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ABSTRACT
We observe that the periodic variations in spin-down rate and beamwidth of the radio pulsar
PSR B1828−11 are getting faster. In the context of a free precession model, this corresponds
to a decrease in the precession period Pfp. We investigate how a precession model can account
for such a decrease in Pfp, in terms of an increase over time in the absolute biaxial deformation
(|εp| ∼ 10−8) of this pulsar. We perform a Bayesian model comparison against the ‘base’
precession model (with constant εp) developed in Ashton et al., and we obtain decisive odds
in favour of a time-varying deformation. We study two types of time variation: (i) a linear drift
with a posterior estimate of ε̇p∼10−18 s−1 and odds of 1075 compared to the base model, and
(ii) N discrete positive jumps in εp with very similar odds to the linear εp drift model. The
physical mechanism explaining this behaviour is unclear, but the observation could provide a
crucial probe of the interior physics of neutron stars. We also place an upper bound on the rate
at which the precessional motion is damped, and translate this into a bound on a dissipative
mutual friction-type coupling between the star’s crust and core.
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1 IN T RO D U C T I O N

The ∼500 d periodicity observed in the timing properties and pulse
profile of PSR B1828−11 provides a unique opportunity to test
neutron star physics. The first model, proposed by Bailes, Lyne &
Shemar (1993), consisted of a system of planets orbiting the pulsar.
This model later lost favour, after Stairs, Lyne & Shemar (2000)
observed correlated modulation in the timing properties and beam
shape (the ratio of the heights of two fitted integrated pulse profiles).
As such, a planetary model would require at least two orbiting
planets with orbital frequencies that differ by a factor of 2 (see for
example Beaugé, Ferraz-Mello & Michtchenko 2003), while both
interact with the magnetosphere over distances comparable to the
Earth’s orbit.

Instead, Stairs et al. (2000) proposed that the star was undergoing
free precession, corresponding to a star that is deformed, with its
spin vector and angular momentum vectors misaligned. Subsequent
modelling by Jones & Andersson (2001), Link & Epstein (2001) and
Akgün, Link & Wasserman (2006) refined the precessional descrip-
tion, examining how the precessional motion served to amplify the
modulations in spin-down rate, providing some quantitative detail
to the precessional interpretation.

The existence of long-period free precession has implications
for the interaction between the superfluid, superconducting and
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‘normal’ parts of the star. As shown by Shaham (1977), a pinned
superfluid, as typically invoked to explain pulsar glitches, would
result in a rather short free precession period, so that the observed
long period can be used to place upper limits on the amount of
pinned vorticity in PSR B1828−11; see Jones & Andersson (2001),
Link & Epstein (2001) and Link & Cutler (2002). Furthermore,
the interaction between neutron vortices and magnetic flux tubes in
the stellar core is likely to be highly dissipative, which led to Link
(2003) drawing the interesting conclusion that the persistence of
the free precession required that neutron superfluidity and proton
type II superconductivity coexist nowhere in the star, or else that the
superconductivity is of type I. Additionally, Wasserman (2003) has
argued that a sufficiently strong magnetic deformation of the stellar
structure might force the star to undergo free precession. The issue
of whether or not PSR B1828−11 really is precessing is therefore
very important, in terms of its microphysical implications.

Motivated by the existence of periodic nulling pulsars (such as
PSR B1931+24; Kramer et al. 2006), Lyne et al. (2010) posited an
alternative explanation for the modulations seen in PSR B1828−11.
Namely, that the system is undergoing magnetospheric switching.
In this model, the magnetosphere abruptly ‘state changes on a fast
time-scale, but can then be stable for many months or years before
undergoing another fast change’ (Lyne et al. 2010). This cycle pe-
riodically repeats according to some clock and produces correlated
changes in the timing properties and pulse profile due to changes in
the electromagnetic torque and flow of charged particles. However,
to explain the double-peaked spin-down rate of PSR B1828−11,
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the model requires a complicated switching pattern such as that
proposed by Perera et al. (2015).

In addition to the long time-scale modulations, PSR B1828−11
is also known to undergo short time-scale (over periods of a few
hours) switching in its beam shape, first demonstrated in Stairs
et al. (2003), and illustrated further by Lyne (2013). In the context
of magnetospheric switching, the natural explanation is that, rather
than remaining in a single state for a prolonged period of time, the
magnetosphere undergoes a random process of flickering between
two states.

However, the magnetospheric switching model does not provide
an explanation of why the modulations should be quasi-periodic.
To remedy this, Jones (2012) proposed a model in which magne-
tospheric switching did indeed take place, but precession provided
the necessary clock mechanism, with the energies available to ac-
celerate particles in the magnetosphere being a function of the pre-
cessional phase. If there exists some critical energy threshold in the
magnetosphere, the precession model could then lead to sharp mag-
netospheric transitions, with the magnetosphere being more likely
to be in a given state at some precessional phases than others. More
generally, Cordes (2013) has argued that a component of pulsar
timing noise can be attributed to pulsars making random transitions
between two or more states, with a periodic bias active in some,
producing the observed quasi-periodicities.

It should also be noted that Akgün et al. (2006) have argued
that short time-scale variations do not preclude the pure precession
model (i.e. precession without any magnetospheric switching) as a
patchy emission region can also produce short-term variations in
the beam shape.

In an attempt to shed further light on the problem, in Ashton,
Jones & Prix (2016, hereafter referred to as Paper I), we performed a
Bayesian model comparison using the Lyne et al. (2010) spin-down
rate and beamwidth data (W10, the width of the pulse at 10 per cent
of the maximum) for PSR B1828−11. We compared a switching
model to a precession model (neglecting the short-term flickering
data and focusing only on the long-term evolution), and found odds
of 102.7 ± 0.5 (‘modest evidence’) in favour of the precession model.

In this paper, we will study what further inferences can be made
based on some simple generalizations of the precession model. We
use the same data set (spanning 5280 d between MJD 49710 and
MJD 54980) as in Paper I, which was kindly provided by Andrew
Lyne and originally published in Lyne et al. (2010). Specifically,
we will look to see if there is any evidence for time evolution in
the amplitude of the precession, as measured by the ‘wobble angle’
(see Section 4 below), or for evolution in the modulation period of
the variations in spin-down and beamwidth. That the amplitude of
the precession might evolve is natural, as one would expect dissi-
pative processes within the star to damp the precession (Sedrakian,
Wasserman & Cordes 1999). That the modulation period might
change is less natural, but, as we describe in Section 2, the data
clearly favour such an interpretation, so this needs to be included in
the model.

The structure of this paper is as follows. In Section 2, we provide a
model-independent demonstration that the modulation period of the
spin-down rate of PSR B1828−11 is decreasing. In Section 3, we
describe our Bayesian methodology. In Section 4, we describe our
‘base model’ that other models will be compared to. In Sections 5
and 6, we describe extensions of our base model where the wobble
angle and deformation, respectively, are allowed to vary (linearly)
in time, while in Section 7 we allow both parameters to vary. In
Section 8, we consider a model where the deformation evolves
by a series of discrete jumps, rather than varying continuously. In

Sections 9 and 10, we provide some astrophysical interpretation of
our results, and conclude in Section 11 with some discussion of
implications of our work, and other possible lines of attack.

In a separate paper (Jones, Ashton & Prix 2016), we discuss
consistency requirements between the free precession model of
PSR B1828−11 explored here and the glitch that this pulsar un-
derwent in 2009 [Espinoza et al. (2011) and www.jb.man.ac.uk/
∼pulsar/glitches/gTable.html].

2 MO D E L - I N D E P E N D E N T E V I D E N C E F O R A
D E C R E A S I N G MO D U L AT I O N PE R I O D

The modulation period of PSR B1828−11 has so far been assumed
constant. However, we now show in a model-independent way that
the period of the spin-down rate modulations in PSR B1828−11
are getting shorter.

Let us define �ν̇ as the spin-down rate residual: the result of
removing a first-order polynomial from the spin-down rate (which
can be seen in fig. 1 of Paper I). This discards information on
the average spin-down rate and the second-order spin-down rate
ν̈ leaving only the periodic modulations. To calculate the period
of modulations, we will apply a Lomb–Scargle periodogram to the
spin-down rate residual, which estimates the spectrum of periods by
a least-squares fit of sinusoids [in particular, we use the SCIPY (Jones
et al. 2001) implementation of the Townsend (2010) algorithm]. In
Fig. 1(A), we show the resulting estimated spectrum for the entire
data period, which agrees with the equivalent result presented in
the additional material of Lyne et al. (2010). Two dominant modes
are present in the spectrum: a major mode at ∼500 d and a minor
mode at ∼250 d.

Figure 1. (A) The Lomb–Scargle estimate of the period spectrum of the
spin-down rate residual using the entire duration of data. (B) The period
spectrum of the spin-down rate residual over a sliding window of approxi-
mately 2058 d, as a function of the window mid-point (on the y-axis).
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To study how this spectrum varies with time, we apply the pe-
riodogram in a sliding window across the spin-down rate residual
data. Because the data are unevenly sampled, it is not possible to
use a fixed window size, but the average window size is 2058 d
with a standard deviation of 31 d. This duration is sufficiently long
to always include several modulation cycles, but short enough to
detect variations over the total data span. To visualize the result, in
Fig. 1(B) we stack the periodograms together and plot the spectral
density as a function of the mid-point of each time window. This
figure shows that the modulation period Pmod appears to be decreas-
ing over time. Taking the major mode from the first and last sliding
window, we find that over a time span of 3200 d the modulation pe-
riod decreased from 505 to 470 d, corresponding to a rate of change
of Ṗmod ≈ −0.01 s s−1. We note that this estimate is inherently im-
precise due to the fact that the Lomb–Scargle method is fitting a
constant period sinusoid to data that is best described by a sinusoid
with changing period. Nevertheless, it does provide a rough esti-
mate. To underline the significance of this observed Ṗmod, we found
the best fit for a phenomenological fixed-period sinusoidal model –
two sinusoids at Pmod and Pmod/2 with independent amplitudes and
a relative phase – to the spin-down rate residual. We then generated
104 realizations of central Gaussian noise with a standard deviation
of 4.3 × 10−16 s−2 (based on the standard deviation of the residual
after removing the best-fitting sinusoidal model). Adding the best-
fitting signal to each noise realization, we apply our Lomb–Scargle
process to calculate the change in period (due purely to the noise
fluctuations) and find that the maximum |Ṗmod| < 10−7. This illus-
trates that the observed Ṗmod ∼ −0.01 s s−1 for PSR B1828−11 is
highly unlikely to be due to Gaussian-noise fluctuations alone.

This shortening of the modulation period provides a new obser-
vational feature that needs to be accommodated by any model trying
to describe these data. For example in the planetary hypothesis, this
would require that the two planets maintain orbital resonance while
inspiralling. For the magnetospheric switching model proposed by
Perera et al. (2015) and further studied in Paper I, it is unclear
how this could be incorporated, given the purely phenomenological
nature of this model. In the future, it would be interesting to under-
stand this observation in the context of other models; in this work,
we explore how this feature is accommodated within the precession
model of Paper I.

3 DATA A NA LY S I S M E T H O D O L O G Y

In Paper I, we performed a Bayesian model comparison between
precession (with non-circular beam geometry) and magnetospheric
switching for the observed long-term variations in spin-down rate
and beamwidth of PSR B1828−11. Because of the purely phe-
nomenological nature of the switching model, no physical priors on
its parameters were readily available and we therefore resorted to
a two-step approach: first, we performed parameter estimation for
both models on the spin-down data alone, by using wide flat priors
for both models. Then we used the resulting posteriors as priors for
a model comparison on the beamwidth data. This yielded odds of
102.7 ± 0.5 in favour of the precession model.

In this work, we focus on physical generalizations of the preces-
sion model and compare these to the ‘base’ precession model. The
competing generalized precession models share the parameters of
the base model, but extend them with additional physical parame-
ters that are allowed to be non-zero. The base-model priors can be
thought of as effectively expressing certainty for these additional
parameters to vanish exactly, while the generalized models relax this
restriction and instead use plausible non-zero priors for them. This

allows us to directly perform model comparison between base and
generalized models on the full data set comprising both spin-down
and beamwidth data.

We define the data D as N observed ν̇i values and M observed
W

j
10 values. We denote as σν̇ and σW10 the (assumed Gaussian) noise

level for each type of observation. The likelihood for the data (see
section 2 of Paper I) given by model M with model parameters λ

is then

P (D|M, ϑ) = ∏N
i=1P (ν̇i |M,λ, σν̇)

∏M
j=1P (Wj

10|M, λ, σW10 ),

(1)

where ϑ = [λ, σν̇ , σW10 ] is the full set of parameters. To approximate
the posterior density of these parameters, we use the Foreman-
Mackey et al. (2013) implementation of the affine-invariant parallel-
tempered Markov chain Monte Carlo (MCMC) sampler (Goodman
& Weare 2010); the exact methodology is described in appendix A
of Paper I. We then use thermodynamic integration (Goggans &
Chi 2004) to estimate the marginal likelihood of a given model
(see section 4 of Paper I) and hence the odds ratio between models
setting the prior ratio to unity. We use the posterior odds between
models to quantify how much, if at all, each extension improves
the power of the model to describe the data, compared to the base
model. This depends on both the improvement to fit the data and
on the respective prior volume of the extension parameters, which
provides an effective ‘Occam factor’ against the extension.

4 THE PRECESSI ON BA SE MODEL

We begin by introducing our base model, the precession model
based on the treatment given in Paper I. It is against this that the
extended models will be compared.

4.1 Defining the base model

We consider a biaxial star, spinning down by electromagnetic torque
from the magnetic dipole m, which forms an angle χ with the
symmetry axis of the star. Following Jones & Andersson (2001),
we define θ as the wobble angle between the symmetry axis and
the angular momentum vector. Precession produces modulations
with period1 Pfp in the rotation of the magnetic axis. As a result, the
spin-down rate and beamwidth are modulated on the free precession
period.

Combining precession with a generalization of the vacuum dipole
torque and allowing for an arbitrary braking index n, we show in
Appendix A that the spin-down rate, in the small-θ limit, is given
by

ν̇(t) = ν̇0 + ν̈0(t − tref )

− ν̇0θ

[
2 cot χ sin(ψ(t)) − θ

2
cos(2ψ(t))

]
, (2)

where [ν̇0, ν̈0] are the fixed frequency derivatives defined at a ref-
erence time tref and ψ is one the three Euler angles describing the
orientation of the star (see for example Landau & Lifshitz 1969).
We note that equation (2) is equivalent to the results of Jones
& Andersson (2001) and Link & Epstein (2001), although these

1 In Paper I, we defined τP as the precession period, here we will use Pfp in
order to be consistent with the literature.
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Table 1. Table of astrophysical data for B1828−11 taken from
the ATNF pulsar catalogue (Manchester et al. 2005), available at
http://www.atnf.csiro.au/people/pulsar/psrcat.

Parameter ATNF value

tref MJD 49621
ν0 2.468 871 714 70 ± 7 × 10−11 Hz
ν̇0 −3.658 728 × 10−13 ± 5 × 10−19 Hz s−1

ν̈0 8.72 × 10−25 ± 9 × 10−27 Hz s−2

τage = −ν0/ν̇0 1.07 × 105 yr
n = ν̈0ν0/ν̇

2
0 16.08 ± 0.7

Distance 3.58 kpc

previous works fixed the braking index to n = 3. If the spin-down
age is much longer than the precession period Pfp, we have that

ψ(t) = −2π
t − tref

Pfp
+ ψ0, (3)

in which we have implicitly defined the precession period as

Pfp = 1

εp ν(t) cos θ
, (4)

where ν(t) is the instantaneous spin frequency at time t, and

εp = �Id

Iprec
, (5)

where �Id is the stellar deformation caused by elastic/magnetic
strains, while Iprec is that part of the star that participates in the free
precession. We can expect Icrust < Iprec < I∗; see Jones & Andersson
(2001) for details.

Formally, the spin frequency ν(t) is the integral of equation (2).
However, the sinusoidal variations due to precession will average
to zero over an integer number of cycles. Therefore, we will neglect
the residual modulations, which will have a negligible effect on the
precession period, and approximate the spin frequency in equation
(4) by

ν(t) = ν0 + ν̇0 (t − tref ) + ν̈0

2
(t − tref )

2, (6)

where ν0 is the fixed frequency of the star at tref. We will define tref at
the epoch given in the ATNF (Manchester et al. 2005) entry for PSR
B1828−11. This reference time, the frequency and its derivatives,
and other useful quantities are listed in Table 1.

The pulse beamwidth W10 is defined as the width of the pulse
at 10 per cent of the observed peak intensity. This beamwidth de-
pends on the motion of the dipole m, how the intensity of emission
varies across the beam, and on the relative position of the observer
and the beam. The angle 
 between the dipole m and the angular
momentum J can be expressed as


(t) = cos−1 (sin θ sin χ sin(ψ(t)) + cos θ cos χ ) , (7)

which describes the polar motion of m in the inertial
frame (Bisnovatyi-Kogan, Mersov & Sheffer 1990; Jones &
Andersson 2001). Let ι denote the angle between the observing
direction and J , and so the latitudinal separation between observer
and beam is given simply by �
(t) = 
(t) − ι.

In Paper I, we first considered an emission model where the
intensity of the emitted radiation is circularly symmetric around
the dipole m with a radial Gaussian fall-off. However, this simple
model is unable to account for the observed variations in W10,
and we therefore extended the model to allow for the longitudinal
width of the Gaussian describing the intensity to depend on the
latitude �
(t) of the cut made through the beam; this was found

to produce good agreement with observations [similar conclusions
have previously been obtained by Link & Epstein (2001)]. This
results in a beamwidth expression of the form

W10(t) = 1

ν(t) π

√
2 ln 10

sin 
(t) sin ι

(
ρ0

2 + ρ ′′
2 �
(t)2

)
, (8)

where ρ0
2 is the width of the Gaussian intensity at �
 = 0 and

ρ ′′
2 describes the variation in intensity with �
; see Paper I. Our

formulation of the base model is now complete: equation (2) is
the base spin-down model and equation (8) is the base beamwidth
model.

This formulation of the base precession model differs from that
used in Paper I in two ways. First, in Paper I, Pfp was a constant
model parameter. But in equation (4), we now express the preces-
sion period Pfp in terms of the fundamental model parameters: the
instantaneous spin frequency ν(t), wobble angle θ and the defor-
mation εp. While this change of parametrization provides a more
complete description (in that it includes the time evolution of Pfp

with ν(t)), it was found to produce no significant change in the fit.
Secondly, the sign of the first term of equation (3) was positive in
equation (16) of Paper I, but is now negative; this change amounts to
a redefinition of Pfp that was done such that for an oblate star, εp and
Pfp are both positive, while for a prolate star both these quantities
are formally negative. As the spin-down rate and beamwidth of the
precession model (equations 2 and 8, respectively) are invariant to
this change of sign (modulo addition of π to ψ0), the redefinition
of Pfp makes no substantial difference to the model.

The base model and all extensions considered in this work are
subject to two symmetries that are important when interpreting
our results. First, as a consequence of the invariant nature of the
spin-down rate and beamwidth to the sign of εp, the data cannot
fix the overall sign of εp. We restrict this symmetry by choosing
εp > 0 in the prior, but we note that solutions where εp → −εp are
equally valid. Secondly, it was noted by Arzamasskiy, Philippov &
Tchekhovskoy (2015) that the spin-down rate in the precession
model is symmetric under the substitution θ↔χ [we discuss how
this can be derived for equation (2) in Appendix A]; in our model,
this is also true for the beamwidth. For both the spin-down and
beamwidth models, this is fundamentally due to the symmetry of
χ and θ in equation (7). In our analysis, we consider only the
‘large-χ ’ model [as defined by Arzamasskiy et al. (2015)] and
restrict this symmetry in the derivation by assuming that θ 	 1
and in the choice of prior. But, rederiving the equations with χ 	
1 instead results in equation (2) with θ↔χ . Therefore, all models
and parameter estimation considered in this work can equally be
applied to the ‘small-χ ’ model by interchanging χ and θ . These
symmetries may be important to consider when relating the model
extension to physical theories.

4.2 Applying the base model to the data

The base model consists of the spin-down and beamwidth predic-
tions given in equations (2) and (8). Before applying these to the
data, we first define our priors. Since we will use the same priors
for these parameters when considering the extended models in the
following sections, their prior volume will not have an impact on
the model-comparison odds.

The full set of priors are listed in Table 2, and we now describe
our choices in detail. For the spin frequency and frequency deriva-
tives, we apply astrophysical priors based on data from the ATNF
data base (which is listed in Table 1). Specifically, we use normal
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Table 2. Prior distributions and a posterior distribution summary for the base-model parameters.

Prior Posterior median ± s.d. Units

ν0 N (2.468 871 714 70, 7.0 × 10−11) 2.47 ± 7.0 × 10−11 Hz
ν̇0 N (−3.658 728 × 10−13, 5.0 × 10−19) −3.66 × 10−13 ± 5.0 × 10−19 Hz s−1

ν̈0 N (8.72 × 10−25, 9.0 × 10−27) 8.73 × 10−25 ± 9.0 × 10−27 Hz s−2

εp |N (0, 1 × 10−8)| 9.67 × 10−9 ± 1.1 × 10−11

θ Unif(0, 0.1) 0.0490 ± 0.0020 rad
χ Unif(2π/5, π/2) 1.5519 ± 0.0013 rad
ψ0 Unif(0, 2π ) 5.4821 ± 0.0456 rad
ρ0

2 Unif(0, 0.1464) 0.0246 ± 0.0004 rad
ρ′′

2 N (0, 6.83) 3.36 ± 0.4 rad−2

cos (ι) Unif(−1, 1) 7.57 × 10−3 ± 2.1 × 10−3

σν̇ Unif(0, 1 × 10−15) 4.09 × 10−16 ± 1.9 × 10−17 s−2

σW10 Unif(0, 5.0 × 10−3) 1.59 × 10−3 ± 4.3 × 10−5 s

Figure 2. Comparison between the base model (solid line) using max-
imum posterior parameter estimates (MPE) and the observed spin-down
and beamwidth data (black dots). The shaded region indicates 1σ of the
estimated noise level in the spin-down and beamwidth data, respectively.

distributions with mean and standard deviation given by the ATNF
values. For the deformation εp, we use the absolute value of a nor-
mal distribution as prior, ensuring our gauge choice of εp ≥ 0. The
normal distribution has zero mean, and a standard deviation of 10−8,
the approximate known value of εp (Paper I). For the angles θ and
χ , we restrict their domain to solutions where the wobble angle θ

is small while the magnetic inclination χ is close to orthogonal (the
‘large-χ ’ model, for more details see Appendix A). The beamwidth
parameters (ρ0

2 and ρ ′′
2 ) use priors from Paper I, which were chosen

to give a range of beamwidths up to 10 per cent of the period and
allow for some non-circularity. Finally, the phase is given a uniform
prior over its domain, and we use uniform priors for σν̇ and σW10

from a crude estimate of the data.
We run MCMC simulations applying the base model to the data

under these priors and check that they converge and properly sample
the posterior. In Fig. 2, we show the spin-down and beamwidth
data together with the maximum posterior estimate (MPE) solution
of the model, i.e. using the parameters with the highest posterior
probability.

The samples from the converged MCMC chains are used to esti-
mate the posterior distributions, which we find to be Gaussian-like,

and which we summarize in the second column of Table 2 by their
median and standard deviation.

Compared to Paper I, this base model already contains one model
extension: allowing for variation in Pfp due to ν(t), as seen in equa-
tion (4). However, this does not make any appreciable difference
to the result in that there is no noticeable difference between the
two panels of Fig. 2 and figs 7B and 11B of Paper I. Furthermore,
this extension does not explain the observed changing modulation
period discussed in Section 2. In order to see this quantitatively, we
expand equation (4) to first order as

Pfp ≈ 1

εpν0 cos θ

(
1 − (t − tref )

ν̇0

ν0

)
. (9)

Since ν̇0 <0, this produces an increasing precession period, which
over the observation span produces a fractional change in precession
period of ∼7 × 10−5. Hence, the effect of the spin-down is too small
and of the wrong sign to explain the observations of Section 2.

From equation (4), we see that there are two further possible ways
that Pfp can evolve: either the wobble angle θ or the deformation εp

must evolve (or both). In the following sections, we will consider
these possibilities in turn and evaluate the improvements in the
power of the respective model to describe the data by computing
their odds compared to the base model.

5 SE C U L A R E VO L U T I O N O F T H E WO B B L E
A N G L E : T H E θ̇ - M O D E L

There are two motivations for allowing a secular evolution of the
precession wobble angle. First, from equation (4), we see that such
an evolution could potentially drive a change in the precession pe-
riod explaining the results of Section 2. However, simple estimates
show that the required rate of variation in θ is much too large to
be consistent with the observations; we give such arguments in
Section 5.1 below. Secondly, and perhaps more fundamentally, in
the precessional interpretation, dissipative processes are expected
to exist and should damp the wobble angle, which would provide
insights into the crust–core coupling (see for example Sedrakian
et al. 1999 and Levin & D’Angelo 2004).

We model this in the simplest way by assuming that θ changes
linearly in time as

θ (t) = θ + θ̇ (t − tref ). (10)

The base-model spin-down rate of equation (2) was derived under
the assumption that θ is constant. However, when rederiving this
expression with an evolving θ according to equation (10), we find
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Table 3. Prior distributions and a posterior distribution summary for the θ̇ -model parameters.

Prior Posterior median ±s.d. Units

ν0 N (2.468 871 714 70, 7.0 × 10−11) 2.47 ± 7.0 × 10−11 Hz
ν̇0 N (−3.658 728 × 10−13, 5.0 × 10−19) −3.66 × 10−13 ± 5.0 × 10−19 Hz s−1

ν̈0 N (8.72 × 10−25, 9.0 × 10−27) 8.73 × 10−25 ± 8.9 × 10−27 Hz s−2

εp |N (0, 1 × 10−8)| 9.67 × 10−9 ± 1.2 × 10−11

θ Unif(0, 0.1) 0.0500 ± 0.0025 rad
θ̇ N (0, 2.2 × 10−10) −3.97 × 10−12 ± 6.3 × 10−12 rad s−1

χ Unif(2π/5, π/2) 1.5519 ± 0.0013 rad
ψ0 Unif(0, 2π ) 5.4688 ± 0.0494 rad
ρ0

2 Unif(0, 0.1464) 0.0246 ± 0.0004 rad
ρ′′

2 N (0, 6.83) 3.33 ± 0.4 rad−2

cos (ι) Unif(−1, 1) 7.51 × 10−3 ± 2.1 × 10−3

σν̇ Unif(0, 1 × 10−15) 4.09 × 10−16 ± 1.9 × 10−17 s−2

σW10 Unif(0, 5.0 × 10−3) 1.59 × 10−3 ± 4.2 × 10−5 s

that (to first order) the expression remains valid with the simple
substitution θ → θ (t).

5.1 Can a changing θ explain the observed decrease in
precession period?

Using the following simple argument, we can see that a non-zero
θ̇ cannot consistently explain the observed decrease in precession
period of Ṗfp ≈ −0.01 s s−1 found in Section 2. Taking the time
derivative of equation (4) with θ = θ (t) (and dropping a negligible
contribution Pfp/τ age ∼ 10−5 s s−1 to Ṗfp), we can estimate the
required θ̇ as

θ̇ = Ṗfp

Pfp
cot θ ≈ −5 × 10−9 rad s−1 , (11)

therefore

τθ ≡ θ

|θ̇ | = θ

cot θ

Pfp

|Ṗfp|
≈ 1

400

Pfp

Ṗfp
∼ 0.34 yr , (12)

where we used the base-model posterior estimates from Table 2 for
θ and for Pfp (these values are derived assuming that θ̇ = 0, how-
ever, as shown later in Table 3 they are consistent with those found
when this assumption is relaxed). Similarly, with the estimate of
equation (11), the predicted relative change in the spin-down mod-
ulation amplitude from equation (2) over the observation period of
T ≈ 5000 d would amount to

θ̇T

θ
≈ −46.8 . (13)

This level of change in θ is inconsistent with the observed spin-
down variations, which are well described by a model with an
approximately constant θ (e.g. see Fig. 2).

We can therefore conclude that changes in θ are unable to explain
the decrease in modulation period. Fundamentally, this stems from
the fact that the dependence of the modulation amplitude on θ is
∝θ , while the dependence of Pfp is ∝1 + θ2/2 for θ 	 1.

5.2 Applying the θ̇ -model to the data

We choose a weakly informative prior for the additional model
parameter θ̇ : a central normal distribution with standard deviation of
2.2 × 10−10 rad s−1, which is the value one would get if θ̇ ∼ 2θ/T ,
so effectively this allows θ to change by twice its magnitude over
the observation time T. Using such a wide prior allows us to be
confident that the posterior upper limit on θ̇ will be informed by the
data and not the result of an overly constrained prior.

Figure 3. Posterior probability distributions for the wobble angle θ and its
rate of change θ̇ in the θ̇-model.

The resulting posteriors for θ and θ̇ are shown in Fig. 3, and
the posteriors for all model parameters are summarized in Table 3
alongside the priors (which are identical to those of the base model).

The θ posterior is found to be essentially unchanged with respect
to the base model. The θ̇ posterior shows a substantial amount
of ‘shrinkage’ compared to its prior range, but is fully consistent
with θ̇ = 0 and therefore provides no evidence that θ is actually
changing. Nevertheless, we can use this to place constraints on
the time-scale of θ -changes by defining τθ ≡ |θ/θ̇ | and using the
samples from Fig. 3 to estimate the posterior distribution for τ θ ,
which is shown in Fig. 4. This figure shows that there is little
support for variation time-scales below ∼100 yr [confirming that
the required time-scale for τ θ to explain the changing modulation
period given in equation (12) is too short]. The distribution has
a long tail, allowing for much longer time-scales. The median of
the distribution is 307.7 yr, and we can place a 95 per cent credible
lower limit of τ θ > 114.3 yr. The odds between the θ̇ -model and the
base model are found as 10−1.70 ± 1.39, i.e. weak evidence against this
extension. This shows the effect of the built-in Bayesian ‘Occam
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Figure 4. The posterior distribution for τθ ≡ |θ/θ̇ | under the θ̇-model.

factor’: the extension of allowing θ̇ 
= 0 (which can only improve
the fit to the data) does not provide a sufficient improvement in
likelihood compared to the increase in prior volume.

6 SE C U L A R E VO L U T I O N O F TH E
D E F O R M ATI O N : T H E ε̇p- M O D E L

After ruling out variations in ν and θ in the previous sections as
the cause for the observed level of Ṗfp, we see from equation (4)
that this leaves only variations in the deformation εp as a possible
explanation. In this section and Section 8, we consider two distinct
types of time evolution in εp: first the ε̇p-model, a slow continu-
ous change (approximated by the linear term) in εp, and then the
�εp-model, a series of distinct ‘jumps’ in εp. These are just two
possible phenomenological models that are not founded in any phys-
ical theory; instead, they are chosen simply to model two distinctive
behaviours.

6.1 Defining the ε̇p-model

We consider the simplest continuously changing deformation model
by including a linear term (which also describes a larger class of
sufficiently slow continuous change in εp):

εp(t) = εp + ε̇p (t − tref ). (14)

We will discuss some potential physical mechanisms for such a
secular change in Section 10.

Allowing for a time-varying εp(t) in equation (4) and assuming
that this accounts for the majority of the change in Pfp, we obtain

Ṗfp

Pfp
≈ − ε̇p

εp
≡ − 1

τε

, (15)

where we have defined the characteristic time-scale τ ε for the rate
of change in εp.

Given that Pfp is decreasing with time (cf. Section 2), for εp > 0
this implies ε̇p > 0, while for εp < 0 this would correspond to
ε̇p < 0. As previously mentioned, we are unable to determine the
sign of εp from our current precession model, but in either case the
magnitude of the deformation has to be increasing, i.e. d|εp|/dt > 0,
in order to account for the observed decrease in Pfp.

From equation (15), we can estimate the required ε̇p for the
observed Ṗfp ≈ −0.01 s s−1 as found in Section 2, which yields
ε̇p ≈ 2 × 10−18 s−1. We use this as the scale for a central Gaussian
prior on ε̇p as

ε̇p ∼ |N (
0, 2 × 10−18

) |, (16)

where we restrict ourselves to positive values in accordance to our
gauge choice of εp > 0.

This prior is weakly informed by the data, but we could equally
well consider a less informed choice of, say, allowing εp to double

Figure 5. Posterior probability distributions for the deformation εp and its
rate of change ε̇p in the ε̇p-model.

in size over the observation time-scale T = 5000 d, which would
yield a prior scale of ε̇p ∼ 2 × 10−17 s−1. This is only a factor of 10
wider compared to equation (16), and would be expected to reduce
the odds by about one order of magnitude at most via the larger
‘Occam factor’ (i.e. prior volume). Re-running the analysis with
the wider prior confirms this, as we obtain odds that are reduced
by a factor of ∼5 compared to using equation (16), while yielding
essentially unchanged posteriors.

6.2 Applying the ε̇p-model to the data

The estimated posterior distributions for selected model parameters
are plotted in Fig. 5, and the entire set is summarized in Table 4 along
with their prior distributions. Comparing this to the base model, two
features are notable: the posterior mean of εp is fractionally smaller
and ε̇p has a posterior mean quite different from its prior, with
a positive mean and essentially zero probability of ε̇p = 0. Since
ε̇p > 0, the deformation is growing with time as expected from the
observation that Pfp is decreasing. As pointed out earlier, we recall
that due to the degeneracy of the spin-down rate and beamwidth
with respect to the sign of εp, this should therefore generally be
interpreted as |ε̇p| > 0.

In Fig. 6, we plot the MPE spin-down and beamwidth functions
given by the model together with the observed data. Comparing this
to Fig. 2, it is evident that the model extension of equation (14),
allowing for evolution of the precession period via ε̇p, noticeably
improves the description of the data compared to the base model.
This improvement is confirmed by the odds between the ε̇p-model
and the base model that are found as 1073.65 ± 0.97, i.e. decisive
evidence in favour of an increasing deformation |εp| as opposed to
a constant.

To understand how the two data sources contribute to the total
odds, we repeat the analysis on the two data sets independently and
find that the odds for the spin-down data are 1049.35 ± 1.44 while the
odds for the beamwidth data are 1023.46 ± 1.83 such that the individual
log-odds approximately sum to the combined log-odds. One would
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Table 4. Prior distributions and a posterior distribution summary for the ε̇p-model parameters.

Prior Posterior median ±s.d. Units

ν0 N (2.468 871 714 70, 7.0 × 10−11) 2.47 ± 7.0 × 10−11 Hz
ν̇0 N (−3.658 728 × 10−13, 5.0 × 10−19) −3.66 × 10−13 ± 5.0 × 10−19 Hz s−1

ν̈0 N (8.72 × 10−25, 9.0 × 10−27) 8.75 × 10−25 ± 8.9 × 10−27 Hz s−2

εp |N (0, 1 × 10−8)| 9.05 × 10−9 ± 2.7 × 10−11

ε̇p |N (0, 2 × 10−18)| 1.34 × 10−18 ± 5.6 × 10−20 s−1

θ Unif(0, 0.1) 0.0560 ± 0.0011 rad
χ Unif(2π/5, π/2) 1.5529 ± 0.0007 rad
ψ0 Unif(0, 2π ) 4.7725 ± 0.0404 rad
ρ0

2 Unif(0, 0.1464) 0.0236 ± 0.0003 rad
ρ′′

2 N (0, 6.83) 3.26 ± 0.2 rad−2

cos (ι) Unif(−1, 1) 6.69 × 10−3 ± 1.3 × 10−3

σν̇ Unif(0, 1 × 10−15) 2.57 × 10−16 ± 1.2 × 10−17 s−2

σW10 Unif(0, 5.0 × 10−3) 1.47 × 10−3 ± 4.0 × 10−5 s

Figure 6. Comparison between the MPE ε̇p-model (solid line) and the
observed spin-down and beamwidth data (black dots). The shaded region
indicates the estimated 1σ noise level.

expect the log-odds to sum up this way if the posteriors (when
conditioned on each data set individually) are consistent; we show
this is the case in Appendix B. The independent odds show that each
data set separately strongly favours the ε̇p-model, with the (clearly
much cleaner) spin-down data providing stronger evidence than the
beamwidth data.

The large numerical values of the odds we obtain are related to
the fact that for a Gaussian-noise model the log-odds scale linearly
with the number of data points. For the spin-down data set, which
consisted of 257 data points, the average log-odds contributed by
each point is 49.61/257 ≈ 0.19, or a factor of 100.19 ≈ 1.6 per data
point to the odds itself. For the beamwidth data, the corresponding
numbers are 23.42/756 ≈ 0.03, or a factor of 100.03 ≈ 1.07 increase
in odds per data point. This illustrates that it is the combination of
many data points, each of which (on average) only modestly favours
the ε̇p-model, that leads to the large overall odds.

The time-scale of the inferred increase in deformation is seen to
be quite short: from the MCMC samples, we calculate the median
and standard deviation of the corresponding time-scale to be

τε ≡ εp

ε̇p
= 213 ± 10 yr. (17)

7 SE C U L A R E VO L U T I O N O F WO B B L E A N G L E
A N D D E F O R M ATI O N : T H E {θ̇ , ε̇p}- M O D E L

In Section 5, we showed that variations of θ cannot be responsible
for the observed changing modulation period Pfp. In the precession
model considered here, the only plausible explanation for the de-
creasing Pfp comes from allowing for an increasing deformation
|εp|. However, physically it is still quite plausible for the wobble
angle θ to change over time, and at the minimum this allows us to
set limits on the rate of change of θ , which has potentially inter-
esting implications for the crust–core coupling. In this section, we
will therefore consider a combined extension allowing for both θ

and εp to undergo linear secular evolution. This will allow us to set
more stringent and realistic limits on the allowed θ̇ rates than those
provided in Section 5.

7.1 Applying the {θ̇ , ε̇p}-model to the data

In order to extend the base model with both equations (10) and (14),
we simply use the same formulations and priors as those given in
Sections 5 and 6.

Fig. 7 shows the posteriors obtained for the deformation εp, the
wobble angle θ and their time derivatives, and Table 5 summarizes
the posteriors found for all the model parameters. We note that the
posterior for θ̇ has again a slightly negative mean, but a narrower
width than in the θ̇ -model shown in Fig. 3. While the evolution in θ

and εp cannot be strictly separated, the evolution of the deformation
εp accounts mostly for the time-varying modulation period, while
the evolution of the wobble angle θ primarily probes the variation
in amplitude.

Fig. 8 shows the resulting posterior for the time-scale of θ -
evolution, τθ = |θ/θ̇ |. We see that the tighter posterior on θ̇ shifts
the probability of τ θ to larger values than those seen in Fig. 4,
favouring slower rates of change of θ .

We can place a 95 per cent credible lower limit of τ θ > 170.9 yr,
and the distribution has a median value of 450.2 yr. In this combined
model, τ ε = 213 ± 10 yr (the time-scale remains unchanged from
the ε̇p-model considered in Section 6).

We obtain the odds in favour of the {θ̇ , ε̇p}-model compared to
the base model as 1072.45 ± 0.96, i.e. slightly less than that for the
ε̇p-model. We see that, similarly to the case of the θ̇ -model, the in-
troduction of θ̇ does not produce a significant enough improvement
in the fit compared to the increase in prior volume.
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Figure 7. Posterior probability distributions for the wobble angle θ , the
deformation εp and their rates of change in the {θ̇ , ε̇p}-model.

8 D I S C R E T E J U M P S IN D E F O R M AT I O N : T H E
�εp- M O D E L

The success of the ε̇p-model of Section 6 indicates that a time-
dependent εp(t) provides a significant improvement over the base
model. In this section, we explore an alternative to the slow secular
change by modelling the time variation as a set of discrete jumps
in εp.

8.1 Defining the �εp-model

In this model extension, we allow εp to undergo N distinct pos-
itive jumps. For each jump j ∈ [1, N] at time tj, we define two
dimensionless parameters: the fractional observation time at which
the jump occurs, Rj ≡ (tj − t0)/Tobs ∈ [0, 1], where t0 is the start time
and Tobs is the total observation time, and the fractional (positive)

Figure 8. The posterior distribution for the θ -evolution time-scale τθ =
|θ/θ̇ | under the {θ̇ , ε̇p}-model.

variation in εp at the jump, �j ≡ �εp, j/εp, 0 ∈ [0, ∞). In this way,
the time evolution of εp(t) can be written as

εp(t) = εp,0

⎛
⎝1 +

N∑
j=1

H (t − t0 − Rj Tobs) �j

⎞
⎠ , (18)

where H(t) is the Heaviside step function.

8.2 Applying the �εp-model to the data

We assign a uniform prior distribution over the total observation
span for Rj, the time of the jumps, with Rj < Rj + 1 ∀ j. For the
jump sizes �j, we will use a prior consistent with the ε̇p-model (see
Section 6), specifically a zero-mean Gaussian for ε̇p with standard
deviation of 2 × 10−18 s−1. Distributing an equivalent total change
in εp on N discrete jumps, this gives an approximate scale of

� ≈ ε̇p Tobs

εp N
≈ 0.1

N
, (19)

where we have substituted εp and ε̇p for the prior standard deviation
used in the ε̇p-model. We use this to set the scale for a Gaussian
prior on the fractional jump size as �j ∼ |N (0, 0.1/N )|.

To speed up the fitting process, we have modified the original
MCMC fitting process described in appendix A of Paper I. Specif-
ically, it was found that when fitting for the jump parameters, the
MCMC chains took a long time to find the base-model best esti-
mates for the spin-down parameters ν0, ν̇0 and ν̈0, and the angles χ

and θ . Therefore, instead of initializing the chains from the prior,
for the parameters shared with the base model we initialize them
from the base-model posterior. This modification does not change
our final estimates, provided that the burn-in period is sufficiently

Table 5. Prior distributions and a posterior distribution summary for the {θ̇ , ε̇p}-model parameters.

Prior Posterior median ± s.d. Units

ν0 N (2.468 871 714 70, 7.0 × 10−11) 2.47 ± 7.0 × 10−11 Hz
ν̇0 N (−3.658 728 × 10−13, 5.0 × 10−19) −3.66 × 10−13 ± 4.9 × 10−19 Hz s−1

ν̈0 N (8.72 × 10−25, 9.0 × 10−27) 8.75 × 10−25 ± 8.9 × 10−27 Hz s−2

εp |N (0, 1 × 10−8)| 9.05 × 10−9 ± 2.7 × 10−11

ε̇p |N (0, 2 × 10−18)| 1.34 × 10−18 ± 5.6 × 10−20 s−1

θ Unif(0, 0.1) 0.0568 ± 0.0015 rad
θ̇ N (0, 2.2 × 10−10) −3.38 × 10−12 ± 4.5 × 10−12 rad s−1

χ Unif(2π/5, π/2) 1.5529 ± 0.0007 rad
ψ0 Unif(0, 2π ) 4.7703 ± 0.0398 rad
ρ0

2 Unif(0, 0.1464) 0.0236 ± 0.0004 rad
ρ′′

2 N (0, 6.83) 3.25 ± 0.2 rad−2

cos (ι) Unif(−1, 1) 6.77 × 10−3 ± 1.3 × 10−3

σν̇ Unif(0, 1 × 10−15) 2.57 × 10−16 ± 1.2 × 10−17 s−2

σW10 Unif(0, 5.0 × 10−3) 1.47 × 10−3 ± 4.0 × 10−5 s

MNRAS 467, 164–178 (2017)



On the free precession candidate PSR B1828−11 173

Figure 9. The log odds ratio for the �εp-model for a varying number of
jumps N compared to the base model.

Figure 10. The combined posteriors for the fractional jump times R for the
different N-jump �εp-models. The left-hand axis indicates the respective
number of jumps N. For each N, a vertical offset has been added to each
posterior to allow them to be distinguished, and dashed lines mark the ‘zero’
line.

long to allow them to evolve from this point and explore all areas of
the parameter space. For several values of N, we tested that evolving
from the prior produced the same results, but the computation took
longer to converge.

The number of jumps N can itself be thought of as a model pa-
rameter: ideally, we would fit N as part of the MCMC sampling.
However, to do this, one must use a reversible-jump MCMC algo-
rithm that can vary the number of model dimensions. This is not
currently implemented in the software used in this analysis. Instead,
we have opted for a crude, but sufficient method in which we fit
the model for different values of N individually and then use the
respective odds to compare them. For each increase in N, the num-
ber of steps required to reach convergence increases. In Fig. 9, we
show the odds of the N-jump model compared to the base model as a
function of the number of jumps N. We see that up to N ∼ 6 the odds
increase, then reach a plateau and start to marginally decrease for
N = 10. In Fig. 10, we present a stacked plot showing the posteriors
on the jump times R for all jumps, for the different N-jump models.
For ease of reading the plot, each jump is normalized so that the
area under the N = 1 line is 1, under the N = 2 model the area is 2,
etc.

The positions R at which the jumps occur appear consistent be-
tween different N-jump models. Moreover, the posteriors for each

Figure 11. Posterior probability distributions for the six relative jump-size
parameters �j in the �εp-model.

jump are multimodal, each having a unique ‘fingerprint’, which
also appear consistent between models. This would not necessarily
be expected if the best fit was quite agnostic about the exact jump
times and simply distributed N jumps randomly over the observa-
tion period. We also see a consistent progression play out as the
number of allowed steps N is increased: up to N = 6 each increase
in N finds a new jump site, but from N ≥ 7 the new jump sites are
not so well defined. However, we cannot rule out the possibility that
the MCMC chains did not successfully converge for some of these
models.

The data do not seem to strongly favour a particular number of
jumps above N ≥ 6. Therefore, for illustrative purposes, we will use
N = 6 as our posterior estimate for N. While this model does not
have the largest odds ratio (as shown in Fig. 9), the difference to
the N = 7 model, which does have the largest odds ratio, is much
smaller than the error bars. Moreover, this model captures all of the
essential features of the discrete jumps as seen in Fig. 10.

8.3 The N = 6 �εp-model

Fig. 11 shows the posterior for the six relative jump sizes �j that
have typical sizes of the order of �j ∼ 0.01. We provide a sum-
mary of the priors and posteriors for all the model parameters in
Table 6. Then, in Fig. 12 we show the MPE fits to the spin-down
and beamwidth data; we indicate the jump times with vertical lines.
By eye, the fit shows a similar level of improvement compared to
the base model in Fig. 2 as that observed in Fig. 6, which is consis-
tent with the similar odds of 1073.53 ± 2.79 relative to the base model.
As such, we cannot distinguish between the two types of evolving
deformation (continuous evolution versus discrete jumps).

9 IN T E R P R E T I N G T H E U P P E R L I M I T O N θ̇

Dissipative processes internal to the star may damp the wobble
motion, leading to a decrease in θ . Looking at the posterior on
θ̇ shown in Fig. 7, we see that, while the peak of the proba-
bility distribution lies at a value θ̇ < 0, the peak is nevertheless
close to θ̇ = 0, so there is no clear evidence for any evolution in
the wobble angle over the duration of these observations. Slightly
more informatively, in Fig. 8 we plotted the posterior on the time-
scale τθ = |θ/θ̇ |.
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Table 6. Prior distributions and a posterior distribution summary for the N = 6 �εp-model parameters.

Prior Posterior median ±s.d. Units

ν0 N (2.468 871 714 70, 7.0 × 10−11) 2.47 ± 7.2 × 10−11 Hz
ν̇0 N (−3.658 728 × 10−13, 5.0 × 10−19) −3.66 × 10−13 ± 4.7 × 10−19 Hz s−1

ν̈0 N (8.72 × 10−25, 9.0 × 10−27) 8.75 × 10−25 ± 8.6 × 10−27 Hz s−2

εp |N (0, 1 × 10−8)| 8.82 × 10−9 ± 1.4 × 10−10

�1 |N (0, 0)| 0.04 ± 0.0
R1 Unif(0, 1) 0.07 ± 0.0
�2 |N (0, 0)| 0.02 ± 2.8 × 10−3

R2 Unif(0, 1) 0.37 ± 0.0
�3 |N (0, 0)| 8.71 × 10−3 ± 1.8 × 10−3

R3 Unif(0, 1) 0.55 ± 0.0
�4 |N (0, 0)| 6.76 × 10−3 ± 1.7 × 10−3

R4 Unif(0, 1) 0.65 ± 0.0
�5 |N (0, 0)| 9.37 × 10−3 ± 1.7 × 10−3

R5 Unif(0, 1) 0.73 ± 0.0
�6 |N (0, 0)| 5.94 × 10−3 ± 1.1 × 10−3

R6 Unif(0, 1) 0.85 ± 0.0
θ Unif(0, 0.1) 0.0572 ± 0.0011 rad
χ Unif(2π/5, π/2) 1.5539 ± 0.0007 rad
ψ0 Unif(0, 2π ) 4.7351 ± 0.0535 rad
ρ0

2 Unif(0, 0.1464) 0.0233 ± 0.0003 rad
ρ′′

2 N (0, 6.83) 3.33 ± 0.2 rad−2

cos (ι) Unif(−1, 1) 7.2 × 10−3 ± 1.2 × 10−3

σν̇ Unif(0, 1 × 10−15) 2.44 × 10−16 ± 1.2 × 10−17 s−2

σW10 Unif(0, 5.0 × 10−3) 1.44 × 10−3 ± 3.9 × 10−5 s

Figure 12. Comparison between the MPE �εp-model with N = 6 jumps
(solid line) and the observed spin-down and beamwidth data (black dots).
Vertical lines mark the times of the six (positive) jumps in εp(t). The shaded
region indicates the estimated 1σ noise level.

Even though this analysis finds no evidence for a secular variation
in the wobble angle, we can use these results to put a lower bound on
the time-scale on which τ θ evolves, i.e. we can place a 95 per cent
credible interval that τ θ > 170.9 yr.

Mutual friction, a dissipative coupling of neutron vortices and
the charged component of the star, is the leading candidate for
damping precession. The effect of mutual friction on preces-
sion was examined by Sedrakian et al. (1999) and Glampedakis,
Andersson & Jones (2008, 2009). The strength of the interaction
can be parametrized by a dimensionless quantity R, a measure of
the relative strength of the mutual friction force to the Magnus force.

In the limit of large R, the vortices become pinned to the crust, and
a very fast precession frequency is obtained, in contradiction with
the observations. The free precession observation instead requires
the weak drag limit, R 	 1, to apply. The damping time can be
shown to be given by

τMF = 1

Rεp2πν

Iprec

ISF
, (20)

where ISF denotes the moments of inertia of the core superfluid (see
Sedrakian et al. 1999 and appendix A of Glampedakis et al. 2009).
Strictly, R is a locally defined quantity, i.e. a function of density,
but this dependence is ‘averaged-out’ in the rigid-body dynamics
analysis through which the above equation is obtained.

Given that the value of εp is known from our posterior estimate,
we can, as described in Glampedakis et al. (2009), convert our lower
bound on τ θ to a 95 per cent credible upper bound on R assuming
that τ θ = τMF:

R � 1.2 × 10−4

(
170.9 yr

τθ

) (
9.7 × 10−9

εp

) (
Iprec/ISF

0.1

)
. (21)

Again as noted in Glampedakis et al. (2009), this can be combined
with a lower bound on R that comes from analysis of the Christmas
1988 glitch in the Vela pulsar, where the relevant coupling time
can be shown to be given by τMF = 1/(4πνR)Iprec/ISF. From the
analysis of the Vela glitch by Abney, Epstein & Olinto (1996), if we
set Iprec/ISF = 0.1, we obtain 30 s as the upper limit on the crust–
core coupling time-scale, leading to a lower boundR � 2.4 × 10−5.
Combining these results, we have

2.4 × 10−5 � R � 1.2 × 10−4. (22)

The upper limit given here is an improvement by about one order
of magnitude on that given by Glampedakis et al. (2009).

A number of authors have attempted first-principles microphys-
ical calculations of this parameter, appropriate for a neutron su-
perfluid core (Alpar, Langer & Sauls 1984; Alpar & Sauls 1988;
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Andersson, Sidery & Comer 2006). Taking equation (64) of Anders-
son et al. (2006), and setting the density 1014 g cm−3, and the proton
density fraction to 0.1, one obtains a range for R ≈ 9.7 × 10−5–
3.18 × 10−4 as one varies the proton effective mass over the interval
0.5–0.7 times the bare mass. Clearly, there is a reasonable level of
convergence between the shrinking observation range in R reported
above and microscopic estimates.

1 0 I N T E R P R E T I N G T H E EVO LV I N G
D E F O R M ATI O N

The rather rapid observed decrease in the free precession period is
not easy to explain within the precessional model. We have shown
above that it corresponds to an increase in the deformation parameter
εp of equation (5). Re-writing this slightly,

εp = �Id

Iprec
= �Id

I∗

I∗
Iprec

, (23)

we see that we can interpret our observation as an increase on the
deformation �Id/I∗, and/or a decrease in the fraction of the star that
participates in the free precession, Iprec/I∗. The total variation must
correspond to a time-scale of ≈213 yr, a rather short time-scale for
a ∼105 yr old neutron star.

It is difficult to motivate a variation in Iprec/I∗ on this sort of time-
scale. One possible mechanism for producing a decrease in this
quantity would be if the core superfluid does not contribute to Iprec.
Then, if the star is currently cooling through the density-dependent
normal matter–superfluid matter transition, the amount of core su-
perfluid matter will be gradually increasing, with a corresponding
decrease in the amount of core normal matter, hence, by our current
assumption, decreasing Iprec. Such a mechanism has been used by
Ho & Andersson (2012) to explain the n < 3 braking indices in
some young pulsars. However, it is difficult to countenance such a
mechanism applying here. PSR B1828−11 is a relatively old pulsar,
and probably cooled through the normal fluid/superfluid transition
when it was much younger. Also, its observed braking index is n ≈
16 (see Table 1), so does not have n < 3 as would be expected if the
electromagnetic spin-down torque were acting on a progressively
smaller fraction of the stellar moment of inertia. Also, in the model
of Ho & Andersson (2012), the newly created superfluid is required
to pin to the crust, something which would result in a much more
rapid rise in the free precession frequency via the gyroscopic effect
of a pinned superfluid in a rotating star (Shaham 1977) – see the
discussion below.

The alternative possibility is that the deformation �Id/I∗ is
steadily increasing. The deformation itself may be supported by
elastic and/or magnetic strains. In the case of elastic strains, it is
very difficult to understand why the deformation should increase
with time. Elastic strains can be expected to be steadily reduced by
plastic flow (and possibly by occasional crustquakes), which would
lead to a decreasing deformation.

In the case of magnetically sustained deformations, it is again
puzzling that the deformation should increase with time, as mag-
netic fields can be expected to decay, although the interplay of
Ohmic decay, Hall drift and ambipolar diffusion processes can lead
to a complicated evolution, with the (local) field strength increas-
ing in some places. Nevertheless, the required evolution time-scale
∼200 yr is short compared to the time-scales expected for these
processes (see e.g. Goldreich & Reisenegger 1992).

Note that if the exterior magnetic field also evolves on this time-
scale, then we should be able to measure it from the braking index.
That is, we allow B = B(t) in the usual vacuum dipole braking

law (Shapiro & Teukolsky 1983) and solve for the derived braking
index, giving

n = ν̈ν

ν̇2
= 3 + 2

τage

τB

≈ 103

(
τage

105 yr

) (
τB

200 yr

)−1

. (24)

This is much larger than the measured value of n ≈ 16 (see Table 1).
So we can exclude models where the exterior field evolves in tandem
with the internal one, but it remains unclear if the internal field could
vary on such a time-scale.

The possibility of the star containing a pinned superfluid compo-
nent adds an additional strand to this story. As shown by Shaham
(1977), a pinned superfluid has a profound effect on the precession
frequency, adding a term proportional to IPSF, the amount of pinned
superfluid:

P

Pfp
= �Id

Iprec
+ IPSF

Iprec
, (25)

valid for small wobble angle and with the pinning directed along
the symmetry axis of the biaxial star. Assuming that the quantity
�Id/Iprec is positive (or else negligible), this immediately translates
into the bound IPSF/Iprec � 10−8 for PSR B1828−11, much less than
the value expected on the basis of microphysical considerations
and superfluid glitch theory (Jones & Andersson 2001; Link &
Epstein 2001). A possible explanation for this has been advanced
by Link & Cutler (2002), who argued that the precessional motion
itself might cause most/all of the pinning to break.

This has motivated most models of PSR B1828−11 assuming
that IPSF is exactly zero. However, as noted above, a small amount
of pinning is allowed. This suggests an alternative mechanism to
explain the evolving precession period: the previously broken pin-
ning may be gradually re-establishing itself, with the amount of
pinned superfluid increasing steadily over the last ∼200 yr. Indeed,
we can estimate the time-scale �tre-pin for the gradual re-pinning to
re-establish a reservoir of pinned superfluid of moment of inertia
�tre-pin. From equation (25), we have İPSF = Iprecε̇p, so

�tre−pin = �Ire−pin

İPSF
= 2.13 × 108 yr

�Ire−pin/I∗
10−2

I∗
Iprec

, (26)

implying that such unpinning events have to be rare in the pulsar
population, as PSR B1828−11 will not build up a typically sized
pinned superfluid reservoir (at the few per cent level) for a long time
to come.

The ideas discussed here (evolving strain and pinned superflu-
idity) are all relevant to the physics of pulsar glitches. In fact,
PSR B1828−11 was observed to glitch in 2009: see Espinoza
et al. (2011) and www.jb.man.ac.uk/˜pulsar/glitches/gTable.html).
The interplay between the modelling of the free precession and the
glitch is an interesting topic in its own right. We have explored the
consistency requirements between the free precession interpretation
of the observed quasi-periodicities and glitches in a separate pub-
lication (Jones et al. 2016), which exposes significant tensions be-
tween the small wobble angle free precession model considered
here and standard models of pulsar glitches.

1 1 D I S C U S S I O N A N D O U T L O O K

In this work, we have extended the free precession model of Paper I
to allow for both the wobble angle θ and the deformation �Id/Iprec

of PSR B1828−11 to evolve in time. The generalization to allow
for θ to vary was extremely natural, as dissipative processes in-
ternal to the star are expected to affect the wobble angle, causing
it to decay in oblate stars (�Id > 0), and grow in prolate ones
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Table 7. The log odds ratio for all tested models
against the base model.

Model log10(oddsratio)

θ̇ − 1.70 ± 1.39
ε̇p 73.65 ± 0.97
{θ̇ , ε̇p} 72.45 ± 0.96
N = 6 �εp 73.53 ± 2.79

(�Id < 0; Cutler 2002). That the deformation �Id/Iprec should vary
in time is less obvious. However, we first showed, in a completely
model independent way (i.e. independently of the cause of the quasi-
periodic oscillation in spin-down rate), that the ∼500 d modulation
period was getting shorter; this necessitated the allowance for a
time-varying deformation in our precession model.

We in fact found no evidence for a variation in the wobble angle,
with the inclusion of this new effect not producing a significant im-
provement in our ability to fit the data. We therefore proceeded to
set an upper limit on the time-scale on which it varied, τ θ � 171 yr.
We translated this into an upper bound on the strength of the mu-
tual frictional parameter R � 1.2 × 10−4, describing the strength
of the coupling between the crust and core, improving on previously
published results by approximately one order of magnitude. When
combined with a lower limit on the strength of this coupling, as de-
duced previously by analysis of the Vela 1988 glitch, this parameter
is confined to the interval 2.4 × 10−5 � R � 1.2 × 10−4, a rather
narrow range, but consistent with microscopic calculation.

In terms of the evolving deformation, we explored two phe-
nomenological ways to model this: either as a smooth secular evo-
lution of the deformation or as N discrete jumps in the deformation.
We find that both of these models produce a substantial improve-
ment in the fit when compared to the base model – decisive evidence
that, in the context of precession, the magnitude of the star’s de-
formation is growing; this can be seen in Table 7 where we list the
odds ratios for all model extensions considered in this work. For the
discrete jump model discussed in Section 8, we found six or more
jumps seemed to produce the best fit and used the N = 6 model to
illustrate our results.

The odds ratio between the ε̇p-model and the N = 6 �εp-model
is 100.11 ± 2.87, so we find no evidence to favour one of these two
evolution models over the other. For both models, an approximately
equivalent informative prior was used, but when the odds ratio is
marginal, the prior can have a substantial effect. We therefore cannot
state without further investigation which of the two model exten-
sions is preferred with certainty and without unfounded bias from
the prior. It would be useful to propose substantive physical models
that have well-defined priors; this would allow a more thorough
statement to be made.

We discussed the possible physical cause of the evolution in
the deformation. We mentioned elastic, magnetic and pinned su-
perfluid interpretations, and pointed out some difficulties with all
of these. PSR B1828−11 underwent a glitch in 2009 (Espinoza
et al. 2011). In a separate publication, we discuss consistency re-
quirements between the precession model described here and the
glitch, folding in the evolving precession period into our discussion
(Jones et al. 2016).

In interpreting this changing deformation, it may be important to
note that while in this analysis we fitted the ‘small-χ ’ model (as
defined by Arzamasskiy et al. 2015), our analysis can equally be
applied to the ‘large-χ ’ model by interchange of the θ and χ labels
at the parameter estimation stage. This is shown in Appendix A and

is due to the symmetry in θ and χ in the spin-down and beamwidth
models. The two solutions correspond to quite different physical
scenarios that may result in fundamental differences in their inter-
pretation.

The findings presented in this work provide a new way to probe
neutron star physics. It remains to be understood what is the true
cause of the changing deformation and whether this happens as a
smooth secular evolution or as a number of discreet jumps. More-
over, it would be interesting to know if alternative models to pre-
cession can better model this behaviour.
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A P P E N D I X A : D E R I VATI O N O F TH E
SPIN-DOW N R ATE AND THE θ↔χ SYMME TRY

In this appendix, we derive the spin-down rate for a precessing
pulsar under a vacuum point-dipole spin-down torque. We will use a
generalization of vacuum point-dipole torque to allow for a braking
index n 
= 3, but retain the angular dependence.

Following section 6.1.1 of Jones & Andersson (2001), let 
 be the
polar angles made by the magnetic dipole with respect to the z-axis
in the inertial frame and � be the azimuthal angle with respect to
the x − z axes. Then our generalization of the vacuum point-dipole
spin-down torque can be written as

�̈ = −k�̇n sin2 
, (A1)

where k is a positive constant. Rearranging equation (7) and ex-
panding about θ = 0 up to O(θ2), we find

sin2 
 = sin2 
0 − 2θ sin χ cos χ sin ψ(t)

+ 1

2
θ2 sin2 χ cos(2ψ(t)), (A2)

where we have defined

sin2 
0 ≡ sin2 χ + θ2

(
cos2 χ − sin2 χ

2

)
, (A3)

a constant, while the second two terms in equation (A2) provide the
first and second harmonic modulations in sin 2
.

In order to find approximate solutions to equation (A1), we begin
by substituting the sin 2
 in equation (A1) with the time-averaged
constant sin 2
0 value and solve to get

�̇(t) = �̇0

[
1 + (n − 1)

t

τage

] −1
n−1

, (A4)

where

τage = |�̇0|
|�̈0|

≈ 1

k|�̇0|(n−1) sin2 
0
. (A5)

Now, we substitute equation (A4) back into equation (A1) along
with the expanded, but complete variation in sin 2
. To simplify the

result, we expand in t/τ age 	 1 and write the result in terms of the
spin frequency and its derivatives as

ν̇(t) = ν̇0 + ν̈0t − ν̇0θ

[
2 cot χ sin ψ(t) − 1

2
θ cos(2ψ(t))

]
. (A6)

In this derivation, we make no assumptions on how ψ(t) evolves.
However, since we are interested in the cases where τ P 	 τ age, we
will assume that

ψ(t) = ψ̇t + ψ0. (A7)

Then, following section 3 of Jones & Andersson (2001), but retain-
ing the dependence on θ , we can write this as

ψ(t) = −2π
t

τP
+ ψ0, (A8)

where

τP ≡ 1

εpν(t) cos θ
. (A9)

It can be shown that deriving this expression, but making the
assumption χ 	 1 in equation (A2) and throughout (rather than
θ 	 1) is equivalent to the transformation θ↔χ in equation
(A6). This symmetry was discussed by Arzamasskiy et al. (2015)
and fundamentally results from the symmetry of θ and χ in
equation (7). Because the same symmetry also exists in our
beamwidth model (equation 8), the large-χ solutions presented in
this work can equally be interpreted as small-χ solutions by inter-
changing θ and χ .

A P P E N D I X B : C O N S I S T E N C Y O F P O S T E R I O R
ESTI MATES I N THE ε̇p- M O D E L

For the base and ε̇p-model, we investigated the behaviour when con-
ditioned on each data set (spin-down and beamwidth) individually
in addition to the combined results presented in Section 6 and found
that both data sets independently support the ε̇p-model over the base
model. In Fig. B1, we plot the posteriors for the ε̇p-model parame-
ters that are common to both the spin-down and beamwidth parts of
the model, excluding the frequency and spin-down parameters that
are dominated in all cases by the astrophysical prior.

This figure demonstrates that the analysis performed on the two
individual data sets independently arrives at reasonably consistent
posterior distributions for these shared model parameters, with non-
negligible overlap between the posteriors.

For the two angles θ and χ , the beamwidth data do little to
constrain the posteriors, with the results even railing against the
prior boundaries. Widening the prior (when conditioning on the
beamwidth) solves this issue, but the posteriors remain uninforma-
tive. Comparing with the analysis of the combined data set, we see
that the combined posteriors are either a compromise of the indi-
vidual posteriors, when they are both informative, as is the case
for εp, ε̇p and ψ0, or they are dominated by the more informative
spin-down data, as is the case for θ and χ . As such, when using a
combined data set, there is no ‘tension’ (i.e. the two data sets prefer-
ring different solutions) and so their log-odds sum approximately
to the log-odds of the combined data set.
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Figure B1. Selected posterior distributions in the ε̇p-model as conditioned
on the spin-down and beamwidth data individually and the two combined.
Note that the θ and χ posteriors conditioned on the beamwidth data have
been scaled by a factor of 10 so that they are visible on the same scale as
the strongly peaked spin-down and combined results.
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