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Abstract This work presents the analytical solution and temporal moments of
one-dimensional advection-diffusion model with variable coefficients. Two case
studies along with the two different sets of boundary conditions are considered
at the inlet and outlet of the domain. In the first case, a time dependent solute
dispersion in the homogeneous domain along uniform flow is taken into account,
whereas in the second case, due to inhomogeneity of domain, velocity is taken
spatially dependent and the dispersion is assumed proportional to the square of
the velocity. The Laplace transform is used to obtain the analytical solutions. The
analytical temporal moments are derived from the Laplace domain solutions. To
verify the correctness of the analytical solutions, a high resolution second order fi-
nite volume scheme is applied. Different case studies are considered and discussed.
Both analytical and numerical results are in good agreement with each other.
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Nomenclature

x, X Space coordinates
t, T Time [min]
C Initial concentration [g/l]
C0 Concentration at inlet[g/l]
D Solute dispersion[cm2/min]
D0 dispersion coefficient[cm2/min]
u Flow velocity [cm/min]
u0 Interstitial velocity [cm/min]
tinj , Tinj Injection time [min]
L Column length [cm]
a Parameter for inhomogeneity of medium

1 Introduction

Advection-diffusion equations (ADEs) are widely used for the simulation of differ-
ent processes in the areas of environmental sciences, bio sciences, chemical engi-
neering and hydrology. In nature, the fluid transport takes place due to combined
effect of convection and diffusion. An ADE is a parabolic type PDE based on con-
servation laws. Its analytical and numerical solutions are useful for understanding
the pollutant or contaminant concentration distribution behavior through an open
medium like rivers, lake, air and porous medium like aquifer. Moreover, these so-
lutions have applications in areas of environmental sciences, bio sciences, chemical
engineering and hydrology. For example, Lanser and Jan [1] analyzed the oper-
ator splitting for advection-diffusion-reaction problems from air pollution. In [2]
Samadi et. al discussed the effect of the physical properties of the substrate on the
kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy
balance coupled model. Grisak and Pickens in [3] give analytical solution for solute
transport through fractured media with matrix diffusion. Applications of the spur
diffusion model to the radiation chemistry of aqueous solutions are presented in [4].
Furthermore, these equations are also used to model chromatographic processes
and ground flows [5].

Several approaches have been applied for solving the linear ADEs analytically
[6–12,14]. As an example, the first approach was to reduce the ADE into dif-
fusion equation by hiding the convective term(s). This task was accomplished by
introducing moving coordinates [6–10] or by proposing another dependent variable
[13,14]. Several techniques, like, Hankel transform method, Aris moment method,
perturbation method, superposition method have been used to solve ADEs. In
[15] Thongmoon and McKibbin, discussed numerical solutions obtained from cu-
bic splines, finite difference schemes and Crank-Nicolson methods and compared
these results with analytical solution. However, in the present article, the Laplace
transformation(LT) technique [24] is applied to solve the model equation and to
derive analytical moments using the moment generating property of Laplace do-
main solutions. Moreover, in the cases where the inverse Laplace transform is not
possible, numerical inverse Laplace is applied, see [16–23].

In this manuscript, we have obtained analytical solutions of ADE for two prob-
lems. In the first problem, time dependent dispersion coefficient in homogeneous
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domain is considered. While, in the second problem the solution is found for a
space dependent advection coefficient in nonhomogeneous domain and dispersion
coefficient is assumed proportional to the square of the velocity, as considered in
[25]. The present work is an extension of [25,26] in which the authors have used
the continuous Dirichlet type boundary conditions only.

In this manuscript we have derived analytical solutions and temporal moments
for both uniform and non-uniform flows considering two different sets of boundary
conditions which cover both continuous and pulse injections. According to our
knowledge, no one has studied these problems to such a depth. Beyond deriving
analytical solutions for two sets of BCs, we have derived moments up to third
order. In the literature, the researchers have restricted themselves up to simple
continuous Dirichlet BCs and moments derivation up to second order. Thus, our
solutions are more general and we went few steps beyond all previous studies [25–
29]. Moreover, it is important to mention that the Danckwerts type boundary
conditions are more appropriate for the solution of current model equations which
account for back mixing in the case of large axial dispersion [30].

For further analysis, the first three statistical temporal moments are deter-
mined from solutions in the Laplace domain. These moments are used to under-
stand the effect of different kinetic parameters appearing in the model equations.
Furthermore, the derived analytical solution could be used to analyze the accu-
racy of new numerical schemes. Extensive discussion on moment analysis is done
in literature [31,32]. In these partly classical papers analytical expressions have
been generated for specific solute transport in porous medium and boundary con-
ditions (BCs). This analysis typically covers just the most important first and
second moments, i.e. retention times and band broadening. Since the influence of
the boundary conditions is often not discussed in sufficient detail, we have fur-
ther compared the moment expressions for Danckwerts and Dirichlet BCs. To
validate the analytical solutions and the moment expressions, a high resolution
finite volume scheme (HR-FVS) of Koren [33,34] is employed. Moreover, different
parametric case studies are considered.

The derived solutions and moments could be used to optimize experimental
conditions, to improve the product quality and to validate new numerical schemes
derived for solving these problems. Moreover, the derived moments can be used to
estimate model parameters from the experimental moments [30–32].

2 Mathematical Equation

In this section one-dimensional advection-diffusion equation with variable coeffi-
cients is presented [30]. The mathematical form of this equation is:

∂C

∂t
=

∂

∂x

(
D(x, t)

∂C

∂x
− u(x, t)C

)
, (1)

where C is the solute concentration at position x at time t. Moreover, D is the
solute dispersion, it is known as dispersion coefficient if it is independent of time
and position and u is the medium’s flow velocity. It can be noted that suitable
boundary conditions are needed to solve Eq. (1). The domain length is taken as
x = L and two sets of boundary conditions along with an initial condition are
given below.
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The initial concentration is taken as

C(x, 0) = 0. (2)

One of the following boundary conditions can be used to close the problem.
Type I boundary condition:

The Dirichlet inlet boundary condition with pulse injection tinj

C(0, t) =

{
C0 , 0 < t ≤ tinj ,

0 , t > tinj .
(3)

Moreover, at the outlet the following Neuman boundary condition can be applied.

∂C(x, t)

∂x

∣∣∣∣
x=∞

= 0, t ≥ 0. (4)

Here, tinj is the time of injection of the pulse and C0 is the concentration of the
injected pulse. The right boundary for Dirichlet (first type) BCs is at infinity. In
this case, we assume that the channel (column) length is hypothetically infinite.
This assumption for the considered particular boundary conditions is required
(necessary) to satisfy the overall mass balance. In other words, the mass injected
at the inlet of the column (channel) should be equal to the mass at the outlet,
called as mass balance.

Type II boundary condition: The Danckwerts boundary condition

− D(x, t)

u(x, t)

∂C

∂x
+ C

∣∣∣∣
x=0

=

{
C0 , if 0 < t ≤ tinj ,
0 , t > tinj ,

(5)

and the following Neumann outflow boundary condition is used:

∂C(x, t)

∂x

∣∣∣∣
x=L

= 0, t ≥ 0. (6)

While, in the case of Danckwerts BC, which is more general, the consideration of
finite length column satisfy the required mass balance.

In the following we consider two case studies, namely, uniform flow for the time
dependent dispersion and non-uniform flow for the space dependent dispersion
coefficient.

2.1 Uniform flow for time dependent dispersion coefficient

In this case, initially solute free domain, i.e. u(x, 0) = 0 and a uniform input
concentration, are considered. So we take,

D(x, t) = D0f(mt), u(x, t) = u0 , (7)

where m is the coefficient having dimension inverse to that of time variable.
Therefore, f(mt) is a dimensionless expression in variable mt. However, we take
f(mt) = 1 for m = 0 or t = 0, see [25]. The coefficients D0 and u0 are dispersion
coefficient and uniform velocity, respectively. Using Eq. (7) into Eq. (1) we get
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∂C

∂t
= D0f(mt)

∂2C

∂x2
− u0

∂C

∂x
. (8)

Here, new time and space independent variables are introduced by defining the
following transformations so that we can use Laplace transformation conveniently
[25]:

X =
x

f(mt)
or

dX

dx
=

1

f(mt)
. (9)

It can be noted that X has the same dimension as x because mt is a non-
dimensional term. Moreover, for the time dependent coefficient the following trans-
formation is used [25]:

T =
t

f(mt)
or

dT

dt
=

1

f(mt)
, (10)

where dimension of T is same as t. The nature of initial condition in new time do-
main depends upon the choice of f(mt) so it should be chosen in a such a manner
which do not change the nature of initial conditions. By using these transforma-
tions, the Eq. (8) along with initial condition given by Eq. (2) in transformed form
become:

∂2C

∂X2
− u0

D0

∂C

∂X
− 1

D0

∂C

∂T
= 0, (11)

C(X, 0) = 0, 0 ≤ X ≤ X0, T = 0; X0 =
L

f(mt)
. (12)

In the same manner, the boundary conditions given in Eqs. (3)-(6) are transformed
as under.

The Dirichlet boundary condition:

C(X, T ) =

{
C0 , 0 < T ≤ Tinj ,

0 , T > Tinj .
(13)

Moreover, the outlet Neumann boundary condition is given as

∂C(X, T )

∂X
= 0, X = ∞, T ≥ 0. (14)

The transformed Danckwerts boundary condition is

− D(X, T )
∂C

∂X
+ u(X, T )C

∣∣∣∣
X=0

=

{
u0C0 , if 0 < T ≤ Tinj ,
0 , T > Tinj ,

(15)

and Neumann outflow boundary condition is

∂C(X, T )

∂X
= 0, X = X0, T ≥ 0. (16)
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The Laplace transformation is defined as

c̄(s, X) =

∞∫

0

e−sT c(T, X)dT, T ≥ 0. (17)

Applying the Laplace transformation on Eq. (11), we get

∂2C̄

∂X2
− u0

D0

∂C̄

∂X
− 1

D0
sC̄ = 0. (18)

The solution of this equation is given as

C̄(X, s) = Aem1X + Bem2X , (19)

where

m1,2 =
u0

2D0
±

√
u2

0

4D2
0

+
s

D0
. (20)

The integration constants A and B in Eq. (19) can be obtained by utilizing type
I and type II boundary conditions given in Eqs. (13) and (14). However, first we
transform these conditions in the Laplace domain as under

C̄(X, s) =
C0

(
1− e−sTinj

)

s
, X = 0, (21)

∂C̄(X, s)

∂X
= 0, X = ∞, T ≥ 0. (22)

Using Eqs. (21) and (22) we get the values of A and B as follow

A = 0, B =
C0

(
1− e−sTinj

)

s
, X = 0. (23)

Using A and B in Eq. (19), we get solution as

C̄(X, s) =
C0

(
1− e−sTinj

)

s
em2X . (24)

Analytical inverse transformation can be applied to obtain the solution in the
actual time domain. Thus, the time domain solution C(X, T ) is obtained as

C(X, T ) =
1

2π i

γ+i∞∫

γ−i∞
e−TsC(X, s)ds , (25)

where, γ is a real constant that exceeds the real part of all the singularities of
C(X, s). Thus, we obtain [35]:

C(X, T ) =

{
C0 M(X, T ) , 0 < T ≤ Tinj ,
C0 M(X, T )− C0 M(X, T − Tinj) , T > Tinj .

(26)
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where

M(X, T ) =
1

2
erfc




X
D0

− u0T
D0

2
√

T
D0


 +

1

2
e

u0X

D0 erfc




X
D0

+ u0T
D0

2
√

T
D0


 , (27)

Here, erfc denotes the complementary error function.
We will now use the type II boundary conditions given by Eqs. (15) and (16).

Before applying the conditions we transform them in the Laplace domain as under:

C̄(X, s) =
C0

(
1− e−sTinj

)

s
+

D0

u0

∂C̄

∂X
, X = 0, (28)

∂C̄(X, s)

∂X
= 0, X = X0, T ≥ 0. (29)

On using Eqs. (28) and (29) in Eq. (19), we obtained A and B as

A = −C0

s

(
1− e−sTinj

) [
m2e

m2X0

m1em1X0(1− m2D0
u0

)−m2em2X0(1− m1D0
u0

)

]
, (30)

B =
C0

s

(
1− e−sTinj

) [
m1e

m1X0

m1em1X0(1− m2D0
u0

)−m2em2X0(1− m1D0
u0

)

]
. (31)

On substituting these values of A and B in Eq. (19), we obtain

C̄(X, s) =
C0

(
1− e−sTinj

)

s
(
m1em1X0(1− m2D0

u0
)−m2em2X0(1− m1D0

u0
)
) (32)

[
m1e

m1X0+m2X −m2e
m2X0+m1X

]
.

The analytical inverse Laplace transformation gives the following solution in the
actual time domain [35]:

C(X, T ) =

{
C0 H1(X, T ) , 0 < T ≤ Tinj ,
C0 H1(X, T )− C0 H1(X, T − Tinj) , T > Tinj ,

(33)

where

H1(T, X) =
1

2
erfc




X
D0

− u0T
D0

2
√

T
D0


 +

(
( u0

D0
)2T

π 1
D0

) 1
2

exp

[
− ( X

D0
− u0T

D0
)2

4 T
D0

]

− 1

2

(
1 +

u0X

D0
+

( u0
D0

)2T
1

D0

)
e

u0X

D0 erfc




X
D0

+ u0T
D0

2
√

T
D0


 (34)

+

(
4( u0

D0
)2T

π 1
D0

) 1
2

[
1 +

u0
D0

4
(2−X + u0T )

]
exp

[
u0

D0
−

1
D0

4T
(2−X + u0T )2

]

− u0

D0

[(
2−X +

3u0T

2

)
+

u0
D0

4
(2−X + u0T )2

]

exp(
u0

D0
) erfc




1
D0

(2−X) + u0T
D0

2
√

T
D0


 .
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2.2 Non-Uniform flow for space dependent dispersion coefficient

Now, the inhomogeneous porous domain is considered. In this case the flow is
non-uniform and the values of u and D are taken as in [25]

u(x, t) = u0(1 + ax), D(x, t) = D0(1 + ax)2 . (35)

The Eq.(1) is solved for the velocity and dispersion coefficient given in Eq. (35)
along with boundary conditions (3) and (6). As previously done in case of uniform
flow, a new space variable X is introduced through the following transformation.

X = −
∫

dx

(1 + ax)2
=

1

a(1 + ax)
. (36)

The resulting PDE is further reduced by using a transformation with constant
coefficient as follow:

Z = − log aX = log(1 + ax). (37)

Using the transformations in Eqs. (36) and (37), we obtain the following reduced
form of Eq. (1):

∂C

∂t
= a2

1D0
∂2C

∂Z2
− (a1u0 − a2

1D0)
∂C

∂Z
− a1u0C, (38)

C(Z, 0) = 0, 0 ≤ Z ≤ Z0, Z0 = log(1 + a1L). (39)

Moreover, the transformed boundary conditions in terms of Z and t are given as
following.
Type I boundary condition: The inlet boundary condition is given as

C(Z, t) =

{
C0 , 0 ≤ t ≤ tinj ,

0 , t > tinj .
(40)

The outlet Neumann boundary condition:

∂C(Z, t)

∂Z
= 0, Z = ∞, t ≥ 0 . (41)

Type II boundary condition:
The inlet and outlet boundary conditions are given as

− a1D0

u0 − a1D0

∂C

∂Z
+ C

∣∣∣∣
Z=0

=

{
C0 , 0 < t ≤ tinj ,
0 , t > tinj ,

(42)

∂C(Z, t)

∂Z
= 0, Z = Z0, t ≥ 0. (43)

For the analytical solution of Eq. (38), we apply Laplace transformation to get

∂2C̄

∂Z2
− a1u0 − a2

1D0

a2
1D0

∂C̄

∂Z
− C̄(s + a1u0)

a2
1D0

= 0. (44)

Therefore, the solution in Laplace domain is given as
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C̄(Z, s) = Aem1Z + Bem2Z , (45)

where

m1,2 =
(a1u0 − a2

1D0)

2a2
1D0

±
√(

a1u0 − a2
1D0

2a2
1D0

)2

+
s + a1u0

a2
1D0

. (46)

To determine the constants A and B in the above solution, the type I and type II
boundary conditions are used in the following.
The Eqs. (40) and (41) are transformed in Laplace domain as given below

C̄(Z, s) =
C0

(
1− e−stinj

)

s
, Z = 0, (47)

∂C̄(Z, s)

∂Z
= 0, Z = ∞, t ≥ 0. (48)

Using Eqs. (47) and (48) in Eq. (45), we get A and B as

A = 0, (49)

B =
C0

(
1− e−stinj

)

s
, Z = 0. (50)

Hence, the solution in Eq. (45) takes the form

C̄(Z, s) =
C0

(
1− e−stinj

)

s
em2Z . (51)

As per previous methodology, the Laplace transformation is applied on type II
boundary conditions given in Eqs. (42) and (43) to get

C̄(Z, s) =
C0

(
1− e−stinj

)

s
+

aD0

u0 − aD0

∂C̄

∂Z
, Z = 0. (52)

∂C̄(Z, s)

∂Z
= 0, Z = Z0, t ≥ 0. (53)

So, using Eqs. (52) and (53), we get A and B as

A = −C0

s

(
1− e−stinj

) [
m2e

m2Z0

m1em1Z0(1− ξm2)−m2em2Z0(1− ξm1)

]
. (54)

B =
C0

s

(
1− e−stinj

) [
m1e

m1Z0

m1em1Z0(1− ξm2)−m2em2Z0(1− ξm1)

]
. (55)
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Putting values of A and B in Eq. (45) to get the solution corresponding to Danck-
werts boundary conditions as

C̄(Z, s) =
C0

(
1− e−stinj

)

s (m1em1Z0(1− ξm2)−m2em2Z0(1− ξm1))
(56)

[
m1e

m1Z0+m2Z −m2e
m2Z0+m1Z

]
,

where

ξ =
a1D0

u0 − a1D0
. (57)

In this case numerical Laplace inversion is applied to get back the solution in
actual time domain.

3 Moment analysis

In this section, method of moments is used to figure out important information
related to mass transfer kinetics and retention time in the given domain [32,30].
The Laplace transformation is used as a fundamental tool to get the moments.
The optimum solution of the equation is provided by numerical Laplace inversion,
but to investigate the behavior of elution profiles this solution does not help. The
parameters of the mass transfer kinetics and the retention equilibrium-constant in
the column are relevant to the moments in the Laplace domain. Here, a method
for describing peaks by means of statistical moments is used.
The n-th temporal moment of column of length x = L at inlet is

µn =

∫ ∞

0
C(t, x = L) tndt. (58)

The normalized temporal moment is defined as

µn =

∫∞
0 C(t, x = L) tndt∫∞
0 C(t, x = L)dt

. (59)

While, the n-th central moment is

µ
′
n =

∫∞
0 C(t, x = L) (t− µ1)

ndt∫∞
0 C(t, x = L)dt

. (60)

In this section, the first three moments are derived for all sets of considered BCs.
The zeroth moment µ0 represents total mass of the solute. The first moment µ1

corresponds to the retention time. The second central moment µ′2 or the variance
of the elution breakthrough curves (or peaks) provides significant information
related to processes of mass transfer in the domain. The third central moment
µ
′
3 is considered to analyze the fronts asymmetries. The second and the third

central moment for the more general Danckwerts BCs reduce to the moments
for the Dirichlet BCs in case D0 approaches to zero. A comparison of analytical
moments and numerical moments is made.
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3.1 Moments of Uniform flow for time dependent dispersion coefficient

Case I: Dirichlet boundary conditions
Let us define

n1 =
u0

D0
. (61)

The zeroth moment:

µ0 = C0Tinj . (62)

The first moment:

µ1 =
Tinj

2
+

X0

u0
. (63)

The second central moment:

µ′2 =
T 2

inj

12
+

2X0

n1u2
0

. (64)

Third central moment:

µ′3 = 12
X0D

2

n2
1u03

. (65)

This completes the moments obtained for type I boundary condition.
Case II: Danckwerts boundary conditions
The zeroth moment is obtained as

µ0 = C0Tinj . (66)

First moment is calculated as

µ1 =
Tinj

2
+

X0

u0
. (67)

The second moment is

µ2 =
T 2

inj

3
+ Tinj

X0

u0
+

2

n2
1u

2
0

[
−1 + X0n1 +

X2
0p2

1

2
+ e−X0n1

]
. (68)

The second central moment is

µ′2 =
T 2

inj

12
+

2X0

n1u2
0

[
1 +

1

X0n1

(
e−X0n1 − 1

)]
. (69)

Finally, the third central moment is

µ′3 =
12X0

n2
1u

3
0

[
(1 +

2

X0n1
)e−X0n1 + (1− 2

X0n1
)

]
. (70)
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3.2 Moments of Non-uniform flow for space dependent dispersion coefficient

Case I: Dirichlet boundary conditions
We calculate moments for the solution of infinity Neumann boundary condition.

The zeroth moment:

µ0 = (C0tinj) e
1
2 (α2)Z0 . (71)

The first moment:

µ1 =
tinj

2C0
+

p3Z0√
α1

. (72)

The second central moment:

µ′2 =
1

12C2
0 (α1)

3
2

[√
α1

(
16C2

0p2 + 4C2
0p2

1 − 3p2
1 − 12p2

)
t2inj (73)

+ 12C0p3Z0(4p2C0 + C0p
2
1 − p2

1 − 4p2)tinj + 24p2
3Z0C

2
0

]
.

Third central moment:

µ′3 =− 1

4C3
0 (α1)

5
2

[√
α1(8C3

0p2
1p2 + 16C2

0p2
1p2 − p4

1

− 16p2
2 − 16C3

0p2
2 − C3

0p4
1 − 8p2

1p2 + 32C2
0p2

2 + 2C2
0p4

1)t
3
inj

+ C0p3Z0(48p2C0p
2
1 − 48p2

1p2 + 96C0p
2
2 + 6C0p

4
1 − 6p4

1 − 96p2
2)t

2
inj

+ C2
0p2

3Z0(−6
√

α1Z0p
2
1 − 24Z0p2

√
α1 + 24C0p2

√
α1 + 6C0Z0

√
α1p

2
1

− 48C0p2 − 12C0p
2
1 + 12p2

1 + 48p2)tinj − 48C3
0p3

3Z0
]
. (74)

Case II: Danckwerts boundary conditions
For the moments in the case of non-uniform Danckwerts boundary condition.
The zeroth moment:

µ0 = − 2C0tinjp1
√

α1e
p1Z0

α8e
1
2 α2Z0 − α9e

1
2 α3Z0

. (75)

The first moment:

µ1 =
1

2α1(α8e
1
2 α2Z0 − α9e

1
2 α3Z0)

[
(α10e

1
2 α2Z0 − α11e

1
2 α3Z0)tinj+

(α12e
1
2 α2Z0 − α13e

1
2 α3Z0)

]
. (76)

Here to simplify the calculations some terms like p1, p2, p3, z0, α1, α2, α4, α5, α6,
α7, α8, α9, α10, α11, α12, α13, α14, α15 have been defined and given in Appendix A.

Moreover, the second moment and second central moment are too lengthy to
write. Thus, we will use them in the simulation of the results.



Title Suppressed Due to Excessive Length 13

4 Results and discussions

In this section, the analytical solutions obtained for two set of boundary conditions
are validated. For this purpose a high resolution finite volume scheme (HR-FVS)
of Koren [34] is used . This scheme guarantees the positivity of the solution.
Initially, first case is discussed, i.e., solute dispersion which is dependent on time
in uniform flow. Later on second case is discussed, i.e., solute dispersion which is
space dependent in non-uniform flow.

For time dependent solute dispersion the analytical and numerical results are
compared considering Danckwerts BCs along uniform and non-uniform flows. Ta-
ble 1 presents all the parameters used in the problem. The comparison of numerical
and analytical results of the advection-diffusion equation along with Danckwerts
BCs are displayed in Figures 1 and 2. A close agreement of the elution profiles ver-
ify the correctness of the analytical solutions and accuracy of the Koren scheme.
In figures 1 and 2 it can be noticed that local concentration profile appeared at 2
minutes for uniform flow and for non-uniform flow it appeared before 2 minutes
which means uniform flow takes more time to reach at domain outlet as compared
to non-uniform flow. Also it can be seen that concentration profile is close to 1
for uniform flow whereas in non-uniform flow its concentration profile is close to
0.5. Importantly, it was observed that the numerical Laplace inversion technique
is more appropriate for solving such problems and it is a consistent tool for solving
problems especially when it is not possible to find out the exact solution. Figures 3
and 4 shows the comparison of Dirichlet and Danckwerts BCs for different values
of dispersion coefficient D0 along uniform flow and non-uniform flow respectively,
where injection time is taken equal to 1 min. From these figures, it can be observed
that when the value of D0 is taken very small i.e. 0.002, there is no variation in
the solutions of Dirichlet and Danckwerts BCs, whereas, for larger values of D0 a
visible difference between the results obtained from both set of BCs can be seen.
Moreover, influence of different time injection for the uniform flow case is shown
in Figure 5.

5 Description on the numerically and analytically determined
moments

This section focuses on numerically and analytically determined temporal mo-
ments with considered BCs. Numerical moments are obtained with the help of
formulas in Eqs. (59) and (60) for the first normalized moment, second central
moment and third central moment. The integral appearing in these equations are
numerically approximated by using trapezoidal rule. For the moment calculations
of rectangular pulse, the injection time is taken to be tinj = 3min. The Danckwerts
BCs were found to be more accurate than Dirichlet BCs thus Danckwerts BCs are
taken into account for test problems.
A comparison of analytical and numerical moments for both uniform and non-
uniform flows are shown in the Figures 6 and 7. The zeroth moment µ0 : denotes
the total mass injected to the column, the first moment µ1 : represents the reten-
tion time of the pulse in the column, the second central moment µ′2 : corresponds
to the variance of the profile and the third central moment µ′3 : describes the
skewness (asymmetry) of the concentration profile. Both numerical and analytical
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moments agree well with each other that verifies the accuracy of proposed nu-
merical scheme and correctness of the analytical solutions. These plots show that
retention time, variance and asymmetry of the profile are reducing on increasing
the intersticial velocity u. In Figure 7 the visible difference (discrepancy) between
analytical and numerical µ2 for small value of velocity u0 (or for large 1/u2

0) is
due to numerical diffusion and errors introduced by small time steps and large
number of iterations. Thus, the numerical solution has actually more errors due
to the combined effects of numerical diffusion and axial dispersion.

Table 1 Parameters of the model under consideration

Parameters values
Column length L = 1.0 cm

Porosity ε = 0.4
Interstitial velocity u0 = 1.0 cm/min

Dispersion coefficient D0 = 0.002 cm2/min
Injection time for uniform flow Tinj = 3.0 min

Injection time for non-uniform flow tinj = 3.0 min
Concentration at inlet C0 = 1.0 g/l

Adsorption equilibrium constant a = 1.0
Parameter accounting in-homogeneity a1 = 1.0



Title Suppressed Due to Excessive Length 15

6 Conclusion

In this work, one-dimensional advection-diffusion model with variable coefficients
was analyzed analytically and numerically. Two case studies along with two differ-
ent boundary conditions, namely, the Dirichlet and Danckwerts boundary condi-
tions were considered. In the first case temporal dependent solute dispersion was
studies in homogeneous domain for uniform flow. While, in the second case space
dependent velocity was considered and the dispersion was assumed proportional
to the square of the velocity for non-uniform flow. Laplace transformation was
used as basic tool to find the analytical solutions. However, in the cases where
the analytical inversion was not possible, numerical Laplace inversion was used to
obtain the concentration profiles in actual time domain. Temporal moments upto
third order were calculated from analytical solution in Laplace domain. Analytical
results were validated against numerical result by using HR-FVS. A good agree-
ment between analytical and numerical results reveals that the HR-FVS can be
used to solve such advection-diffusion type model equations.
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7 Appendix A

Let us define:

p1 =
a1u0 − a2

1D0

a2
1D0

, p2 =
u0

a1D0
, (77)

p3 =
1

a2
1D0

, Z0 = log(1 + a1X0) , (78)

α1 = p2
1 + 4p2, α2 = p1 −

√
α1, α3 = p1 +

√
α1 , (79)

α4 = 4p2p1 + p3
1 − α

3
2
1 , α5 = 4p2p1 + p3

1 + α
3
2
1 , (80)

α6 = 8p3Z0p2 + 2p3Z0p
2
1 − 4p3p1 − 2

√
α1p3Z0p1 , (81)

α7 = 8p3Z0p2 + 2p3Z0p
2
1 − 4p3p1 + 2

√
α1p3Z0p1 , (82)

α8 = p2
1 − p1

√
α1 + 2p2, α9 = p2

1 + p1
√

α1 + 2p2 , (83)

α10 = p4
1 − p1α1

3

2 + 8p2 + 6p2
1p2, α11 = p4

1 + p1α1

3

2 + 8p2 + 6p2
1p2 , (84)

α12 = 2p3Z0p
3
1 + 8p3p2 + 8p3Z0p2p1 − (

√
α1p3Z0p

2
1 + p3Z0α

3
2
1 ) , (85)

α13 = 2p3Z0p
3
1 + 8p3p2 + 8p3Z0p2p1 + (

√
α1p3Z0p

2
1 + p3Z0α

3
2
1 ) , (86)

α14 =2816p4
2p

2
1 + 784p2

2p
2
1 + 8p10 + 2240p3

2p
4
1 + 1024p5

2 + 128p2p
8
1

− p3
1(4p5

1α
5
2
1 + 16p2p1α

7
2
1 + 16p2α

5
2
1 + 4α

7
2
1 ) , (87)

α15 =2816p4
2p

2
1 + 784p2

2p
2
1 + 8p10 + 2240p3

2p
4
1 + 1024p5

2 + 128p2p
8
1

+ p3
1(4p5

1α
5
2
1 + 16p2p1α

7
2
1 + 16p2α

5
2
1 + 4α

7
2
1 ) . (88)
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Fig. 1 Comparison of analytical and numerical results with Danckwerts BCs for uniform flow.
All parameters are given in Table 1
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Fig. 2 Comparison of analytical and numerical results with Danckwerts BCs for non-uniform
flow.
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Fig. 3 Comparison of Dirichlet and Danckwerts BCs for different values of D0 along uniform
flow.
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Fig. 4 Comparison of Dirichlet and Danckwerts BCs for different values of D0 along non-
uniform flow.
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Fig. 5 Influence of different time injection using Danckwerts inlet BCs for uniform flow .
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Fig. 6 Comparison of moments using Danckwerts BCs for uniform flow
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Fig. 7 Comparison of moments using Danckwerts BCs for non-uniform flow


