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Abstract: The point-to-area problem strongly complicates the validation of satellite-based precipitation
estimates, using surface-based point measurements. We simulate the limited spatial representation
of light-to-moderate oceanic precipitation rates along ship tracks with respect to areal passive
microwave satellite estimates using data from a subtropical island-based radar. The radar data
serves to estimate the discrepancy between point-like and areal precipitation measurements. From the
spatial discrepancy, two statistical adjustments are derived so that along-track precipitation ship data
better represent areal precipitation estimates from satellite sensors. The first statistical adjustment uses
the average duration of a precipitation event as seen along a ship track, and the second adjustment
uses the median-normalized along-track precipitation rate. Both statistical adjustments combined
reduce the root mean squared error by 0.24 mm h−1 (55%) compared to the unadjusted average track
of 60 radar pixels in length corresponding to a typical ship speed of 24–34 km h−1 depending on
track orientation. Beyond along-track averaging, the statistical adjustments represent an important
step towards a more accurate validation of precipitation derived from passive microwave satellite
sensors using point-like along-track surface precipitation reference data.

Keywords: point-to-area problem; representativeness error; precipitation; island-based radar;
RICO campaign; statistical adjustment; along-track observation; OceanRAIN; passive microwave
sensor; HOAPS satellite rainfall

1. Introduction

The validation of satellite-based precipitation estimates using surface-based point measurements
is substantially hampered by the long-standing point-to-area (p2a) problem [1–3]. The p2a problem
mainly arises from the different representation of precipitation in measurements of spatially different
resolutions. Differing spatial representations pose a considerably larger challenge for precipitation due
to its high spatiotemporal variability and intermittency compared to other atmospheric parameters
(e.g., temperature) [4]. A meaningful validation of precipitation estimates derived from satellite sensors
requires the different spatial representation of precipitation in point-like surface reference data to be
properly addressed—a main goal of this study.

Over continental areas, a number of interpolation methods such as kriging or inverse distance
weighting exist to make point measurements of precipitation representative of larger areas, provided that
a sufficiently large number of station data is available [2,5,6]. Since a variety of precipitation-measuring
instruments have become available, triple collocation is increasingly applied for validation purposes
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(e.g., [7]). However, triple collocation requires three independent high-quality data sources. In contrast
to precipitation over land areas for which triple collocation leads to satisfying results [8], the ocean
lacks a dense coverage of frequent, high-quality precipitation data [9]. This lack of information for
oceanic precipitation calls for an alternative way to address the p2a problem. This study addresses the
p2a problem with the aim of simulating the different spatial representation of precipitation along ship
tracks compared to areal satellite estimates, and proposes a p2a adjustment.

As one main contributor to surface precipitation validation data sets over the ocean, the Ocean
Rainfall And Ice-phase precipitation measurement Network (OceanRAIN; [10]) provides data from
ocean-applicable optical disdrometers deployed on research vessels. In the case of a moving ship,
the p2a problem simplifies into a track-to-area problem in which the along-track averaged ship track
better represents the area of a satellite pixel compared to single point measurements.

Many satellite-based precipitation estimates partly or entirely rely on passive microwave (PMW)
sensors due to their more direct physical relation to precipitation compared to visible and infrared
sensors [11]. However, PMW sensors have a rather coarse spatial resolution of several tens of kilometers
in diameter that strongly adds to the p2a problem [12].

Simulating the effect of different spatial resolution on precipitation estimates requires a data set
that combines high spatial resolution with wide areal coverage. Both requirements are met by weather
radars, with their relatively high spatial resolution of about 1 km and their wide areal coverage that
usually exceeds 100 km in diameter. Simulations of p2a collocations exist over the Baltic Sea based on
radar reflectivity [13]. However, the p2a problem has never been addressed explicitly in a simulation
with radar data beyond the combination of precipitation events [14].

To explicitly study the p2a problem and the influence of resolution on precipitation measurements,
the island-based S-Band Polarimetric (S-Pol; [15]) radar by the National Center for Atmospheric
Research (NCAR) suits well. The S-Pol was deployed on the Caribbean island of Barbuda during the
Rain In Cumulus clouds over the Ocean (RICO; [16]) campaign. The conditions during RICO favor the
comparison of precipitation along simulated ship tracks with simulated satellite pixels for two reasons.
First, RICO contains a high fraction of time with precipitation of predominantly low intensity observed
by the S-Pol radar [17]. This means that heavy rainfall has not been sampled by the S-Pol radar data.
Second, the climatic conditions in the trades with usually small-scale showers challenge both the realistic
representation of precipitation along ship tracks and the overall detection limitations of precipitation
within a rather large satellite pixel [18]. Thus, the S-Pol data collected during RICO is well-suited to the
investigation of the influence of spatial resolution on the measurement of oceanic precipitation.

We employ the following method: the S-Pol radar data serves to simulate both along-track
ship measurements and PMW satellite pixels. Comparing them enables the derivation of statistical
adjustments to make the ship data more representative of PMW data. The adjustments need to be solely
based on information available from along-track precipitation rates because the sub-pixel variability is
usually unknown for satellite-derived precipitation estimates. The p2a-adjusted precipitation rates
could ideally be used for various validation purposes involving precipitation data sets that strongly
differ in spatial resolution.

The paper is structured as follows: Section 2 introduces the S-Pol radar and the simulation
framework. Section 3 consists of three parts: (i) along-track detection of precipitation; (ii) along-track
representation of precipitation rate and (iii) deriving track-to-area adjustments. Section 4 presents
conclusions and an outlook.

2. Data and Methods

Island-based weather radars offer a good opportunity to investigate the influence of spatial
resolution on the estimated precipitation rate over the ocean. They can help to simulate the representation
of precipitation using spatial up-scaling. For this study, we choose a radar that was deployed on the small
island of Barbuda at 17.61◦ N and 61.82◦ W in the tropical North Atlantic with a high oceanic area fraction.
Section 2.1 describes the radar, followed by a methodological overview in Section 2.2.
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2.1. The S-Pol Radar

The S-Pol radar developed by NCAR provides a cost-effective portable weather radar, used in
a variety of field campaigns [15,19]. Among these campaigns was the RICO campaign [16],
during which the scanning S-Pol radar operated from 24 November 2004 to 25 January 2005.
During RICO, the S-Pol performed surveillance scans with 10.68 cm wavelength at a 0.5◦ elevation
angle, covering a 150 km domain in radius. Each scan was gridded onto a polar grid with a range
resolution of 150 m, and underwent extensive filtering to exclude anomalous returns from ground
clutter. A minimum reflectivity threshold of 7 dBZ serves to exclude Bragg scattering [20]. The Z–R
relationship to convert the measured radar reflectivity Z (dBZ) into a rain rate R (mm h−1) is

Z = 88× R1.52 (1)

Equation (1) is derived by [21] from particle size distributions measured during RICO aircraft
flights. The minimum reflectivity threshold of 7 dBZ corresponds to about 0.19 mm h−1, which lies
below the lowest resolvable precipitation rate for most satellite sensors. Thus, although this threshold
of the chosen Z–R relation influences the raining area, absolute precipitation rate differences are
negligible for the purposes of this study. The S-Pol data is freely accessible online [22].

2.2. The Simulation Framework

The polar grid of the S-Pol radar consists of 984 range gates and 540 azimuthal increments that
represent 0.66◦ sectors of a circle. The arc length of these azimuthal increments increases with distance
from the radar location. This inconstant spatial resolution could distort a spatial-scale comparison.
To homogenize the spatial resolution, we brought the S-Pol radar data onto a Cartesian grid with a spatial
resolution of about 0.4 km using the nearest-neighbor remapping remapnn of the Climate Data Operators
(CDO; [23]). Compared to the size of a PMW satellite pixel of about 50 km × 50 km, 132 × 138 S-Pol
radar pixels fill each simulated satellite pixel. In other words, one single radar pixel covers about 0.006%
of a simulated satellite pixel and can thus be considered as a point measurement in a satellite pixel.
In the scanned area around the radar, we chose four boxes of the typical size of a satellite pixel despite its
rather circular shape in reality (Figure 1). These four boxes fulfill the following three conditions.

50 km 300 km 

Barbuda 

S-Pol radar during RICO      Simulated PMW satellite pixel 
 
 
 
 
 
 
  
 
 
 
 
                   Simulated ship tracks 

a) b) c) 

Figure 1. Photo (a) shows S-Band Polarimetric (S-Pol) radar during RICO (Rain In Cumulus clouds
over the Ocean; Copyright University Corporation for Atmospheric Research (UCAR) by Gordon
Farguharson, licensed under CC BY-NC 4.0 License via OpenSky). Example of S-Pol radar image
interpolated on Cartesian grid (b) with red boxes that are chosen to simulate the satellite pixels.
Enlarged red box (c) illustrates 16 randomly chosen synthetic ship tracks (blue dotted lines; 5 horizontal,
5 vertical, 6 diagonal) of 60 radar pixels, each corresponding to a typical ship speed of 24–34 km h−1

depending on track orientation. For clarity, the number of sketched radar pixels is only one tenth of the
original grid (Section 2.2). PMW: passive microwave.
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First, they do not contain any islands in order to avoid land influences. Second, all boxes have
about the same medium distance from the radar location. A not-too-large distance from the radar
matters to reduce losses by radar beam overshooting above precipitating low clouds. Third, the four
boxes are evenly distributed around the radar location to reduce influences of precipitating clouds that align
with the prevailing easterly winds [24]. For these reasons, the locations of the four boxes with respect to
the radar are well-suited to the study of the effects of spatial-scale differences of precipitation observations.

The whole RICO period spans 62 days (December 2004–January 2005), from which 3662 radar
images are available from S-Pol surveillance scans. For the four chosen boxes, this RICO sample results
in overall 14,648 simulated satellite pixels. Within these simulated satellite pixels, we chose 16 arbitrary
sets of aligned radar pixels for each time step of the S-Pol radar in order to simulate the ship tracks
(Figure 1c). From these 16 tracks per box and time step, five align parallel to longitude (lon tracks),
five parallel to latitude (lat tracks), and six diagonal with respect to the box. These various orientations
rule out biases caused by prevailing cloud directional organization within the box. Assuming a constant
ship speed, we chose 24 km h−1 (approx. 13 kn) as a typical ship speed that corresponds to a distance
of 0.4 km (one radar pixel) per minute for lon/lat tracks. A one-hour time integration yields track
lengths of 24 km for lon/lat tracks and of 24×

√
2 km for diagonally-oriented tracks, both consisting

of 60 radar pixels each.
Along the ship track, we assumed that the precipitation field remains constant with time

(i.e., no cloud movement), which markedly differs from reality. However, this assumption should
not introduce a bias when considering a sufficiently large number of S-Pol radar images and varying
track orientations (cf. Figure 1c). This simplification allows us to use one single S-Pol radar image per
simulated satellite pixel and ship track.

By spatial averaging, we obtained two sub datasets from the S-Pol. First, all radar pixels along
each of the 16 tracks per box were averaged to obtain a single mean precipitation rate that represents the
whole simulated track. Second, all S-Pol radar pixels per box were averaged to represent the simulated
satellite-pixel precipitation rate. This framework sets the ground for an independent statistical analysis
to study the influence of different spatial resolutions on the measured precipitation rate.

2.3. Weather Conditions during RICO

The RICO period was mainly characterized by frequently occurring light rain events [17,25].
Light rain usually originates from small convective cumulus clouds that are kept shallow by the trade
inversion. However, few hours of more widespread precipitation from organized tropical systems
complement the otherwise steady conditions during the RICO period.

3. Results

Generally, the high spatiotemporal variability and the intermittency of precipitation complicate
its detection and the realistic representation for a sequence of precipitation measurements along a ship
track. First, we investigate how well a ship track can detect precipitation compared to the typical
area of a PMW satellite sensor, using the available S-Pol radar data from RICO (Section 3.1). Second,
we analyze how well a ship track can represent the precipitation rate in a typical area of a PMW
satellite sensor (Section 3.2). Third, we propose adjustments so that a precipitation rate along a ship
track better represents that of a PMW satellite pixel (Section 3.3). Because the S-Pol radar only sampled
rainfall during RICO, we henceforth refer to “rainfall” instead of precipitation.

3.1. Detection of Precipitation along Ship Tracks

Above all, a precipitation observation needs to reliably detect precipitation. Along a ship track,
the detection of precipitation mainly depends on two influencing factors.

First, the organization of raining cloud patterns governed by the underlying weather conditions
shapes the spatial rainfall distribution within an area. The more homogeneously distributed over the
area, the more likely an along-track observation captures the rainfall. During RICO, most rainfall originated
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from shallow cumulus clouds with a majority not exceeding 1 mm h−1. The predominantly light rainfall
was partially accompanied by more widespread convective rainfall less than 5% of the time [17,25].

Second, the sampling frequency of the individual along-track measurements determines how
finely rainfall patterns can be resolved. A lower sampling frequency results in a coarser spatial
resolution that might lead to rain events not being captured or dry patterns being erroneously
interpreted as rain. Thus, a sampling frequency which is too low can distort parameters such as the
rain occurrence. In this simulation study, the sampling is defined by the S-Pol radar resolution and the
simulation framework, as explained in Section 2.2. With a more than 100 times higher spatial resolution
than the simulated satellite pixel, the simulated along-track measurement sampling provided by the
S-Pol radar meets the requirements to investigate the influence of different spatial resolution on the
rain rate.

For the rain detection to check how often a simulated ship track misses rain with respect to
a simulated satellite pixel, the number of rainy ship tracks is compared to the number of rainy satellite
pixels. For both ship tracks and satellite pixels, “rainy” means that from the underlying radar pixels at
least one holds a rain rate greater than 0 so that the average rain rate is also greater than 0. From now on,
we refer to the simulated satellite pixel as “area” (index A) and to the simulated ship track as “track”
(index T). The rain coverage C denotes the fraction of rainy pixels from all pixels along the track (CT)
or within the area (CA).

Considering the 234,368 available cases (i.e., 3662 radar images times 4 simulated satellite pixels
times 16 simulated ship tracks), in almost four out of five cases, the area contained rain (RA > 0).
However, in less than one out of five cases, the track and the area both detected rain, while in more
than three out of five cases, the track missed the rainfall observed in the area (Table 1).

Table 1. Contingency table lists relative occurrence (%) of rain-rate combinations for RT (along-track
rain rate) and RA (area rain rate) from 234,368 available cases. In contrast to the left part of the table,
the right part sets RA = 0 if CA ≤ 2%. Note that tracks are always located completely within the area
such that RT = 0 can only occur if RA = 0 (no false detections possible).

All Cases CA > 2%

RT > 0 RT = 0 RT > 0 RT = 0

RA > 0 17.3 61.2 14.2 17.6
RA = 0 0 21.5 0 68.2

The more than three times higher number of rainfall misses compared to rainfall hits points
at a poor representation of areal rainfall by the tracks. However, the partial area covered with rain
(area rain coverage: CA) strongly influences the hit–miss ratio between track and area. Setting RA to
zero below a minimum CA of 0.01% leads to a hit–miss ratio of 0.28, while a minimum CA of 1% leads
to a hit–miss ratio of 0.6 (for CA > 10%: 2.4, Figure 2). This relation indicates that the hit–miss ratio of
observable rain from tracks with respect to area scales with the minimum area rain coverage. The hit
fraction increases with increasing minimum area rain coverage because very small rain events tend to
get excluded, which are the most challenging to capture along a track.

An earlier study by [17] revealed for the Northeast radar domain of the same S-Pol radar over
Barbuda that the Hamburg Ocean Atmosphere Parameters and Fluxes from satellite (HOAPS; [26,27])
scan-based data (HOAPS-S) can detect some of the rainfall in S-Pol match-ups with an area rain
coverage between 1% and 2%, whereas HOAPS certainly detects rainfall above 2% area rain coverage
by the S-Pol. Applying this threshold of CA > 2% leaves 74,544 out of 184,016 rainy cases, while the
hit–miss ratio increases from 0.28 to 0.8 (Table 1 and Figure 2). In 3716 cases, the along-track rain
coverage CT exceeds 2% while the area rain coverage CA does not exceed the minimum threshold of
CA = 2%, and in 5930 cases vice versa. These strongly differing rain-coverage representations also put
their mark on the overall rain-rate representation.
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Figure 2. The frequency of occurrence (%) of hits (RT > 0 and RA > 0; blue solid line), misses (RT = 0
and RA > 0; red dotted line), and zero rain cases (RT = 0 and RA = 0; gray dashed line) for the S-Pol
data as a function of the minimum area rain coverage CA (%). The sum of hits, misses, and zero rain
always adds up to 100%, as in Table 1.

3.2. Rain-Rate Representation along Simulated Ship Tracks

For the overall rain-rate representation, both the rain coverage and the rain intensity determine
how well the track represents the area. We concentrate on only those 40,538 (17%) cases of all
234,368 cases in which area and track both contain at least one rainy S-Pol radar pixel (RT > 0 and
RA > 0 in Table 1). In these “hit cases”, the track might represent the average rain rate differently
compared to the area. As a consequence of the non-Gaussian rain-rate distribution, mainly low absolute
differences occur between the average along-track rain rate RT and the average area rain rate RA.
The ratio RT

RA
can serve to estimate how well RT can represent RA. As R is composed of the rain

coverage and the conditional rain rate of all rainy pixels as R = C× D, we can determine how C and
D contribute to a RT

RA
deviation (Figure 3; 1-by-1 line marks the strongest contribution to RT

RA
deviation).

For overestimated along-track rain rates of RT
RA

> 10, the rain coverage C contributes more strongly to

the RT
RA

deviation compared to the conditional rain rate D. For an underestimated along-track rain

rate of 0.01 < RT
RA

< 0.1, D contributes more strongly to the deviation compared to C until both C and

D contribute about equally for RT
RA

< 0.01. For cases of RT
RA
≈ 1, the track slightly overestimates the

rain coverage in the area while the track slightly underestimates the conditional rain rate in the area.
Two reasons can explain this behavior. First, the non-Gaussian right-skewed frequency distribution
of rain rates causes the track to undersample the rarely occurring most-intense rain-rate pixels that,
however, mainly contribute to the conditional rain rate. Second, if the track contains at least a single
rainy radar pixel (non-rainy cases excluded in Figure 3), the area is more likely to be over- than
undersampled—in particular for low CA. These statistical features of the rain-rate distribution need to
be considered in a potential adjustment of along-track rain rates towards area rain rates.

3.3. Proposed Statistical Track-to-Area Adjustment

The validation of areal data using track-like data demands an adjustment to diminish the
track-to-area difference in rain rate. Except for the along-track rain rate, there usually exists no
data for the rainfall variability within the satellite pixel to be validated. This lack of spatial information
restricts the available information exclusively to the track. However, the track contains an incomplete
subsample of the whole area. Therefore, only a statistical parameter of the track derived from a large
number of samples can serve to represent information of the spatial rainfall structure within the area.
The spatial along-track rainfall structure is composed of the number of sampled rain events per
track, nE, and their individual event duration, tE, whereby an event marks the longest sequence of
rainy pixels uninterrupted by non-rainy pixels. The sum of the duration of all individual rain events
along a single track divided by their number yields the average event duration, TE.
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a) b)

Figure 3. (a) 2D histogram with relative occurrence in % of all 40,538 hit cases shown as colors of
average rain-rate ratio RT

RA
as a function of the rain coverage ratio CT

CA
; and (b) the conditional rain-rate

ratio DT
DA

. Solid gray 1-by-1 line marks maximum possible dependence of RT
RA

on either CT
CA

or DT
DA

,

while the other ratio needs to be 1 (gray dotted lines) because of CT
CA
× DT

DA
= RT

RA
.

We chose TE as statistical parameter because TE can represent the duration of an average rain event
as seen along the track. This average rain event duration links to the spatial rainfall structure along the
track that ideally conforms to that of the area for a sufficiently large sample size. This relationship between
average event duration and actual rain distribution in the area mainly depends on how the rain showers
are distributed in the area, as well as their shape. The more homogeneously distributed and uniformly
shaped, the better the average event duration can represent the spatial rain distribution of the area.

The average event duration revisits the statistical finding of Section 3.2 that the track—on
average—overestimates the rain coverage while it underestimates the conditional rain rate (cf. Figure 3).
For an average event duration below four radar pixels, RT underestimates RA by a factor of two to
five (Figure 4). For an average event duration exceeding six radar pixels, RT approaches a constant
overestimation of RA by a factor of about two. The underestimated rain rate for short events
mainly results from the underestimated conditional rain rate along the track with respect to the
area. The overestimated rain rate for long-lasting events mainly results from the overestimated rain
coverage along the track with respect to the area (not shown). Both effects originate from the limited
representativeness of rain along a track within an area.

The deviation of the along-track rain rate from the area rain rate (Figure 4a) can be approximated
using an exponential fit for RA

RT
of the following kind:

f1 =
RA
RT

= 9.32× exp[−2.14× ln(TE)] + 0.48. (2)

Multiplying each along-track rain rate with the derived adjustment factor f1 of Equation (2)
strongly reduces the track–area bias (Figure 4b). However, this statistical adjustment can only serve
to reduce an error statistically but not explicitly for individual cases because the spatial rain-rate
distribution within the area remains unknown. The resulting TE-adjusted rain rate R∗T, defined
as f1 × RT, represents an improved spatial rainfall approximation diagnosed from a track. In the
TE-adjusted along-track rain rate R∗T, a bias remains (Figure 5a). This bias represents cases in which the
track on average underestimates small rain rates below 0.1 mm h−1 while the track overestimates larger
rain rates above 0.5 mm h−1. This track-to-area deviation in rain rate again follows an exponential fit
for RA

R∗T
with parameters determined by a least squares fit.
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f2 =
RA
R∗T

= 0.731× exp[−0.789× ln(
R∗T

R∗T,50
)] + 0.306 (3)

The fit reaches R2 = 0.98 for the logarithmically binned mean bias of all 33,265 hit cases with
CA > 2%. Dividing R∗T by the median rain rate, R∗T,50, ensures an independence from the used
instrument (i.e., S-Pol radar) despite using absolute rain rates. This important step makes the second
statistical adjustment usable for different track-like precipitation data sets.

a) b)

Figure 4. (a) 2D-histogram with relative occurrence (%) shown as colors of the rain-rate ratio RT
RA

as
a function of the along-track average rain event duration TE for uncorrected RT ; and (b) corrected R∗T
for CA > 2% using Equation (2). Red lines mark the mean of ln( RT

RA
) and ln( R∗T

RA
) per bin, gray lines

highlight TE for which RA equals RT or R∗T , respectively.

a) b) Occurrence [%]

Figure 5. (a) 2D-histogram with relative occurrence (%) of the TE-adjusted average rain-rate ratio R∗T
RA

;

and (b) the TE- and R∗T-adjusted average rain-rate ratio R∗∗T
RA

both as a function of R∗T and R∗∗T ,
respectively. Red line marks logarithmic mean per bin.

Both statistical adjustments combined strongly reduce the p2a effect in measured precipitation
along a ship track compared to a satellite pixel. In order to prove that the statistically adjusted track
can better represent rainfall in the area, we calculate the root mean square error (RMSE), given by
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RMSE =

√√√√ 1
N

N

∑
i=1

(RT,i − RA,i)2 (4)

with N = 234,368 before and after using the adjustments. From an RMSE of initially 0.43 mm h−1 for
unadjusted RT , the TE-adjustment (Equation (2)) almost halves the RMSE to 0.22 mm h−1 (Figure 6).

Figure 6. RMSE (mm h−1) shown as a function of averaging length in radar pixel units. Black boxes
(interquartile spread, median) and whiskers (minimum, maximum) mark uncertainty obtained from
resampling of 100 realizations of unadjusted RT , while the blue dot marks the RMSE of R∗T , and the red
dot of R∗∗T , respectively.

Together with the R∗T-adjustment (Equation (3)), the RMSE reduces to 0.19 mm h−1, which
corresponds to an overall reduction of 55% with respect to the unadjusted RT . Overall, both statistical
adjustments mark a significant improvement in the representation of along-track rainfall within an area.

Averaging along the simulated track to obtain RT strongly improves the representation of
precipitation in the area. Single point measurements lead to a more than twice as high RMSE of
0.95 ± 0.04 mm h−1 compared to the longest averaged track length of 60 radar pixels (Figure 6).
With increasing averaged track length, the uncertainty obtained from the resampling of 100 realizations
of the halved sample size decreases to ±0.01 mm h−1 due to the reduced along-track variability after
averaging. Compared to the effect of averaging, the reduction in RMSE after applying the statistical
adjustments to RT corresponds to an averaging track length of more than 100 radar pixels. Both methods
represent useful ways to improve the rain-rate representation along a (simulated) ship track.

For the first time, the developed statistical adjustments can address the p2a problem of along-track
precipitation measurements on-board ships over the ocean. In contrast to p2a methods for stationary
networks of ground-based gauges and radars over land (e.g., [3,28]), shipboard disdrometers produce
along-track measurements, which complicates their p2a adjustment. In that respect, the developed
statistical adjustments could extend event-based statistics with along-track averaging such as in [14] to
reduce the influence of the p2a problem in validating satellite and reanalysis data.

4. Summary and Concluding Remarks

Using island-based radar data, we derived two statistical adjustments for along-track oceanic
precipitation data to better represent areal satellite-derived precipitation estimates. Both adjustments
statistically correct the tendency of the track to overestimate the rain coverage and to underestimate
the rain intensity (both on average). This tendency holds for other ship speeds according to the
general statistical relation between track and area, except for very slow-moving ships [29]. The first
adjustment uses the average rain event duration along the track, while the second adjustment uses the
median-normalized along-track rain rate. Applying these statistical adjustments decreases the RMSE
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by 0.24 mm h−1 (55%) with respect to the unadjusted along-track averaged rain rate. The averaging
along the track also strongly reduces the RMSE compared to using single point measurements or short
averaging lengths.

This work represents a step towards a more accurate validation of precipitation derived from
PMW satellite sensors using point-like surface precipitation reference data. The derived statistical
adjustments are tailored to the spatial resolution of PMW sensor retrieved products such as the
HOAPS precipitation parameter with a pixel diameter of about 50 km in the scan resolution product
HOAPS-S. The along-track conditions match a typical ship speed in OceanRAIN of about 24–34 km h−1

(depending on track orientation), so that each simulated ship track consists of 60 S-Pol radar pixels.
As long as other data sets—both the surface reference data or the satellite data to be validated—do not
strongly deviate from these settings, the derived statistical adjustments are generally applicable to other
reference data sets for the validation of satellite-derived oceanic precipitation. For differing dataset
resolutions, our study might provide guidelines in order to derive individual statistical adjustments to
improve the spatial rain-rate representation of along-track reference data.

The statistical adjustments were derived during RICO under typical conditions within the trades.
Though these conditions are not globally representative, the statistics of their spatial distribution
can cover a wide range of meteorological conditions. Note, however, that snowfall and cold-front
precipitation are not represented, while heavy convective rainfall is underrepresented in the statistical
adjustments. Their spatial precipitation distribution does not necessarily deviate from the RICO
conditions reflected in the adjustments, but the ratio of convective-to-stratiform precipitation can
strongly impact the spatial precipitation distribution. Further research using mid- and high-latitude
radar data could help to investigate these assumptions.

As they are statistical adjustments, they cannot adjust individual precipitation point measurements
or pixels to an area. However, these statistical adjustments are particularly valuable for the validation
of satellite-derived data sets that strongly differ in their spatial resolution from that of the reference
data set. As usual in statistics, both adjustments reach their maximum utility for large data sets to
get the mean precipitation correct while reducing the influence of outliers misrepresenting the areal
precipitation rate.

Future studies of oceanic precipitation validation can profit from the derived statistical
adjustments to reduce the p2a effect between strongly differing spatial resolutions of satellite data
and surface reference data. Thus, we believe that the derived adjustments will not only contribute
to a more reliable precipitation estimation over the global ocean, but that they will also add to more
accurate validation of other earth observation parameters.
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