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Abstract Over the past few years it has been observed, thanks in no small part
to high-throughput methods, that a large proportion of the human genome is
transcribed in a tissue- and time-specific manner. Most of the detected transcripts are
non-coding RNAs and their functional consequences are not yet fully understood.
Among the different classes of non-coding transcripts, microRNAs (miRNAs) are
small RNAs that post-transcriptionally regulate gene expression. Despite great
progress in understanding the biological role of miRNAs, our understanding of
how miRNAs are regulated and processed is still developing. High-throughput
sequencing data have provided a robust platform for transcriptome-level, as well
as gene-promoter analyses. In silico predictive models help shed light on the tran-
scriptional and post-transcriptional regulation of miRNAs, including their role in
gene regulatory networks. Here we discuss the advances in computational methods
that model different aspects of miRNA biogeneis, from transcriptional regulation to
post-transcriptional processing. In particular, we show how the predicted miRNA
promoters from PROmiRNA, a miRNA promoter prediction tool, can be used to
identify the most probable regulatory factors for a miRNA in a specific tissue.
As differential miRNA post-transcriptional processing also affects gene-regulatory
networks, especially in diseases like cancer, we also describe a statistical model
proposed in the literature to predict efficient miRNA processing from sequence
features.

Keywords Mirna regulation • Promoter prediction • Mirna processing • Gene
regulatory networks

1 The Role of miRNAs in Gene-Regulatory Networks

In biological research, diverse high-throughput techniques enable the investigation
of whole systems at the molecular level. One of the main challenges for computa-
tional biologists is the integrated analysis of gene expression, interactions between
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genes and the associated regulatory mechanisms. The two most important types of
regulators, Transcription Factors (TFs) and microRNA (miRNAs) often cooperate
in complex networks at the transcriptional level and at the post-transcriptional
level, thus enabling a combinatorial and highly complex regulation of cellular
processes [1].

While TFs regulate genes at the transcriptional level by binding to proximal or
distal regulatory elements within gene promoters [1], microRNAs (miRNAs) act at
the post-transcriptional level on roughly half of the human genes. These short non-
coding RNAs of 18–24 nucleotides in length which can bind to the 30-untranslated
regions (30 UTRs) or coding regions of target genes, leading to the degradation of
target mRNAs or translational repression [2].

MiRNAs are associated with an array of biological processes, such as embryonic
development and stem cell functions in mammals [3], and a crucial role of miRNAs
in gene regulatory networks has been recognized in the last decade in the context
of cancer and other diseases [4, 5]. Altered miRNA expression profiles have often
been associated with cancer development, progression and prognosis [6]. MiRNAs
which negatively regulate tumor suppressor genes can be amplified in association
with cancer development. On the other hand, deletions or mutations in miRNAs
targeting oncogenes can lead to the over-expression of their targets [5, 6].

MiRNAs also affect several aspects of the immune system response [7]. For
example, cells of the hematopoietic system can be distinguished from other tissues
by their miRNA expression profiles, including, among the others, the highly
expressed miRNA hsa-miR-155 [7]. Other immune system-related miRNAs are
activated in response to viral or bacterial infections (e.g. hsa-miR-146a) and they
affect the expression of several cytokines downstream [8].

Given the growing prevalence of miRNA functions in contributing to the control
of gene expression, gene regulatory networks have been expanded to become
rather complex incorporating the involvement of miRNAs. The general framework
for inferring gene regulatory networks involving Transcription Factors (TFs) and
miRNAs is usually built using the following steps:

• 1: When expression data are available under a certain condition, the first step is
to identify those genes which are mostly expressed in that particular condition or
de-regulated compared to a control experiment.

• 2: miRNAs responsible for the observed co-expression or de-regulation of a set
of genes are identified by identifying enriched miRNA binding sites in the 30-
UTRs of such genes. This is usually done by mining publicly available databases
for miRNA-target interactions [9, 10].

• 3: MiRNA-target interactions are filtered based on the miRNA expression level
(when available) or by using a cutoff score indicating the reliability of the
predicted interaction. In addition, it is expected that when a miRNA regulates a
gene, the miRNA and the gene show typical correlated expression patterns across
multiple samples. This can be used as a criterium to further filter miRNA-gene
interactions which do not show any such correlation [9].
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Fig. 1 Cooperative action of
miRNAs and TFs in gene
regulatory networks. miRNAs
are colored in blue, TFs in red
and their regulated target
genes, as well as genes
involved in potential
protein–protein interactions
are colored in green. Dotted
red arrows indicate potential
regulators of miRNAs and
purple lines indicate
protein–protein interactions
extracted from databases.
A typical feedback loop is
highlighted in grey

• 4: TFs regulating this set of genes can be inferred by means of prediction
algorithms which scan for known TF binding sites in the proximal gene promoter
regions using Position Weight Matrices (PWMs) [11].

• 5: Protein–protein interaction databases, such as STRING, BioGrid and KEGG
can be inspected to find possible interactors of such genes and the cellular
pathways that they affect.

These steps give rise to a network as depicted in Fig. 1. In this schematic rep-
resentation nodes represent the significant set of genes, miRNAs and transcription
factors in the process under study and the links between them represent predicted
regulatory interactions.

It is well known that miRNAs are involved in negative regulation and/or positive
feedback loops which can also involve the transcription factors that regulate
their activity [12]. The knowledge of the transcription factors which regulated
the miRNAs in question often provide the missing links in the aforementioned
regulatory network (Fig. 1, red dotted arrows). The identification of TF-miRNA
interactions remains a difficult task without which a full understanding of the
underlying processes is hampered. In recent years there has been an increase in
the development of computational methods to predict miRNA promoters and their
regulating TFs in order to unravel the TF-miRNA interactions missing in such
typical regulatory networks.

2 MiRNA Transcriptional Regulation

2.1 Challenges of in silico miRNA Promoter Identification

MiRNA promoter recognition is a crucial step towards the understanding of miRNA
regulation. Knowing the location of the miRNA transcription start site (TSS) enables
the location of the core promoter, the region upstream of the TSS which contains
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the TFs binding sites necessary to initiate and regulate transcription. Predictions
of binding sites in the core promoter elements can enable the identification of
regulatory factors for a specific miRNA (or a class of miRNAs), greatly improving
our understanding of miRNA function, and their role in tissue-specific feedback
loops.

Genome-wide identification of miRNA promoters has been hindered for many
years by two main factors. The first reason is the deficit in mammalian promoter
sequence characterization, which makes promoter prediction a challenging task in
general [13]. Although promoter regions contain short conserved sequence features
that distinguish them from other genomic regions, they lack overall sequence
similarity, preventing detection by sequence-similarity-based search methods such
as BLAST. Promoter recognition methods in the early 90s exploited the fact that
promoters contain few specific sequence features or TF binding sites that distinguish
them from other genomic features [13]. This observation could be used to build a
consensus model, such as Position Weight Matrices (PWMs) or Logos to search for
new promoters in the genome. It soon became clear that such methods could not
be generalized to all existing promoters and more advanced strategies for pattern
recognition utilized machine learning models trained on sequence k-mers.

The second reason for the lack of knowledge in miRNA transcriptional regulation
is due to the complexity of the miRNA biogenesis pathway: miRNAs, whether they
are located in intergenic regions or within introns of protein-coding genes, often
referred to as host genes, are generally generated from long primary transcripts
which are rapidly cleaved in the nucleus by the enzyme Drosha [2]. This presents
a technical barrier for large-scale identification of miRNA TSSs as they can be
located in regions far away from the mature miRNA and cannot be inferred simply
from the annotation of the processed mature miRNA, as done for stable protein
coding gene transcripts [14]. In addition, the situation is further complicated by
the fact that recent studies indicate that several alternative miRNA biogenesis
pathways exist, especially for intragenic miRNAs. Indeed, if co-transcription with
the host gene were the only mechanism to generate intragenic miRNAs, then
the mirna and hostgene expression should be highly correlated among different
tissues or conditions. Many recent studies, however, show many instances of poor
correlation between mirna and host gene, pointing to an independent regulation
of the mirna, utilizing an alternative intronic promoter [15]. There is evidence
that intragenic miRNAs may act as negative feedback regulatory elements of their
hosts interactomes [16] but the contribution of host gene promoter versus intronic
miRNA promoters, and the mechanisms that control intronic promoter usage are
still interesting open questions in the biology of miRNA biogenesis.

Although overall similarity in promoters is not a general phenomena, it does exist
in the form of phylogenetic footprinting. Based on this observation, one of the first
methods for miRNA promoter detection identifies about 60 miRNA transcriptional
start regions by scanning for highly conserved genomic blocks within 100 kb of
each mature miRNA and searching for a core promoter element in the consensus
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sequence regions extracted from these blocks [17]. Although this method proved to
be valid in the identification of evolutionary conserved promoters, the sensitivity of
such an evolutionary approach is very low, given the high number of non-conserved
miRNAs annotated in MiRBase [18].

2.2 Next Generation Sequencing (NGS) Technology Leads
to Significant Advances in miRNA Promoter Prediction

Recently, thanks to the advent of next-generation sequencing technologies
combined with Chromatin Immunoprecipitation (CHIP-Seq technology [19]) and
nascent transcript capturing methods, such as Cap Analysis of Gene Expression
coupled to NGS sequencing (deepCAGE) [20] or Global run on sequencing
(GRO-seq) [21], several computational methods for miRNA promoter prediction
genome-wide have been developed, providing valuable understanding in the
detailed mechanisms of miRNA transcriptional regulation. For example, the
epigenetic mark H3K4me3 has been identified as a hallmark of active promoters,
and computational methods for promoter recognition have begun exploiting this
information systematically.

The deepCAGE technique enables the mapping of the location of TSSs genome-
wide. In the FANTOM4 Consortium this technique was applied across various
different tissues and conditions in order to profile transcriptional activities and
promoter usage among different libraries.

GRO-seq is a technique to capture nascent RNAs genome-wide by quantifying
the signal of transcriptionally engaged PolII at gene promoters. Both deepCAGE
and GRO-seq read density is sharply peaked around transcripts TSS and it can be
successfully used to locate the TSSs of miRNA primary transcripts [14, 22]. Finally,
recent RNA-seq studies with increased sequencing depth can also be used to identify
the transient and lowly expressed pri-miRNA transcripts [22].

2.3 Classification and Comparison of miRNA Promoter
Prediction Methods

A limited number of miRNA promoter recognition methods have been developed
in the past few years and can be classified either according to the methodology
used, supervised versus unsupervised learning approaches, or based on the nature of
their predictions, tissue specific versus general promoter predictions and intergenic
versus all predicted promoters, including intronic promoters. The main features of
existing miRNA promoter prediction methods can be summarized in Table 1.

According to the model used to describe the data one can distinguish two
categories of miRNA promoter recognition methods:
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• De novo approaches, which identify and score miRNA TSS in an unsupervised
manner. These include models based on experimentally determined histone mark
profiles [23, 24] or nucleosome positioning patterns [25]. For example Marson
[23] and Barski [24] consider regions enriched in H3K4me3 signal as putative
promoters and assign them a score. Ozsolak [25] combine nucleosome posi-
tioning patterns with ChIP-chip screens to score putative transcription initiation
regions upstream of active miRNAs.

• Supervised methods, based on the evidence that miRNA promoters present the
typical characteristics of Polymerase II transcription and therefore trained on
protein coding gene promoter features and subsequently used to predict miRNA
promoters. Such methods include mirStart [26] and microTSS [22] (Table 1).
MirStart trains a SVM model on protein coding gene features (CAGE tags,
TSS-Seq and HeK4me3 ChIP-Seq data), and uses the trained model to identify
putative miRNA promoters [26]. microTSS also uses a combination of three
SVM models trained on HEK4me3 and PolII occupancy at protein-coding gene
promoters to score putative initial miRNA TSSs candidates derived from deeply
sequenced RNA-Seq data [22].

One of the latest miRNA promoter prediction tools, PROmiRNA, is a method
in between these two categories [14]. PROmiRNA is based on a semi-supervised
classification model which does not make any assumption about the nature of
miRNA promoters and their similarities to protein-coding genes. On the contrary,
PROmiRNA tries to learn the separation between putative miRNA promoters and
transcriptional noise based on few features, such as CAGE tag clusters upstream of
annotated miRNAs and sequence features.

Each of the described methods has advantages and disadvantages. Methods
for miRNA promoter recognition based solely on sequence features, such as the
evolutionary framework proposed by Fujita [17] or S-Peaker [27], based on TF
binding sites and proposed by Megraw et al., are very accurate in identifying
putative promoter regions. MiRNAs are, however, known to mediate gene regulation
in a highly tissue-specific manner, therefore it is expected that their regulation
also happens in a tissue-specific way. Such methods cannot distinguish between
promoters potentially active in different tissues, given that sequence features are
invariant features, but merely suggest possible locations for miRNA promoters.
On the other hand, methods based on chromatin features have been designed for
specific cell lines, therefore providing a snapshot of the active promoters. Histone
mark-based methods provide a broad view of promoter regions, rather than high-
resolution predictions, hampering the detection of multiple TSSs close to each other
in the genome. In addition, most chromain-based methods can predict the promoters
of independently transcribed intergenic miRNAs, but lack sensitivity in discovering
alternative or intronic promoters.

MicroTSS overcomes the problem of the non-informative broad predictions by
making use of deep-coverage RNA-seq data and pre-selecting RNA-seq islands of
transcription upstream of intergenic pre-miRNAs at single-nucleotide resolution.
Such initial miRNA promoter candidates are then given as input to the SVM model
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which returns the predictions. Due to the nature of the RNA-seq used to pre-select
candidate TSSs, microTSS works well for intergenic miRNAs but is not suitable for
identifying intronic promoters due to the difficulty in discriminating transcription
initiation events from the read coverage signal corresponding to the host transcript.

The method from Ozsolak [25] and PROmiRNA [14] are the only two method-
ologies which report predictions of intronic promoters. In particular, in PROmiRNA
miRNA promoter predictions are derived from multiple high-coverage deepCAGE
libraries, and correspond to highly expressed, as well as lowly expressed tissue-
specific intronic promoters.

Figure 2 shows seven predicted TSSs for hsa-miR-155, six of which are intronic
promoters in a leukemia cell line, indicating that alternative promoters are able
to drive the expression of this miRNA in this cell line. However, due to the low
expression of alternative intronic promoters, compared to intergenic promoters, and
to the difficulty of validating such promoter predictions (a gold standard data-set for
miRNA promoters is missing), predictions of intronic promoters may suffer from
higher false discovery rates compared to intergenic promoters.

MIR155HG
hsa-miR-155

MRPL39

10 kb hg19chr21: 

leukemia cell line

Rep1 Minus signal

Rep2 Minus signal

Rep1 Plus signal

Rep2 Plus signal

0

300

300

300

0

0

0

300

Fig. 2 PROmiRNA predicted promoters for hsa-miR-155, a human miRNA located in the non-
coding BIC host transcript (also called MIR155HG). The red arrow indicates the TSS of the
host gene and the other arrows point to the predicted alternative intronic promoters located in
the genomic range between 677 bp and 12 kb upstream of the mature miRNA. The promoter
predictions where consistent in two different CAGE replicates
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2.3.1 miRNA-Mediated Regulatory Network Reconstruction

Here we show an application of PROmiRNA to the derivation of the tissue-specific
miRNA-mediated regulatory network in three immune cell line libraries from the
FANTOM4 CAGE data. For simplicity we include in this network only two of
the main human miRNAs which are highly expressed and known to play a role
in the Immune System: hsa-miR-146a and hsa-miR-155. MiR-146a is an intergenic
miRNA known to be involved in regulation of inflammation and other processes
related to innate immune response [8]. Mir-155 resides in the non-coding host gene
MIR155HG and is known to play a role in cancer, as well as viral and bacterial
infection processes [28]

PROmiRNA predicts two alternative promoters in the leukemia cell line for hsa-
miR-146a, one located 17 kb upstream of the mature miRNA and the other 16.6 kb,
and six alternative intronic promoters (in addition to the host gene promoter) for hsa-
miR-155 (as already shown in Fig. 2). Starting from these predictions, we scanned
the 1000 bp regions around each predicted miRNA TSSs for putative transcription
factor binding sites with the TRAP tool [29]. Given a database of TFBs motif
models, TRAP computes the affinity of each factor for a certain genomic sequence.
For each predicted promoter we ranked the TFs based on their computed binding
affinities. The top ten factors regulating each miRNA are selected and included
in the network if they are expressed in Immune System cell lines, according to
the Human Protein Atlas database [30]. Potential regulatory factors are connected
by means of edges to the corresponding miRNA (Fig. 3). Also potential miRNA
targets extracted from TargetScan and other miRNA target databases [9], as well
as interactions between gene–gene and gene-TF are extracted from the STRING
database [31] and, if expressed in the Immune system, added to the network (Fig. 3).
This partial reconstruction of the regulatory network involving hsa-mir-146a and
hsa-mir-155 in the Immune System shows that a portion of the top target predictions
is shared between the two miRNAs, while other targets are specific to one or the
other miRNA. Also, hsa-miR-146a and hsa-miR-155 seem to be targeted by a set
of common transcription factors, among which we find the NFKB1, a well known
Immune System factor.

3 Predictive Models of miRNA Processing

Global mature miRNA expression is not only regulated at transcriptional level, but
several post-transcriptional steps influence the final miRNA expression level and
contribute to define a particular phenotype. In detail, miRNA initially generated
in the nucleus as long primary transcripts are processed by the Microprocessor
complex (Drosha/DGCR8) to produce stem-loop structured precursors which are
then further processed in the cytoplasm by Dicer [32]. While signatures of miRNA
expression may be used as biomarkers for cancer diagnosis and stratification in sev-
eral cancers, it has become clear in recent years that specifically aberrant processing,
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rather than altered transcription, correlates with cell invasion or progression of
inflamation. The method by which the Microprocessor is able to distinguish miRNA
hairpins from random hairpin structures along the genome and efficiently process
them is still a subject of investigation. Recent studies have shown that sequence
motifs flanking precursor miRNAs play a significant role in primary transcript
cleavage [33].

In a recent study [34] we have quantified the effect of different sequence motifs
on the Microprocessor activity in an endogenous setting. We have performed high-
throughput RNA sequencing experiments of nascent transcripts associated to the
chromatin fraction in different cell lines. Since processing of primary miRNA
transcripts occurs co-transcriptionally, while the transcript is still associated to
chromatin, the read coverage pattern at miRNA loci shows the typical Micropro-
cessor signature, where Drosha cleavage is reflected in a significant drop in the
read coverage in the precursor region. We have defined a quantitative measure of
processing efficiency called Microprocessing Index (MPI), as the logarithm of the
ratio between the read density adjacent to the pre-miRNA and the read density in
the precursor region. On the basis of MPI values, miRNAs could be divided into
efficiently processed (Fig. 4a MPI <D �1:0, also called positive examples) and
non-efficiently processed (Fig. 4b MPI >D �0:4, also called negative examples).

N L P

HeLa rep1 normalized

94.4 _

0 _

chr11
hg19100 bases

hsa-miR-100

Positive example

HeLa rep1 normalized

342 _

0 _

100 bases hg19

hsa-miR-573

Negative example

a

b
chr4

Fig. 4 Genomic regions around miRNAs hsa-miR-100 (a) and hsa-miR-573 (b), respectively, and
normalized read coverage at the miRNA loci. The significant drop in read coverage at the miR-100
precursor indicates that this miRNA is efficiently processed in HeLa cells (a), while miR-573 is not
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A classification model based on sequence features was built in order to discriminate
between these two classes. We used L1-regularized logistic regression for training
and classification of the miRNA in positives and negatives. In detail, given a binary
variable Y, where yi D 0 or yi D 1 for each data point i, the probability of the
outcome of Y, given the data X, is given by the following sigmoid function:

P.y D 1jx; �/ D 1

1 C exp.��Tx/
(1)

where � is the parameter vector of the logistic regression model. The optimization
problem (Maximum Likelihood Estimate of � ) in the case of L1-regularization is
formulated as the following:

min� .

MX

iD1

�logP.yijxi; �/ C ˇk�k1/ (2)

In our case the features used in the model were either dinucleotide counts
(dinucleotide-based model) or counts of short motifs (motif-based model) in the
regions upstream and downstream of miRNA precursors. L1-regularized logistic
regression performs automatic feature selection penalizing dinucleotides or motifs
which are not significant in distinguishing efficiently processed miRNAs from non-
efficiently processed. We found that the most important features associated with
enhanced processing are: a GNNU motif (N indicates any nucleotide) directly
upstream of the 50 of the miRNA, a CNNC motif between 17 and 21 positions
downstream of 30 of the miRNAs and dinucleotides GC and CU enriched at the base
of the miRNA stem loop.

4 Conclusions

In silico methods for studying miRNA biogenesis, ranging from statistical models
of promoter recognition and transcription factor binding site prediction to predictive
models of miRNA processing, enable a better understanding of miRNA-mediated
regulation in tissue-specific networks. Recent progress in the field of NGS resulted
in a plethora of high-throughput and high-quality datasets in the last few years.
This enabled the development of data-driven computational approaches which make
use of such data and combine them with traditional sequence signals, in order
to get more accurate prediction of miRNA promoters. Although the basics of the
miRNA biogenesis pathway are known, there are still many unsolved questions.
For example, several regulatory factors might be involved in miRNA regulation at
different levels. Although some regulators of miRNA transcription and processing
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have been predicted and experimentally validated, more sophisticated in silico
methods are needed to discover more of these factors and predict how they affect
miRNA biogenesis.

RNA binding proteins interact with both pri-miRNAs in addition to intermediate
miRNA products at different stages of their regulation. High-throughput sequencing
of RNA sites bound by a particular protein will reveal more aspects about miRNA
regulation, as well as enable more reliable identification of targets which are
physiologically relevant.

Although observations from different sources need to be unified in a coherent
framework, it is clear that targeted computational approaches can help linking
different evidence from several genomic datasets and give a significant contribution
to discover additional details about miRNA-mediated regulation.
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