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Abstract. We present a study about the construction of functional flow processing networks that produce
prescribed output patterns (target functions). The constructions are performed with a process of mutations
and selections by an annealing-like algorithm. We consider the coevolution of the prescribed target functions
during the optimization processes. We propose three different paths for these coevolutions in order to evolve
from a simple initial function to a more complex final one. We compute several network properties during
the optimizations by using the different path-coevolutions as mean values over network ensembles. As a
function of the number of iterations of the optimization we find a similar behavior like a phase transition in
the network structures. This result can be seen clearly in the mean motif distributions of the constructed
networks. Coevolution allows to identify that feed-forward loops are responsible for the development of
the temporal response of these systems. Finally, we observe that with a large number of iterations the
optimized networks present similar properties despite the path-coevolution we employed.

1 Introduction

Networks play a fundamental role in cell biology and are
responsible for a variety of principal cell functions, includ-
ing genetic expression, metabolism and signal transduc-
tion [1,2]. Therefore, full understanding of functionality
and dynamics of real bionetworks is a major challenge.
Once this is achieved, broad perspectives for manipula-
tion, control and modification of existing biological net-
works will open. This is the promise of genetic engineering
and, generally, of synthetic biology [3].

In contrast to synthetic biology which deals with real
biological systems and their physical implementation, con-
structive biology (see, e.g., Kaneko [4]) operates with
idealized models. By choosing elementary mathematical
building blocks, which are much simplified abstractions
of actual biological elements, one tries to design artificial
systems which exhibit the same kinds of functions as their
real biological counterparts. As a result, it may be possi-
ble to conclude what system properties are generic and
what are specific for the details of particular biological
organisms. Examples of such approach are shown in ref-
erence [4]. Note that methods of constructive biology can
also be used to analyze problems of biological evolution [5],
including evolution of bionetworks.

When biological organisms evolve, they progressively
acquire new functionality. This means that the networks,
which are responsible for the functions, have to evolve
accordingly. As the functions become more complex, the
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underlying networks coevolve, proceeding through a se-
quence of definite structural changes. Essentially, the aim
of our study was to analyze this process using a simple
model system.

Flow networks, considered in the present publication,
can be viewed as toy models of intracellular signal trans-
duction [6]. The flows are supplied to input nodes, they
propagate through a network of distribution nodes con-
nected by pipes and finally arrive at the output nodes,
specific for each selected input. It has been shown that,
by using evolutionary optimization methods, functional
networks, that generate definite output patterns, can
be designed [7]. Moreover, networks with high robust-
ness against deletion of links or nodes and introduction
of quenched noise have been obtained; statistical analy-
sis of the properties of the designed networks has been
performed [8,9]. Additionally, networks which generate
programmable time-dependent responses have also been
considered [10].

Note that, although evolutionary computer algorithms
have been used in such previous studies, the focus has al-
ways been on the properties of the final designed networks,
not on the evolution process. Here, we want to analyze in
detail how the evolution proceeds in a flow network whose
functionality changes progressively in time.

Our research yields three major results: (i) the evolu-
tion towards a functional network shows a dramatic im-
provement akin to a phase transition at some moment dur-
ing the evolution process. The transition can be seen in the
time evolution of the output error, the motif distribution
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of the selected networks and in their other statistical mea-
sures. After that transition, the statistical properties of
the networks that are selected show only small incre-
mental changes; (ii) the network evolution can be moni-
tored through the time evolution of its motif distributions.
Characteristic changes in the motif distribution reflect the
onset of temporal delays in the target pattern and of in-
creasing spatial complexity; (iii) the networks selected via
coevolution are to a large degree path independent: they
have the same statistical properties whether the target
pattern changes on a time scale of a few hundred itera-
tions or on a time scale of tens of thousands of iterations.
This seems to be an important and remarkable property:
evolution to a network that is optimally adapted to a given
function does not require that this function be stable in
time nor do intermediate stages of the network have to
be optimally adapted to the intermediate stages of the re-
quired function to end up in a network that is optimally
adapted to the final function.

This work is organized as following: in Section 2 we
present the flow processing networks with time-dependent
responses, the different coevolutions of the target patterns
and the evolutionary algorithm for the network construc-
tion. In Section 3 we present the main results obtained by
numerical simulations. Finally in Section 4 we present the
results and the discussion.

2 Models

We consider in this work the model of flow processing
networks with time-dependent responses presented previ-
ously by the authors in reference [10]. We reproduce in this
second section the model definition and its main character-
istics. Additionally, we present the three different coevo-
lutions for the target patterns starting from simple func-
tionality and evolving to complex tasks in the final stage.
Finally, we describe the annealing algorithm we employ
for the construction of the functional networks.

2.1 Network architecture

In the considered model, networks transport fluxes from
input nodes to output nodes. They have N nodes with
a layered-like structure with Nin input nodes in the fist
layer, M middle nodes in the second layer, and, Nout out-
put nodes in the third layer. Figure 1 shows an example
of such a network.

Connections between the nodes have some restrictions.
Input nodes can be connected only to middle nodes. Mid-
dle nodes can be connected between them and to output
nodes. Output nodes have only input connections com-
ing from middle nodes. In all cases, we allow only one
connection with the same direction between two nodes.
Self-connections are not allowed. All links have the same
capacity (weight). Thus, the network architecture is com-
pletely characterized by the adjacency matrix A, with the
elements Aij = 1 if link from j to i exists and Aij = 0
otherwise.

1

17

2

14

3

20

4

23

5

33

35

6

16

29

7

38

8

26 9

45

10

46

11

12

41

13

42

22

25

31

36

15

34

21

18

27

28

43

19

37

24

39

30

44

32

40

Fig. 1. Example of a flow processing network with the to-
tal number of nodes N = 46, divided into Nin = 8 input
nodes (blue squares), M = 30 middle nodes (gray circles), and
Nout = 8 output nodes (red trapezoids). Fluxes applied to
the input nodes i = 1, 2, . . . , 8 are processed by the middle
nodes and delivered, with different delays, to the output nodes
i = 39, 40, . . . , 46.

Processing of flows is performed in the middle nodes.
A node collects all its incoming fluxes at a given time
moment and sends them instantaneously, at the same time
moment, through its outgoing connections, splitting the
total received flux in equal proportions among them. Time
is discrete and one time step is always needed for a flux to
pass over a link, from one node to another. Thus, the total
flux xi received by the node i at time t + 1 is given by a
sum of the fluxes sent at the previous time t from all those
nodes j which are connected to the node i. Explicitly, we
have

xi(t + 1) =
N∑

j=1

Aij
xj(t)∑N
k=1 Akj

+ Ii
ext(t). (1)

Here, we have included external fluxes Ii
ext(t) which can be

applied only to the input nodes (i = 1, . . . , Nin). Note that
fluxes cannot be accumulated in the network nodes and
material is not stored there. The set of linear equations (1)
determines the dynamics of the considered flow processing
model.

http://www.epj.org


Eur. Phys. J. B (2017) 90: 80 Page 3 of 10

Target TargetFinal Final

INPUT NODE  1

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  2

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  3

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  4

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  5

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  6

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  7

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

INPUT NODE  8

39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46

1 12 23 34 45 56 67 78 89 910 10-time-> -time->

O
u
t
p
u
t

N
o
d
e
s

O
u
t
p
u
t

N
o
d
e
s

0.2937
0.2644
0.2350
0.2056
0.1762
0.1469
0.1175
0.0881
0.0587
0.0294
0.0000

Fig. 2. Target (left columns) and final (right columns) input-output pattens D0
ij(t) and Dij(t). These patterns correspond to

the construction of the network shown in Figure 1. Gray-scale coding is used to display matrix elements Dij(t). Each diagram
displays the time-dependent responses of all output nodes in response to the initial activation of a different input node.

If an input node i is activated by an external input flux
Ii
ext at the initial time t = 0, the flux propagates through

the network and parts of it arrive at different delayed time
moments to the output nodes j, with the delays deter-
mined by the length of the network paths between the
given input and output nodes. The network performance
is thus characterized by a time-dependent response ma-
trix D(t). Its element Dji(t) specifies the flux arriving in
the node j at time t if the input node i has been acti-
vated by unit flux Ii

ext = 1 at the initial time t = 0. Since
the dynamics is linear, network responses following acti-
vation of different input nodes are independent and can
be separately investigated.

2.2 Target patterns

Our aim is to construct networks with prescribed response
patterns described by given target matrices D

0(t). They
are constructed as follows: we require that the activation
of an input node always produces only the activation of K
output nodes which are randomly chosen for each input
node i. The response of node j to activation of node i

starts with delay τji and has intensity αji. All responses
have, however, the same duration and temporal shape.

Hence, the temporal response of node j to activation
of node i at time t = 0 is given by function D0

ji(t) = 0
if t ≤ τji and D0

ji(t) = Ciαjip(t − τji) if t > τji. The re-
sponse intensities αji are chosen as independent random
numbers with a uniform distribution between 0 and 1. De-
lays τji are also randomly and independently chosen from
the interval between 1 and τmax, the maximal possible re-
sponse time delay. Thus, the responses are always localized
within a time interval from 0 to T , where the maximal re-
sponse time T is the sum of the response duration and the
maximal delay time τmax. The normalization constant Ci

is determined by the condition that the integral total re-
sponse should be unity, i.e.

∑Nout
j=1

∑T
t=0 Dji(t) = 1. This

yields Ci = (
∑

j αji)−1.
In our numerical study, networks with Nin = 8 in-

put nodes and Nout = 8 output nodes are considered.
The target responses involve activation of K = 4 output
nodes. The maximal response time is T = 10 and the max-
imal time delay is τmax = 6. The response function p(t)
is the same for all output nodes, it is chosen as a pulse of
four time steps with p(0) = 0.3, p(1) = 0.5, p(2) = 0.15
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and p(3) = 0.05. Figure 2 presents a target pattern for
the network shown in Figure 1. For each input node the
matrix in the left side indicates the target response D

0(t)
that is required, and the matrix at in the right side shows
the actual output pattern D(t) of the network.

2.3 Coevolution of target patterns

In the previous subsection we have presented the target
pattern as a static object. The main goal of this work, is
however, to develop different possible evolutions for the
target pattern. The aim is to start from simple responses
and increasing their complexities until reach the a final
pattern D

0(t) that we have already shown before. For a
simple response we mean that an input node only must
activate few output nodes (less than K), or it just needs
to generate a temporal response with fewer steps than the
function p(t). We have designed three possibles coevolu-
tions (paths) for the target patterns. Our objective is to
study the properties of the constructed networks when we
increase the target pattern complexity.

2.3.1 Distributive-temporal coevolution (DT)

In this case of pattern coevolution we want, firstly, to dis-
tribute the input flux between the output nodes, and af-
ter that, to develop the temporal responses p(t). Since we
work with networks that ideally activate K = 4 output
nodes by each input node, and the temporal response are
pulses of 4 time steps of duration, we design a pattern evo-
lution consisting on 16 stages. These stages can be seen in
Figure 3 for the case of activation of one input node.

We observe that in first stage only one output node is
activated at the corresponding time delay. At stage num-
ber 4, the four output nodes are activated with its corre-
sponding time delay and relative intensities. Next stage,
number 5, starts to develop the temporal response activat-
ing the second time steps of the first pulse. This process
continues until all the pattern is completed. It is impor-
tant to note that the target pattern is always normalized
to the unit since the total flow must be conserved.

2.3.2 Temporal-distributive evolution (TD)

In this second case, we develop initially the temporal re-
sponse for each output node in a sequential way, thus, the
distribution among the output nodes is a secondary effect.
Similarly to the previous case, the temporal-distributive
coevolution has 16 stages according with the parameter
values we consider.

Figure 4 shows an example of this pattern evolution
for an input node. As we see in this figure, during the
initial four stages the first pulse is generated. After that,
the second one is developed during the next four stages,
and this process is repeated for the K pulses.
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Fig. 3. Distributive-temporal evolution (DT) of the target pat-
tern. This evolution has 16 stages. The figure presents the tar-
get output pattern of an input node. There are 8 output nodes
and T = 10 temporal steps.

2.3.3 Pulse replication coevolution (RE)

In this last case, an initial pulse reproduces itself (copy),
and the new copies get different relatives intensities and
delays during the following stages. For this coevoluiton of
the target pattern we have 10 stages.

Figure 5 presents an example of this pattern coevolu-
tion. In the first stage, we have a complete pulse in the
output node 2. In the second stage, the initial pulse has a
copy on the output node 5. In third stage, the new pulse
in node 5, get its own delay. Finally, at the fourth stage,
the new pulse gets its own relative intensity. This process
is repeated for the following two new copies of the original
pulse.

Note that with these three pattern coevolutions, the
final target patters are the same for the three cases, and
they are also the same to the one used in our previous
works [10]. Particularly, for the the cases of pattern coevo-
lutions distributive-temporal and temporal-distributive,
they share for the first and the last stages the same target
patterns.
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Fig. 4. Temporal-distributive evolution (TD) of the target
pattern. This evolution has 16 stages. The figure presents the
target output pattern of an input node. There are 8 output
nodes and T = 10 temporal steps.

2.4 Construction of functional networks

In this work our task is to construct networks which are
functional, i.e. networks that can reproduce prescribed
output patterns. For these constructions we use the algo-
rithm developed in reference [10]. We consider a situation
where the number of available middle nodes is relatively
small and, thus, most of the nodes need to be involved in
generation of several different responses. In this case, no
simple rational construction is possible and evolutionary
optimization algorithms should be applied.

First, we introduce the flow error. The flow error ε(G)
of a network G, having a response pattern D

G(t), with
respect to a given target response pattern D

0(t) is defined
like

ε(G) =
1
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Fig. 5. Pulse replication evolution (RE) of the target pattern.
This evolution has 10 stages. The figure presents the target
output pattern of an input node. There are 8 output nodes
and T = 10 temporal steps.

where T is the maximal possible response time. Note that
because of the normalization chosen, the absolute values
of this defined flow error are small. This is because the
responses are typically localized in a few short pulses.
For the optimization process below, only relative errors
are however important. Thus, the construction of a func-
tional network with the prescribed response pattern D

0(t)
can be seen as an optimization problem. An approximate
approach to the problems of complex combinatorial opti-
mization, such as the traveling salesman problem, is pro-
vided by the method of simulated annealing [11]. Note
that this method have been also employed successfully to
optimize functionalities in genetic networks [12] and sys-
tems of phase oscillators [13]. A variant of this method is
employed below.

To construct a network with the chosen performance
D

0(t), an optimization process is run. Each iteration con-
sists of the same steps:

1. Take a network G with a flow error ε.
2. Apply an evolutionary mutation to G, obtaining a new

network G′ with a new flow error ε′.
3. Calculate the difference Δε = ε′ − ε.
4. If Δε ≤ 0, accept the mutation and replace G by

G′. If Δε > 0, accept the mutation with probability
exp(Δε/εσ).

5. Return to step 1.

The evolution is started with a random initial network
Gini and continued for a fixed number of iterations1.

1 For a review on complex networks see Albert and
Barabási [14].
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This optimization method represents the Metropolis opti-
mization algorithm where the effective temperature θ = εσ
is proportional to the error ε and gradually decreases as
the error diminishes, as assumed in the simulated anneal-
ing. Thus, σ is the annealing parameter, specifying how
rapidly the temperature is decreased during the annealing.
A detailed study of this parameter can be found in refer-
ence [10]. In the present work we use the optimum values
of σ in order to obtain the best optimization performance.

To complete the description of the optimization
method, evolutionary mutations should be further spec-
ified. In the present study, the link mutation scheme is
always employed. A mutation consists in adding a new
connection or deleting an existing one from the network.
During the evolution, the total number of middle nodes M
is preserved. In the final network, some middle nodes may,
however, turn out to have no incoming connections. Such
disconnected nodes are removed from the final networks,
so that the number of middle nodes in a final network may
become slightly smaller.

In the present work the particularity, as compared with
reference [10], is that the target pattern D

0(t) evolves to-
gether (simultaneously) during the network construction
process. Each stage of the pattern coevolution scheme is
maintained during a time interval given by the total num-
ber of iterations of the optimization process divided the
number of stages. Figure 6 shows four evolutions for the
classical case (a), and for the three target pattern coevo-
lutions that we have designed previously, the distributive-
temporal (b), the temporal-distributive (c), and, the pulse
replication (d) ones.

We observe that for the cases with coevolution of the
target patterns, the flow errors ε decrease in each interval
with a fixed target pattern. When a stage changes, we
see that the flow error increases rapidly since the network
constructed in the previous stage is not longer the best one
for the more complex target pattern in the following stage.
We find that the final error in the four cases is almost the
same at the end of the process of network construction.

3 Numerical study

Following, we present several numerical simulations where
ensembles of networks are constructed in order to repro-
duce target functions that evolve by the different pro-
posed pattern coevolutions. The network ensembles al-
low to study statistically the structural properties of the
networks.

We are interested on the structural changes of the net-
works during the optimization process. We study the de-
pendence of the structures as a function of the total num-
ber of iteration we employ, and as function of the pattern
coevolution as well the classic evolution.

3.1 Dependence of the optimizations with the number
of iterations

In this subsection we study the characteristics of the con-
structed networks as a function of the total number of
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Fig. 6. Flow error ε as a function of the number of iterations
for different pattern coevolutions: classical (a), distributive-
temporal (b), temporal-distributive (c), and replication (d).
The vertical dotted lines indicate the stage for each pattern
coevolution. The total number of iterations 1 × 106 is equally
divided among the pattern coevolution stages. The parameters
of the simulations are: M = 50 and σ = 1 × 10−3.

employed iterations for the four target pattern evolutions
and the initial connectivities of the networks.

3.1.1 Classical evolution

We construct several ensembles of 100 networks by using
different number of iterations with the classical evolution,
i.e., the target pattern is fixed along the optimization.
We consider networks with M = 40 middle nodes. As
initial condition for them we use random networks with
different probability of connection p = 0.01, p = 0.1 and
p = 0.2. The temperature parameter log(σ) = −2.75 (see
Ref. [10]).

Figure 7a presents the mean flow error 〈ε〉 as a function
of the total number of iterations for several ensembles of
networks. We observe similar behavior for the three net-
work initial connectivities p. For the three cases the mean
errors evolve at the end to almost the same value and
they follow a similar behavior. Note that at t = 5 × 104
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Fig. 7. Properties of the network structures as a function
of the total number of iterations for classical constructions
with different initial random connectivities. (a) Mean flow er-
ror, (b) mean number of connections, and (c) mean clustering
coefficient.

the three curves almost coincide despite the initial con-
nectivity. This indicates a kind of phase transition from
non-functional networks to functional ones as a function
of the number of iterations.

In order to further investigate this kind of phase tran-
sition we present two structural properties of the network
ensembles. Figure 7b presents the mean number of con-
nections as a function of the number of iterations for the
network ensembles, and for the three different initial con-
nectivities. We observe that after 5 × 104 iterations the
number of connections reach similar values for the three
cases. After this point, the number of connections is keep-
ing almost constant. This behavior is interesting since the
initial networks have a mean value of connections quite
different given by pM(N − 1).

In Figure 7c we present the mean clustering coefficient
〈C〉 [15] of the networks ensembles as a function of the
total number of iterations. Similarly to the previous case,
the clustering coefficients 〈C〉 start with different values
and they evolve to almost the same final quantity for a
large number of iterations.

These three properties show that the networks evolve
to the same kind of solution despite the initial connec-
tivity of the networks. We also find a phase-like transi-
tion behavior for 5× 104 iterations. After such as number
of iterations all the evolution end with similar functional
networks.
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Fig. 8. Properties of the network structures as a function of
the total number of iterations for coevolutionry constructions.
(a) Mean flow error, (b) mean number of connections, and
(c) mean clustering coefficient.

3.1.2 Coevolutions

We consider now the case of coevolutions of the target pat-
tern with different number of iterations. A similar study
to the previous one is performed but taking only a con-
nectivity p = 0.2 for the initial random networks.

Figure 8a shows the mean flow error as a function of
the total number of iterations for the three coevolution
cases. We observe that the three curves have similar be-
havior to those of the classical evolution shown in Fig-
ure 7a. Mean values of structural properties, number of
connections and clustering coefficients, are shown in Fig-
ures 8b and 8c respectively. We observe that for the three
cases the curves almost coincide. Similarly to the case of
classical evolution, we observe a behavior like a phase tran-
sition for 5 × 104 iterations.

3.1.3 Motif distributions

From these studies it results clearly that there is a kind
of phase transition approximately for 5 × 104 iterations.
After such a number of iterations networks have a well
defined structure despite the initial connectivity and the
kind of coevolution of the target pattern. In order to un-
derstand better this change on the network structure, we
compute the motif profiles [16] for the ensembles of net-
works after different number of total iterations. The com-
putation of the motif profiles is done with the software
Mfinder [17]. We consider networks with M = 40 middle
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Fig. 9. Mean network motif profiles for ensembles of networks
at the end of simulations with different number of iterations.
Networks have M = 40 middle nodes. The number of iterations
are: 1 × 102 (a), 1 × 103 (b), 1 × 104 (c), and, 1 × 105 (d).

nodes and initial connectivity p = 0.2. Their construction
is performed with classical evolution, i.e., we fix the target
pattern along the optimization process.

Figure 9 presents the motif profiles of the networks
ensembles as a function of the number of iterations. We
observe that the mean motif profiles for few iterations are
not well defined and they present strong variations as it
can be seen from the dispersions of the mean values in
Figures 9a and 9b (1 × 102 and 1 × 103 iterations respec-
tively). We see that for 1× 104 and 1× 105 iterations the
mean motif profile has almost the same shape with smaller
dispersion for the last case (Figs. 9c and 9d).

For larger number of iterations the motif profiles re-
main essentially the same as in Figure 9d. This evidence
supports the hypothesis of a phase-like transition in the
network structures when the number of iterations is larger
that 5 × 104. Note that the motif profile for large num-
ber of iterations coincides with the first superfamily of
networks [16] as it was previously reported for functional
networks [10]. Note that in the first superfamily of net-
works we find several sensory transcription networks that
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Fig. 10. Number of used nodes at the end of each stage for
ensembles of networks with different pattern evolution and net-
work size. (a) Distributive-temporal, (b) temporal-distributive,
and (c) replication coevolutions.

control gene expression. Networks ensembles constructed
with few iterations not only has big dispersion, they do
not fit properly in any superfamily of networks.

3.2 Coevolution with large number of iterations

Our second study consists on the construction of ensem-
bles of networks by using the different prescriptions for the
coevolution of the target patterns. In particular, here we
employ a large number of iteration in the evolutionary op-
timization in order to ensure the convergence to good solu-
tions on each stage of the pattern coevolution. This study
allows us to understand the structural changes of the net-
works when the target pattern complexity increases.

We consider networks with different number of middle
nodes, with M = 30, M = 40 and M = 50. During the
optimization process we keep fixed the number of middle
nodes M . The total number of iterations is 1 × 106 and
the temperature parameter takes the following different
values as a function of the network size (see Ref. [10]):
log(σ) = −2.5 for M = 30, log(σ) = −2.75 for M = 40,
and log(σ) = −3 for M = 50.

In Figure 10 we present the mean number of the used
middle nodes 〈M〉 at the end of each stage of the tar-
get pattern evolution. Although, we keep fixed the num-
ber of middle nodes during the whole optimization pro-
cess, nodes without input connections (and their output
links) are not taken into account in order to compute the
structural properties at the end of each stage. We observe
that for the different pattern coevolutions the number of
used middle nodes differ during the first stages.
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Fig. 11. Clustering coefficient at the end of each stage
for ensembles of networks with different coevolution of the
target pattern and network size. (a) Distributive-temporal,
(b) temporal-distributive, and (c) replication coevolutions.

We observe for the distributive-temporal case that at
the end of the first three stages the networks do not use
all the available middle nodes to solve the target patterns.
However, from the fourth stage to the last one, almost all
the middle nodes are used on the network structure. For
the temporal-distributive case we find a similar situation
where for the first five stage networks do not employ all the
available middle nodes during the optimization; and from
the sixth stage to the last one, all the middle nodes are
used. Finally, for the replication case, networks solutions
almost always employ all the middle nodes at the end of
each stage. These behaviors are similar for the different
networks sized.

Figure 11 presents the mean clustering coefficient 〈C〉
of the networks ensembles as a function of the stage of
the coevolutions of the target patterns for different net-
work sizes. We observe that they are quite different as a
function of the target evolution path. In the case of the
distributive-temporal coevolution (Fig. 11a) the 〈C〉 is al-
most zero for the four first stages, indicating the absence
of triangles on the networks structures. After these four
stages the 〈C〉 grows gradually with the following stages.
For the second case (Fig. 11b), the temporal-distributive
pattern evolution, the 〈C〉 increases with the development
of the temporal responses and each time when a new pulse
appears and the flow is distributed, the 〈C〉 decreases. Fi-
nally, for the replication case (Fig. 11c) the mean cluster-
ing coefficient 〈C〉 is always high and it is almost constant
for all the stages of the pattern evolution. Note that the
final values for a given network size is almost independent
from the pattern coevoluiton we consider.

Fig. 12. Motif profiles for network ensembles of stage 4, 5
and 16 of the distributive-temporal coevolution case. Networks
have M = 50.

These results allow us to relate the existence of trian-
gles with the temporal development of the output signals.
In order to find more evidence of this result we have eval-
uated the motif profiles for the networks ensembles for the
temporal-distributive case for the stages fourth, fifth and
for the last one. The result is shown in Figure 12 for an
ensemble of networks with M = 50.

We observe that in stage fourth only the distribution
is applied and motif number one, two an three related
distribution and with long paths are overrepresented, and
motifs seven and eight related with triangles are under-
represented in the motif profile. This first profile can be
located in the fourth superfamily of networks where the
bipartite model (graphs without triangles) is located. In
stage number five, just when the temporal responses start
to develop, the motif seven related with triangles is now
overrepresented; and on the contrary motifs one, two and
three are underrepresented. Finally, the last stage does
not differ much from the stage number five and with the
motif profile shown in Figure 9d. This fact indicates that
the triangles are related with the existence of temporal
responses and not because the distribution process among
the output nodes.

4 Conclusion and discussion

In this work we have constructed flow processing net-
works with prescribed functionalities (target patterns).
We have designed three pattern coevolutions that grad-
ually increase the complexity of the required network
functionality. Particularly, we have studied the evolutions
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of the network structures during the construction process
for both case: the classic one (fixed target pattern) and
when a coevolutionary process acts simultaneously on the
target function. Additionally, we have consider different
initial connectivities and network sizes.

Our research yields three major results:

(i) The evolution towards a functional network shows a
dramatic improvement akin to a phase transition at
some moment during the evolution process. The tran-
sition can be seen in the time evolution of the out-
put error, the motif distribution of the selected net-
works and in their other statistical measures. After
that transition, the statistical properties of the net-
works that are selected show only small incremental
changes.

(ii) The network evolution can be monitored through the
time evolution of its motif distributions. Characteris-
tic changes in the motif distribution reflect the onset
of temporal delays in the target pattern and of in-
creasing spatial complexity.

(iii) The networks selected via coevolution are to a large
degree path independent: they have the same statis-
tical properties whether the target pattern changes
on a time scale of a few hundred iterations or on
a time scale of tens of thousands of iterations. This
seems to be an important and remarkable property:
evolution to a network that is optimally adapted to
a given function does not require that this function
be stable in time nor do intermediate stages of the
network have to be optimally adapted to the inter-
mediate stages of the required function to end up in a
network that is optimally adapted to the final func-
tion. This result agrees and complement the study
shown in the article of Beber et al. [18] where they
show the the networks structure is related to the tar-
get pattern properties.

We want to remark that this method of coevolution be-
tween the target functionality and the system structure
can be used in general as a tool to understand their rela-
tionship. In effect, in a system with a fixed complex target
this relationship can be difficult to elucidate since the final
system generates several tasks simultaneously. An exam-
ple of these systems are genetic regulatory networks with
adaptive responses [19,20]. These networks do not only
generate adaptive responses, but also they require delays
for their onsets. Our coevolutionary method can be ap-
plied here in order to develop gradually the delay during
the network construction. Thus, the relationship between
structure and delay can be better studied.
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