f(1)[1) 4, + 23 f(L)|L)a, (4.25)
_ A2 F(1)12) 4, = A2 F(L)IL — 1) a,
+A? LZ:: f(@) @lzya, — |z —1)a, — [z +1)a,),

and
L
1Y gla)|z)p, = Ng(1)[1)a, + N2g(L)|L)a, + 2X2g(1) (1), +2X%g(L)|L)p,  (4.26)

r=1

~Ng(1)12), = Ng(L)|L — 1)p,
L—-1

XY g(@) 2lz)p, — |z —1)p, — |z +1)B,).
r=2

The eigenvalue equation H|y1) = E(k)[¢1) gives:
e The bulk part (z # 1, L),
N f(2) — A2f(x+ 1) — NEf(x — 1) = Bf(), (4.27)
2X0%g(z) — Mgz + 1) — Ng(z — 1) = Eg(x). (4.28)

Substituting eq. (4.23) and eq. (4.24) into the above equations, we have the following
dispersion relation for the proposed spin wave,

E(k) = 2)\* — 2)\%cos k. (4.29)
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The left boundary part,

N F(1)+2X%g(1) — Ng(2) = Eg(1),
2N2f(1) — N £(2) + N2g(1) = Ef(1).

Using egs. (4.27) and (4.28), the above coupled equations become

By the plane wave expansions of eq. (4.23) and eq. (4.24), we find the relations

Fe* + Fe ™ + G+ G
F

0,
Ge'F + Ge ™ + F + 0.

The solution is

F=—¢"*q, G=—¢*F.

We define the left reflection matrix K;(k) in this sector by

2)-ne(2)

So from the above solution, we have,

The right boundary part,

N f(L) +2Xg(L) — Ng(L — 1) = Eg(L),
2N f(L) = N f(L— 1)+ Ng(L) = Ef(L),

which can be reduced to

This gives

Felfl 4 ekl 4 Getk(I+1) | Gre=ik(L+1) —
GelhL | Gre=ikL | peik(Lt1) | fro—ik(L+1) _

Solving the above two equations, we get

F — _e—2ikL—ik G — _e—2ikL—ik fr
= 7 = .

— 14 —

(4.34)
(4.35)

(4.36)

(4.37)

(4.38)

(4.45)



Following [22], we define the right reflection matrix K, (k) in this sector by

ar (F\ F
ekl <G> = K, (k) <G> : (4.46)

Then we get
0 76—’”{,‘
K (k) = (-w‘k 0 > : (4.47)
The consistency of eq. (4.36) and (4.45) gives
XL =1, k= % nez. (4.48)

This is the quantization conditions for our spin wave momenta k as well as the Bethe
equation for this two-particle mixed sector.
4.2 Four-particle mixed sector

Now we turn to another closed sector which consists of four excitations BI , A;, YlT and
Y2, The spin wave takes the form

L
2(k)) = > n(x)lz) B+ Zh N2 g1 + Byt + 1)y, (4.49)
=1
with
n(z) = Net* 4 Ne~ke, (4.50)
h(z) = Hek® 4+ He ke, (4.51)

The Hamiltonian acts on the above wave function as follows

L
HY n(@)a)gr = Nn)ll)ys = An(L)lr)yz +2X°n(1)[1) g + 23°0(L)|L) 51 (4.52)
r=1
—)\Qn(l)\2>BI — \2n(L)|L — 1) gi
L—-1
A2 nla) (2fa) gy — o= 1)y — o+ 1))
r=2
L
"y h(z)lz) 55 = —)\2h(1)\l>ylf + A2h(L)|r)y2 + 2)\2h(1)]1>A£ + 2)\2h(L)\L>A£ (4.53)
r=1

—N°h(1)[2) 41 = Ah(L)|L — 1) 54

a2 Zh ) (20) gy — lo = 1)y — 2+ 1) )

~15 —



and

Hlys = 2A2|1)Y1T - )\2\1>A; + )\2|1>BI, 4.54)
Hir)y2 = 2X%|r)y2 — N|L) gr + A°|L) 41 (4.55)
1 2
We demand the proposed spin wave function to be an energy eigenstate:
Hlpa(k)) = E(k)[¢a(k)), (4.56)
which leads to the following relations:
e The bulk part (x # 1, L),
22%n(z) — Mn(z + 1) — Mn(z — 1) = En(z), (4.57)
222h(x) — N2h(xz + 1) — N2h(z — 1) = Eh(x), (4.58)
which give the same dispersion relation
E(k) = 2)? — 2)\%cos k. (4.59)
e The left boundary part,
222n(1) — A?n(2) + A8 = En(1), (4.60)
2X2h(1) — A2h(2) — A28 = Eh(1), (4.61)
Mn(1) — Ah(1) + 2028 = EB. (4.62)
Plugging eqgs. (4.57) and (4.58) into these equations, we readily have
8 = h(0), (4.63)
n(l) = —h(-1), (4.64)
n(0) = —h(0), (4.65)
which means
N+N+H+H=0, (4.66)
Nett + Nem* + He™ 4 He'k = 0. (4.67)
The equations are easily solved as
H=-N, N=-H. (4.68)
This gives the left reflection matrix in this section
0 -1
Ki(k) = . 4.69
((b) (_1 . ) (469)
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e The right boundary part,

222n(L) — Nn(L — 1) — Ay = En(L), (4.70)
IN2h(L) — A2h(L — 1) + A2y = Eh(L), (4.71)
~A?n(L) + Nh(L) + 2)%y = Ey, (4.72)
which imply
v =n(L+1), (4.73)
n(L+1) = —h(L+1), (4.74)
h(L) = —n(L +2). (4.75)

From these equations, we can get
H=—¢ 2NN N = e 2RI+ (4.76)

Then the right reflection matrix in this sector is

0 *6_2%
Kr(k) = (_e_zik 0 ) ) (4.77)

recalling the definition of right reflection matrix in eq. (4.46).
The compatibility of the eqs. (4.73)—(4.75) with the solutions (4.68) requires

ih(2L+2) — 1 = Z. 4.
(& 9 k: L + 17 ne ( 78)

Therefore we get the Bethe equation of this sector and we also note that the effective
length of the spin chain is 2L + 2 since two more boundary excitations participate in

the interaction with the bulk excitations.
The full left reflection matrix Kj is then found to be

0 0 0 —etk

0 0 -1 0
kW= o 0 o | (4.79)
% 0 0 0

with the order of the excitations as As, BI, A;, By. And the full right reflection matrix is

(4.80)

For the spin chain associated with the operator o , following the similar procedure

shown above, we find the same reflection matrix after modifying the phase factor e+l
ik(2L+1)

in the definition of right reflection matrix (4.46) into e . This modification is due
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to the different effective length of the open spin chain. For the same reason, the Bethe
equations for the two-particle and four-particle sectors will also be slightly modified. In
order to prove the integrability of the Hamiltonian, we also need to know the bulk two-loop
S-matrix which has been derived in [15] using coordinate Bethe ansatz. We review this bulk
S-matrix in appendix C. Equipped with the boundary and bulk scattering matrices, with
the help of Mathematica program, we can verify the following reflection equations [23]!!

[S(ky, k)] (K (k))'2 [S (=, k)2 [ (K )] (4.81)

lil2 J1t2

— [Kl(kl)]zll [S(—kl,kz)]hmz [Kl(k2)]§22 1S(—ks, _kl)]jle

Jile 142 7

[S (=1, —k2) 71" [ (= k)], (S (=ka, k)12 (Ko (ko)) (4.82)

1o ile

; ; o

= [Kr(=ka)];y? [S(=k1, k)13, (Ko (=K)], [S (ke kOIS
which, together with the validity of (bulk) YBE, guarantee the integrability of our open
spin chain.

5 Conclusion and discussions

In this paper, we studied the two-loop integrability of planar N = 3 flavored ABJM theory
in the scalar sector. Rewriting the complete action in a manifestly SU(2) g invariant way
is the first step of the two-loop computation. Working in ’t Hooft limit, we only need to
compute the ADMs of composite mesonic operators which naturally correspond to states
on an open alternating spin chain. Taking the 't Hooft limit also tremendously simplifies
the computation of the ADMs of this class of operators since the computation for the bulk
part remians the same as the one in ABJM theory. The final result of this computation
can be re-expressed as a Hamiltonian on this open spin chain. The most efficient way to
prove the integrability is to construct an open chain transfer matrix containing the required
Hamiltonian in the framework of algebraic Bethe ansatz. A more detailed technique called
projected K-matrices introduced in [25] provides a systematic way to deal with a class of
systems with distinct dynamic degrees of freedom from the boundary site and the bulk
like our model by the proper projection of the regular solutions of operator-valued K-
matrices. This technique has been successfully employed in [26] to obtain the left K-matrix
of the projected type in [25] and eventually demonstrate the integrability of the Berenstein-
Vazquez Hamiltonian in [14]. For our case, the first problem is to find a suitable projector
for the symmetry breaking SU(4)r — SU(2)gr xSU(2) p and then to construct the projected
K-matrices based on the projector and the known SU(4) c-number K-matrices. However
it is not an easy task to find the needed projected K-matrices that produce the correct
boundary Hamiltonian. In the present paper, we use the more physical coordinate Bethe
ansatz to show the integrability of our model. We considered one-excitation states and
computed the left and right reflection matrices. Using these and the bulk two-loop S-
matrix computed in [15], we verified the reflection equations for both sides of the open spin

HThe reflection equations in the algebraic Bethe ansatz approach were first given in [24].
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chain. This established the two loop integrability of planar flavored ABJM theory in the
scalar sector.

The immediate next step is to find the eigenvalues of the Hamiltonian. For this,
we need to solve an eigenvalue equation constructed from the S-matrices and the reflec-
tion matrices [22, 27, 28]. To solve this eigenvalue equation, off-diagonal Bethe ansatz
(ODBA) [29] seems necessary here since the reflection matrices at both sides are non-
diagonal.'> One may also try the algebraic Bethe ansatz from the beginning by solving
the boundary Yang-Baxter equation obtained in this approach and analyze what kind of
solution could reproduce the boundary Hamiltonian. We remind that nested coordinate
Bethe ansatz [27, 31] may be another choice as well.

One can also study the integrability of flavored ABJM theory in the Veneziano limit
with N¢,k, N¢,, Ny, — oo and N./k, Ny, /N, Ny, /N, fixed. In this case, the computation
of the ADM will be much more complicated. For both single trace operators and mesonic
operators, some Feynman diagrams previously omitted due to Ny, /N, suppression should be
included now. And although the mixing between certain single trace operators and flavor-
singlet mesonic operators like Zi\gi vixXxt .. XX'Y*® and Zi\ifi MXTX- --XTXM;f is
Ny, /N, suppressed in the 't Hooft limit, it should be taken into account in the Veneziano
limit [32]. Generally speaking, we need to consider the mixing among the generalized single
trace operators involving X, XT, Zivzf% YSYST, Zi\i’} MtTMt with the color indices in the final
two composite operators un-contracted.

Another interesting question is that whether the planar integrability can be generalized
to the full sector of the theory and/or to higher orders of 't Hooft coupling constant N./k.
For the four dimensional case considered in [7], as far as we know, there are no higher loop
computations in the gauge theory side to obtain the higher order Hamiltonian and check
the integrability at higher loop order. In the dual open string theory side, strong evidence
for the integrability of the classical worldsheet theory was obtained in [33] by constructing
non-local conserved charges in the full bosonic sector. This suggested that the field theory
in the planar limit is integrable in the strong coupling regime. All-loop reflection matrices
were determined in [34], following [35]. Symmetry can determine the reflection matrices
up to at most two to-be-determined functions. For one vacuum orientation, reflection
equations are automatically satisfied, while for the other vacuum orientation, reflection
equations fix the ratio of the two functions to be a nature one. We take this as another
strong evidence for the all-loop integrability of this theory. As for the case considered
in [8, 9], no progress on higher loop integrability has been reported so far. Back to flavored
ABJM theory, we hope the symmetry can also determine the all-order reflection matrix up
to a few unknown functions. We leave all these important questions to future work.
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A Some details of N/ = 2 formulation

A.1 The on-shell values of auxiliary fields

The equations of motion for the auxiliary fields in chiral multiplets give

t
1)
FA

G4
Ga

Ji
JS

Hit

H;

K'ts

It

4
k
4
=
41
k
4

—_ (WAZW —WZWs+WyuCFE — BAWA) ,
—wHAZIwT L wiziw™ - wiAAi Bt 4 ETotwid),

— (Zwz* - Z*WZ + CEZ* — Z*BA),

?(—ZTWTZL +z\wtzt — AtBt 21 + 7 Efch,
%(ESCE + B, ZW),

‘%(ET CTE™ + WIZTET),

%(—AtBA — AW Z),

%emﬂﬂ—ﬂwmh

%(CECS +ZWe),

%(CgETCT +CiwTzn,

%(—BABt _WZB),

%(—B“ATBT — B ZTwT).

The equations of motion for the auxiliary fields in gauge multiplets give

2
n= %trT”(ZZT —wiw +cct - E'R),

6" = 2% tr T™(Z27Z —WWT + ATA — BBY),

—90 —

(A.13)

(A.14)



X' = = e TZC Wt Ot =T, (A.15)
4

X' = _%trT”(CZT—WTw—&—TC’T—ETU), (A.16)

~n 4m n (T 1 T

W= - T Z - Wl = B+ s4), (A17)

2n 4 n( 7t T_ 1 T

X' == u T2 - oW =BT+ Alk), (A.18)

where T",n = 1,--- , N2, is the generator of U(IV,).

A.2 The potential terms in N/ = 2 formulation

The potentials from F-term and D-term contributions are given below

‘ 472
—VBes = _177; w[(ZZ 4+ WIW+CCH+ BN E) (22T —WiW+CCT—ETE)

x(ZZT-WTW+CC'—ETE)]

4 2
_77; tr[(Z1 Z+WW'+ AT A+ BB (2t Zz—WWi+ Al A-BB)
x(Z1Z-WW1+ATA-BB"))

+8k—2tr [ZT (zZt-wiw+cCt—EtE) 242t z—wwit Al A— BB*)}

+8k—2 tr [WTA(ZT Z-WWIT4+ATA—BBYW,(Z2ZT-WTW+CCT—ET E)] ,
(A.19)
1672
k2

SVR =~ tr (—WAZW AW ZWaA—WaACE+BAW,) (WH Ztwt i ztwia

1672
2

+WIAATBI - ETCTWA) - —— tr (ZW 24~ ZAW Z+CEZ* - Z" BA)

1672
(-Z'Wizh+Z\wizi—atBi Zi 4 2 Bl et - =2

tr(E,CE+EZW)  (A.20)

1672

(EtCTE+WiZ Bt — 20 tr(A' BA+ AW 2) (A BT Al + Ztw A

1672
k2
(BYATBT+ Bt ZIwT),
-
—yferm f% tr(¢¢HrrT—wiw—vlo)(ZZ2—Wiw oot - BT )

+@ tr(¢TC—ww—nn'+xTk) (2T Z—WWT+ AT A-BBY) (A.21)

1 2
tw(CEC*+ 2w es)(ClE T roiwtzh) -7 w(BAB W ZB,)

4
—% tr(CZT —Wiw+rCt—Etv)(Z¢T —wtW+CrT =0 B)

s
+% tr(ZtC—wW Atk BY (T Z—Wwi +xt A—ByT),
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2
—VE =ty (;eACeBD[—24AWBZ%D—2gAwBZCWD—ZAwBZ%D—gAWBgCWD]

(A.22)
27
~ " enp 2¢ W8 ZLwtP 4 ocl wtB ZL WP 4 21wt ZL P4 ¢ wiB L w TP
27
% [-27vCE—-21ECv—TETE—CvCv]
27
k

+2—7r[
k

+—[-2nkBA—2BrknA—BrBrx—nAnA]

2kTnT AT BT 42,1 BT ATy 4T BTkT BT+ ATyt ATy T]

2
—%[%T Bt 2B i ot BN Bl A ot Clot e

4
—i—% [ZW Tv4+(wC E+ZwCv+Zwr E+(W Cv+(WTE]

+4% [-WZnk—w(BA-W{Br—W({nA—wZBrk—wZnA]

4
—I—%[ATBT(waT—|—AT?7TZTwT—i—ATnTCTWT+HTBTZTwT+/iTBTCTWT+HT77TZTWT]

4
_,_% [_ETcTchT_ETTTWJrcT_ETTTwTZJf_UTCJFWJFCJF_UTcTszT_UTTTszT]) ’

where the summation indices are suppressed for those obvious contractions between two
adjacent fields.

B BPS property of the reference state

For the supersymmetry transformation of N'= 3 Chern-Simon-matter theories, we follow
the convention of [36].12 We perform a Wick rotation to three dimensional Euclidean space.
The supersymmetry transformations of YiT, Y X j X A are

oY = ile, (B.1)
§Y'" = 16547, (B.2)
0XT, =il 7, (B.3)
SXH =g, (B.4)

where the supersymmetry transformation parameters Gij satisfy the constraint 02 =0. It
is easy to see that the vacuum state

) = vy XU xd, - x M xL Yy (B.5)

is invariant under the supersymmetry transformation with 0% = 62 = 65 = 0, so it is
1/3-BPS.

13Here we only consider the Poincare supercharges and neglect the conformal supercharges.
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C The bulk S-matrix

In this appendix we briefly review the bulk S-matrix computed in [15]. Our convention is
that in S}Illl‘g 2 1I; is used to denote the in-state of the i-th particle and J; is for the out-state
of the i-th particle.

We define
U = Qcot 51, uij = Ui — uj. (C.1)
The non-zero elements of the bulk S-matrix is
+1
S (ko ky) = 2L C.2
¢¢( 25 1) qu—i’ ( )
where ¢ is one of A, BI, A;, By;
Ao Bl B 1A, Al By B1A} ug1
SA Bl ko, k1) = S (kQ,kl) SAT (ko, k1) = S (k2,k1) p— (C.3)
Bl A, B AQBI o Bl B A;B1 ot
SA2BI (ko, k1) = SBM2 (ko, k1) = SAEB1 (ko, k1) = SBIA;(kQ’kl) Tt (C.4)
Saipt (k. ki) = Sp42 ke, k) = SATBT (k2, k1) = SBW (ka, k1) = 1 (C.5)
Az Al _ oBiB Al A, BiB] U2
SAQA* (ko, k1) = S (k:g, k) = SA2 (ko, k1) = SB (k:g, k) = p— (C.6)
Az Al BB AfA BiB] 1
SBiB (ko k1) = S Ag(l@,kl) =82 2(k2,/g1) SA;A (ko k1) = m— (C.7)

We also verified that this S-matrix satisfies the YBE.
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