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1 Introduction

Integrability in planar four-dimensional N = 4 super Yang-Mills theory [1] and three-

dimensional ABJM theory [2] makes the non-perturbative computations in the planar limit

possible even for some non-supersymmetric quantities [3]. In both cases, the single trace

gauge invariant composite operators are mapped to states on a closed spin chain and the

anomalous dimension matrix (ADM) of these operators can be mapped to Hamiltonian

of the spin chain. The first evidence of the integrability came from the fact that the

Hamiltonians in the scalar sector obtained from the leading-order perturbation theory are

integrable [4–6].

In the four dimensional case, one can add flavors to this N = 4 super Yang-Mills

theory or first perform some orientifold projections and then add certain flavors to obtain

N = 2 supersymmetric gauge theories. Here by flavors, we mean matter fields in the
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fundamental or anti-fundamental representation of the gauge group. It was found that

both theories with flavors are integrable at one-loop order [7]–[9]. In these cases, the single

trace operators built only with fields in the adjoint representation of the gauge group are

still mapped to states of a closed spin chain. There are also gauge invariant composite

operators with fields in the (anti-)fundamental representation in two ends and fields in the

adjoint representation in the bulk.1 These operators are mapped to states of an open spin

chain.

In the original N = 6 ABJM theory, the gauge group is U(Nc) × U(Nc) and there

are matters in the bi-fundamental representation of the gauge group. We can add matters

in the (anti-)fundamental representation of either U(Nc) group. After adding flavors, the

maximal supersymmetry one can achieve is three-dimensional N = 3 supersymmetry [10–

12]. There was speculation that flavored ABJM theory should also be integrable [13],

however no progress has been reported in this direction. In this paper, we will fill the gap

and establish the two-loop integrability of this theory in the scalar sector.

For gauge theory with fundamental matters, there are two choices one can make when

the planar (large Nc) limit is taken. One is the ’t Hooft limit in which we let the number

of flavors Nf fixed. In this case, the contributions from Feynman diagrams involving

fundamental matter loops will be suppressed. Another choice is the Veneziano limit in

which we let Nf go to infinity as well and keep the ratio Nf/Nc finite. In this case, one

should also include the planar Feynman diagrams involving fundamental matter loops. In

this paper, we will work in the ’t Hooft limit. This limit will simplify our computation

greatly comparing with the Veneziano limit.

As in four dimensional cases, there are two types of gauge invariant composite operators

one can consider in the scalar sector of flavored ABJM theory. The operator of the first type

is built with bi-fundamental fields only. It is just the trace of product of bi-fundamental

scalars placed alternatingly in the (Nc, N̄c) and (N̄c, Nc) representations of the gauge group.

These operators are also the ones which appear in the scalar sector of ABJM theory and

can be mapped to states of an alternating closed spin chain. In the ’t Hooft limit, the

computation of ADM of these operators is exactly the same as the one in ABJM theory, so

we no longer need to repeat the study here. This type of operator will be called ‘single trace

operator’. The second type of gauge invariant operators will involve (anti-)fundamental

scalars at two ends besides the bi-fundamental ones in the bulk. These operators will be

called ‘mesonic operators’ and they can be mapped to states of an open spin chain. The

main task of this paper is to compute the two-loop ADM of these mesonic operators and

show that the corresponding Hamiltonian of this spin chain is integrable. In the ’t Hooft

limit, the bulk part of the Hamiltonian is the same as the one in ABJM theory and thus we

only need to perform two-loop computations to get the boundary part of the Hamiltonian

which involves both nearest and next-to-nearest neighbour interactions. Among them,

there are two-site trace operators which do not exist in the total bulk Hamiltonian. The

boundary terms will break the original SU(4)R symmetry of the bulk interaction into

1Here and the following, by ‘bulk’, we mean the bulk of the composite fields. We hope this will not

cause any confusion with the meaning of the ‘bulk’ in the holographic gauge/gravity duality.
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SU(2)R × SU(2)D. We tried a lot to prove or disprove the integrability of the Hamiltonian

based on algebraic Bethe ansatz, but we have not been successful yet.

This led us turn to the coordinate Bethe ansatz. In the context of AdS/CFT integrabil-

ity, the coordinate Bethe ansatz method has been applied in [14] to show the integrability

of an open spin chain model from giant gravitons. In this approach and for open chain,

one should compute the bulk S-matrix and the reflection matrix (boundary S-matrix) and

in order to show the integrability, one should check whether the Yang-Baxter equation

(YBE) and the reflection equation are satisfied. The bulk S-matrix is the same as the one

in ABJM theory which has already been computed in [15] to check the correctness of the

all-order S-matrix proposed in [16]. We confirmed that YBE is satisfied by this S-matrix.

As for the boundary reflection, we notice that it mixes magnons of different types and this

is quite different from the case in four-dimensional SYM with fundamental matters [7, 17]

where the boundary reflection is diagonal. By solving the eigenvalue problem of the to-

tal Hamiltonian in the one-magnon sector based on coordinate Bethe ansatz, we find the

boundary reflection matrix. Finally by verifying the reflection equations, we confirm that

the flavored ABJM theory is indeed integrable.

The paper is organized as follows. In the next section, we will review the action of

N = 3 flavored ABJM theory and re-write it into a manifestly SU(2)R invariant form.

Section 3 is devoted to the computation of the boundary part of the two-loop Hamiltonian.

Reflection matrix is computed in section 4 and integrability is proved in this section as

well. We will discuss some further directions in the final section of the main text. Three

appendices are included to provide some technical details.

2 The action of N = 3 flavored ABJM theory

In this section, we will study a variation of original N = 6 ABJM theory by adding some

fundamental flavors which has been proposed in [10–12]. As discussed in these papers,

we focus on N = 3 case which has maximal supersymmetry after the flavors are added.

We will re-write the action into a manifestly SU(2)R ∼ SO(3)R invariant manner by the

complete construction of the action in component fields including the fermionic part which

is absent in the former investigation [10].

2.1 The action in N = 2 superfield formulation

The flavored ABJM theory has the product gauge group U(Nc) × U(Nc) with the Chern-

Simons levels k and −k, respectively. The field content can be explicitly classified according

to different representations of the gauge group. There are two hypermultiplets ZA, A = 1, 2,

and WB, B = 1, 2, in bifundamental representations and two gauge multiplets V and V̂ in

adjoint representations,

ZA ∈ (Nc, N̄c), WA ∈ (N̄c, Nc), V ∈ (adj, 1), V̂ ∈ (1, adj). (2.1)
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There are four kinds of flavors introduced by hypermultiplets belong to fundamental or

anti-fundamental representations of each gauge group

bt ∈ (1, Nc), at ∈ (1, N̄c), t = 1, · · · , Nf1 , (2.2)

cs ∈ (Nc, 1), ds ∈ (N̄c, 1), s = 1, · · · , Nf2 , (2.3)

with arbitrary number of Nf1 and Nf2 .

The total action S = SCS +Smat +Spot in N = 2 superspace can be formulated as the

sum of the following three parts:

• Chern-Simons part

SCS = − ik
8π

∫
d3xd4θ

∫ 1

0
dt tr

[
VD̄α

(
etVDαe

−tV)− V̂D̄α
(
etV̂Dαe

−tV̂
)]
, (2.4)

where the supercovariant derivatives are

Dα = ∂α + i
(
γµθ̄

)
α
∂µ, D̄α = −∂̄α − i (θγµ)α ∂µ. (2.5)

• Matter part

Smat =

∫
d3xd4θ tr

(
−Z̄Ae−VZAeV̂ − W̄Ae−V̂WAe

V
)

(2.6)

+

∫
d3xd4θ

(
−c̄se−Vcs − b̄te−V̂bt − dseV d̄s − ateV̂ āt

)
.

• Superpotential part

Spot =

∫
d3xd2θW(Z,W, c, d, b, a) + c.c., (2.7)

with the superpotential

W = −2π

k
tr(ZAWA + csds)

2 +
2π

k
tr(WAZA + bta

t)2. (2.8)

2.2 The action in N = 2 component field formulation

The component expansions of our superfields are2

at(xL, θ) = At +
√

2θκt + θ2It, āt(xR, θ̄) = A†t −
√

2θ̄κ†t − θ̄2I†t , (2.9)

bt(xL, θ) = Bt +
√

2θηt + θ2Ht, b̄t(xR, θ̄) = B†t −
√

2θ̄η†t − θ̄2H†t, (2.10)

cs(xL, θ) = Cs +
√

2θτ s + θ2Js, c̄s(xR, θ̄) = C†s −
√

2θ̄τ †s − θ̄2J†s , (2.11)

ds(xL, θ) = Es +
√

2θvs + θ2Ks, d̄s(xR, θ̄) = E†s −
√

2θ̄v†s − θ̄2K†s, (2.12)

ZA(xL, θ) = ZA +
√

2θζA + θ2FA, Z̄A(xR, θ̄) = Z†A −
√

2θ̄ζ†A − θ̄2F
†
A, (2.13)

WA(xL, θ) = WA +
√

2θωA + θ2GA, W̄A(xR, θ̄) = W †A −
√

2θ̄ω†A − θ̄2G†A, (2.14)

V = 2iθθ̄σ(x) + 2θγµθ̄Aµ(x) +
√

2iθ2θ̄χ̄(x)−
√

2iθ̄2θχ(x) + θ2θ̄2D(x), (2.15)

V̂ = 2iθθ̄σ̂(x) + 2θγµθ̄Âµ(x) +
√

2iθ2θ̄ ˆ̄χ(x)−
√

2iθ̄2θχ̂(x) + θ2θ̄2D̂(x). (2.16)

Notice that the expansions of the vector superfields are in Wess-Zumino gauge.

2We follow the convention in [18].
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Following the treatment of deriving the component form of ABJM action [18], we

integrate out those auxiliary fields and then we find the total action becomes,

SN=2 =

∫
d3x

(
k

4π
tr εµνλ

(
Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)
(2.17)

− tr(DµZ)†ADµZA − tr(DµW )†ADµWA − tr(DµC)†sDµCs − tr(DµB)†tDµBt
− tr(DµE)†sDµEs − tr(DµA)†tDµAt − i tr ζ†A��D ζA − i trω†A��D ωA − i tr τ †s��D τ s

− i tr η†t��D ηt − i tr v†s��D vs − i trκ†t��D κt − V bos
F − V ferm

F − V bos
D − V ferm

D

)
,

where the covariant derivatives are defined as,

DµΦA = ∂µΦA + iAµΦA − iΦAÂµ, for ΦA ∈ (Nc, N̄c), (2.18)

Dµφs = ∂µφ
s + iAµφ

s, for φs ∈ (Nc, 1), (2.19)

Dµφ̂t = ∂µφ̂t + iÂµφ̂t, for φ̂t ∈ (1, Nc). (2.20)

We put the lengthy expressions of the potential terms in appendix A together with the

on-shell values of auxiliary fields.

2.3 The action in N = 3 component field formulation

In order to obtain a manifestly SU(2)R invariant theory, we combine the component fields

into the following doublet form

XaA =

(
ZA

W †A

)
, X†aA =

(
Z†A
WA

)
, ξaA =

(
ω†Aeiπ/4

ζAe−iπ/4

)
, ξ†aA =

(
ωAe

−iπ/4

ζ†Ae
iπ/4

)
,

(2.21)

Y as =

(
Cs

E†s

)
, Y †as =

(
C†s
Es

)
, ψas =

(
v†seiπ/4

τ se−iπ/4

)
, ψ†as =

(
vse
−iπ/4

τ †s eiπ/4

)
,

(2.22)

Mat =

(
At

B†t

)
, M †at =

(
A†t
Bt

)
, θat =

(
η†teiπ/4

κte−iπ/4

)
, θ†at =

(
ηte
−iπ/4

κ†te
iπ/4

)
,

(2.23)

where the explicit SU(2)R R-symmetry index a is raised and lowered by the anti-symmetric

tensor εab and εab with ε12 = −ε12 = 1.3

In light of the work in [19] where an N = 3 Chern-Simons Yang-Mills theory was given,

we re-write the above action into a manifestly SU(2)R invariant form in terms of these new

3In the following we will also use i, j, · · · as R-symmetry indices.
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fields as

SN=3 =

∫
d3x tr

[
k

4π
εµνλ

(
Aµ∂νAλ +

2i

3
AµAνAλ

)
− k

4π
εµνλ

(
Âµ∂νÂλ +

2i

3
ÂµÂνÂλ

)
(2.24)

−DµX†aADµXaA −DµY †aDµY a −DµM †aDµMa + iξ†aA��D ξaA + iψ†a��Dψa + iθ†a��D θa

−V N=3
ferm − V N=3

bos

]
,

with the fermionic part of the potential4

−V N=3
ferm = (2.25)

−2πi

k
εbcεad

(
ξaAX†bA−XbAξ†aA +ψaY †b−Y bψ†a

)(
ξcBX†dB −XdBξ†cB+ψcY †d−Y dψ†c

)
+

2πi

k
εbcεad

(
−ξ†aA XbA+X†bA ξ

aA−θ†aM b+M †bθa
)(
−ξ†cBXdB+X†dB ξ

cB−θ†cMd+M †dθc
)

+
4πi

k
εac

(
ξaAξ†bA+ψaψ†b

)(
X(c|B|X

†b)
B +Y (cY †b)

)
−4πi

k
εac

(
ξ†bAξ

aA+θ†bθ
a
)(

X
†(c
B Xb)B+M †(cM b)

)
,

and the bosonic part, which is first given in [10],5

−V N=3
bos =

4π2

3k2

[
Y aY †a Y

bY †b Y
cY †c +M †aM

aM †bM
bM †cM

c−4Y aY †b Y
cY †a Y

bY †c −4M †aM
bM †cM

aM †bM
c

+XaAX†aAX
bBX†bBX

cMX†cM+X†aAX
aAX†bBX

bBX†cMX
cM+4XaAX†bBX

cMX†aAX
bBX†cM

−6XaAX†bBX
bBX†aAX

cMX†cM+3XaAX†aAX
bBX†bBY

cY †c +3X†aAX
aAX†bBX

bBM †cM
c

−6XaAX†bBX
bBX†aAY

cY †c −6X†aAX
bBX†bBX

aAM †cM
c+9XaAX†aAY

bY †b Y
cY †c

+9X†aAX
aAM †bM

bM †cM
c−6XaAX†aAY

bY †c Y
cY †b −6X†aAX

aAM †bM
cM †cM

b (2.26)

−6XaAX†bAY
bY †a Y

cY †c −6X†aAX
bAM †bM

aM †cM
c+6XaAX†bAY

bY †c Y
cY †a

+6X†aAX
bAM †bM

cM †cM
a−6XaAX†bAY

cY †a Y
bY †c −6X†aAX

bAM †cM
aM †bM

c

−6XaAX†bAY
cY †c Y

bY †a−6X†aAX
bAM †cM

cM †bM
a−6X†aAY

bY †b X
aAM †cM

c

+12X†aAY
bY †c X

aAM †bM
c+12εABε

MNXcAX†bMX
aBX†cNY

bY †a

+12εABεMNX
†
cAX

bMX†aBX
cNM †bM

a
]
,

where flavor indices are suppressed.

4Our convention for symmetrization is f(ab) = 1
2
(fab + fba) and f(a|B|b) = 1

2
(faBb + fbBa).

5In fact, there is a mistake in eq. (A.4) of the paper [10]: the second and the fourth terms should be

corrected as q̄a2q
2
aq̄

b
2q

2
b q̄

c
2q

2
c and −4q̄a2q

2
b q̄

c
2q

2
aq̄

b
2q

2
c , respectively.
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Thus, we demonstrate the enhancement of the R-symmetry to SU(2)R by the explicit

construction of the action. Besides the SU(2)R symmetry, the theory also has SU(2)D
symmetry acting on the A index of XaA. The above action is the starting point of our

perturbative calculations.

3 Two-loop perturbative calculations and the Hamiltonian

In this section, we will compute the ADM of gauge invariant composite operators. We

will perform the calculations in the ’t Hooft limt with Nc → ∞, k → ∞ while λ ≡
Nc/k,Nf1 , Nf2 fixed.6 Since the ADM of single trace operators is the same as the one in

the ABJM theory, we only need to consider the mesonic operators. We focus on two types

of mesonic operators,7

Ô = Y †i X
i1A1X†i2A2

· · ·Xi2L−1A2L−1X†i2LA2L
Y i′ , (3.1)

Ô′ = Y †i X
i1A1X†i2A2

· · ·Xi2L−1A2L−1X†i2LA2L
Xi2L+1A2L+1M †i′ , (3.2)

where L > 2 and the contraction of the color indices is implied. We note that these

composite operators are built up without trace operations since they are bounded on both

sides by (anti-) fundamental matters. Our aim is to extract the ADM from the two point

correlation function through 2-loop Feynman diagram computations. The calculations

concerning only the bi-fundamental fields in the bulk are the same as those for the single

trace operator tr(XX† · · ·XX†) in ABJM theory and have been carried out carefully in [5,

6].8 Here we will concentrate on the boundary part and show the details of the derivation

of ADM of Ô. For the operator Ô′, the whole procedure is identical and we will give the

result directly in the end.

3.1 Boundary three-site scalar interactions

First we compute the contribution of the six-point vertex on the left boundary shown in

figure 1. The relevant interaction terms in the N = 3 Lagrangian are:

V 1
B =

4π2

k2
XaAX†aAX

bBX†bBY
cY †c , (3.3)

V 2
B = −8π2

k2
XaAX†bBX

bBX†aAY
cY †c , (3.4)

V 3
B =

16π2

k2
εABε

MNXcAX†bMX
aBX†cNY

bY †a . (3.5)

Let us analyze these interaction vertices separately and mainly focus on the flavor structure

as follows:

6We will further set Nf1 = Nf2 = 1 without loss of generality and then neglect the flavor indices for

simplicity.
7There exist two other types of composite operators sharing essentially the same structures as those

considered in the main text, namely, MX†X · · ·X†XM† and MX†X · · ·X†XX†Y , and we will not repeat

the similar analysis here.
8In β- and γ-deformed ABJM theories, similar calculations have been performed in [20, 21].
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k l

k + l

Y †
i X i1A1 X†

i2A2

Y j X†
j1B1

Xj2B2

Ô

Ô†

Figure 1. The contribution of six scalar interaction vertex on the left boundary.

• V 1
B:

δci δ
i1
b δ

A1
B δbi2δ

B
A2
δj2a δ

B2
A δaj1δ

A
B1
δjc = δji δ

i1
i2
δj2j1 · δ

A1
A2
δB2
B1
. (3.6)

• V 2
B:

δjcδ
c
i δ
i1
a δ

A1
A δbi2δ

B
A2
δj2b δ

B2
B δaj1δ

A
B1

= δji δ
i1
j1
δj2i2 · δ

A1
B1
δB2
A2
. (3.7)

• V 3
B:

δjaδ
b
i δ
i1
c δ

A1
N δai2δ

B
A2
δj2b δ

B2
M δcj1δ

A
B1
εABε

MN = −δj2i δ
j
i2
δi1j1 ·

(
δB2
B1
δA1
A2
− δA1

B1
δB2
A2

)
. (3.8)

We will use dimensional regularization to isolate the divergence and set d = 3− ε with the

relation: ε−1 = log Λ2 where Λ is the momentum space cutoff. The two-loop integral in

figure 1 reads

(−i)3[i] · i2
∫

ddk

(2π)d
ddl

(2π)d
1

(k + l)2
1

k2
1

l2
=

1

16π2
log Λ, (3.9)

where the factor [i] comes from the six-point vertex and (−i)3 comes from the scalar

propagator. The rest part of the above formula is a loop integral evaluated in Euclidean

space and the factor i2 accounts for the Wick rotation. There is also a factor N2
c from the

contraction of color indices. Putting these together and noting that the contribution to the

operator renormalization is negative of the quantum correction, we find the left boundary

three-site scalar interaction gives

(
HBl
)j,i1A1,j2B2

i,j1B1,i2A2
= −λ

2

4

[(
δji δ

i1
i2
δj2j1 − 4δj2i δ

j
i2
δi1j1

)
δA1
A2
δB2
B1
− 2

(
δji δ

i1
j1
δj2i2 − 2δj2i δ

i1
j1
δji2

)
δA1
B1
δB2
A2

]
.

(3.10)
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Figure 2. The contribution of Yukawa interactions on the left boundary.

The contribution from the right boundary can be obtained simply by some replacements

of indices and we get

(
HBr
)i2L−1A2L−1,j2LB2L,i

′

j2L−1B2L−1,i2LA2L,j′
= −λ

2

4

[(
δi
′
j′δ

j2L
j2L−1

δ
i2L−1

i2L
− 4δ

i2L−1

j′ δi
′
j2L−1

δj2Li2L

)
δB2L
B2L−1

δ
A2L−1

A2L

(3.11)

−2
(
δi
′
j′δ

j2L
i2L
δ
i2L−1

j2L−1
− 2δ

i2L−1

j′ δj2Li2L δ
i′
j2L−1

)
δB2L
A2L

δ
A2L−1

B2L−1

]
.

3.2 Boundary two-site Yukawa type interactions

The Feynman diagram of the boundary two-site contribution consists of two Yukawa type

vertices and a fermion loop depicted in figure 2. The involved interaction vertices are listed

below:

V 1
F =

4πi

k
XaBX†bA ξ

A
a ξ
†
bB, (3.12)

V 2
F = −2πi

k
XaBX†bB ξ

A
a ξ
†
bA, (3.13)

V 3
F = −2πi

k
XaBX†bB ξ

A
b ξ
†
aA, (3.14)

Ṽ 1
F = −2πi

k
Y aY †bξAa ξ

†
bA, (3.15)

Ṽ 2
F = −2πi

k
Y aY †bξAb ξ

†
aA. (3.16)

We have ignored the diagrams whose internal fermions belong to the fundamental flavors

because such diagrams will be generically suppressed by a factor of Nf/Nc in the ’t Hooft

limit. Now let us investigate the flavor structure arising from all possible combinations of

the above vertices.

• V 1
F ⊗ Ṽ 1

F :

δai εmbεanε
ni1δmj1ε

bj · δQAδAP δA1
Q δPB1

= δi1i δ
j
j1
δA1
B1
, (3.17)
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• V 1
F ⊗ Ṽ 2

F :

δai εmaεbnε
ni1δmj1ε

bj · δQAδAP δA1
Q δPB1

=
(
−δi1j1δ

j
i + δjj1δ

i1
i

)
δA1
B1
, (3.18)

• V 2
F ⊗ Ṽ 1

F :

δai εmbεanε
ni1δmj1ε

bj · δQAδAQδA1
P δPB1

= 2δjj1δ
i1
i δ

A1
B1
, (3.19)

• V 2
F ⊗ Ṽ 2

F :

δai εmaεbnε
ni1δmj1ε

bj · δQAδAQδA1
P δPB1

= 2
(
−δi1j1δ

j
i + δjj1δ

i1
i

)
δA1
B1
, (3.20)

• V 3
F ⊗ Ṽ 1

F :

δai εnbεamε
ni1δmj1ε

bj · δQAδAQδA1
P δPB1

= 2
(
−δji δi1j1 + δi1i δ

j
j1

)
δA1
B1
, (3.21)

• V 3
F ⊗ Ṽ 2

F :

δai εnaεbmε
ni1δmj1ε

bj · δQAδAQδA1
P δPB1

= 2δi1i δ
j
j1
δA1
B1
. (3.22)

The remaining loop integral is

2

2!
(−i)2(i)2[i]2 · (−1)i2

∫
ddk

(2π)d
ddl

(2π)d
1

(k2)2
tr

(
γµlµ
l2

γν(k + l)ν
(k + l)2

)
=

1

16π2
log Λ, (3.23)

where the factor 2/2! is from the coefficient of the second order expansion of the interaction

terms and (−i)2, (i)2, [i]2 come from the scalar and fermion propagators and the vertices

respectively. The factor (−1) is from fermion loop accounting for the Fermi-Dirac statistics.

Gathering all these data, we find the final counter-term contributing to the dilatation

operator is

(
HFl
)j,i1A1,j2B2

i,j1B1,i2A2
=
λ2

2

(
2δi1i δ

j
j1
− δji δi1j1

)
δj2i2 δ

A1
B1
δB2
A2
. (3.24)

For the right boundary, it is

(
HFr
)i2L−1A2L−1,j2LB2L,i

′

j2L−1B2L−1,i2LA2L,j′
=
λ2

2

(
2δj2Lj′ δ

i′
i2L
− δi′j′δj2Li2L

)
δ
i2L−1

j2L−1
δB2L
A2L

δ
A2L−1

B2L−1
. (3.25)

3.3 The two-loop Hamiltonian

There is another two-site diagram concerning the exchange interaction of gauge bosons,

however, this Feynman diagram can only give constant contribution since the gauge prop-

agators do not carry flavor indices. As for the various one-site diagrams representing the

wave function renormalization, it is easy to see that they also lead to constant pieces. Note

also that the two two-bulk-site trace operators in HBl and HBr are canceled by the bulk

two-site interactions. And this cancelation makes the whole bulk Hamiltonian to be in the
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same form as the one derived from the single trace operator in ABJM theory. Finally, the

two-loop Hamiltonian associated with the ADM of the composite operator Ô reads

H = Hl +Hr +Hbulk + αI, (3.26)

with

(Hl)j,i1A1,j2B2

i,j1B1,i2A2
= λ2

[(
δA1
A2
δB2
B1
− δA1

B1
δB2
A2

)
· δj2i δi1j1δ

j
i2

+ δA1
B1
δB2
A2
· δi1i δ

j
j1
δj2i2

]
, (3.27)

(Hr)i2L−1A2L−1,j2LB2L,i
′

j2L−1B2L−1,i2LA2L,j′
= λ2

[(
δB2L
B2L−1

δ
A2L−1

A2L
− δB2L

A2L
δ
A2L−1

B2L−1

)
· δi2L−1

j′ δj2Li2L δ
i′
j2L−1

(3.28)

+δB2L
A2L

δ
A2L−1

B2L−1
· δi2L−1

j2L−1
δi
′
i2L
δj2Lj′

]
,

Hbulk = λ2
2L−2∑
l=1

(
Il,l+1 − Pl,l+2 +

1

2
Pl,l+2Kl,l+1 +

1

2
Kl,l+1Pl,l+2

)
,

(3.29)

where the basic operators I, P and K are defined as

(Il,l+1)
iA, j′B′

jB, i′A′ = δijδ
j′

i′ δ
A
Bδ

B′
A′ , (Pl,l+2)

iA, i′A′

jB, j′B′ = δij′δ
i′
j δ

A
B′δ

A′
B , (Kl,l+1)

iA, j′B′

jB, i′A′ = δii′δ
j′

j δ
A
A′δ

B′
B ,

(3.30)

and the exact value of the coefficient α will be determined later by the BPS condition of

the corresponding vacuum state. For operator Ô′, the two-loop Hamiltonian is

H′ = H′l +H′r +H′bulk + α′I, (3.31)

where

H′l = Hl, (3.32)(
H′r
)j2LB2L,i2L+1A2L+1,j

′

i2LA2L,j2L+1B2L+1,i′
= λ2

[(
δ
A2L+1

A2L
δB2L
B2L+1

− δA2L+1

B2L+1
δB2L
A2L

)
· δj2Li′ δ

i2L+1

j2L+1
δj
′

i2L
(3.33)

+δ
A2L+1

B2L+1
δB2L
A2L
· δi2L+1

i′ δj
′

j2L+1
δj2Li2L

]
,

H′bulk = λ2
2L−1∑
l=1

(
Il,l+1 − Pl,l+2 +

1

2
Pl,l+2Kl,l+1 +

1

2
Kl,l+1Pl,l+2

)
.

(3.34)

We would like to mention some features of the boundary interaction. It breaks the SU(4)R
symmetry of the bulk interaction into SU(2)R × SU(2)D. It includes both nearest and

next-to-nearest neighbour interactions, especially the two-site trace operators9 which do

not appear in the bulk interaction.

4 Integrability from coordinate Bethe ansatz

In this section, we will prove the integrability of flavored ABJM model by showing that the

boundary reflection matrices satisfy the reflection equations. These reflection matrices are

9These involve the boundary site and the nearest bulk site.
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obtained by the concrete constructions of Bethe ansatz solutions of the Hamiltonian. We

begin with the composite operator Ô which naturally corresponds to an open spin chain

state and the vacuum or the Bethe reference state is chosen to be

|Ω〉 = |Y †2X11X†22 · · ·X11X†22Y
1〉. (4.1)

For the case of single impurities, the Hamiltonian in eq. (3.26) reduces to

H = Hl +Hr + αI + λ2
2L−2∑
l=1

(Il,l+1 − Pl,l+2) . (4.2)

In appendix B, we will demonstrate that the vacuum is a BPS state, so its scaling dimension

receives no quantum corrections. This determines α to be 2λ2. We now use a conventional

way to label the bulk fields as A and B types as follows,10

X11 = A1, X12 = A2, X21 = B†1, X22 = B†2. (4.3)

There are three types of one-particle excitations,

bulk A type: Y †2 (A1B2) · · · (A2B2) · · · (A1B2)Y
1, (4.4)

Y †2 (A1B2) · · · (B†1B2) · · · (A1B2)Y
1, (4.5)

bulk B type: Y †2 (A1B2) · · · (A1A
†
2) · · · (A1B2)Y

1, (4.6)

Y †2 (A1B2) · · · (A1B1) · · · (A1B2)Y
1, (4.7)

boundary: Y †1 (A1B2) · · · (A1B2) · · · (A1B2)Y
1, (4.8)

Y †2 (A1B2) · · · (A1B2) · · · (A1B2)Y
2. (4.9)

After scattering at the boundary, these pseudo-particles will transform into each other.

Under the action of Hl,
Hl|1〉A2 = λ2|1〉B1 , (4.10)

Hl|1〉B†1 = λ2|l〉
Y †1
, (4.11)

Hl|1〉A†2 = −λ2|l〉
Y †1
, (4.12)

Hl|1〉B1 = λ2|1〉A2 , (4.13)

Hl|l〉Y †1 = −λ2|1〉
A†2

+ λ2|l〉
Y †1

+ λ2|1〉
B†1
, (4.14)

Hl|x〉 = −λ2|x〉, x 6= 1, (4.15)

and under the action of Hr,
Hr|L〉A2 = λ2|L〉B1 , (4.16)

Hr|L〉B†1 = −λ2|r〉Y 2 , (4.17)

Hr|L〉A†2 = λ2|r〉Y 2 , (4.18)

Hr|L〉B1 = λ2|L〉A2 , (4.19)

Hr|r〉Y 2 = −λ2|L〉
B†1

+ λ2|r〉Y 2 + λ2|L〉
A†2
, (4.20)

Hr|x〉 = −λ2|x〉, x 6= L, (4.21)

10This convention is the same as the one in [15], though it is different from the one in section 2.
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where the spin chain is symbolised as |l(1)(2) · · · (x) · · · (L)r〉 with every site (x) containing

two fields. We use the excitation with its position to label the state and use |x〉 without

subscript to denote any of |x〉A2 , |x〉B1 , |x〉A†2 , |x〉B†1 . Here we see the novelty of our model

where different states can mix and nontrivial boundary reflections will appear unlike those

parallel studies in SYM with fundamental matters [7, 17]. Then we find that only the

superposition of several different one-particle spin wave functions can be constructed as

an eigenstate of the Hamiltonian and we can extract the boundary reflection matrix by

solving the corresponding eigenvalue equations.

4.1 Two-particle mixed sector

We consider the superposition of the spin wave functions of particles A2 and B1 as follows,

|ψ1(k)〉 =

L∑
x=1

(f(x)|x〉A2 + g(x)|x〉B1) , (4.22)

where the Bethe ansatz for the wave functions are

f(x) = Feikx + F̃ e−ikx, (4.23)

g(x) = Geikx + G̃e−ikx. (4.24)

Using our Hamiltonian, we find that

H
L∑
x=1

f(x)|x〉A2 = λ2f(1)|1〉B1 + λ2f(L)|L〉B1 + 2λ2f(1)|1〉A2 + 2λ2f(L)|L〉A2 (4.25)

−λ2f(1)|2〉A2 − λ2f(L)|L− 1〉A2

+λ2
L−1∑
x=2

f(x) (2|x〉A2 − |x− 1〉A2 − |x+ 1〉A2) ,

and

H
L∑
x=1

g(x)|x〉B1 = λ2g(1)|1〉A2 + λ2g(L)|L〉A2 + 2λ2g(1)|1〉B1 + 2λ2g(L)|L〉B1 (4.26)

−λ2g(1)|2〉B1 − λ2g(L)|L− 1〉B1

+λ2
L−1∑
x=2

g(x) (2|x〉B1 − |x− 1〉B1 − |x+ 1〉B1) .

The eigenvalue equation H|ψ1〉 = E(k)|ψ1〉 gives:

• The bulk part (x 6= 1, L),

2λ2f(x)− λ2f(x+ 1)− λ2f(x− 1) = Ef(x), (4.27)

2λ2g(x)− λ2g(x+ 1)− λ2g(x− 1) = Eg(x). (4.28)

Substituting eq. (4.23) and eq. (4.24) into the above equations, we have the following

dispersion relation for the proposed spin wave,

E(k) = 2λ2 − 2λ2 cos k. (4.29)
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• The left boundary part,

λ2f(1) + 2λ2g(1)− λ2g(2) = Eg(1), (4.30)

2λ2f(1)− λ2f(2) + λ2g(1) = Ef(1). (4.31)

Using eqs. (4.27) and (4.28), the above coupled equations become

f(1) = −g(0), (4.32)

g(1) = −f(0). (4.33)

By the plane wave expansions of eq. (4.23) and eq. (4.24), we find the relations

Feik + F̃ e−ik +G+ G̃ = 0, (4.34)

Geik + G̃e−ik + F + F̃ = 0. (4.35)

The solution is

F = −e−ikG̃, G = −e−ikF̃ . (4.36)

We define the left reflection matrix Kl(k) in this sector by(
F

G

)
≡ Kl(k)

(
F̃

G̃

)
. (4.37)

So from the above solution, we have,

Kl(k) =

(
0 −e−ik

−e−ik 0

)
. (4.38)

• The right boundary part,

λ2f(L) + 2λ2g(L)− λ2g(L− 1) = Eg(L), (4.39)

2λ2f(L)− λ2f(L− 1) + λ2g(L) = Ef(L), (4.40)

which can be reduced to

f(L) + g(L+ 1) = 0, (4.41)

g(L) + f(L+ 1) = 0. (4.42)

This gives

FeikL + F̃ e−ikL +Geik(L+1) + G̃e−ik(L+1) = 0, (4.43)

GeikL + G̃e−ikL + Feik(L+1) + F̃ e−ik(L+1) = 0. (4.44)

Solving the above two equations, we get

F = −e−2ikL−ikG̃, G = −e−2ikL−ikF̃ . (4.45)
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Following [22], we define the right reflection matrix Kr(k) in this sector by

e2ikL

(
F

G

)
≡ Kr(k)

(
F̃

G̃

)
. (4.46)

Then we get

Kr(k) =

(
0 −e−ik

−e−ik 0

)
. (4.47)

The consistency of eq. (4.36) and (4.45) gives

e2ikL = 1, k =
nπ

L
, n ∈ Z. (4.48)

This is the quantization conditions for our spin wave momenta k as well as the Bethe

equation for this two-particle mixed sector.

4.2 Four-particle mixed sector

Now we turn to another closed sector which consists of four excitations B†1, A†2, Y
†
1 and

Y 2. The spin wave takes the form

|ψ2(k)〉 =

L∑
x=1

n(x)|x〉
B†1

+

L∑
x=1

h(x)|x〉
A†2

+ β|l〉
Y †1

+ γ|r〉Y 2 , (4.49)

with

n(x) = Neikx + Ñe−ikx, (4.50)

h(x) = Heikx + H̃e−ikx. (4.51)

The Hamiltonian acts on the above wave function as follows

H
L∑
x=1

n(x)|x〉
B†1

= λ2n(1)|l〉
Y †1
− λ2n(L)|r〉Y 2 + 2λ2n(1)|1〉

B†1
+ 2λ2n(L)|L〉

B†1
(4.52)

−λ2n(1)|2〉
B†1
− λ2n(L)|L− 1〉

B†1

+λ2
L−1∑
x=2

n(x)
(

2|x〉
B†1
− |x− 1〉

B†1
− |x+ 1〉

B†1

)
,

H
L∑
x=1

h(x)|x〉
A†2

= −λ2h(1)|l〉
Y †1

+ λ2h(L)|r〉Y 2 + 2λ2h(1)|1〉
A†2

+ 2λ2h(L)|L〉
A†2

(4.53)

−λ2h(1)|2〉
A†2
− λ2h(L)|L− 1〉

A†2

+λ2
L−1∑
x=2

h(x)
(

2|x〉
A†2
− |x− 1〉

A†2
− |x+ 1〉

A†2

)
,
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and

H|l〉
Y †1

= 2λ2|l〉
Y †1
− λ2|1〉

A†2
+ λ2|1〉

B†1
, (4.54)

H|r〉Y 2 = 2λ2|r〉Y 2 − λ2|L〉
B†1

+ λ2|L〉
A†2
. (4.55)

We demand the proposed spin wave function to be an energy eigenstate:

H|ψ2(k)〉 = E(k)|ψ2(k)〉, (4.56)

which leads to the following relations:

• The bulk part (x 6= 1, L),

2λ2n(x)− λ2n(x+ 1)− λ2n(x− 1) = En(x), (4.57)

2λ2h(x)− λ2h(x+ 1)− λ2h(x− 1) = Eh(x), (4.58)

which give the same dispersion relation

E(k) = 2λ2 − 2λ2 cos k. (4.59)

• The left boundary part,

2λ2n(1)− λ2n(2) + λ2β = En(1), (4.60)

2λ2h(1)− λ2h(2)− λ2β = Eh(1), (4.61)

λ2n(1)− λ2h(1) + 2λ2β = Eβ. (4.62)

Plugging eqs. (4.57) and (4.58) into these equations, we readily have

β = h(0), (4.63)

n(1) = −h(−1), (4.64)

n(0) = −h(0), (4.65)

which means

N + Ñ +H + H̃ = 0, (4.66)

Neik + Ñe−ik +He−ik + H̃eik = 0. (4.67)

The equations are easily solved as

H = −Ñ , N = −H̃. (4.68)

This gives the left reflection matrix in this section

Kl(k) =

(
0 −1

−1 0

)
. (4.69)
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• The right boundary part,

2λ2n(L)− λ2n(L− 1)− λ2γ = En(L), (4.70)

2λ2h(L)− λ2h(L− 1) + λ2γ = Eh(L), (4.71)

−λ2n(L) + λ2h(L) + 2λ2γ = Eγ, (4.72)

which imply

γ = n(L+ 1), (4.73)

n(L+ 1) = −h(L+ 1), (4.74)

h(L) = −n(L+ 2). (4.75)

From these equations, we can get

H = −e−2ik(L+1)Ñ , N = −e−2ik(L+1)H̃. (4.76)

Then the right reflection matrix in this sector is

Kr(k) =

(
0 −e−2ik

−e−2ik 0

)
, (4.77)

recalling the definition of right reflection matrix in eq. (4.46).

The compatibility of the eqs. (4.73)–(4.75) with the solutions (4.68) requires

eik(2L+2) = 1, k =
nπ

L+ 1
, n ∈ Z. (4.78)

Therefore we get the Bethe equation of this sector and we also note that the effective

length of the spin chain is 2L+ 2 since two more boundary excitations participate in

the interaction with the bulk excitations.

The full left reflection matrix Kl is then found to be

Kl(k) =


0 0 0 −e−ik
0 0 −1 0

0 −1 0 0

−e−ik 0 0 0

 , (4.79)

with the order of the excitations as A2, B
†
1, A

†
2, B1. And the full right reflection matrix is

Kr(k) =


0 0 0 −e−ik
0 0 −e−2ik 0

0 −e−2ik 0 0

−e−ik 0 0 0

 . (4.80)

For the spin chain associated with the operator Ô′, following the similar procedure

shown above, we find the same reflection matrix after modifying the phase factor e2ikL

in the definition of right reflection matrix (4.46) into eik(2L+1). This modification is due
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to the different effective length of the open spin chain. For the same reason, the Bethe

equations for the two-particle and four-particle sectors will also be slightly modified. In

order to prove the integrability of the Hamiltonian, we also need to know the bulk two-loop

S-matrix which has been derived in [15] using coordinate Bethe ansatz. We review this bulk

S-matrix in appendix C. Equipped with the boundary and bulk scattering matrices, with

the help of Mathematica program, we can verify the following reflection equations [23]11

[S(k1, k2)]
m1m2
l1l2

[Kl(k2)]
l2
j2

[S(−k2, k1)]l1j2j1i2
[Kl(k1)]

j1
i1

(4.81)

= [Kl(k1)]
m1
l1

[S(−k1, k2)]l1m2
j1l2

[Kl(k2)]
l2
j2

[S(−k2,−k1)]j1j2i1i2
,

[S(−k1,−k2)]m1m2
l1l2

[Kr(−k1)]l1j1 [S(−k2, k1)]j1l2i1j2
[Kr(−k2)]j2i2 (4.82)

= [Kr(−k2)]m2
l2

[S(−k1, k2)]m1l2
l1j2

[Kr(−k1)]l1j1 [S(k2, k1)]
j1j2
i1i2

,

which, together with the validity of (bulk) YBE, guarantee the integrability of our open

spin chain.

5 Conclusion and discussions

In this paper, we studied the two-loop integrability of planar N = 3 flavored ABJM theory

in the scalar sector. Rewriting the complete action in a manifestly SU(2)R invariant way

is the first step of the two-loop computation. Working in ’t Hooft limit, we only need to

compute the ADMs of composite mesonic operators which naturally correspond to states

on an open alternating spin chain. Taking the ’t Hooft limit also tremendously simplifies

the computation of the ADMs of this class of operators since the computation for the bulk

part remians the same as the one in ABJM theory. The final result of this computation

can be re-expressed as a Hamiltonian on this open spin chain. The most efficient way to

prove the integrability is to construct an open chain transfer matrix containing the required

Hamiltonian in the framework of algebraic Bethe ansatz. A more detailed technique called

projected K-matrices introduced in [25] provides a systematic way to deal with a class of

systems with distinct dynamic degrees of freedom from the boundary site and the bulk

like our model by the proper projection of the regular solutions of operator-valued K-

matrices. This technique has been successfully employed in [26] to obtain the left K-matrix

of the projected type in [25] and eventually demonstrate the integrability of the Berenstein-

Vazquez Hamiltonian in [14]. For our case, the first problem is to find a suitable projector

for the symmetry breaking SU(4)R → SU(2)R×SU(2)D and then to construct the projected

K-matrices based on the projector and the known SU(4) c-number K-matrices. However

it is not an easy task to find the needed projected K-matrices that produce the correct

boundary Hamiltonian. In the present paper, we use the more physical coordinate Bethe

ansatz to show the integrability of our model. We considered one-excitation states and

computed the left and right reflection matrices. Using these and the bulk two-loop S-

matrix computed in [15], we verified the reflection equations for both sides of the open spin

11The reflection equations in the algebraic Bethe ansatz approach were first given in [24].
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chain. This established the two loop integrability of planar flavored ABJM theory in the

scalar sector.

The immediate next step is to find the eigenvalues of the Hamiltonian. For this,

we need to solve an eigenvalue equation constructed from the S-matrices and the reflec-

tion matrices [22, 27, 28]. To solve this eigenvalue equation, off-diagonal Bethe ansatz

(ODBA) [29] seems necessary here since the reflection matrices at both sides are non-

diagonal.12 One may also try the algebraic Bethe ansatz from the beginning by solving

the boundary Yang-Baxter equation obtained in this approach and analyze what kind of

solution could reproduce the boundary Hamiltonian. We remind that nested coordinate

Bethe ansatz [27, 31] may be another choice as well.

One can also study the integrability of flavored ABJM theory in the Veneziano limit

with Nc, k,Nf1 , Nf2 → ∞ and Nc/k,Nf1/Nc, Nf2/Nc fixed. In this case, the computation

of the ADM will be much more complicated. For both single trace operators and mesonic

operators, some Feynman diagrams previously omitted due to Nfi/Nc suppression should be

included now. And although the mixing between certain single trace operators and flavor-

singlet mesonic operators like
∑Nf2

s=1 Y
†
s XX† · · ·XX†Y s and

∑Nf1
t=1 M

tX†X · · ·X†XM †t is

Nfi/Nc suppressed in the ’t Hooft limit, it should be taken into account in the Veneziano

limit [32]. Generally speaking, we need to consider the mixing among the generalized single

trace operators involving X,X†,
∑Nf2

s=1 Y
sY †s ,

∑Nf1
t=1 M

†
tM

t with the color indices in the final

two composite operators un-contracted.

Another interesting question is that whether the planar integrability can be generalized

to the full sector of the theory and/or to higher orders of ’t Hooft coupling constant Nc/k.

For the four dimensional case considered in [7], as far as we know, there are no higher loop

computations in the gauge theory side to obtain the higher order Hamiltonian and check

the integrability at higher loop order. In the dual open string theory side, strong evidence

for the integrability of the classical worldsheet theory was obtained in [33] by constructing

non-local conserved charges in the full bosonic sector. This suggested that the field theory

in the planar limit is integrable in the strong coupling regime. All-loop reflection matrices

were determined in [34], following [35]. Symmetry can determine the reflection matrices

up to at most two to-be-determined functions. For one vacuum orientation, reflection

equations are automatically satisfied, while for the other vacuum orientation, reflection

equations fix the ratio of the two functions to be a nature one. We take this as another

strong evidence for the all-loop integrability of this theory. As for the case considered

in [8, 9], no progress on higher loop integrability has been reported so far. Back to flavored

ABJM theory, we hope the symmetry can also determine the all-order reflection matrix up

to a few unknown functions. We leave all these important questions to future work.
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A Some details of N = 2 formulation

A.1 The on-shell values of auxiliary fields

The equations of motion for the auxiliary fields in chiral multiplets give

F †A =
4π

k
(WAZW −WZWA +WACE −BAWA) , (A.1)

FA =
4π

k
(−W †AZ†W † +W †Z†W †A −W †AA†B† + E†C†W †A), (A.2)

G†A =
4π

k

(
ZWZA − ZAWZ + CEZA − ZABA

)
, (A.3)

GA =
4π

k
(−Z†W †Z†A + Z†AW

†Z† −A†B†Z†A + Z†AE
†C†), (A.4)

J†s =
4π

k
(EsCE + EsZW ), (A.5)

Js =
4π

k
(E†C†E†s +W †Z†E†s), (A.6)

H†t =
4π

k
(−AtBA−AtWZ), (A.7)

Ht =
4π

k
(−A†B†A†t − Z†W †A†t), (A.8)

K†s =
4π

k
(CECs + ZWCs), (A.9)

Ks =
4π

k
(C†sE

†C† + C†sW
†Z†), (A.10)

I†t =
4π

k
(−BABt −WZBt), (A.11)

It =
4π

k
(−B†tA†B† −B†tZ†W †). (A.12)

The equations of motion for the auxiliary fields in gauge multiplets give

σn =
2π

k
trTn(ZZ† −W †W + CC† − E†E), (A.13)

σ̂n =
2π

k
trTn(Z†Z −WW † +A†A−BB†), (A.14)
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χn = −4π

k
trTn(Zζ† − ω†W + Cτ † − v†E), (A.15)

χ̄n = −4π

k
trTn(ζZ† −W †ω + τC† − E†v), (A.16)

χ̂n = −4π

k
trTn(ζ†Z −Wω† −Bη† + κ†A), (A.17)

ˆ̄χn = −4π

k
trTn(Z†ζ − ωW † − ηB† +A†κ), (A.18)

where Tn, n = 1, · · · , N2
c , is the generator of U(Nc).

A.2 The potential terms in N = 2 formulation

The potentials from F-term and D-term contributions are given below

−V bos
D = −4π2

k2
tr[(ZZ†+W †W+CC†+E†E)(ZZ†−W †W+CC†−E†E)

×(ZZ†−W †W+CC†−E†E)]

−4π2

k2
tr[(Z†Z+WW †+A†A+BB†)(Z†Z−WW †+A†A−BB†)

×(Z†Z−WW †+A†A−BB†)]

+
8π2

k2
tr
[
Z†A(ZZ†−W †W+CC†−E†E)ZA(Z†Z−WW †+A†A−BB†)

]
+

8π2

k2
tr
[
W †A(Z†Z−WW †+A†A−BB†)WA(ZZ†−W †W+CC†−E†E)

]
,

(A.19)

−V bos
F = −16π2

k2
tr (−WAZW+WZWA−WACE+BAWA) (W †AZ†W †−W †Z†W †A

+W †AA†B†−E†C†W †A)−16π2

k2
tr
(
ZWZA−ZAWZ+CEZA−ZABA

)
(−Z†W †Z†A+Z†AW

†Z†−A†B†Z†A+Z†AE
†C†)−16π2

k2
tr(EsCE+EsZW ) (A.20)

(E†C†E†s+W †Z†E†s)−16π2

k2
tr(AtBA+AtWZ)(A†B†A†t+Z

†W †A†t)

−16π2

k2
tr(CECs+ZWCs)(C†sE

†C†+C†sW
†Z†)−16π2

k2
tr(BABt+WZBt)

(B†tA†B†+B†tZ†W †),

−V ferm
D = −2πi

k
tr(ζζ†+ττ †−ω†ω−v†v)(ZZ†−W †W+CC†−E†E)

+
2πi

k
tr(ζ†ζ−ωω†−ηη†+κ†κ)(Z†Z−WW †+A†A−BB†) (A.21)

−4πi

k
tr(ζZ†−W †ω+τC†−E†v)(Zζ†−ω†W+Cτ †−v†E)

+
4πi

k
tr(Z†ζ−ωW †+A†κ−ηB†)(ζ†Z−Wω†+κ†A−Bη†),
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−V ferm
F = tr

(
2π

k
εACε

BD[−2ζAWBZ
CωD−2ζAωBZ

CWD−ZAωBZCωD−ζAWBζ
CWD]

(A.22)

−2π

k
εACεBD[2ζ†AW

†BZ†Cω
†D+2ζ†Aω

†BZ†CW
†D+Z†Aω

†BZ†Cω
†D+ζ†AW

†Bζ†CW
†D]

−2π

k
[−2τvCE−2τECv−τEτE−CvCv]

+
2π

k
[−2ηκBA−2BκηA−BκBκ−ηAηA]

+
2π

k
[2κ†η†A†B†+2κ†B†A†η†+κ†B†κ†B†+A†η†A†η†]

−2π

k
[2v†τ †E†C†+2E†τ †v†C†+E†τ †E†τ †+v†C†v†C†]

+
4π

k
[ZWτv+ζωCE+ZωCv+ZωτE+ζWCv+ζWτE]

+
4π

k
[−WZηκ−ωζBA−WζBκ−WζηA−ωZBκ−ωZηA]

+
4π

k
[A†B†ζ†ω†+A†η†Z†ω†+A†η†ζ†W †+κ†B†Z†ω†+κ†B†ζ†W †+κ†η†Z†W †]

+
4π

k
[−E†C†ω†ζ†−E†τ †W †ζ†−E†τ †ω†Z†−v†C†W †ζ†−v†C†ω†Z†−v†τ †W †Z†]

)
,

where the summation indices are suppressed for those obvious contractions between two

adjacent fields.

B BPS property of the reference state

For the supersymmetry transformation of N = 3 Chern-Simon-matter theories, we follow

the convention of [36].13 We perform a Wick rotation to three dimensional Euclidean space.

The supersymmetry transformations of Y †i , Y
i, X†iA, X

iA are

δY †i = iψ†jθ
j
i, (B.1)

δY i = iθijψ
j , (B.2)

δX†iA = iξ†jAθ
j
i, (B.3)

δX iA = iθijξ
jA, (B.4)

where the supersymmetry transformation parameters θij satisfy the constraint θii = 0. It

is easy to see that the vacuum state

|Ω〉 = |Y †2X11X†22 · · ·X11X†22Y
1〉 (B.5)

is invariant under the supersymmetry transformation with θ11 = θ22 = θ12 = 0, so it is

1/3-BPS.

13Here we only consider the Poincare supercharges and neglect the conformal supercharges.
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C The bulk S-matrix

In this appendix we briefly review the bulk S-matrix computed in [15]. Our convention is

that in SJ1J2I1I2
, Ii is used to denote the in-state of the i-th particle and Ji is for the out-state

of the i-th particle.

We define

ui ≡
1

2
cot

ki
2
, uij ≡ ui − uj . (C.1)

The non-zero elements of the bulk S-matrix is

Sφφφφ(k2, k1) =
u21 + i

u21 − i
, (C.2)

where φ is one of A2, B
†
1, A

†
2, B1;

S
A2B

†
1

A2B
†
1

(k2, k1) = S
B†1A2

B†1A2
(k2, k1) = S

A†2B1

A†2B1
(k2, k1) = S

B1A
†
2

B1A
†
2

(k2, k1) =
u21

u21 − i
; (C.3)

S
B†1A2

A2B
†
1

(k2, k1) = S
A2B

†
1

B†1A2
(k2, k1) = S

B1A
†
2

A†2B1
(k2, k1) = S

A†2B1

B1A
†
2

(k2, k1) =
i

u21 − i
; (C.4)

SA2B1
A2B1

(k2, k1) = SB1A2
B1A2

(k2, k1) = S
A†2B

†
1

A†2B
†
1

(k2, k1) = S
B†1A

†
2

B†1A
†
2

(k2, k1) = 1; (C.5)

S
A2A

†
2

A2A
†
2

(k2, k1) = S
B†1B1

B†1B1
(k2, k1) = S

A†2A2

A†2A2
(k2, k1) = S

B1B
†
1

B1B
†
1

(k2, k1) =
u12

u12 − i
; (C.6)

S
A2A

†
2

B†1B1
(k2, k1) = S

B†1B1

A2A
†
2

(k2, k1) = S
A†2A2

B1B
†
1

(k2, k1) = S
B1B

†
1

A†2A2
(k2, k1) =

i

u12 − i
. (C.7)

We also verified that this S-matrix satisfies the YBE.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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