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Abstract: We report a challenging design, fabrication and post-production characterization 
problem of a dispersive mirror supporting the spectral range from 2000 nm to 2200 nm and 
providing a group delay dispersion of −1000 fs2. The absolute reflectance in the working 
range is over 99.95%. The reported mirror is a critical element for Tm and Ho based lasers 
and paves the way for the development of ultrafast 2 µm lasers with sub-100 fs pulse 
duration. 
© 2017 Optical Society of America 
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1. Introduction 

The mid-infrared fingerprint spectral region (2-20 µm) is important for numerous 
spectroscopy applications [1]. One promising scheme for generating coherent radiation in this 
region involves nonlinear conversion processes driven by emerging femtosecond fiber and 
solid-state lasers in 1.9-2.6 µm range [2,3]. Further development of these femtosecond 
driving lasers are therefore important for providing a more efficient mid-infrared source in a 
simpler manner [4]. 

One of the key elements of modern femtosecond lasers is dispersive mirror (DM). 
Although this technology is well established in the visible (~800 nm, Ti:Sa lasers) and near 
infrared range (~1030 nm, Yb:YAG lasers), its development at longer wavelengths beyond 
1.9 µm is still at an early stage. As Thulium- and Holmium-based lasers operating at around 
1.9-2.2 µm become more widespread [5,6], and the maturing of Cr:ZnS/ZnSe laser 
technology promises to extend laser output to 3.2 µm [3,7,8], there is an urgent need for DMs 
suitable for this spectral region. These mirrors will not only enable mode-locked femtosecond 
operation in next-generation Ho: YAG thin-disk oscillators, but also enable the extra-cavity 
compression of output from Ho-doped bulk amplifiers [9]. 

For dispersive mirrors to be useful, they need to satisfy three crucial criteria: high 
reflectance (>99.9%) and high negative group delay dispersion of −1000 fs2. Production of 
such coatings for the 2 μm region is a challenge because coating layers for the infrared need 
to be thicker compared to those in the visible range, the absorption may affect mirror 
performance more strongly. Moreover, the material dispersion of the coatings’ layers has to 
be known with high accuracy in this spectral range as well. 

Recently, dispersive mirrors for a near infrared erbium-doped fiber chirped pulse 
amplification system have been developed (Ref [10]). The mirrors are designed and produced 
for the range from 1530 to 1575 nm with a GDD of −2000 fs2. As GDD oscillations are 
unavoidable, a workaround was found: the mirrors were produced for two different reference 
wavelengths, which results in a slight offset of their spectra with respect to each other. Used 
together, the mirror pair provides a flat GDD. 

In this paper, we concentrate on design, production and optical characterization of a 
dispersive mirror (DM) providing high reflectance and a group delay dispersion (GDD) of 
−1000 fs2 in the range from 2000 nm to 2200 nm. Not only is this spectral range broader and 
deeper towards the infrared than [10], but more importantly, we achieved the required 
specification using only a single DM. 

In Section 2 we demonstrate the feasibility of the complicated multilayer design in our 
production environment. In Section 3 we provide a comprehensive post-production 
characterization which helped us to correct the dispersion curve of the high refractive index 
material in the spectral range up to 2500 nm. This will allow a more accurate design for future 
DMs in this wavelength range. Our Conclusions are presented in Section 4. 
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2. Synthesis and fabrication 

In our DM we used Ta2O5 and SiO2 as the high and low index material respectively. We 
chose two types of substrates: B260 Glass (borosilicate glass) with a thickness of 1 mm and 
Suprasil (fused silica) with a thickness of 6.35 mm. Nominal dispersion curves of Ta2O5, 
B260 Glass and Suprasil refractive indices are described by the Cauchy formula: 
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The dispersion behavior of SiO2 is specified by the Sellmeier model [11] with coefficients 
determined in Ref [12]: 
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where 1 6,...,B B  are dimensionless parameters, 0 1000λ = nm, λ  is specified in nanometers; 

1 1.132952,B =  2 0,B = 3 0.020581,B = 4 0.115406,B = 5 3.448642,B = 6 330.0719.B =  

The synthesis of DM was performed with the help of the needle optimization technique 
and gradual evolution algorithm incorporated into the OptiLayer software [13,14]. A merit 
function estimating the closeness of the designed spectral characteristics to the target 
specifications was defined as: 
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where { }1,..., md d=X  is a vector of layer thicknesses, { }iλ are evenly distributed wavelength 

points in the spectral ranges from 2000 nm to 2200 nm; { }1, jΔ  and { }2, jΔ  are tolerances. 

As a result, a 54-layer DM was synthesized. The total physical (geometrical) thickness of 
the coating is 15.9 mkm. Its thickness profile and theoretical GD/GDD are presented in Figs. 
1(a) and 1(b), respectively. 

 

Fig. 1. (a) Thickness profile of the synthesized 54-layer DM, physical thicknesses are shown; 
(b) Comparison of theoretical and experimental GD/GDD related to DM-Suprasil sample. 
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characterization of the produced samples should be performed in order to obtain a better 
estimate of the nominal Ta2O5 index. 

As a first step of our characterization, we processed the BBM data (53 transmittance 
scans) in order to estimate the error in layer thicknesses. Keeping in mind that the expected 
errors are relatively small due to the high accuracy of time monitoring [19,20], we applied the 
algorithm assuming quasi-random errors in layer thicknesses [9,16]. The algorithm is based 
on the minimization of in situ Tikhonov’s discrepancy function TDF  with respect to the 
relative error , 1,..., 1i i mδ = − , m  is the number of mirror layers: 

 ( ) ( ) ( )
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2 2 2 2 ( )
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1 1

m m L
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i j j
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where ( ) ( ){ }1 11 ,..., 1i id dδ δ= + +X  is the vector of layer thicknesses of DM-B260 sample; 

{ }jλ  are evenly distributed wavelength points in the range from 400 nm to 950 nm; 

1239.L =  The last layer m  is not included into this step, since the BBM device did not 
provide measurement data once the deposition is finished. The second term in Eq. (4) is 
responsible for the reliability of the solution by taking into account a priori information that 
expected random errors are-assumed to be quite low. This characterization approach is based 
on the Tikhonov’s regularization theory of solving ill-posed problems [21]. In Eq. (4), α  is a 
regularization parameter that provides a balance between data fitting and the stability of the 
characterization solution. In the present study, 1.α =  Initial GDF  value was 6.83; in the 
course of optimization the value of 2.57 was achieved. Estimated errors iδ  do not exceed 2% 

that is agreed with expected accuracy of the time monitoring. Denote 

( ) ( )1 1 1 1 1 11 ,..., 1 ,m m m m md d d d d dδ δ− − −= + = + =  the thicknesses of the model coating 

obtained in this way. 
In the second step of our characterization process, we searched for the actual layer 

thicknesses of the DM-Suprasil sample. As experimental data we considered ex situ 
transmittance measured in the visible spectral range from 400 nm to 860 nm. We introduced a 
discrepancy function DF  in the standard way: 

 ( ) ( )
2

2
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1 ˆ; ,
L

i i
i

DF T T
L

λ λ
=

 = −  X  (5) 

where { }1 1,..., ,m m md d d δ−= + Δ + Δ +X  is the vector of layer thicknesses, Δ  is a deviation 

between thicknesses of coating layers on B260 Glass and Suprasil substrates, mδ  is a random 

error in the last layer of the DM-Suprasil sample. We minimized the discrepancy function 
(Eq. (5)) with respect to two parameters, mδ  and .Δ  The initial DF  value was 16.4 and the 

DF  value achieved in the course of the discrepancy function minimization was 5.72. The 
obtained Δ  value of 0.1% is in a full agreement with the estimated thickness non-uniformity 

[22]. { }1 1,..., ,m m md d d δ−= + Δ + Δ +X  denotes the vector of the determined layer thicknesses 

of the DM-Suprasil sample. 

Comparing the transmittance of the design defined by the vector X  and the transmittance 
data measured from 860 nm to 2500 nm, we still observed a shift mentioned earlier. 
Therefore, as a third step of our characterization process the refractive index of Ta2O5 is 
corrected. We assumed that the refractive index of Ta2O5, ( )Hn λ , in the broad range from 

400 nm to 2500 nm can be described by the Cauchy formula, although this range is broader 
than the range from 400 nm to 1800 nm considered by the authors of Ref [23]. We optimized 
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the discrepancy function (Eq. (5)) in the wavelength range from 860 nm to 2500 nm with 

respect to three Cauchy parameters (see Eq. (1)), i.e., { }1 0 1 2,..., ; , , .md d A A A=X    In order to 

obtain a refractive index of Ta2O5 in the whole spectral range from 400 nm to 2500 nm, we 
merged and subsequently smoothed the nominal index in the range from 400 nm to 860 nm 
and Ta2O5 refractive index in the range from 860 nm to 2500 nm estimated above. The 
corrected dispersion curve of Ta2O5 is shown in Fig. 3(a). The discrepancy function value 
(Eq. (5)) for the whole spectral range decreased from 8.61 to 4.74. It is seen from Fig. 3(a) 
that the wavelength dependence ( )Hn λ  was almost unchanged in the visible spectral range in 

comparison with the nominal dispersion curve of Ta2O5. 

 

Fig. 3. (a) Comparison of the nominal and corrected refractive indices of Ta2O5; refractive 
index of SiO2 is shown for information only; (b) Input (green) and output (red) pulse 
simulations. Output pulse is calculated after 10 reflections from the DM at AOI = 5°with 
subtracted GDD target. 

As the last step of our characterization process we validated the results with the help of 
GD/GDD measurements. Instead of experimental and model transmittance, we substituted 
GD/GDD measurement and theoretical data into Eq. (5) and calculated the initial values of 
the discrepancy function DF  in the spectral range from 1600 nm to 2400 nm with 540L = . 
The achieved value of the discrepancy function can be calculated with GD/GDD experimental 
and model data substituted into Eq. (5). In the case of GD, initial DF  was equal to 687.3 and 
achieved value was 411.3. In the case of GDD, initial DF  was equal to 115110.0 and 
achieved value was 97447. The decreases of DF  values after replacement of the theoretical 
design by the model, indicate the reliability of the obtained results. 

In Fig. 3(b) the simulated envelopes of the input Fourier-limited pulse and the pulse 
reflected from the DM with subtracted GDD are presented. The input pulse has pulse duration 
of 87 fs and a super-Gaussian spectrum with bandwidth of 15 THz. One can observe that the 
shape of the reflected pulse is close to the Fourier-limit. The duration of reflected pulse 
remains unchanged even after 10 bounces of reflection. 

4. Conclusions 

A broadband highly dispersive mirror for Thulium and Holmium lasers has been successfully 
synthesized and characterized. The absolute reflectance reaches up to 99.95%, which allows 
their applications inside laser oscillators that are sensitive to mirror losses. Excellent spectral 
performance as well as proven group delay dispersion enable its application in extra-cavity 
temporal pulse-compression and intracavity dispersion compensation in next generation 2 µm 
thin-disk oscillators. 
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