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ARTICLE INFO ABSTRACT

Mathematical models of the cellular metabolism have become an essential tool for the optimization of
biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the
used microorganisms and to find suitable genetic modifications maximizing the production performance. In
particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of
metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even
thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such
software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing
stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based
operations or via a graphical user interface with embedded network visualizations. Herein we will present key
functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby
review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux
variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain
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1. Introduction

Industrial (white) biotechnology uses cells or parts of cells for the
production of chemicals, biofuels, pharmaceuticals, nutraceuticals,
enzymes or other industrially relevant products. The design and
optimization of biotechnological processes usually involves genetic
modifications in the metabolism of the used production organisms to
maximize their production performance. For the targeted (rational)
metabolic engineering of cell factories, mathematical modeling of the
cellular metabolism has become an essential tool. Various theoretical
methods of metabolic modeling have been developed to analyze the
capabilities of metabolic networks, to study the behavior of the
metabolism under different growth and production conditions, to
discover potential bottlenecks and to eventually identify targets for
genetic modifications redirecting metabolic fluxes to a desired com-
pound. In particular, methods of stoichiometric and constraint-based
modeling have been successfully applied in metabolic and bioprocess
engineering (Gutierrez and Lewis, 2015; King et al., 2015; Maia et al.,
2015; Simeonidis and Price, 2015; Kim et al., 2015; Machado and
Herrgard, 2015). These methods include, for example, metabolic flux
analysis (MFA; characterization of metabolic fluxes under controlled
conditions), flux balance analysis (FBA; analysis of optimal flux

distributions), flux variability analysis (FVA; analysis of feasible ranges
of metabolic fluxes), metabolic pathway analysis (discovery and
analysis of metabolic pathways) and methods for computational strain
design (computation of metabolic engineering strategies optimizing the
production behavior of the organism).

Since stoichiometric and constraint-based metabolic models may
involve hundreds or even thousands of metabolites and reactions,
dedicated software tools are required to support an efficient analysis
of (up to genome-scale) metabolic networks. Accordingly, several
software packages for constraint-based modeling have been developed
in the past years, including, for example, the COBRA toolbox
(Schellenberger et al., 2011; Ebrahim et al., 2013), OPTFLUX (Rocha
et al., 2010), OMIX (Droste et al., 2011, 2013), MUFINS (Wu et al.,
2016), RAVEN (Agren et al., 2013) and CellNetAnalyzer (Klamt et al.,
2007). COPASI (Hoops et al., 2006), presented in another article in this
special issue, also supports analysis of basic stoichiometric features of
metabolic networks but focuses more on kinetic modeling of biochem-
ical systems.

CellNetAnalyzer is a package for MATLAB providing various (par-
tially unique) algorithms for analyzing structure and function of
biological networks. Metabolic networks can be studied based on
stoichiometric and constraint-based models whereas signaling and
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regulatory networks can be explored by qualitative and semi-quantita-
tive modeling approaches. The development of the software started
more than 15 years ago and since then its scope and functionality has
grown steadily. CellNetAnalyzer can be used via command-line based
operations or via a graphical user interface with embedded network
visualizations. Herein we will present key functionalities of
CellNetAnalyzer for applications in biotechnology and metabolic en-
gineering and thereby briefly review constraint-based modeling tech-
niques.

2. Fundamentals of stoichiometric and constraint-based modeling

We start with a short introduction to the mathematical foundations
of stoichiometric and constraint-based modeling (SCBM); detailed
descriptions can be found elsewhere (Maarleveld et al., 2013; O'Brien
et al., 2015; Klamt et al., 2014). SCBM methods require as (minimal)
input the m X q stoichiometric matrix N capturing the structure of the
metabolic network (columns: q reactions; rows: m metabolites with
their reaction stoichiometries). Central to all SCBM methods is the
assumption of steady state (concentrations of intracellular metabolites
do not change) which implies the metabolite balancing equation

Nr =0 (@)

where r is the vector of net reaction rates (also called flux vector or flux
distribution). Usually, several biochemical reactions are known to be
irreversible which are collected in the index set Irr. These reactions can
only proceed in forward direction posing sign restrictions on their rates:

rp=0vVielr. (@3]

Mathematically, the set of flux vectors r satisfying (1) and (2) form a
convex polyhedral cone (“flux cone”). This cone is often analyzed by
means of elementary flux modes (Section 4.5). For some reactions we
might additionally know minimum/maximum flux capacities (e.g.,
maximal substrate uptake rates)

a <n<p 3
and for some fluxes we might even have measurements
ry = my. C)]

Combining constraints (1) and (2) with (3) and/or (4) changes the
solution space from a cone to a bounded or unbounded (flux)
polyhedron. SCBM is based on Egs. (1)-(4) and employs techniques
from linear algebra, linear programming, and computational geometry
to analyze the flux space and properties of feasible flux vectors (see also
Section 4).

3. Overview of CellNetAnalyzer

CellNetAnalyzer (CNA) is a MATLAB toolbox for analyzing biological
networks on the basis of topological, stoichiometric, qualitative (logi-
cal) and semi-quantitative modeling approaches requiring no or only
few (kinetic) parameters. In particular, CNA includes various methods
that facilitate an in-depth analysis of metabolic networks based on
techniques of SCBM as detailed in Section 4. Functions to study
signaling and regulatory networks via interaction (influence) graphs,
logical (Boolean) networks, or logic-based ODEs are also included,
however, this type of analysis will not be described herein (we refer the
reader to Klamt et al., 2007).

The internal architecture of CNA is depicted in Fig. 1. User-created
network project(s) are the central objects in CNA. A network project
can be of type “mass-flow” (metabolic) or “signal-flow” (signaling/
regulatory). Every network project consists of a formal network
representation (model) and, optionally, of a graphical user interface
(GUI) with one or several interactive network maps visualizing the
network and allowing interactive input and output of calculated results
(Fig. 2). The user can endow a network project with a GUI by providing
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suitable graphics (bitmap images) of the network, e.g. by using
appropriate drawing programs (such as OMIX (Droste et al., 2011,
2013); see also Supplementary Info) or by using maps from other
sources such as KEGG. In this way, CNA is very flexible regarding the
visual representation of the network. The connection between model
and network graphics — resulting in the interactive network maps — is
then established by placing input fields (small text boxes) on the
network graphics (Fig. 2). Each input field is associated with one
network element, for instance, a reaction. The position of the input
fields in the network map can be intuitively defined by the user by
clicking on the respective position in the network map once a new
reaction is defined. The abstract model of a metabolic network is
constructed by declaring metabolites and reactions and their respective
properties (names, ID, external/internal metabolites, reaction equation,
minimal/maximal reaction rates; coefficients in linear objective func-
tion, notes, etc.). CNA supports the convenient definition of biomass
constituents (proteins, RNA, DNA, etc.). Prior to computations, the
biomass composition can be specified by the percentages of the biomass
constituents which enables quick adaptation of the stoichiometry of the
growth reaction in the metabolic network model. Within the GUI,
models can be constructed and edited via a network composer. A new
project can also be instantiated by providing the network’s stoichio-
metric matrix, indices of irreversible reactions (Eq. (2)), and flux
constraints (Eq. (3)). Furthermore, stoichiometric and constraint-based
models can be imported and exported in SBML format (Hucka et al.,
2003; including the recently established flux balance constraint pack-
age (Olivier and Bergmann, 2015)) or be converted from or to COBRA
(Schellenberger et al., 2011) and Metatool (Pfeiffer et al., 1999)
models.

Created network projects can be analyzed by the comprehensive
toolbox provided with CellNetAnalyzer (major functions are described in
Section 4). In the GUI, the user may enter, for example, known reaction
rates into the respective input fields and then start the calculation by
choosing a function from the CNA’s menu bar installed in the
interactive network maps (Fig. 2). In return, results of calculations
are displayed in the network maps. CNA also provides an Application
Programming Interface (API) which supports model/GUI access, com-
mand-line mode, and batch calculations (Klamt and von Kamp, 2011).
In particular, this allows model analysis without the necessity to have a
GUIL Most functions provided in the GUI are also supported in
command-line mode via the APIL In fact, some functions, where a
GUI-based workflow is not practical, are only accessible via API
Furthermore, the API allows access and modifications of the model
and if the project is endowed with a GUI it can also be used to read/
write values from/to the GUI In this way, the user may program own
calculation routines that make use of the abstract model and then
display results of these calculations within the network maps. Gener-
ally, for some of its calculations, CNA utilizes external packages
including linear programming solvers (CPLEX, glpk) and elementary
modes calculation routines (efmtool (Terzer and Stelling, 2008) and
Metatool (von Kamp and Schuster, 2006)), to which it interfaces via
Java and MEX code.

4. Metabolic network analysis with CellNetAnalyzer
4.1. Basic network properties

CNA calculates a number of basic network properties, which is
especially useful when a new metabolic network model has been
created. This includes conservation relations and coupled or blocked
reactions. Conservation relations (CRs) are weighted sums of metabolite
concentrations that remain constant in a metabolic reaction network,
irrespective of the chosen reaction kinetics. A typical example for a
conservation relation in certain metabolic network models is [NADH]
+ [NAD™] = CONST. CRs correspond to linearly dependent rows in
the stoichiometric matrix N and CRs can be represented by vectors of
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Fig. 1. Architecture of CellNetAnalyzer.

the left nullspace of N (Klamt et al., 2014). The identification of CRs is
important for several reasons. Non-negative CRs (where all coefficients
in the sum are non-negative) indicate so-called conserved moieties. The
case of NADH and NAD™* is such an example where the NAD* molecule
is the conserved moiety. CNA provides a procedure to calculate
elementary (non-decomposable) CRs which cannot be further reduced.
The user can compute either all elementary CRs or only the non-
negative elementary CRs (representing the conserved moieties). For
stoichiometric (and also kinetic) models, CRs represent some kind of
redundancy which can be eliminated — without losing any relevant
information — by removing certain metabolites from the stoichiometric
matrix. Removing CRs from a reaction network is not only useful to
reduce the dimension of the system but also to avoid numerical issues
that may arise in certain calculations. CNA provides therefore a
function which successively deletes certain metabolites (or marks them
as external species) until no further CR remains in the system.

Blocked (strictly detailed balanced) reactions are reactions whose
rates are always zero in steady state and are thus of no relevance for
stationary flux distributions. A simple example is a reaction that
produces a “dead-end” metabolite or lies on a linear pathway producing
a “dead-end” metabolite. But there can be also less intuitive cases.
Blocked reactions often arise from modeling errors or gaps in the
metabolic network. One can search for appropriate corrections or,
alternatively, remove blocked reactions when analyzing the network
with SCBM methods. Another important network property are coupled
reactions (also called enzyme subsets or correlated reaction sets). For
any steady-state flux vector, coupled reactions operate with a fixed
ratio in their rates (Pfeiffer et al., 1999; Burgard et al., 2004), that is,
there is a strong dependency between the fluxes. Typical examples are
reactions in a linear pathway but more complicated reaction couplings
may also exist.

CNA provides methods that use nullspace and flux variability
analysis (see below) to detect blocked and coupled reactions.
Alternatively, elementary flux mode analysis can be used for this task
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which also allows the identification of more complicated hierarchical
couplings (one reaction requires another but not the other way around
(Burgard et al., 2004)).

4.2. Metabolic flux analysis

The purpose of metabolic flux analysis (MFA) is to determine a
steady-state flux distribution in a metabolic network when some fluxes
are already known. Typically, MFA is used to calculate the unknown
internal fluxes of a cell when measurements of the more easily
accessible exchange fluxes between the cell and its environment are
available. In this way insight into the physiology of the cell and the
operation of the metabolism can be gained which is useful to derive
metabolic engineering strategies (see e.g. Schwender 2008; Amaral
et al., 2010; Quirds et al., 2013; Lohr et al., 2014). We focus here on
standard MFA as supported by CNA where measurements of external
fluxes are used as inputs; the much more complicated flux analysis
based on isotopic tracer experiments requires a different framework as
introduced elsewhere (Weitzel et al., 2013).

For standard MFA, methods from linear algebra are used to
calculate unknown fluxes from the values of the known fluxes. After
appropriate reordering of the reactions, the steady-state Eq. (1) can
always be divided into a measured/known (index k) and unknown
(index u) part:

Nr=Nr, + N, =0 .
This can be rewritten as
Nty = —=Npxye

which is the central equation of MFA. Since N, and ry are both
known their product is a vector and the equation above forms an
inhomogeneous system of linear equations which has a general least-
squares solution (see Klamt et al. (2002)). Importantly, depending on
the rank of N,, a MFA scenario is either determined (all unknown rates
are uniquely calculable) or underdetermined (not all rates are deter-
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Fig. 2. Screenshot of an interactive network map in CellNetAnalyzer showing a calculated flux distribution (green boxes: given values; blue boxes: calculated rates; grey boxes: non-
calculable rates). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

mined, but some might be calculable). Furthermore, a MFA scenario is
either redundant (some of the known rates are not independent) or non-
redundant. If the scenario is redundant, the system is either consistent
or inconsistent (some rates contradict each other, e.g., due to measure-
ment errors). In the latter case, the known rates can be balanced by
certain approaches before computing the uniquely calculable rates
(Stephanopoulos et al., 1998; Van der Heijden et al., 1994).

In CNA, after specifying the known rates in the text boxes and
starting the MFA calculation, the determinacy and redundancy of the
resulting scenario are determined and, if the system is redundant,
methods for balancing inconsistent rates are provided. As results, the
values of the calculable rates are displayed in the interactive network
maps. In standard MFA, flux bounds and reaction directionalities are
not explicitly taken into account, however, warnings will be given by

CNA if certain constraints are violated. CNA also provides a function to
test, as a preliminary step before doing the MFA calculation, the general
feasibility of a given MFA scenario thereby detecting different types of
infeasibility (inconsistent reaction rates due to redundancies; violation
of any irreversibility or capacity constraints).

A concrete example of a MFA scenario in CNA is displayed in Fig. 2.
The map shows a network model of the central metabolism of
Escherichia coli which was derived by reducing and compressing a
genome-scale model of E. coli (Héadicke and Klamt, 2017). The known
values in this MFA scenario are the growth rate and the substrate
(glucose) uptake rate. In addition, several internal fluxes are assumed to
be inactive (all predefined fluxes are indicated by green boxes). The
blue boxes show initially unknown flux values that could be calculated
by MFA, and the grey boxes indicate reactions whose fluxes could not
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be determined uniquely and remain thus unknown.

4.3. Flux balance analysis and yield space analysis

The main purpose of flux balance analysis (FBA) is the optimization
(maximization or minimization) of a linear objective function over the
reaction rates:

. T
maxnrmze Z=Cr. (5)

The objective function is thus defined by a vector ¢ containing a
weight (coefficient) for each reaction (in most cases, only one or few
coefficients are different from zero). Typical objective functions in FBA
applications maximize, for example, the growth rate or the formation
rate of a certain product. Importantly, the optimization is subject to the
general constraints (1)-(4), that is, optimal flux vectors must fulfill the
steady state condition (Eq. (1)) and comply with reversibility (Eq. (2)),
capacity (Eq. (3)) and measurement constraints (Eq. (4)) when such are
given. FBA problems constitute linear programs (LPs) for which
dedicated solvers exist.

A typical FBA task of biotechnological relevance is the maximiza-
tion of the growth rate or the production of a certain compound under a
given substrate uptake limit. If the substrate uptake is set to a fixed
value then effectively the biomass or product yield under the specified
uptake rate is maximized (but this does not hold true for the general
case where the substrate uptake rate is not fixed; see below). Another
use of FBA is to check whether a reaction is essential for some specified
behavior. For instance, in order to determine if a reaction is essential for
growth, the reaction rate is fixed at zero and the growth rate is
maximized. If the maximal growth rate is zero as well it follows that
the reaction is essential for growth, otherwise it is not. Note that
although the optimal value of the objective function is unique, the
associated fluxes that are calculated as the optimal FBA solution are, in
general, not unique (cf. flux variability analysis below). Further
applications of FBA together with extensions of this method have been
reviewed by Gianchandani et al. (2010).

In CNA, as for MFA, the user may fix some flux values in the
interactive flux maps and then start the optimization (in CNA the
objective function is defined by specifying the respective coefficients c;
for each reaction i in the reaction properties). For the actual computa-
tion, the user can choose between three supported solvers (Fig. 1:
MATLAB’s linprog, GLPK, CPLEX). The computed optimal flux distribu-
tion is displayed on the interactive network maps and a potential
infeasibility would be reported. Such infeasibility occurs when the
linear program contains contradictory constraints. In certain situations,
the FBA optimum may be unbounded, for example, when the growth
rate is maximized without a substrate uptake limit and without capacity
constraints on the other reactions. Therefore, care should be taken to
use meaningful capacity constraints for FBA.

Related to FBA is the new functionality of CNA to maximize a user-
defined yield function (or a certain ratio of reaction rates), for example,
the yield of a relevant product with respect to a given substrate. As has
been pointed out, the maximization of the rate-based linear objective
function (5) can, in the general case, not be used to find the flux vector
(s) with an optimal product yield within a given flux space and linear-
fractional programming must be applied instead (Burgard et al., 2004;
Klamt et al., 2017). Furthermore, CNA can now also be used to map the
flux space on a two-dimensional yield space where two (user-defined)
yields are plotted against each other. Yield spaces are of particular
relevance for metabolic engineering to analyze the trade-offs between
biomass yield and certain product yields (Klamt and Mahadevan, 2015)
and they can be calculated also in large (genome-scale) networks.

4.4. Flux variability analysis and phase planes

As mentioned above, an MFA scenario and even optimal flux
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distributions calculated by FBA can be non-unique. To get a better
overview of feasible flux values, flux variability analysis (FVA) can be
used. FVA takes the constraints from Egs. (1)-(4) and iteratively
minimizes and maximizes every reaction rate (hence, it also requires
LP solvers). In this way the feasible ranges of all reaction rates are
determined which provides insight into the variability of the fluxes in
the network for a given scenario (see e.g. Hidicke et al., 2011; Flahaut
et al., 2013; Hay and Schwender, 2014; Lohr et al.,, 2014). As an
example for a biotechnological application, one can calculate an
optimal production rate by FBA and then run FVA with the fixed
optimal rate to determine the ranges for the optimal flux distributions
that support optimal production. However, FVA does not describe the
solution space in as much detail as elementary flux mode analysis (see
below). With FVA it is also possible to identify blocked reactions for a
given flux scenario as these have a minimal and maximal rate of zero.

In CNA, FVA can be performed in the same way as FBA and some
fluxes may be set to a fixed value in the network maps. Again, it is
possible to choose one of the three supported LP solvers. After
calculation, CNA displays the flux ranges of all reactions and highlights
reactions in the network map for which only a single (unique) flux
value is possible in the defined scenario.

As a related function to FVA, CNA also allows the analysis of phase
planes where the flux solution space is projected on two selected
reaction rates to investigate their mutual dependencies. In the context
of biotechnological applications, this is particularly useful for the
analysis of production envelopes where the growth rate is plotted
against the production rate of a compound of interest (Machado and
Herrgard, 2015).

4.5. Elementary flux modes

An elementary flux mode (EFM) is defined as feasible steady-state
flux vector fulfilling the Egs. (1) and (2) and the further property that it
uses a minimal (or irreducible) set of reactions (Schuster and Hilgetag,
1994; Schuster et al., 2000; Trinh et al., 2009). Irreducible means that
the steady-state condition can no longer be fulfilled if any reaction that
is used by the EFM (with a rate unequal to zero) is removed from the
EFM. The concept of an EFM formalizes the notion of a metabolic
pathway in that the EFM can be seen as a minimal connected subnet-
work which needs to operate in order to keep the system in steady state.
In fact, an EFM is uniquely defined by its set of reactions, while its flux
distribution may be arbitrarily scaled. The set of all EFMs describes the
solution space of a system given by Egs. (1) and (2) in detail because
any feasible flux distribution obeying these constraints can be decom-
posed into a non-negative combination of EFMs. A further extremely
useful property is that, if a reaction is removed from the system, the set
of all EFMs of the smaller system can be derived by removing all EFMs
in which the deleted reaction participates. This property can also be
exploited for the calculation of minimal cut sets (see below).

EFMs can be used to analyze various properties of a given metabolic
network and they have also become a standard tool for metabolic
modeling in biotechnology and metabolic engineering (Trinh et al.,
2009; Horvat et al., 2015; Zanghellini et al., 2013; Klamt et al., 2014).
First of all, as already described, EFMs can be used to identify minimal
pathways (or subnetworks) leading from a given substrate to a
(biotechnologically relevant) product or to biomass. In particular, the
set of EFMs allows one to determine the maximal yield of any product/
substrate pair because the pathway with maximal yield is always an
EFM. In addition, by calculating the yields of all modes one can see how
many (and which) optimal pathways exist and how many further
solutions can be opened up by allowing a suboptimal yield. EFMs can be
used to evaluate the importance of a reaction for a (desired or
undesired) phenotype and blocked, essential, or coupled reactions can
be immediately identified by the network’s EFMs. EFMs may also
indicate internal cycles operating without uptake of substrate. These
cycles are thermodynamically infeasible and may point to potential
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Fig. 3. A) EFM panel, B) example of a two-dimensional yield space plot of EFMs, and C) MCS panel in CellNetAnalyzer.

errors in the network. Last but not least, EFMs can be used to calculate
metabolic engineering strategies, for example, based on correlation of
pathway fluxes to desired properties (Melzer et al., 2009; Neuner and
Heinzle, 2011; Poblete-Castro et al., 2013) or via minimal cut sets or
the CASOP method (see below).

CNA not only supports EFM computation but also provides methods
for a detailed analysis of EFMs. The calculation of EFMs is not trivial in
larger networks (and mostly infeasible in genome-scale models),
because the number of modes can grow exponentially with the size of
the network. Therefore, two dedicated tools for the computation of EFM
can be used by CNA, namely Metatool (von Kamp and Schuster, 2006)
and efmtool (Terzer and Stelling, 2008). Prior to the computation, the
user may specify reactions which are either inactive (zero flux) or must
be active in the EFMs to be calculated. When the computation is
finished, an “EFM panel” pops up which can be used to analyze and
navigate through the EFMs (Fig. 3A). On the network maps the
currently selected EFM is displayed with its flux values in the reaction
text boxes. Using the EFM panel, subsets of the EFMs can be selected
according to various criteria (involved reactions/metabolites, min/max
yields, min/max pathway lengths). EFM selections can be stored in
clipboards and set operations be performed on different selections.
These selections allow the user to identify pathways having certain
properties or/and being relevant for a particular condition. The EFM
panel also includes a menu from which various methods for the analysis
of a selection of EFMs can be launched (Fig. 3A). For example, relative
reaction participations, pathway lengths and yields as well as yield
space plots can be calculated. In the latter, each EFM is plotted as a
point on a plane with its coordinates determined by its yield for two
products (typically, biomass and a chemical of interest). Together with
the convex hull around the points this graphical representation
(Fig. 3B) gives a quick overview over the distributions and possible
combinations of the two product yields. As it was already mentioned
above, yield space plots are very useful for metabolic engineering
applications. Finally, the calculation of minimal cut sets (see below) can
also be started from the selected EFMs.

Lastly, the computation of elementary flux vectors, a generalization of
EFMs where inhomogeneous constraints, e.g. flux bounds, can be taken
into account (Urbanczik, 2007; Klamt et al., 2017), is also supported.
Calculated elementary flux vectors can be processed and analyzed in
the same way as EFMs.
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4.6. Minimal cut sets and computational strain design

Minimal cut sets (MCSs) have been introduced as a formal concept
to calculate metabolic engineering strategies in constraint-based meta-
bolic models. The calculation of MCSs requires as an initial step the
specification of undesired and desired flux vectors (phenotypes or
functions) (Klamt and Gilles, 2004; Hidicke and Klamt, 2011). In a
biotechnological setting, undesired phenotypes could be flux vectors
with low product yield while the desired phenotype could be high
product yield with some minimal growth rate. The specification of
desired and undesired phenotypes can be done either via the EFMs
(resulting in two sets of desired and undesired (target) EFMs, Hadicke
and Klamt, 2011) or via appropriate linear inequalities (von Kamp and
Klamt, 2014). CNA supports both methods (see below). Given these
specifications, all minimal (irreducible) reaction knockout strategies
(the MCSs) can be calculated by which all undesired flux vectors will be
deleted while keeping at least some desired flux vectors feasible.

The main application of MCSs lies in rational strain design. In
particular, MCSs can be used to identify growth-coupled strain designs
where growth becomes obligatorily coupled to product synthesis. As a
recent real-world application, MCSs have been used to successfully
design a high-yield itaconic acid producer strain of E. coli (Harder et al.,
2016). MCSs have also been used to study the phenotypic roles of genes
in the anthocyan production pathways of plants (Clark and Verwoerd,
2011) or to identify knockout strategies to support heterologous
terpenoid synthesis in yeast (Gruchattka et al., 2013) as well as to
enhance ethanol production in cyanobacteria (Erdrich et al., 2014). As
another application, MCSs can be used to evaluate the robustness of a
metabolic network with respect to a given functionality (Klamt and
Gilles, 2004; Klamt, 2006; Behre et al., 2008; Gerstl et al., 2016).
Generally, a large number of small MCSs indicates fragility.

In CNA, the calculation of MCSs via EFMs can be directly started
within the EFM panel (Fig. 3A). The specification of desired and
undesired EFMs is facilitated by the described EFM selection tool.
Then, CNA uses the Berge algorithm (Berge, 1989) to enumerate the
corresponding MCSs for the given intervention problem. A large
number of distinct MCSs may exist for a given problem. Usually one
is interested in the smallest MCSs because they require the least number
of interventions (reaction knockouts). Therefore, it is possible to limit
the size of MCSs to be calculated. Once calculated, a new MCS panel
comes up (similar to the EFM panel; see Fig. 3C) which allows (i) the



A. von Kamp et al.

display of each MCS within the network maps, (ii) the selection of
certain subsets of MCSs (e.g., involving certain reaction knockouts), and
(iii) statistical calculations (e.g. cut set size histogram) of those
selections.

Using the API of CNA, a direct computation of MCSs is possible
without having to calculate the EFMs first so that MCSs even in
genome-scale networks can be determined (Klamt and von Kamp,
2014). As mentioned above, in this approach, desired and undesired
behaviors are defined by linear inequalities which make it also possible
to integrate inhomogeneous constraints like Eq. (3) and to allow also up
and down regulation of fluxes as possible interventions (Mahadevan
et al.,, 2015). With this methodology, the smallest MCSs can be
enumerated also in large-scale networks, for example, more than
8000 MCSs up to size 7 could be calculated for growth-coupled ethanol
production in a genome-scale model of E. coli (von Kamp and Klamt,
2014).

Beside minimal cut sets, another method for computational strain
design supported by CNA is CASOP (Computational Approach for Strain
Optimization aiming at high Productivity; Hadicke and Klamt, 2010).
This heuristic approach determines knockout and overexpression
candidates for increasing the productivity of a strain. CASOP analyzes
EFMs to identify potential targets to increase the flux towards the
product (not necessarily the product yield) while keeping a lowered
growth rate feasible. The result is a ranked list of knockout and
overexpression candidates. For application examples of CASOP see
Pande et al. (2014) and Erdrich et al. (2014).

5. Discussion and conclusions

Metabolic modeling based on stoichiometric and constraint-based
methods has become a routinely used tool for bioprocess and metabolic
engineering. A number of successful studies demonstrated the value of
model-based approaches for analyzing and optimizing the metabolism
of microbial production organisms (Jang et al., 2012; Kung et al., 2012;
Lee and Kim, 2015; Machado and Herrgard, 2015; Maia et al., 2015).
Accordingly, several software suits have been developed to support this
process, with CellNetAnalyzer being one of the largest packages. Other
software with a similar scope include the COBRA and COBRApy toolbox
(Schellenberger et al., 2011; Ebrahim et al., 2013), OPTFLUX (Rocha
etal., 2010), RAVEN (Agren et al., 2013), OMIX (Droste et al., 2011), or
the R package sybil (Gelius-Dietrich et al., 2013). Despite of significant
overlaps, each package has its own merits and strengths. For example,
among these tools, the MATLAB toolbox RAVEN provides the richest
functionality for semi-automated reconstruction and gap filling of
genome-scale metabolic models. OMIX has its main focus in providing
sophisticated tools for drawing and visualizing metabolic networks and
related datasets, although basic analysis tools are also included. The
COBRA toolbox for MATLAB (and, similarly, the related COBRApy
toolbox for Python) provides a comprehensive set of functions for
constraint-based modeling. This includes several methods for computa-
tional strain design based on bi-level Mixed Integer Linear Program-
ming problems (bi-level MILPs (Maia et al., 2015; Machado et al., 2015;
Zomorrodi et al., 2012)); those methods are not (yet) supported by
CellNetAnalyzer. On the other hand, all functions have to be started
from command line (no GUI or visualization) and methods for meta-
bolic pathway analysis are not available. OPTFLUX provides similar
analysis tools as the COBRA toolbox although its focus is more on
applications in metabolic engineering. Furthermore, OPTFLUX comes
with a GUI allowing a more convenient specification and conduction of
simulations. Data input (e.g. fixed fluxes) and display of calculated
results are mainly done via tables, although some simulation results can
also be visualized if suitable network drawings are provided by the
user. Generally, compared to the packages mentioned above, unique
features of CNA are, in particular, detailed pathway analysis based on
elementary flux modes or elementary flux vectors and enumeration of
metabolic engineering strategies based on minimal cut sets. Moreover,
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with its interactive network maps, CNA is, to the best of our knowledge,
the only tool allowing both user input AND display of calculated results
directly within a network visualization. This eases and speeds up
frequent use cases in metabolic network modeling, e.g., the specifica-
tion of measured/known fluxes and the subsequent (MFA or FBA based)
calculation and display of resulting flux distributions. To our experi-
ence, displaying numeric results directly within network maps (possibly
in combination with colors to highlight, for example, low or high
fluxes) greatly enhances the process of interpretation of data and
computed results. So far, CNA has mainly been used for analyzing
medium-scale metabolic networks, but there is, in fact, no limitation to
use it with genome-scale networks as well, either via the provided API
(this MATLAB command line mode is similar to the COBRA toolbox) or,
if one or several network maps are available, also via the GUL As an
example, Supplementary Figs. 1 and 2 show screenshots of a CNA
interactive network map of a genome-scale model of Corynebacterium
glutamicum. The mathematical model was originally presented in (Zelle
et al., 2015) together with a map of the network created with OMIX
(Droste et al., 2011, 2013). We implemented this model in CNA and
used the OMIX visualization as background network map in CNA. We
also note that the API of CNA provides functions to convert CNA models
to COBRA models (and vice versa) directly in MATLAB thus allowing
parallel application of methods from both tools for analyzing a CNA or a
COBRA model.

The CellNetAnalyzer package (including a tutorial and manual) can
be downloaded for free for academic use from: https://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html.
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