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Abstract
Artificial gauge fields for neutral particles such as photons, recently attracted a lot of attention in
variousfields ranging fromphotonic crystals to ultracold atoms in optical lattices to optomechanical
arrays. Here we point out that, among all implementations of gauge fields, the optomechanical setting
allows for themost natural extensionwhere the gaugefield becomes dynamical. Themechanical
oscillation phases determine the effective artificialmagnetic field for the photons, and once these
phases are allowed to evolve, they respond to the flowof photons in the structure.We discuss a simple
three-sitemodel wherewe identify four different regimes of the gauge-field dynamics. Furthermore,
we extend the discussion to a two-dimensional lattice. Our proposed scheme could for instance be
implemented using optomechanical crystals.

1. Introduction

Optomechanics describes the interaction of light andmechanicalmotion [1]. The prototypical optomechanical
setting consists in a Fabry–Pérot cavitywhere one of themirrors is free to oscillate. Due to the radiation pressure
force the light inside the cavity interacts with themirror’smotion. Tremendous experimental progress has been
made during the last years to exploit this very elementary light–matter interaction, with achievements such as
cooling a nanomechanical oscillator to itsmotional ground state [2, 3] and positionmeasurements below the
standard quantum limit [4], to name only a few examples.Mechanically and/or optically coupling several
optomechanical systems leads to interesting newphysics. For instance, setups consisting of only a few optical
andmechanicalmodes allow for nonreciprocal devices for photons [5–10]. Furthermore, one- or two-
dimensional arrays of coupled optomechanical systems are promising candidate systems for studyingmany-
body physics of photons or phonons [11–20].Most interestingly, optomechanical arrays are also a platform to
create artificial gaugefields for photons [19] and phonons [20]. The optomechanical implementation
complements other proposals for generating artificial gaugefields for photons [21–30] and ultracold atoms in
optical lattices [31–36].

In this article, we study themost basic phonon-assisted photon tunneling process which is due to the
optomechanical interaction.We show that an elementary optomechanical setting naturally gives rise to
dynamical gaugefields. The key ingredient is a self-oscillatingmechanicalmodewhich connects two optical
modes.Most importantly this brings an additional degree of freedom into play, viz. themechanical oscillation
phase. Thismechanical oscillation phase is connected to an effectivemagnetic field seen by the photons and
possesses its own dynamics.

During the last years, several proposal have been put forward dealingwith the deliberate generation of
dynamical gaugefields. Platforms based on ultracold atoms in optical lattices [37–43] or superconducting
circuits [44, 45] are discussed as promising systemswhich could serve as quantum simulators for dynamical
gauge theories such as quantum electrodynamics and quantum chromodynamics [46, 47]. Inmost cases these
proposals require a great deal of engineering,meaning carefully choosing a settingwhich yields the desired
interactions between for instance superconducting qubits. Insteadwe concentrate on the intriguing
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optomechanical setting which gives rise to dynamical gaugefields in a very natural way. Particularly, in our
scenario only basic phonon-assisted photon tunneling processes generated via the basic optomechanical
interaction are needed. Besides the purpose of quantum simulation for dynamical gauge theories, the
optomechanical setting opens up newdirections dealingwith nonlinear pattern formation of dynamical gauge
fields in driven and dissipative systems [48].

In the following, we investigate the evolution of themechanical oscillation phases (the dynamical gauge
field) in response to the lightfield dynamics, which is a unique feature of the optomechanical case.We consider a
photonic lattice (representing thematterfields) and artificial gaugefields (phonons)which can be attributed to
directed links between two sites of the photonic lattice. Such a system could for instance be implemented in
optomechanical crystal structures [49–54] or disk resonator arrays [54].

2.Genericmodel for dynamical gaugefieldswith optomechanics

The crucial ingredient in ourmodel is the phonon-assisted photon tunneling that can be generated by the
optomechanical interaction: a photon ahopping from site to site is accompanied by the coherent emission or
absorption of a phonon b. This can be described by theHamiltonian ( = 1)

( )† † †å å ån w= + + +H a a b b J b a a h.c.. 1
j

j j j
l

l l l
l

l l l l2 1

Here, j denotes a lattice site, and ( )=l l l,1 2 is the index for a directed link from l1 to l2. A photon hopping in the
direction of the link absorbs a phonon. Photons (phonons) have frequencies nj (wl), and Jl are the phonon-
assisted photon tunneling amplitudes.We introduce the notation †=b bij ji and note that we use bl and bl l1 2

interchangeably. In equation (1)wemade use of the rotatingwave approximationwhich is valid for w k> J,l l,
whereκ is the photon decay rate. Non-reciprocity in photon transport can be engineered by coherent inelastic
transitions induced bymechanical vibrations [19]. However, in contrast to [19]wewill treat the vibrations as
dynamical degrees of freedom. In order tomake the inelastic processes resonant, the nearest neighbor on-site
photon frequencies have to differ by the corresponding link phonon frequency (w n n= -ij j i)with the link
direction from site i to j. This leads to directed links. Generally speaking, a photon tunneling from a site with a
low (high) on-site frequency to a site with a high (low) on-site frequency absorbs (emits) a phonon.We include
photon losses at a rateκ and account for driving by adding the term ( )†= å +w w-H E a ae ed j j j

t
j

ti id d to
equation (1), see appendix A.

Our effectivemodel,figure 1(a), can be realized in an optomechanical setting by building on the ‘modulated
link’ scheme that had been proposed to generate static artificialmagnetic fields [19]. In this scheme, the link
between two opticalmodes i and j is realizedwith an intermediate opticalmode aI l, which couples
optomechanically to amechanicalmode bI l, , forming a single optomechanical cell, see figure 1(b). In [19] the
mechanicalmode is externally driven into a large amplitude state ( ) ( )á ñ = f- W +b t B eI l I l

t
, ,

i I l, which leads to a
modulation of the frequency of the intermediate opticalmode ( ) ( )w w f= + W +t g B t2 cosI j I j I l I l, , 0 , , . g0 is the
single-photon optomechanical coupling strength.We note that othermicroscopic implementations are
possible. For example, onemight have amechanicalmode that directly couples to the hopping between optical

Figure 1. (a)Effectivemodel for a three-site optomechanical implementation of dynamical gauge fields for photons a (light blue)
coupling to phonons b (orange). For the optical frequencies we choose n n n< <1 2 3 leading to directed links, i.e., photons hopping in
direction of the orange arrow absorb a phonon. (b)Possible realizationmaking use of the so-called ‘modulated link’ scheme.Dark
blue (green) dots depict intermediate optical (mechanical)modes which couple optomechanically to form anoptomechanical cell
(dashed box). (c)Two-dimensional triangular lattice.
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modes, as has beenworked out in detail for optomechanical crystals [55]. This would be connected to the
‘wavelength conversion scheme’ discussed in [19].

In contrast to these two scenarios, wewill assume that themechanical oscillator undergoes self-sustained
optomechanical oscillations [1] instead of being externally driven. Thus it behaves as a limit-cycle oscillator with
afixed amplitudeB and a free phasef.Wewill later show that the phase of themechanical limit-cycle oscillator
posses its own dynamics and that it will respond to theflowof photons in the system. This phase will then be
directly linked to a dynamical gaugefield.Wewant to stress that suchmechanical self-sustained oscillations are a
very generic feature of optomechnical systems. Therefore an optomechanical implementation of a dynamical
gaugefield requires less engineering than other proposals [37–45].

3.Gaugefield dynamics

Herewewill focus on the classical dynamics of themodel, i.e., the limit of large coherent photon and phonon
amplitudes. This is themost relevant regime formost of the current optomechanical setups (due to the small
single-photon coupling strength g0) [1]. Thus, we decompose the expectation values of the photon and phonon
operators into a classical amplitude and a phase, = qa A ej j

i j and = fb B eij ij
i ij. From the full quantumHeisenberg

equations ofmotion for the effectiveHamiltonian, the equations for themechanical phases fij become

˙ ( ) ( )f w f q= - - +
J

B
A A cos , 2ij ij

ij

ij
i j ij ij

while the optical amplitudesAi obey

( ) ( ) å f q= - +
¹

A J B Asin , 3i
j i

ij ij ij ij j

and the optical phases qi evolve according to

( ) ( ) åq n f q= - - +
¹

J B
A

A
cos . 4i i

j i
ij ij

j

i
ij ij

We introduced q q q= -jk j k and used f f= -ij ji. Here and in the followingwe assume that the amplitudes of

the limit-cycle oscillations are a constant ofmotion, i.e., ˙ ˙= =B B 0ij ji . This regime can be reached byworking
with self-induced optomechanical oscillators sufficiently above threshold [56]. The initial phase of the self-
oscillators would be randomwithout extra precautions, but it can be set via an externally imposedmechanical
drive, realized through an intensity-modulated lightfield.

In principle, the quantum regime of the presentmodel could also be discussed, if the optomechanical
couplingwould be strong. Themost straightforward extension to a quantumversion can be realized considering
that themechanical oscillators on the links feature limit-cycles with quantum coherent phase dynamics.
Anothermore demandingway towards dynamical gaugefields in the quantum regimewith optomechanics
would be in the spirit of [37–45]. There, the link variable can be considered as a spin thatflips each time an
excitation hops between the corresponding sites. In the optomechanical case, this would require highly
nonlinearmechanical oscillators that can be brought into the quantum regime such that they effectively act as a
two-level system.

An important point wewant tomake at this stage is the invariance of the equations ofmotion under the
following local U(1) gauge transformation

( ) ( )f f c c¢ = + - , 5ij ij j i

( )q q c¢ = + , 6i i i

meaning that the observed evolution of the light intensity will not change, independent of the choice of cj.We
assumed a static gauge choiceχ; otherwise equations (5) and(6)would have to be supplemented by a change in
frequencies: ˙ ˙w w c c¢ = + -ij ij i j and ˙n n c¢ = -i i i.

Under which conditions does the gaugefield display nontrivial dynamics? In equations (2)–(4)we can
rescale time by JB, wherewe assume link independent tunneling andmechanical amplitudes. Doing this, we
observe that the entire dynamics only depends on the dimensionless ratio ofA/B. Here,A is proportional to the
laser drive amplitude and corresponds to the optical amplitude at an arbitrary reference site in the lattice
(globally lowering the optical amplitudes will also lower the optical amplitude at the reference site). For the limit

A B 0, we expect that the oscillation phases will not be affected by the hopping photons, rather only defining
a staticmagnetic field pattern. This can be seen from equation (2): for A B 1 the second term,which
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provides the coupling to the hopping photons, can be neglected. However, ifA/B is large, we expect back-action
of the hopping photons on the phonons leading to intriguing coupled dynamics of the gauge field.

4. Three-sitemodel

First, we study the case of three sites. The resulting effectivemodel for photons aj on sites { }Îj 1, 2, 3 and
phonons bl on links { }Îl 12, 23, 13 is depicted infigure 1(a), wherewe define =a a4 1. For definiteness, wewill
assume n n n< <1 2 3. For three sites, the gauge freedom implies that only the gauge invariant flux

( )f f fF = + + , 713 21 32

i.e., the sumof phases around the triangular plaquette, affects the dynamics of the photons.Wewant tomention
that in the regimewhere the phonons are not influenced by the photons (F = const.) theHamiltonian for the
three-sitemodel can be diagonalized and the setup can act (for pF =  2) as a photon circulator [23], see also
appendix B.

In the intriguing case where the photons interact with the phononswe discuss the driven and dissipative
setting and furthermore choose equal tunneling amplitudes =J Jl andmechanical amplitudes =B Bl . As an
examplewe consider a resonant drive on site j=1.Without drive and dissipation the dynamics only depends on
the ratioA/B. As a consequence, for the driven case, the four parameters involved ( )kE B J, , , , can be combined
into just two-dimensionless parameters, B J E and kJE 2. The resulting ‘phase diagram’ for theflux dynamics
as a function of these two parameters is displayed in figure 2(a). It has been obtained fromdirect numerical
simulations and reveals four distinct regimes. In regimes I and II the flux ( )F t (after some transient behavior)
approaches a stationary value of either ( ) pF  ¥ =t 2 or different from it, respectively. In regimes III and
IV, theflux ( )F t is not stationary but even in the long-time limit shows a dynamical behavior.Most
interestingly, the flux dynamics ( )F t in these regimes can either showperiodic or chaotic behavior, region III
and IV in figure 2(a), respectively. Figures 2(b) and (c) show cuts along the red dashed linesmarked in the phase
diagram, indicating a continuous phase transition fromphase I to II. Infigures 3(a) and (b), we show two
examples of the phase space ( ) ˙ ( )F - Ft t in regimes III and IV. Already at this level we can distinguish periodic
(figure 3(a)) from chaotic (figure 3(b)) dynamics. Amore involved characterization can be done using a
bifurcation diagram. To this end, we show the value of ( )F t evaluated at the zero crossings of ˙ ( )F t , in the long-
time limit, as a function themechanical amplitudeB infigure 3(c). This bifurcation diagram allows us to
distinguish the periodic from the chaotic flux dynamics within thewhole phase diagram for ( )F t . In addition,
we also checkedwhether the Fourier transformof the trajectories shows a clear peak or isflat, indicating periodic
or chaotic behavior, respectively, see appendix C.

Figure 2. (a)Dynamical regimes of thefluxΦ. Phase diagram as a function ofmechanical amplitude and laser drive (which is resonant
on site 1, w n=d 1) showing four regimes for theflux dynamics. In regimes I and II thefluxΦ is stationary and tends to a value equal to
p 2 or different from it, respectively. In regimes III and IV the fluxΦ is dynamical and can either show a periodic oscillatory or chaotic
behavior, respectively. (b) and (c)Cuts along the red dashed lines in (a) across the phase transition from regime I to II.
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In the regime of fast photons dynamics (compared to the phonon dynamics), we are able to apply a Born–
Oppenheimer approximation and adiabatically eliminate the photons. To bemore precise, we solve =a td d 0i

where ( ) n w= - - - - - åk f
¹

-⎡⎣ ⎤⎦a a E JB ai i i ej j j j k j kd 2
i jk and use this instantaneous solution to eliminate ai

from the equations ofmotion for fij, see appendix B. In the case of a resonant drive on site j=1, this
approximation leads to the following equation ofmotion for the flux:

( )˙
( )

[ ( )]
( )F =

+ F

+ + F

k

k k⎡⎣ ⎤⎦
E

JB

16 4 cos

12 16 cos
. 8

J B

J B J B

2

3 2
2

2

2 2

2

2 2

2

2 2

From equation (8)wefind ( ) pF  ¥ =t 2which shows very good agreement with the exact numerical long-
time dynamics in regime I. This approach fails in the other regimes since therewe are not able to adiabatically
eliminate the photons.We alsowant tomention that both pF = + 2 and pF = - 2 are fixed points of
equation (8). It turns out that for a resonant drive on site j=1, pF = - 2 is an unstable fixed point of
equation (8). The asymmetry between p+ 2 and p- 2 is due to the breaking of translational invariance,
necessarily produced by the link directions. In contrast, a resonant drive on site ( )=j 2 3 would have

( )p pF = - +2 2 as a stablefixed point. From equation (8)we also can estimate the rateΓ at which theflux
( )F t settles into steady state. By linearizing around the fixed point wefind

[ ( )] [ ( ) )]x x xG = + +E JB16 4 122 3 2 where ( )x k= JB 2.

5. Lattices

Weextend the three-sitemodel to two-dimensional lattices and illustrate the dynamical behavior on a triangular
lattice, see figure 1(c). Going from three sites to a lattice, a significant new feature comes into play: the artificial
dynamicalmagnetic field produced by the phonons can now exert a Lorentz force that bends the path of any
light-beampropagating in the array. Therefore, we end upwith a dynamical interplaywhere the flowof the
photons changes the spatial distribution of themagnetic flux density which then acts back on the dynamics of
the lightfield.We choose a scenario with the link directions as depicted infigure 1(c).We note that this is not the
only possible choice. In fact the intricate photon and phonon dynamics depends on the link pattern.We
illustrate the nonlinear structure formation in thismodel for the case of having only a single site illuminated by a

Figure 3.Examples of phase space trajectories ( ) ˙ ( )F - Ft t in region III and IV are shown in (a) and (b), respectively. (c)Bifurcation
diagram for the flux dynamics.We display the values of ( )F t attained at the zero-crossings of ˙ ( )F t . For the bifurcation diagram (c)we
used a higher resolution for values of B J E than for the phase diagram in figure 2(a).
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laser. Infigure 4(a)we show the temporal evolution of the light intensity (top row) as well as themagnetic field
(bottom row) on the lattice. Atfirst the photons experience a staticmagnetic fieldwhich is set by the initial
phases of themechanical oscillations (here chosen such that the initial flux is pF = 2) and start tomove along
the edge. Due to the back-action of the photons (which primarilymove along the edge) on the phonons, theflux
per plaquette changes. This in turn leads to a reconfiguration of themagnetic fieldwhich in this scenario forces
the photons to reverse their direction ofmotion.Here, the systemdoes not reach a steady state even in the long-
time limit. Even though the photons live only for a short time k1 before escaping the structure, the system
develops a spatial ‘memory’ in the formof themechanical oscillation phases, where previous photons leave their
imprint.

For an intuitive description of the dynamics we assume zero initialflux per plaquette F = 0, a large optical
dampingκ compared to the tunneling J, and a drive on one optical site on the top edge of the lattice. For this
scenario, we show infigure 4(b)) a schematics of the flux and lightfield dynamics and focus on the fluxes through
the gray plaquettes for the very firstmoments of time evolution. As soon as the optical amplitudes of two
neighboring optical sites is nonzero, themechanical oscillation phase on the corresponding linkwill change, see
equation (2).More precisely, the phases on the links decrease, indicated by the black arrowswhere the number of
arrowheads indicate themagnitude of decrease. However, from theway these phases enter the photon dynamics,
one can deduce that each phase contributes to the flux inside a plaquette with a positive sign only if the respective
link is traversed in the positive directionwhen going around the plaquette counterclockwise. This leads to the
signs shown in thefigure. The light propagation due to themagnetic field is indicated by the green arrows. It is
worthmentioning that even in the long-time limit themechanical oscillation phases continue drifting because
even an arbitrarily small butfinite optical amplitude on neighboring sites is enough to change the phases, albeit
very slowly.With such a scenario one could imagine to engineer a desiredmagnetic field pattern bymeans of an
optical drive.

6.Disorder

In general, disorder effects in optomechanical arrays have been recognized as an important issue, especially in
systemswhere the coupling between opticalmodes cannot be larger than the GHz-scalemechanical frequencies,
as is the case both in the present system aswell as, e.g., in our proposal for topologically protected transport in
optomechanics [20]. The transport of photons and phonons in disordered optomechanical arrays in the regime
of Anderson localization has recently been analyzed in some detail by our group [57]. To avoid such effects, the
disorder needs to be suppressed down to a level of the photon tunneling or less in order to obtain localization
lengths that are so large that they do notmatter anymore (larger than either the system size or the photon decay
length). However, recently significant progress has beenmade regarding the fabrication of optomechanical

Figure 4. (a)Evolution of the lightfield on a latticewith a dynamical gaugefield of vibrational origin. Light intensity Ai j,
2 on each site

(top row) andfluxΦ per plaquette (bottom row) at different times. The resonant drive is on the site on the corner and the initialflux
per plaquette is pF = 2. No steady state of either photons or phonons is reached.We chose =B J E 3.16, k =JE 102 and have
k = J1 1 . The simulationswere carried out on a 21×21 triangular lattice, where only the left half is shown. (b) Schematics of the

flux and lightfield dynamics for the very firstmoments of the time evolution. Initially F = 0 for every plaquette and a single optical
site is driven (green arrow). Afinite optical amplitude on neighboring sites changes themechanical phases, indicated by the black
arrows. The number of arrowheads indicates themagnitude of decrease. The link directions lead to a negative (positive)flux through
the left (right) plaquette next to the illuminated site. The direction of light transport is indicated by the green arrows.
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crystal arrays, representing themost promising integrated nanoscale platform for these types of experiments.
Specifically, it has been possible to reduce the disorder by a factor of about 100 using novel postprocessing
techniques, which brings it down to a scale where photon localization lengths become very large. These
techniques have been exploited recently in an experiment on optomechanical nonreciprocity with two coupled
modes [10]which is quite close in spirit to the setupwewould require here.

7. Conclusion

Wehave shown that dynamical gaugefields in optomechanical arrays arise quite naturally. The evolving
mechanical oscillation phases, which respond to the flowof the photons, represent a dynamical gaugefield for
the latter. Already the three-sitemodel shows intriguing dynamics which leads to a rather complex phase
diagram for theflux dynamics.With experiments pushing towardsmulti-mode optomechanical setups, the
three-sitemodel seems feasible to be realized in the near future andwould pave theway for further studies of
dynamical gaugefields in optomechanical arrays. Collective behavior such as synchronization and pattern
formation ofmechanical limit-cycle oscillators have recently been studied in optomechanical arrays [48, 58, 59].
In this spirit, further studies on gaugefield dynamics in optomechanics could address questions on
synchronization and dynamical pattern formation of themagneticfield.
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AppendixA. The three-sitemodel: including drive and dissipation

Since the photons eventually decay, we add photon loss and drive to the system. This is best done startingwith
theHamiltonian(B.1) and adding a driving term ( ){ }

†= å +w w
Î

-H E a ae ej j j
t

j
t

d 1,2,3
i id d . Going into a frame

rotatingwith the driving frequency wd, we obtain

( ) ( )

( ) ( )
( )

( )
{ }

†

{ }

†

{ }

†

† †

†

å å ån w w= - + + +

+ + + +

+ +

f f

f

Î Î Î

- -

H a a E a a b b

J B a a J B a a

J B a a

e h.c. e h.c.

e h.c. .

A.1
j

j j j
j

j j j
l

l l l
1,2,3

d
1,2,3 12,23,13

12 12
i

1 2 23 23
i

2 3

13 13
i

3 1

12 23

13

Including dissipation of the photons at a rateκ and neglecting effects due to quantumnoise, the equations of
motion for the photons become

  
= - -a t Ma Ed d i i with

( ) ( )
=a a a a, , , A.21 2 3

T

( ) ( )

=E E E E, , , A.31 2 3

T

Figure A1. Left: ∣ ∣A1
2.Middle: ∣ ∣A2

2. Right: ∣ ∣A3
2. Here we only drive site j=1, i.e., = = =E E E E, 01 2 3 and choose k =JE 0.0252 ,

and =B J E 31.6.
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( )

( )

( )

( )

n w

n w

n w

=

- -

- -

- -

k f f

f k f

f f k

- -

-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
M

J B J B

J B J B

J B J B

i e e

e i e

e e i

. A.4

1 d 2 12 12
i

13 13
i

12 12
i

2 d 2 23 23
i

13 13
i

23 23
i

3 d 2

12 13

12 23

13 23

The equations ofmotion for the phases fij are unchanged. Infigure A1we show the optical amplitude

∣ ∣ ∣ ∣á ñ =a Aj j
2 2 as a function of thefluxΦ and the drive frequency wd. Figure A1 almost resembles the

eigenfrequencies Wk infigure B1(c)whichwe obtained fromdiagonalizing theHamiltonian.

Appendix B. The three-sitemodel: diagonalization

Here, we give some further details on the three-sitemodel given by equation (1)which in its explicit form reads

( )

( ) ( )
( ){ }

†

{ }

† †

† † †

å ån w= + + +

+ + + +

Î Î

H a a b b J b a a

J b a a J b a a

h.c.

h.c. h.c. .

B.1j
j j j

l
l l l

1,2,3 12,23,13
12 12 2 1

23 23 3 2 13 13 1 3

The equations ofmotion are obtained straight forwardly by usingHeisenberg’s equation ofmotion. The
mechanical phases fij evolve according to

˙ ( ) ( )f w f q= - - +
J

B
A A cos , B.212 12

12

12
1 2 12 12

˙ ( ) ( )f w f q= - - +
J

B
A A cos , B.323 23

23

23
2 3 23 23

˙ ( ) ( )f w f q= - - +
J

B
A A cos . B.413 13

13

13
1 3 13 13

The optical amplitudesAj obey the following equations ofmotion

˙ ( ) ( ) ( )f q f q= - + - +A J B A J B Asin sin , B.51 12 12 12 12 2 13 13 13 13 3

˙ ( ) ( ) ( )f q f q= + + - +A J B A J B Asin sin , B.62 12 12 12 12 1 23 23 23 23 3

˙ ( ) ( ) ( )f q f q= + + + +A J B A J B Asin sin , B.73 13 13 13 13 1 23 23 23 23 2

and the optical phases qj

˙ ( ) ( ) ( )q n f q f q= - - + - +J B
A

A
J B

A

A
cos cos , B.81 1 12 12

2

1
12 12 13 13

3

1
13 13

˙ ( ) ( ) ( )q n f q f q= - - + - +J B
A

A
J B

A

A
cos cos , B.92 2 12 12

1

2
12 12 23 23

3

2
23 23

Figure B1. (a)Optical amplitudes ∣ ∣Aj
2. The initial state has one photon on site 1. For pF = - 2, the initial excitationmoves

counterclockwise around the triangular plaquette shown in (b). For pF = 2, the initial excitationwouldmove clockwise around the
triangle. (c)Dispersion relation Wk as a function of the phaseΦ.
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˙ ( ) ( ) ( )q n f q f q= - - + - +J B
A

A
J B

A

A
cos cos . B.103 3 23 23

2

3
23 23 13 13

1

3
13 13

Asmentioned in themain text, for A B 1, i.e., in the case of a static fluxΦ, and for pF =  2 a circulator
behavior is expected, see [23]. A solution to this systemof coupledfirst order differential equations with initially
one photon on site 1 and a phase pF = - 2 is shown infigures B1(a) and (b), where the circulator behavior is
clearly visible, i.e., the photon ismoving counterclockwise around the triangular plaquette.

TheHamiltonian of the three-sitemodel can be diagonalized best after going into a rotating frame by
applying the transformation

( )† †
= n wå åU e e , B.11t a a t b bi ij j j j l l l l

to equation (B.1)which leads to theHamiltonian

( )
( )
( )

( )

†

†

†

= +

+ +

+ +

f

f

f

-

-

H J B a a

J B a a

J B a a

e h.c.

e h.c.

e h.c. .

B.12
12 12

i
1 2

23 23
i

2 3

13 13
i

3 1

12

23

13

Sincewe are here interested in the eigenvalues, we can perform a gauge transform  ca a ej j
i j andmake the

following gauge choice

˜ ( )f c c- + - = F, B.1312 2 1

˜ ( )f c c- + - = F, B.1423 3 2

˜ ( )f c c+ - = F, B.1513 1 3

whichwe canwrite as ˜f f f- - = F = F313 12 23 . TheHamiltonian can then bewritten as

( )˜ †å= +
=

F
+H J B a ae h.c ., B.16

j
j j j j

1

3
i

1

wherewe assumed periodic boundary conditions, i.e., =a a4 1 and for conveniencewe introduce
J J12,23,13 1,2,3 and similarly for B12,23,13. By introducing normalmodes

( )† †å= p

=

-a A
1

3
e , B.17j

k

kj
k

0

2
2 i 3

( )† †å= p

=

A a
1

3
e , B.18k

j

kj
j

1

3
2 i 3

and furthermore assuming equal tunneling amplitude J and limit-cycle amplitudeB, theHamiltonian can be
diagonalized

( )†å= W
=

H A A , B.19
k

k k k
0

2

FigureC1. Fourier transformof the trajectories shown in figures 3(a) and (b). In (a) the spectrum shows a clear peak indicating a
periodic trajectory, seefigure 3(a). In (b) however the spectrum isflat which indicates a chaotic trajectory, see figure 3(b).
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where ( )pW = F +JB k2 cos 3 2 3k . As already pointed out in [23], for pF =  2 this setup shows the
behavior of a photon circulator.

AppendixC. Spectrumof a periodic trajectory versus a chaotic trajectory

Here,wegive additional informationonhowwemade thedistinctionbetween theperiodic andchaotic behavior of the
dynamical gaugefield in the caseof the three-sitemodel. In themain text,we chose topresent thedistinction, periodic
versus chaotic, byplotting thebifurcationdiagramshown infigure3(c)). In addition to this,we also investigated the
Fourier transformof the time series ( )F t , the spectrum.For aperiodic time series there is a pronouncedpeak in the
spectrumat the frequency corresponding to theperiodof the time series. In the caseof a chaotic time series the
spectrumdoesnot showapreferred frequency and is almostflat. InfigureC1(a)) andfigureC1(b)),we show the
Fourier transformof the time series corresponding to thephase space trajectories shown infigures3(a)) and (b)),
respectively. In the caseof aperiodic trajectory, the spectrumclearly shows apeak,where as for a chaotic trajectory the
spectrumisflat. To summarize, in addition to thebifurcationdiagrampresented in themain text,we also checked the
Fourier transformof the time series to consistently distinguishperiodic fromchaotic trajectories.

AppendixD. The triangular lattice: equations ofmotion

Ona two-dimensional triangular latticewedenote dynamical variables on lattice site n m, with a subscripts (n,m)
anddynamical variables on the directed links fromsite n m, to site k l, by a subscript ( )( )n m k l, , . The equations of
motion for themechanical phases ( )( )f +n m n m, , 1 on the lattice links are

˙ ( )

˙ (

)

˙ ( )

( )( ) ( )( )
( )( )

( )( )
( )( )

( )( ) ( )( )
( )( )

( )( )
( )( )

( )( ) ( )( )
( )( )

( )( )
( )( )

f w f q q

f w f

q q

f w f q q

=- - + -

=- -

+ -

=- - + -

+ +
+

+
+ + +

+ + + +
+ +

+ +
+ + + +

+ +

+ +
+

+
+ + +

J

B
A A

J

B
A A

J

B
A A

cos ,

cos

,

cos .

n m n m n m n m
n m n m

n m n m
n m n m n m n m n m n m

n m n m n m n m
n m n m

n m n m
n m n m n m n m

n m n m

n m n m n m n m
n m n m

n m n m
n m n m n m n m n m n m

, , 1 , , 1
, , 1

, , 1
, , 1 , , 1 , , 1

, 1 1, , 1 1,
, 1 1,

, 1 1,
, 1 1, , 1 1,

, 1 1,

, 1, , 1,
, 1,

, 1,
, 1, , 1, , 1,

The optical amplitudes An m, obey the equations ofmotion

˙ ( )
( )
( )

( )
( )

( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

f q q

f q q

f q q

f q q

f q q

f q q

=- + -

- + -

+ + -

- + -

+ + -

+ + -

+ + + + +

+ + + + +

- - - - -

+ - + - + - + - + -

- - - - -

- + - + - + - + - +

A J B A

J B A

J B A

J B A

J B A

J B A

sin

sin

sin

sin

sin

sin , D.1

n m n m n m n m n m n m n m n m n m n m

n m n m n m n m n m n m n m n m n m

n m n m n m n m n m n m n m n m n m

n m n m n m n m n m n m n m n m n m

n m n m n m n m n m n m n m n m n m

n m n m n m n m n m n m n m n m n m

, , , 1 , , 1 , , 1 , , 1 , 1

, 1, , 1, , 1, , 1, 1,

, 1 , , 1 , , 1 , , 1 , , 1

, 1, 1 , 1, 1 , 1, 1 , 1, 1 1, 1

1, , 1, , 1, , 1, , 1,

1, 1 , 1, 1 , 1, 1 , 1, 1 , 1, 1

Figure E1.Possible distribution of optical (blue dots) andmechanical (orange ellipses) frequencies on a 3×3 triangular lattice as an
example.

10

New J. Phys. 18 (2016) 113029 SWalter and FMarquardt



and the optical phases qn m, on a lattice site evolve according to

( )

˙

( )

( )

( )

( )

( )

( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

q n

f q q

f q q

f q q

f q q

f q q

f q q

=-

- + -

- + -

- + -

- + -

- + -

- + -

+ +
+

+ +

+ +
+

+ +

- -
-

- -

+ - + -
+ -

+ - + -

+ - + -
-

+ - -

- + - +
- +

- + - + D.2

J B
A

A

J B
A

A

J B
A

A

J B
A

A

J B
A

A

J B
A

A

cos

cos

cos

cos

cos

cos .

n m n m

n m n m n m n m
n m

n m
n m n m n m n m

n m n m n m n m
n m

n m
n m n m n m n m

n m n m n m n m
n m

n m
n m n m n m n m

n m n m n m n m
n m

n m
n m n m n m n m

n m n m n m n m
n m

n m
n m n m n m n m

n m n m n m n m
n m

n m
n m n m n m n m

, ,

, , 1 , , 1
, 1

,
, , 1 , , 1

, 1, , 1,
1,

,
, 1, , 1,

, 1 , , 1 ,
, 1

,
, 1 , , 1 ,

, 1, 1 , 1, 1
1, 1

,
, 1, 1 , 1, 1

, 1, 1 , 1, 1
1,

,
, 1, 1 1, ,

1, 1 , 1, 1 ,
1, 1

,
1, 1 , 1, 1 ,

Adriving termon a particular site and dissipation of the photons on each site can be added straightforwardly, as
also done for the three-sitemodel.

Appendix E. The triangular lattice: distribution of optical andmechanical frequencies

Asmentioned in themain text, the links are directed: a photon tunneling from a site with a low (high) on-site
frequency to a site with a high (low) on-site frequency absorbs (emits) a phonon. These processes have to be
resonant which could be achieved by distributing the photon and phonon frequencies in the right way. For
instance, the frequencies can be arranged as shown infigure E1.
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