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Abstract

Language comprehension involves the simultaneous processing of information at the pho-

nological, syntactic, and lexical level. We track these three distinct streams of information in

the brain by using stochastic measures derived from computational language models to

detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI exper-

iment. Probabilistic language models have proven to be useful tools for studying how lan-

guage is processed as a sequence of symbols unfolding in time. Conditional probabilities

between sequences of words are at the basis of probabilistic measures such as surprisal

and perplexity which have been successfully used as predictors of several behavioural and

neural correlates of sentence processing. Here we computed perplexity from sequences

of words and their parts of speech, and their phonemic transcriptions. Brain activity time-

locked to each word is regressed on the three model-derived measures. We observe that

the brain keeps track of the statistical structure of lexical, syntactic and phonological infor-

mation in distinct areas.

1 Introduction

“Ze staat stil en kijkt een poosje naar een punt in de verte” (She stands still and looks for a

moment at a point in the distance) is a fluent grammatical sentence in Dutch. It consists of a

string of symbols that when spoken, unfolds in time. When tokenized, it is composed of 13

word forms, belonging to seven distinct grammatical categories, and 40 phonemes (see Section

2.4). Although a natural language sentence is a linear sequence of surface forms, it allows to be

decomposed into different levels of information at the phrasal, word, and sub-word level.

These levels of information are what we might call, following traditional linguistic schools:

syntax, lexico-semantics, and phonology [1, 2]. The sentence as a sequence of words co-exists

with the sentence as a sequence of phonemes and the sentence as a sequence of grammatical

categories. Models of language processing typically decompose language into these co-existing

levels of information [3]. These different levels are probably processed at least partially
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separately by the language faculty [4, 5]. It is therefore no surprise that the study of the neural

basis of language comprehension has adhered to studying one of these types of information at

a time. That is, there are dedicated studies investigating syntactic aspects of comprehension,

lexico-semantic aspects of comprehension, phonological aspects of comprehension, and so on

(the recent textbook by Kemmerer offers a clear overviews of the state of the art in each subdis-

cipline in the cognitive neuroscience of language [6]). Here, we aim to investigate the neural

basis of the three streams of information processing during language comprehension simulta-

neously, within one experiment. In other words, we want to know whether we can fractionate

the neural signature of language processing of natural speech in different, parallel streams

within one and the same data set.

In order to do so, we fitted characterizations of lexical, phonological and syntactic informa-

tion to fMRI data collected while participants listened to narratives. Brain activity time-locked

to each word is regressed on the three model-derived measures. Stochastic language models

computed at the word, part-of-speech and phoneme level are used to operationalize the con-

cept of parallel lexical, syntactic and phonetic streams. We rely on stochastic models because,

as detailed in Section 1.1, they have been proven powerful tools for the study of language com-

prehension. Such an approach goes beyond the typical studies in which one level of processing

is studied per experiment.

We begin with a short overview of work in modelling language comprehension using sto-

chastic language models in Section 1.1. In Section 1.2 we introduce the Streams of processing
framework. In section 2 we present the methodological details of the study, focusing both on

the stochastic language models and the computational linguistic techniques employed to anno-

tate and extract lexical, syntactic and phonological information from a common stimulus.

Section 2 also provides details on the fMRI data collection paradigm. Section 3 describes the

regression analysis employed to delineate the neural correlates of each level of information.

Finally, in Sections 4 and 5 we report the results and draw conclusions according to the

hypotheses expressed in the previous sections.

1.1 Language processing as a sequential stochastic process

A number of studies [7–11] have advanced the hypothesis that the brain employs predictive

coding strategies in perception. The hypothesis is that after processing the first t − 1 elements

of a sequence of stimuli (i.e., x1, . . ., xt−1), the human brain assigns a conditional probability

P(xt|x1, . . ., xt−1) to each potential element x that can follow at time t. These expectations influ-

ence the way the actual observed xt is processed eventually. Deviations from expectations are

usually quantified in terms of surprisal or perplexity, which have been shown to explain both

behavioural and neural correlates of perceptual and higher cognitive processing.

In the domain of language processing, word surprisal has been used to predict a wide

range of behavioural correlates. It has been found to predict the duration of spoken words,

with shorter words being used in less surprising situations [12, 13]. Following Hale [14] and

Levy [15], surprisal has been hypothesized to be proportional to the cognitive effort required

to integrate a word into the current context. This has been confirmed by observing that it

correlates with reading times [16–19]. Reading time has also been shown to be correlated to

surprisal of the syntactic category (part-of-speech; PoS) of the word being read [20, 21].

Moreover, Monsalve [17] showed that PoS and word surprisal have independent effects on

reading times. This behavioural result suggests that the PoS of words in sentential context is

a valid representation of linguistic information relevant for processing, and that computing

probabilistic measures on them returns a model that has significant predictive power. These

measures have also been successfully applied to the prediction of brain activity. It was found
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that the amplitude of the N400 event-related potential (ERP) component elicited by words in

sentences correlates with word surprisal values [22, 23]. The fact that surprisal correlates

with the amplitude of a classical ERP component related to language comprehension [24] is

another source of evidence that stochastic language modelling is a neuro-cognitively valid

approximation of sentence comprehension. In a recent paper, Willems and colleagues [25]

applied surprisal and entropy to an fMRI dataset to predict brain activity in different cortical

and subcortical areas during naturalistic language comprehension. They observed that dif-

ferent areas differentially code for statistical stimulus properties by selectively correlating

with one or the other measure.

1.2 Probabilistic streams

Our starting point is twofold. On one hand, we hypothesize that different types of information

correspond to different streams of processing implemented in separable networks in the brain.

Several linguistic models, for instance, separate phonological, semantic and syntactic process-

ing in different neural loci or processing streams [6]. One way to operationalize this search for

parallel streams is to model the processed linguistic input as composed by three parallel levels

of representation corresponding to its phonological, lexical and syntactic profile. On the other

hand, following the findings exposed in section 1.1, we model the processing in these separate

streams as sequential and incremental, and sensitive to the stochastic properties of the infor-

mation it is applied to. The difference between different streams is that the probabilistic rela-

tions are computed not only on surface forms (bare words, so to speak) but on the phonemic

transcription and the grammatical categories of the words in order to disentangle the different

levels of representation.

The fact that language can be studied as a stochastic process does not necessarily mean

that subcomponents of language correspond to distinct stochastic processes that are detect-

able in the brain. One scenario could be that the areas sensitive to stochastic properties of the

input are the same, independently from the level of annotation on which such measures have

been computed. In a recent study, Nastase and colleagues [26] investigated whether there

exist areas in the brain that are sensitive to probabilistic properties of the incoming signal,

independently from its sensory modality, or if, conversely, sensitivity to such properties is an

intrinsic characteristic of domain-specific areas. Their approach consisted in looking for

areas coding for the degree of disorder—quantified by Markov entropy—in a temporally

unfolding sensory input of two distinct modalities: auditory and visual. Their results show a

modality specific sensitivity to input entropy, implemented in modality-specific systems of

sensory cortices (for visual stimuli: the early visual cortex, the anterior cingulate, and the

intraparietal sulcus; for acoustic stimuli: inferior frontal, lateral temporal, and supplementary

motor regions). Ventral premotor and central cingulate cortices were identified as possible

candidates for modality-general uncertainty processing, exhibiting sensitivity to disorder in

both modalities.

We approach the problem of disentangling phonology, lexical and syntax by using language

stimuli which are not explicitly designed to study one of these levels in isolation [22, 25]. Using

one stochastic measure computed on three distinct levels of annotations of the same linguistic

stimulus, we want to investigate first of all level-specific processing, what we may refer to as

streams of information. On the other hand, we are interested in investigating the issue of

whether there exists a central supramodal stochastic processor of the brain (what is called

modality-independent in [26]) by finding areas that are sensitive to stochastic measures inde-

pendently from the level of information they have been computed on.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0177794 May 18, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0177794


2 Materials and methods

Ethical approval was obtained from the CMO Committee on Research Involving Human Sub-

jects, Arnhem-Nijmegen, The Netherlands (protocol number 2001/095), in line with the Dec-

laration of Helsinki.

2.1 Participants and stimuli

We re-analysed data from an fMRI study on language comprehension of auditory presented

narrative texts [25]. Here we briefly present the data collection procedure, preprocessing, and

stimuli employed. Full details can be found in the original paper.

Twenty-four healthy, native speakers of Dutch (8 males; mean age 22.9, range 18–31) with-

out psychiatric or neurological problems, with normal or corrected-to-normal vision, and

without hearing problems took part in the experiment. All participants except one were right-

handed by self-report, and all participants were naive with respect to the purpose of the experi-

ment. Written informed consent was obtained in accordance with the Declaration of Helsinki,

and the study was approved by the local ethics committee. Participants were paid either in

money or in course credit at the end of the study.

Stimuli consisted of three excerpts from three distinct literary novels extracted from the

Spoken Dutch Corpus, “Corpus Gesproken Nederlands” (CGN) [27]. The excerpts were

spoken at a normal rate, in a quiet room, by female speakers (one speaker per story). Stimu-

lus durations were 3:49 min (622 words), 7:50 min (1,291 words), and 7:48 min (1,131

words). Reversed speech versions of the stories were created with Audacity 2.03 (http://

www.audacityteam.org/).

2.2 Procedure

The experimental paradigm consisted in passively listening to the three narratives and their

reversed versions (for a total of six sessions) inside the MRI scanner. Each story and its

reversed speech counterpart were presented following each other. Half the participants

started with a non-reversed stimulus, and half with a reversed speech stimulus. Participants

were instructed to listen to the materials attentively, which in practice is only possible for

three narratives, and not for the reversed speech counterparts. There was a short break after

each fragment.

Stimuli were presented with Presentation 16.2 (https://www.neurobs.com/). Auditory sti-

muli were presented through MR-compatible earphones. In order to make sure participants

could correctly perceive the stimuli, the actual experimental sessions were preceded by an in-

scanner volume test where a fragment from another story with comparable voice and sound

quality was presented and the volume was adjusted to the optimal level based on feedback

from the participant.

After the scanning session, participants were tested for their memory and comprehension

of the stories. The participants were not informed in advance about the test in order to avoid

attentional biases during the passive listening to the stories.

2.3 fMRI data acquisition and preprocessing

Images of blood-oxygenation level-dependent (BOLD) changes were acquired on a 3-T Sie-

mens Magnetom Trio scanner (Erlangen, Germany) with a 32-channel head coil. Pillows and

tape were used to minimize participants’ head movement, and the earphones that were used

for presenting the stories reduced scanner noise. Functional images were acquired using a fast

T2�-weighted 3D echo planar imaging sequence [28], with high temporal resolution (time to
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repetition: 880 ms, time to echo: 28 ms, flip angle: 14˚, voxel size: 3.5 × 3.5 × 3.5 mm, 36 slices).

High resolution (1 × 1 × 1.25 mm) structural (anatomical) images were acquired using a T1

sequence.

Preprocessing was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and Matlab

2010b (http://www.mathworks.nl/). The first four volumes were removed to control for T1

equilibration effects. Rigid body registration was used to realign images. Images were realigned

to the first image within each run. The mean of the motion-corrected images was then brought

into the same space as the individual participant’s anatomical scan. The anatomical and func-

tional scans were spatially normalized to the standard MNI template, and functional images

were re-sampled to 2 × 2 × 2 mm voxel sizes. Finally, an isotropic 8-mm full-width at half-

maximum Gaussian kernel was used to spatially smooth the motion-corrected and normalized

data.

2.4 Estimation of stream-wise stochastic properties

The three levels of information –phonological, syntactic and lexical– are distinguished by

applying three different levels of annotation to the stimulus narratives. At the phonological

level, the words in the running text are transformed into a sequence of phonemes. The syntac-

tic level is approximated by the sequence of fine-grained syntactic categories corresponding to

the words of the texts, also known as parts of speech (PoS). The lexical level consists of the

sequence of surface lexical forms composing the texts. In the sections below we describe the

characteristics of each stream and their common computational properties.

The lexical level is the sequence of words constituting the sentences of the book fragments.

At this level, a sentence can be rewritten as a sequence w1, . . ., wn of symbols wi belonging to

the vocabulary V containing all the word form, as illustrated in Table 1.

The phonological stream can be defined as the sequence of phonemes composing each sin-

gle word in the sentence. Therefore, the sentence in Table 1 can be rewritten as a sequence

p1
1
; p2

1
; :::; pm

1
; :::; p1

13
; :::; po

13
where pi

j refers to the ith phoneme of the jth word in the sentence.

Table 2 contains the phonetic transcription of the example sentence already presented in

Table 1.

Finally, the words in the stimuli are assigned with their syntactic categories, or part of

speech tags (PoS). Parts of speech are a basic ingredient of most language technology systems

and act as shallow (i.e., non-hierarchical) syntactic starting point for many other tasks, includ-

ing semantic role assignment and dependency and constituent syntactic parsing. They usually

consist of a basic set of grammatical categories such as nouns (N), verbs (WW, in the Dutch

tags used here), modifiers and determiners. They capture, when considered in context, shal-

low, yet robust, combinatorial constraints that abstract away from the lexical information

within the surface forms. The tagset employed here was the one employed by CGN (the corpus

Table 1. The lexical stream is obtained from the simple sequence of word forms in the stimulus presented to the subjects.

Ze staat stil en kijkt een poosje naar een punt in de verte

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13

https://doi.org/10.1371/journal.pone.0177794.t001

Table 2. The phonological stream is obtained from the phonetic transcription of the words of the stimulus.

Ze staat stil en kijkt een poosje naar een punt in de verte

[zə] [stat] [stɪl] [εn] [kεɪkt] [ən] [poʃə] [nar] [ən] [pynt] [ɪn] [də] [vεrtə]

https://doi.org/10.1371/journal.pone.0177794.t002
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from which the stimuli for our experiments were taken) and comprises 320 tags (see Table 3).

Besides 13 base tags, this method explicitly assign morpho-syntactic sub-category features to

the base tags containing information such as gender, number, form and so on.

This tagset closely follows the practices of the Dutch Grammar ‘Algemene Nederlandse

Spraakkunst’ (ANS) [29]. Table 4 contains an example of PoS annotation of the example sen-

tence presented in Table 1 above.

2.5 Computing stochastic measures

The conditional probabilities required for obtaining perplexity values for the lexical and PoS

streams are estimated by a second-order Markov model, also known as trigram model, trained

on a large collection of text. It is based on the simplifying assumption that the probability

of word wt depends on the previous two words only, that is, P(wt|w1, . . ., wt−1) is reduced to

P(wt|w1, . . ., wt−1). Surprisal is computed as the negative logarithm of the conditional probabil-

ity of wt given wt−2, wt−1:

surprisalðwtÞ ¼ � logPðwtjwt� 2;wt� 1Þ

If the observed word’s probability equals 1, observing it yields a surprisal of 0. Conversely,

the occurrence of a word that was not among the words considered possible (i.e., has zero

probability) corresponds to infinite surprisal. Surprisal can be thought of as the degree to

which the actually perceived word wt deviates from expectation. Perplexity, as adopted here,

consists in an exponential transformation of the surprisal of encountering wt given wt−2, wt−1.

pplðwtÞ ¼ 2surprisalðwtÞ ¼ 2� log Pðwt jwt� 1Þ

The dataset from which probabilities P(wt|w1, . . ., wt−1) are estimated is a random selection

of 10 million sentences (comprising 197 million word tokens; 2.1 million types) from the

Table 3. Summary of the types of grammatical categories (POS) and the number of sub-categories used to approximate sequential syntactic infor-

mation processing.

Dutch POS tag # English equivalent Example

substantieven N 18 Nouns het kind

adjectieven ADJ 30 Adjectives de mooie huizen

werkwoorden WW 21 Verbs ik kom

telwoorden TW 11 Quantifiers vier cijfers

voornaamwoorden VNW 188 Pronouns ik

lidwoorden LID 9 Articles de hond

voorzetsels VZ 3 Prepositions in het hospitaal

voegwoorden VG 2 Conjunctions Jan en Peter

bijwoorden BW 1 Adverbs gisteren

tussenwerpsels TSW 1 Interjections hoera!

speciale tokens SPEC 35 special forms

leestekens LET 1 Punctuation .

TOTAL 320

https://doi.org/10.1371/journal.pone.0177794.t003

Table 4. The same sentence from Tables 1 and 2 annotated with fine-grained grammatical information using the POS tags described above.

Ze staat stil en kijkt een poosje naar een punt in de verte

VNW WW ADJ VG WW LID N VZ LID N VZ LID N

https://doi.org/10.1371/journal.pone.0177794.t004
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Dutch Corpus of Web (NLCOW2012) [30]. For lexical perplexity, each word of the experi-

mental texts is assigned a value computed by SRILM [31].

The PoS perplexity is computed analogously. Instead of using the surface forms of the

training and stimulus set, the trigram model was trained on the PoS-tagged version of the

same 10 million sentences subset of NLCOW2012. The tagging was performed using the Frog

toolbox for natural language processing of Dutch text [32].

The phonological information was extracted from the phonemic transcription of each word

in the stimulus set. We used a memory-based grapheme phoneme converter [33] trained on

CELEX 2 [34]. Once every word is transcribed as a sequence of phonemes, trigrams were

extracted and conditional probabilities P(pt|pt−1, pt−2) were computed using WOPR (https://

ilk.uvt.nl/wopr/) trained on CELEX 2 [34]. Once phoneme-wise perplexity is computed, the

phonetic perplexity of each word of the stimulus is computed as the average value across the

phonemes of that word.

3 Data analysis

At the single-subject level, the observed BOLD time course in each voxel is subjected to a

regression analysis, testing for voxels in which the covariates of interest (word, PoS, and pho-

nological perplexity) explain a significant proportion of variance of that voxel’s time course

[35]. Before the actual analysis, one regressor modelling the duration of each single word was

created for each story. This regressor was convolved with the hemodynamic response function,

to account for the delay in BOLD activation respective to stimulus presentation. The word

duration regressor and the covariates for a story were also fitted to the data of the reversed

speech version of that story. This served as a control condition since the regressors and covari-

ates are essentially meaningless for the reversed speech data. Three covariates were computed

containing each word’s word, PoS and phonemic perplexity measures, constituting our regres-

sors of interest modelling the three information streams introduced above. Besides these,

log2-transformed lexical frequency per word was computed using the Subtlex NL corpus [36],

log2-transformed PoS frequency per word was computed using the CGN corpus [27], and

log2-transformed phoneme frequency average per word was computed using CELEX 2 [34].

They were used as regressors of no interest to statistically factor out effects of word, PoS and

phoneme frequency. The estimates from the motion correction algorithm (three rotations and

three translations per run) were additionally added as regressors of no interest.

The modelled time courses from all six runs (three stories and three reversed speech sti-

muli) were combined in one regression model, with separate constant terms per run, but the

same regressors for real and reversed speech. The analyses were conducted at the whole-brain

level. The difference in the effect of the regressor of interest between the real and reversed

speech sessions was used as input to the group-level statistics. Statistical differences were

assessed by computing the t-statistic over participants of this difference score (real vs. reversed

speech) for each voxel in the brain. The resulting multiple comparisons problem was solved by

means of combining a P< 0.005 voxel threshold with a cluster extent threshold determined

by means of 1,000 Monte Carlo simulations, after estimation of the smoothness of the data

applied for each separate contrast. The combination of a voxel level threshold with a cluster

extend threshold is a good compromise between statistical sensitivity on the one hand and

false positive error control on the other hand [37, 38]. The simulations took the amount of

autocorrelation in the data into account, as suggested in the literature [37, 38]. The scripts

used were taken from (https://www2.bc.edu/*slotnics/scripts.html). Table 5 reports the size

thresholds for each regressor contrast separately. All reported clusters of size display results

significant at the P< 0.05 level, corrected for multiple comparisons.
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3.1 Relation between the regressors

The aim of this study is to assess whether different types of linguistic information can be traced

in the brain, and if this can be achieved by using stochastic measures of perplexity in line with

the predictive brain hypothesis. In order to assess whether word, PoS, and phoneme perplexity

capture different kinds of information we conducted a preliminary analysis consisting in

computing their pairwise correlations. Table 6 reports these correlations (Pearson’s r). Both

3-gram perplexity (ppl) and 1-gram frequency (freq) computed at lexical, PoS, and phonologi-

cal level are included.

The correlations between perplexity measures reported in Table 6 are fairly low, even

between lexical and PoS perplexity (0.046). These results indicates that there is no strong rela-

tion between the regressors we have employed in our fMRI analyses, and that they may capture

different types of information. Correlation between lexical perplexity and frequency is −0.466,

and correlation between PoS perplexity and frequency is −0.491. These negative correlations

between perplexity and frequency measures are predictable: the less frequent an item is, the

higher is the overall perplexity of encountering it.

4 Results

In this section we present the results of the analyses conducted using the three perplexity mea-

sures as regressors of interest. In supplementary material S2 File we report the results of a simi-

lar analysis conducted using frequencies as regressors of interest.

4.1 Lexical stream

Table 7 lists the areas that show significant activity with regard to the word-based perplexity

regressor. This network is displayed in Fig 1 and it encompasses large portions of the left infe-

rior temporal gyrus (l-ITG) including the fusiform gyrus (l-FG). Both left and right posterior

banks of the superior temporal gyrus (rl-STG) are part of this network, together with parts of

left anterior superior temporal gyrus.

4.2 Syntactic stream

Fig 2 shows the cortical network corresponding to PoS-based perplexity. These include the

left middle temporal gyrus and sulcus (l-MTG and l-MTS) and right middle temporal sulcus

Table 5. Cluster size thresholds for the perplexity-based regressors.

Region Cluster size

Word-based perplexity 92

POS-based perplexity 92

Phoneme-based perplexity 97

https://doi.org/10.1371/journal.pone.0177794.t005

Table 6. Correlation between the stochastic measures used in the analyses.

Lex_ppl PoS_ppl Pho_ppl Lex_freq PoS_freq Pho_freq

Lex_ppl 1 0.046 0.011 −0.466 −0.092 0.080

PoS_ppl 1 −0.012 −0.015 −0.491 0.000

Pho_ppl 1 −0.016 −0.000 −0.017

Lex_freq 1 0.070 −0.060

PoS_freq 1 0.105

Pho_freq 1

https://doi.org/10.1371/journal.pone.0177794.t006
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(r-MTS). The bilateral precentral sulcus is also activated. Large portions of the superior frontal

gyrus are also sensitive to these regressor. The list of areas with the coordinates of their activa-

tion peaks can be found in Table 8.

4.3 Phonological stream

Fig 3 and Table 9 refer to the network of the phonological stream. This stream involves the

right Heschl’s gyrus (r-HG), and right superior frontal gyrus (r-SFG) together with the supple-

mentary motor area (r-SMA). Other areas activated to this contrast are the left insula, the left

Table 7. Significant effects of lexical stream perplexity.

Region MNI size t-value max

left inferior temporal gyrus—fusiform gyrus −44 −48 −14 924 5.92

left posterior superior temporal gyrus

left middle temporal gyrus

−56 −26 8

−58 −22 2

1876 6.29

4.59

left anterior superior temporal gyrus (TP) −40 2 −16 121 5.72

right posterior superior temporal gyrus & sulcus 64 −10 −2 1436 4.72

https://doi.org/10.1371/journal.pone.0177794.t007

Fig 1. Lexical stream. Left, right and ventral view of inflated cortex plot of the lexical stream.

https://doi.org/10.1371/journal.pone.0177794.g001
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angular gyrus (l-AG), the left inferior parietal lobule (l-IPL) and bilateral portions of the mid-

dle temporal gyrus (rl-MTG). The phonological stream was the only level where perplexity

and surprisal did not give comparable results (see supplementary material S1 File). In S1 File

we speculate that this may be caused by the way surprisal and perplexity are computed, and we

Fig 2. Syntactic stream. Left, right and ventral view of inflated cortex plot of the syntactic stream.

https://doi.org/10.1371/journal.pone.0177794.g002

Table 8. Significant effects of syntactic stream perplexity.

Region MNI size t-value max

left middle superior frontal gyrus −6 34 56 1549 6.50

left precentral sulcus −42 6 54 267 6.19

left middle temporal gyrus & sulcus −64 −50 14 1715 5.64

left and right cerebellum 9 −20 −46 −36 662 5.07

right middle temporal sulcus

right angular gyrus

right superior temporal sulcus

48 −32 −2

64 −50 24

54 −22 −6

983 5.51

5.49

4.71

right putamen

right amygdala

24 −2 6

22 2 −8

649 6.04

4.46

right precentral sulcus 52 −2 46 119 4.31

https://doi.org/10.1371/journal.pone.0177794.t008
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want to point out this unexpected discrepancy here to highlight that the results of the phono-

logical stream should be interpreted with some more caution than the other two streams.

4.4 Overlap

The results obtained from lexical, syntactic and phonological perplexity allowed us to analyse

possible overlap at the cortical level for all three regressor streams. Table 10 contains the name

Fig 3. Phonological stream. Left, right and ventral view of inflated cortex plot of the phonological stream.

https://doi.org/10.1371/journal.pone.0177794.g003

Table 9. Significant effects of phonological stream perplexity.

Region MNI size t-value max

left insula −36 8 −18 123 4.75

left angular gyrus

left inferior parietal lobule

−40 −56 40

−42 −44 44

1507 4.78

4.35

left posterior mid temporal gyrus −42 −64 16 137 3.71

right Heschl’s gyrus

right Heschl’s gyrus

50 −12 4

40 −24 12

443 4.63

4.46

right posterior mid temporal gyrus

right angular gyrus

42 −64 16

56 −56 24

950 4.14

4.09

right superior frontal gyrus—SMA 20 16 62 202 4.49

https://doi.org/10.1371/journal.pone.0177794.t009
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of regions whose activity is significantly explained by more than one regressor. We computed

the overlap between the activation maps relative to the lexical and the syntactic stream, the lex-

ical and phonological streams, and the syntactic and phonological stream by taking only those

voxels that are significantly activated for both regressors as described in the sections above.

This is equivalent to performing a conjunction analysis, more specifically a test of the ‘con-

junction null’, effectively looking for statistical significance in both contrast maps as testing a

logical AND [39]. We also looked for voxels shared by all three streams.

It is interesting to note that although some degree of anatomical overlap exists among all

possible pairs of regressors, there is no area that is significantly activated for all three streams

together. What is also worth noting is that the lexical and syntactic regressors are both pro-

cessed in the posterior portions of the bilateral middle temporal gyrus, bordering the posterior

superior temporal gyrus. Moreover, lexical information and phonology seem to share activity in

the central banks of the superior temporal gyrus, but not directly in Heschl’s gyrus, which con-

firms its selectivity for the phonological stream only. The overlap regions are shown in cyan

(lexical and syntactical streams) and in violet (syntactic and phonological streams) in Fig 4.

Table 10. Areas of overlap between the streams regressors.

Streams regions *MNI coordinates

Syntax \ Lexical right STS

left posterior MTG

54 −25 0

−58 −51 11

Syntax \ Phonology right AG

left AG

59 −56 29

−53 −64 31

Lexical \ Phonology right middle STG 44 −29 13

Syntax \ Lexical \ Phonology ; ;

https://doi.org/10.1371/journal.pone.0177794.t010

Fig 4. Streams comparison and overlap. Inflated cortex view of the maps of the lexical (green), syntactic (blue) and phonological (red) streams. In this view

the overlap between lexical and syntactic streams is particularly evident in the right Middle Temporal Lobe and in the left posterior Superior Temporal Gyrus

(cyan). Overlap between syntactic and phonological streams is also evident in the bilateral Angular Gyrus (violet).

https://doi.org/10.1371/journal.pone.0177794.g004
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5 Discussion

The results reported above outline a set of cortical networks that are separately activated for

each of the three types of information under investigation—lexical, syntactic and phonologi-

cal–– confirming the hypothesis that language processing can indeed be decomposed into dif-

ferent streams corresponding to different subdivisions of the language network. No area shows

selectivity for all three streams, and only limited sets of voxels show overlap between pairs of

streams.

5.1 Division of labour in the temporal cortex

The temporal lobe shows a distribution between the three streams that sees the lexical informa-

tion primarily concerning the infero-lateral regions, syntactic information the mid-lateral

regions and phonological information finding its hub in the middle superior temporal plane.

Areas posterior to the perisylvian cortex, between AG, SMG and IPL, display a similar gradi-

ent, with more rostral voxels selecting lexical information and more caudal ones phonological

information, with selectivity to PoS-related information in the middle.

5.2 Phonological stream

The phonological stream seems to involve activity in the temporal cortex only in regions close

to the transverse gyrus (Heschl’s gyrus), especially in the right hemisphere. This area is the cen-

tral hub of auditory processing [40]. Although the phonological regressor is built on a level of

annotation that is close to the actual perceptual structure of the words, it is not directly built

on the auditory properties of the stimulus, making these observed results both surprising and

interesting. In addition to this, the phonological stream activates the supplementary motor

area (SMA), which has been suggested to be involved not only in speech production [41],

but also in speech processing [42, 43]. Phoneme perplexity did not return activation in the pre-

motor cortex, an area that has been associated with speech production and perception. None-

theless, activation of the premotor cortex in response to phonological load is not a general

finding in the literature. Tremblay and colleagues [44, 45] have suggested that premotor cortex

activation during speech processing may only be observed under tasks presenting particularly

difficult conditions. In line with this position, Sato and colleagues [46] have shown that stimu-

lating the premotor cortex only has an effect on a complex speech perception task. Similarly,

premotor activity has been found to be modulated by syllable complexity during speech pro-

duction but not during speech perception [44].

5.3 Lexical and syntactic streams

5.3.1 Middle temporal gyrus. Studies by Dronkers and colleagues [47] have suggested

that the posterior MTG plays a role in retrieving lexical and syntactic properties of incoming

words from long-term memory. Hagoort [3] suggests that MTG might be important for the

retrieval of the syntactic frames (as well as other lexical information) from the mental lexicon

which are then combined in the left inferior frontal cortex [48]. This intuition is corroborated

by our results, which show that activity in this area, although mainly explained by the syntactic

regressors employed in our analyses, displays an overlap between the syntactic regressor and

the lexical stream. The work of [49] showed that Dutch noun-verb homonyms (grammatical

category ambiguity) increased activity in the posterior MTG. This study also reports that

grammatically ambiguous sentences activated not only the posterior MTG but also the precen-

tral gyrus, an area that we also observe in our analysis.
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Although PoS perplexity intends to model syntactic processing and appears to be a reason-

able correlate of the syntactic stream, our analysis shows only a marginal correlation between

this regressor and the activity observed in anterior temporal cortex. Studies from Pallier [50],

Obleser [51] and Brennan [52] suggest that this region is sensitive to the syntactic complexity

of the input sentence. Brennan and colleagues used a similar experimental paradigm to the

one adopted in this paper. They had participants listen to a segment of a novel (Lewis Carroll’s

Alice in Wonderland) and looked for areas of which the activity correlates with the number of

so-called syntactic building operations at each time point, representing the number of non-ter-

minal phrases that are completed by the presentation of each word. This measure is based on

a hierarchical treatment of syntax, whereas we intended to model syntactic processing in a

purely sequential manner. These two results can be reconciled by considering syntactic pro-

cessing as underpinned by both sequential probabilistic machinery (captured by PoS-perplex-

ity) and hierarchical structure building.

5.3.2 Inferior temporal cortex. Activity in the inferior and lateral portions of the left tem-

poral cortex are better explained by the lexical regressor and are likely to be a central hub of

the lexical stream. [25] observed the same result using the same dataset, nonetheless interpret-

ing it as activity in the visual word form area (VWFA) [53]. Their explanation is that word

prediction can account for the pre-activation of the upcoming word form in the sequential

sentence processing. This explanation is not the only possible one. For instance, Price [54]

points out that the cortical region corresponding to VWFA is active in normal subjects also

during tasks that do not engage visual word form processing. On the other hand, if activity in

left Inferior Temporal cortex and specifically in VWFA truly reflects word form prediction, we

would have expected also phonological perplexity to show selectivity in this region. Phonologi-

cal perplexity, computed on the phonemic structure of each single word, seems intuitively a

closer proxy for the form of a word. Although computed on the phonemic transcription of the

words, the relation between phoneme and grapheme in Dutch is at least somewhat regular,

making visual and phonemic structure intuitively close. Nonetheless, as explained above, this

model does not predict activity in ITC better than word-based perplexity. This suggests indeed

that the coupling between the later regressor and activity in this region reflects lexico-semantic

rather than word form information.

That the lexical regressor, computed in terms of trigram statistics in the co-occurrences of

words, is a correlate of lexical semantic processing is strengthened by the outcome of a meta-

analysis of 120 functional neuroimaging studies [55, 56]. The meta-analysis showed that lateral

and ventral temporal cortex is among the main nodes of the semantic processing network.

This interpretation is supported by studies that reported consistent correlation between lexical

semantic models and brain activity in ventro-temporal cortex [57, 58].

5.4 Left inferior frontal gyrus

None of the perplexity-based regressor returned significant activation in the left inferior fron-

tal gyrus (l-IFG). While l-IFG is an important node in the neural language network, its involve-

ment and potential role during language comprehension has been the subject of considerable

debate.

One line of work starting with Thompson-Schill et al. [59] has argued that the role of this

area is better characterized as a general, not language specific one, and involved in ‘selection’

or—more generally—‘cognitive control’. Another approach has stressed the role of the area in

structural processing, both in a hierarchical and sequential fashion [60, 61]. Nonetheless, not

all results seem to support this view. Brennan and colleagues [52, 62], for instance, found that

syntactic complexity did not correlate with l-IFG activity, which seems at odds with some
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previous findings that did observe l-IFG activation in response to syntactically hard to parse

sentences. The fact that l-IFG was not detected in Brennan’s work and in the work presented

in the present paper might be due to methodological reasons. Both Brennan and we used natu-

ralistic stimuli and correlation between brain imaging data and stimuli properties (stochastic

in our case, hierarchically structural in the case of Brennan and colleagues). The literature

advocating the role of l-IFG in processing is dominated instead by paradigms comparing care-

fully constructed sentences, for instance syntactically ambiguous vs. unambiguous [49], or

grammatical vs. ungrammatical [63, 64].

In the scope of the present paper, we cannot draw any strong conclusion regarding l-IFG

on the basis of its ‘non-activation’.

6 Conclusions

In this paper we have shown that the stochastic sequential processing paradigm is indeed a

powerful formalism able to predict neurobiological correlates in areas belonging to the lan-

guage processing network, also when applied to sub-lexical (phonemic) and syntactic (part of

speech) levels. Previous work has demonstrated that language processing can be characterized

as a stochastic process computed on sequences of words, and that measures of stochastic per-

plexity are good predictors of brain activity in language sensitive cortical areas.

Word-based (lexical), part of speech-based and phoneme-based perplexity distinctively pre-

dict activity in largely separated cortical networks in the temporal, inferior parietal and perisyl-

vian cortex of subjects listening to naturalistic linguistic input.

These results appear to confirm the intuition that language is processed in parallel by dis-

tinct networks sensitive to different sources of information, including at least the ones tested

here: phonological, lexical and syntactic.
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