Supplemental Information

Conditional Switch between Frameshifting

Regimes upon Translation of dnaX mRNA

Neva Caliskan, Ingo Wohlgemuth, Natalia Korniy, Michael Pearson, Frank Peske, and Marina V. Rodnina

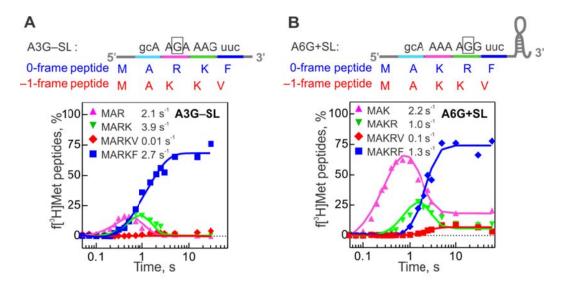


Figure S1. Kinetics in the presence of the cognate Arg-tRNA^{Arg}. Related to Figures 2 and 3.

- (A) A3G-SL mRNA.
- **(B)** A6G+SL mRNA. MAR (pink), MARK (green), MARKF(blue) and MARKV (red) peptides are monitored.

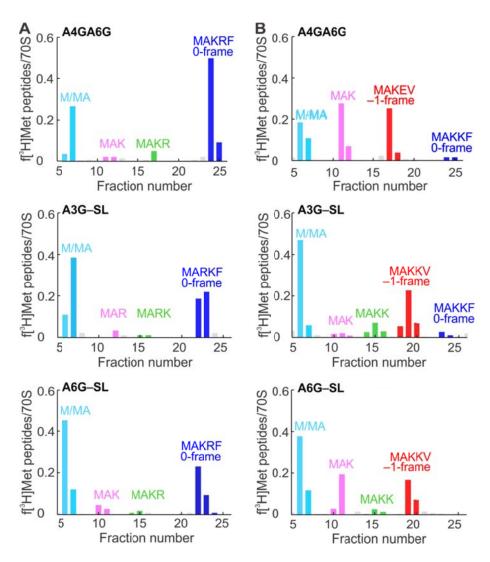
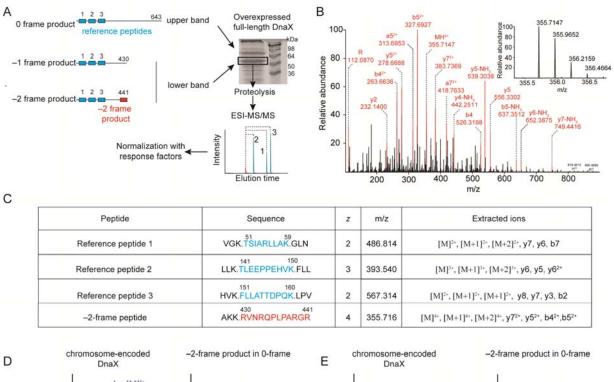
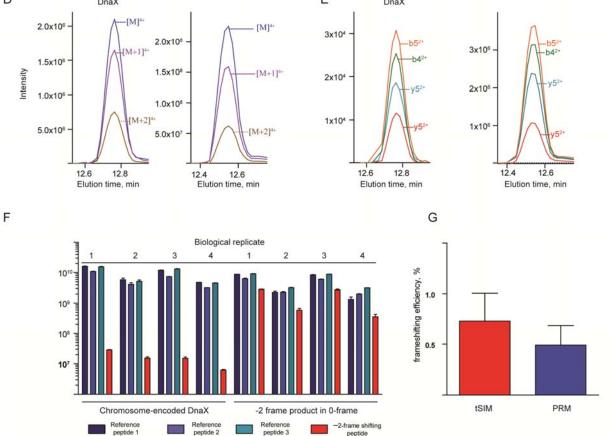




Figure S2. Analysis of translation peptides. Related to Figures 2, 3 and 4.

- (A) Example chromatograms for peptide synthesis on the A4GA6G (top), A3G–SL (middle panel) and A6G–SL mRNA variants in the presence of Arg-tRNA^{Arg}. Monitored peptides are M-MA (light blue), MAK or MAR (pink), MAKR or MARK (green), and MAKRF or MARKF (blue).
- **(B)** Same as in **(A)**, but without Arg-tRNA^{Arg}. Monitored peptides are M-MA (light blue), MAK (pink), MAKK (green), MAKEV-MAKKV (red) and MAKKF (blue).

Figure S3. Quantification of -2-frame product of *dnaX* translation *in vivo* using mass spectrometry. Related to Figure 5. See also Table S3.

- (A) Quantification work flow. The -2-frame product was quantified relative to the -1-frame product. The two products have a similar size and co-migrate on SDS PAGE. The protein band that comprised both isoforms was excised from the gel and subjected to proteolysis with LysC. The amount of -2-frame relative to -1-frame product was quantified by label-free targeted mass spectrometry monitoring the elution of precursor- (targeted selected ion monitoring; tSIM) and fragment- (Parallel Reaction Monitoring; PRM) ions over time.
- **(B)** The -2-frame peptide identified by high resolution MS (inset, isotope dot product 0.99) and MS/MS spectra as well as by co-elution and co-fragmentation with an isotope-labeled internal standard peptide (AQUA, ratio dot product 0.99).
- (C) Sequence and extracted ions of the quantified peptides.
- (**D**) Representative elution profiles of the –2-frame peptide precursors ions (tSIM).
- (E) Representative elution profiles of the -2-frame peptide fragment ions (PRM).
- **(F)** Integrated areas for the –2-frame peptide and the three reference peptides (shown for PRM) (**Table S3**). For both samples four biological replicates were analyzed. Error bars show the standard deviation of three technical replicates.
- **(G)** Efficiency of -2- relative to -1-frameshifting. The frameshifting efficiency was independently quantified on MS1 (0.7%; red tSIM) and MS2 (0.5%; red; PRM) level. Error bars represent the SD of four biological replicates with three technical replicates each.

Table S1. Rate constants of translation steps upon -1PRF on dnaX. Related to Figure 1.

mRNA variant	Rates, s ⁻¹					-1FS, %	
	LysI ^a	LysII ^a	Val ^a	Phe ^a	QF	IVT	
SS / SL	1.7±0.2	2.0±0.2	0.46±0.03	0.13±0.02	78±15	72±4	
-/ SL	2.1±0.3	1.3±0.1	0.03±0.01	0.3±0.0	9±3	4±1	
SS / –	2.3±0.5	2.2±0.1	0.7±0.03	2.3±0.1	23±2	16±5	
-/-	2.3±0.5	2.2±0.5	0.03±0.01	2.9±0.6	1±0	0	

^a Rate constants of amino acid incorporation were determined by global fitting of the data shown in Figures 1E-1H; error bars are s.e.m. of the fit. IVT, *in-vitro* translation. The frameshifting efficiency (– 1FS) was calculated from the end points of IVT experiments shown in Figures 1C and 1D; the values are mean ± s.d. (n=3 independent experiments).

Table S2. Rate constants of translation steps upon NHF on various *dnaX* constructs. Related to Figures 2, 3 and 4.

DNA	Rate	-1FS, %	
mRNA variant	Lys ^a	Val ^a	IVT
A3G+SL	n.d.	0.06±0.01	80±4
A3G–SL	n.d.	0.04±0.02	61±4
A6G+SL	2.3±0.1	0.03±0.00	52±8
A6G–SL	2.4±0.1	0.02±0.00	44±4
A4GA6G	1.4±0.1	0.014±0.002	36±4

^a Rates constants of amino acid incorporation were determined by global fitting of the data shown in Figures 2F, 2G, 3F, 3G and 4D; error bars are s.e.m. of the fit. The frameshifting efficiency (-1FS) was calculated from the end points of IVT experiments shown in Figures 2D, 2E, 3D, 3E, and 4C; the values are mean \pm s.d. (n=3 independent experiments).

Table S3. Determination of the -2 frameshifting efficiency by mass spectrometry *in vivo*. Related to Figure 5 and S3.

This table is a separate file.

Table S4. mRNA constructs used in this study. Related to Star Methods.

REAGENT or RESOURCE	SOURCE	IDENTIFIER				
Oligonucleotides						
SS / SL mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACC <u>AUG</u> GCAAAAAAGUUC						
UAACCGGCAGCCGCUACCCGCGCGCGCGGU						
GAA						
-/SL mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACC <u>AUG</u> GCGAAGAAGUUC						
UAACCGGCAGCCGCUACCCGCGCGCGGCCGGU						
GAA						
SS / – mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACC <u>AUG</u> GCAAAAAAGUUC						
UAG						
-/-mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACC <u>AUG</u> GCGAAGAAGUUC						
UAG						
A3G–SL mRNA:	This paper	N/A				
GCGUGCAGGAGCAACC <u>AUG</u> GCAAGAAAGUUC						
UAG						
A3G+SL mRNA:	This paper	N/A				
GCGUGCAGGAGCAACC <u>AUG</u> GCAAGAAAGUUC						
UAACCGGCAGCCGCUACCCGCGCGCGGCCGGU						
GAA						
A6G-SL mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACC <u>AUG</u> GCAAAAAGGUUC						
UAG		2211				
A6G+SL mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACC <u>AUG</u> GCAAAAAGGUUC						
UAACCGGCAGCCGCUACCCGCGCGCGGCGGU						
GAA-	mi :	21/4				
A4GA6G mRNA:	This paper	N/A				
GCGUGCAGGGAGCAACCAUGGCAAAGAGGUUC						
UAACCGGCAGCCGCUACCCGCGCGCGGC						
GAA						