
Efficient quantum computation in a network with probabilistic gates and logical
encoding

J. Borregaard,1 A. S. Sørensen,2 J. I. Cirac,3 and M. D. Lukin1

1Department of Physics, Harvard University, Cambridge, MA 02138, USA
2The Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

3Max-Planck Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
(Dated: December 21, 2016)

A new approach to efficient quantum computation with probabilistic gates is proposed and an-
alyzed in both a local and non-local setting. It combines heralded gates previously studied for
atom or atom-like qubits with logical encoding from linear optical quantum computation in order
to perform high fidelity quantum gates across a quantum network. The error-detecting properties
of the heralded operations ensure high fidelity while the encoding makes it possible to correct for
failed attempts such that deterministic and high-quality gates can be achieved. Importantly, this is
robust to photon loss, which is typically the main obstacle to photonic based quantum information
processing. Overall this approach opens a novel path towards quantum networks with atomic nodes
and photonic links.

Quantum systems have the potential to revolutionize
information technology by employing quantum comput-
ers [1, 2] and quantum cryptography [3]. In particular,
quantum networks [4, 5] may enable novel applications
ranging from distributed quantum computing [6–8] and
secure multipartite function evaluation [9, 10] over cryp-
tographic conferencing [11] to ultra-sensitive sensors [12].
However, a major obstacle against distributing quan-
tum information is the detrimental effect of transmis-
sion losses. A so-called quantum repeater was first pre-
sented as a solution to this problem in the context of
two-party quantum communication [13, 14]. In this ap-
proach, high-quality non-local entanglement is first cre-
ated between quantum memories in a heralded fashion
such that transmission losses only result in a finite success
probability. Once the scheme is successful, the created
high quality entangled states enable long distance com-
munications through teleporation and deterministic local
gate operations. The efficient light-matter coupling nec-
essary for the entanglement generation can naturally be
used to mediate the gate operation but such approaches
suffer from photon losses and inefficiencies, which limit
the gate fidelity. To overcome this, the concept of herald-
ing was recently extended to gate operations [15–19]. In
these schemes, the quantum gates are heralded by a mea-
surement outcome that distinguishes whether a photon
loss has occurred or not, similar to the non-local entan-
glement generation schemes. As a result, high fidelity
gate operations are obtained in a successful event while
the involved qubits must be discarded if the gate fails.

While heralded operations are directly applicable in
quantum communication tasks [20], their application in
quantum computation is less straightforward. It has been
demonstrated how fault-tolerant, one-way quantum com-
putation is possible with probabilistic operations [21–23]
and in linear optical quantum computation (LOQC), the
probabilistic operations are compensated by encoding in
multi-photon states [24–27]. Both these approaches are,
however, associated with substantial resource overhead

due to the necessity of generating large cluster states for
one way quantum computing [28] and the upper bound
of 50% for the success probability of Bell measurements
with linear optics [29]. We present an alternative ap-
proach to universal quantum computation with proba-
bilistic gates by combining heralded local operations pre-
viously studied for atomic qubits with logical encodings
from LOQC. The heralding enables high fidelity opera-
tions while the logical encoding makes it possible to cor-
rect for failed attempts resulting in deterministic logi-
cal operations. Due to the higher success probability of
the atomic gates, this approach is much less resource de-
manding than LOQC. Furthermore, the logical encoding
enables computation within a circuit model, which cir-
cumvents the substantial qubit overhead of cluster state
computation.

The proposed procedure is ideally suited for networks
based on optically connected atoms or atom-like systems.
The long coherence time of atomic qubits makes them
ideal candidates for memory nodes in a quantum net-
work. Entanglement can be efficiently distributed over
long distances with photonic links, which enables non-
local gates through teleportation. [6, 30]. By combining
local heralded operations on atomic qubits with photonic
links and encoding, we thus exploit the advantages of
both approaches to perform efficient quantum computa-
tion in a network.

To illustrate the main idea, we consider combining
the heralded controlled phase gate (CZ-gate) described
in Ref. [15] with the parity encoding introduced in
Refs. [26, 31]. The heralded CZ gate of Ref. [15] couples
qubits through a cavity field and is heralded by a mea-
surement on an auxiliary atom. This gate has a success
probability, approaching unity in the limit of strong emit-
ter cavity coupling with a unity fidelity F = 1 regardless
of the coupling. A failed attempt of the gate leaks infor-
mation about the two participating qubits to the envi-
ronment corresponding to projecting onto the qubit ba-
sis. This type of error can be corrected (as described
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below) if the cavity couples to closed transitions in the
qubits such that the interaction with the environment is
an effective dephasing process. Similar situations can be
encountered in other heralded gate schemes [16–19] but
we focus on the scheme of Ref. [15] for concreteness.

The logic encoding of Refs. [26, 31] was developed
to protect against photon loss but as we show here,
it can also be used to correct for the dephasing er-
ror following a failed attempt of the gate. The logi-
cal qubit states are encoded across n physical qubits in
the form of GHZ states |0n〉 = 1√

2
(|+〉⊗n + |−〉⊗n) and

|1n〉 = 1√
2

(|+〉⊗n − |−〉⊗n) where |±〉 = 1√
2

(|0〉 ± |1〉).
We will refer to {|+〉, |−〉} as the rotated basis and
{|0〉, |1〉} as the qubit basis. A logical encoded qubit
|Ψn〉 = a|0n〉 + b|1n〉 is protected from heralded errors
leading to dephasing of a physical qubit. Following a de-
phasing error, the relevant qubit is measured in the qubit
basis. If the qubit is measured to be in state |0〉, the re-
maining qubits will be in the state |Ψn−1〉 while if it is
measured to be in state |1〉, the remaining qubits will be
in state a|1n−1〉+b|0n−1〉, which is identical to |Ψn−1〉 up
to a single qubit rotation. The logical state can thus be
recovered after dephasing. Consequently, this encoding
can be used to correct for a failed CZ-gate by measuring
the state of the physical qubits and applying appropriate
single qubit rotations. Every failed gate will remove one
level of encoding from the logical states.

The logical qubits can be grown efficiently using meth-
ods known from cluster state preparation [23, 26]. To
do this, we fuse together a (n)-qubit GHZ state with a
(m)-qubit GHZ state by making a CNOT gate between
one qubit from each GHZ state. We then measure the
target qubit in the rotated basis and apply appropriate
single qubit rotations based on the measurement result.
The logical encoding means that if the CNOT gate fails,
a qubit is removed from each of the two GHZ states re-
sulting in (n − 1)-qubit and (m − 1)-qubit GHZ states.
However, if the fusion succeeds a (n+m− 1)-qubit GHZ
state is prepared. Having prepared the resource state
|0n〉, a logical qubit |Ψn〉 = a|0n〉 + b|1n〉 is prepared by
applying the operation Uψ = aI + bσx, on a single qubit
belonging to |0n〉. Here I is the identity and σx is a Pauli
x-rotation of the qubit.

A universal set of quantum gates within the logical
encoding can be obtained through Bell measurements,
single qubit rotations, and an auxiliary multi-qubit re-
source state (|0n〉) as described in Ref. [31]. The multi-
qubit resource state is necessary for some of the gates
in the universal set of which the logical CNOT gate is
the most demanding [26] and we therefore focus on this.
We transform the logical CNOT of Ref. [26] into our
setup employing heralded CZ gates and auxiliary qubits.
A schematic of the corresponding logical CNOT gate is
shown in Fig. 1. Note that the logical CNOT, in prin-
ciple, only requires two CNOT gates between physical
qubits but we require two additional CNOT gates with
auxiliary qubits in our setup. The auxiliary qubits are
necessary because we are not making a direct CNOT gate

between physical qubits but an effective CNOT gate us-
ing single qubit rotations and a CZ-gate. An effective
CNOT gate between qubit 1 (control) and qubit 2 (tar-
get) belonging to each their logical state is given by the
operation H2(CZ12)H2 where Hi is a Hadamard trans-
form on the i’th qubit and CZij is a CZ-gate on qubits i
and j. The first Hadamard on the target qubit, however,
results in information about the logical state being leaked
to the environment if the subsequent CZ gate fails. This
can be circumvented by first entangling qubit 2 (con-
trol) with an auxiliary qubit (target) as incorporated in
Fig. 1. This entanglement with the auxiliary qubit can be
achieved with an effective CNOT gate since the auxiliary
qubit will not leak information about the logical state in
case of a failed CZ-gate. An effective CNOT can then be
performed between qubit 1 (control) and the auxiliary
qubit (target) and due to the entanglement with qubit 2,
the auxiliary qubit will not leak information about the
logical state if the CZ gate fails. In that case, the three
qubits are simply measured and the logical states can be
recovered with single qubit rotations. If the gate suc-
ceeds, qubit 2 is measured in the rotated basis and based
on the measurement result, single qubit rotations are ap-
plied to the auxiliary qubit and qubit 1. This amounts
to an effective CNOT between qubit 1 (control) and 2
(target) together with a state transfer of qubit 2 to the
auxiliary qubit.
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FIG. 1. Scheme of the logical CNOT gate. Crossed circles
represent effective CNOT-gates with the cross marking the
target qubit. Filled half-circles represent detectors, thick lines
represent multi-qubit states and narrow lines are single qubit
states. Based on the measurement results, Pauli rotations σz

or σx are applied to either a single qubit (I) or multiple qubits
(II). The final multi-qubit detection is a parity measurement.
The scheme makes a logical CNOT between |ψ〉 (control) and
|φ〉 (target) and consumes at least one physical qubit from
each state. Note that |ψ〉 is swapped to the resource state
|0n〉 in the process.

We numerically simulate a logical CNOT gate assum-
ing all measurements and single qubit rotations are de-
terministic and that the associated errors of these are
negligible compared to errors due to e.g. limited coher-
ence time of the qubits. Failed gates decrease the encod-
ing level and we require final re-encoding of the logical
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qubits at the end of the logical gate operation to have a
successful logical gate [32]. To simulate final re-encoding,
we have assumed that the qubits that have been removed
from the encoding are recycled at the end of the logical
gate operation and grown into a GHZ state, which is
then fused with the qubit state as described above using
an auxiliary qubit and a heralded CZ gate.

The optimal performance of the logical CNOT gate
for a given success probability of the heralded CZ-gate
is found through numerical optimization. In the opti-
mizations, we vary the encoding level n and calculate
the mean total error probability for each n. This er-
ror probability consists of both the probability of non-
heralded errors, e.g. due to finite coherence time, and
the probability that the logical encoding is lost because of
too many failed attempts. While increasing n decreases
the probability of losing the logical encoding, it also de-
creases the effective coherence time of the logical state.
From the simulations, we then find the encoding result-
ing in the smallest total error probability of the logical
CNOT operation. We study two scenarios for implement-
ing a logical CNOT gate. First, we describe a simple,
local implementation where all qubits are trapped at the
same node. Next, we describe a non-local implementa-
tion where the logical qubits are contained at different
nodes in a network. Here, remote entanglement is used
to teleport gate operations between the nodes resulting
in a non-local logical CNOT gate for quantum networks.
In both situations, we assume that a heralded CZ-gate
can be performed between any two qubits at the same
node.

In order to simulate the logical CNOT, we assume that
the coherence time of the physical qubits is 1 s. Although
this coherence time might be challenging in some sys-
tems, it has been achieved both with trapped ions [33]
and in solid-state emitters [34]. The gate time and error
of the heralded CZ-gate are assumed to be 10 µs and 10−4

motivated by a realization with Rb atoms [15]. Note that
fast and efficient atomic state readout can be achieved
through the cavity field [35]. The optimal performance
and encoding level found from the simulations of a local
CNOT gate are shown in Fig. 2a. The error in Fig. 2a
is determined by the combination of a finite coherence
time of the atoms and the gate time of the heralded CZ
gate together with the error of the heralded CZ gate. The
steep increase in the error probability shown in Fig. 2a for
near-deterministic CZ-gates is where no encoding is used
and the failure probability of the gate directly adds to
the error probability. However, as encoding is employed
to correct for the failed attempts, the error only increases
by a factor of ∼ 10 as the success probability of the CZ
gate decreases from 99.5% to 70%. Even with a modest
success probability of 75% for the heralded gates, an er-
ror probability of 1% can be attained. This demonstrates
how the encoding can enable high fidelity, deterministic
gates from heralded gates.

We now describe the non-local implementation of the
logical CNOT gate, which exploits the efficient inter-
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FIG. 2. Total error probability, pe (left axis) and encoding
level, n (right axis) of a (a) local and (b) non-local logical
CNOT gate as a function of the success probability, pCZ of
the heralded CZ-gate. We have assumed that all qubits have
a coherence time of 1 s and that the error of the heralded CZ-
gate is 10−4. The time of the CZ-gate is assumed to be 10
µs. Furthermore, we have assumed that the time necessary to
make a Bell pair between two nodes (neighboring cavities) is
160 µs (10 µs) for the non-local implementation (see Fig. 3).
Each point in the plots is obtained from averaging over 5 ·104

Monte Carlo simulations where the gates are picked to succeed
or fail at random according to pCZ. For non-encoded states
(n = 1), a direct CNOT-gate is performed between the qubits
without the use of a resource state.

face between photons and atomic or atom-like qubits
provided by a cavity. If a high fidelity Bell pair can
be generated between two nodes, a non-local gate be-
tween the nodes can be obtained by teleporting the local
gates through the Bell pair as described in Refs. [6, 30].
There exist many proposals for non-local entanglement
generation [36–38] but, in general, two-photon detec-
tion schemes [37, 38] obtain higher fidelity than one-
photon detection schemes [36] and these have therefore
been considered in great detail for quantum communica-
tion [20, 39, 40]. Inefficient photo detection, however, is
detrimental to the rate in this case. Instead we consider
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the scheme of Refs. [41, 42]. Here atomic detection, which
in general is much more efficient, is employed instead of
photo detection. Consequently, the rate of entanglement
generation can be increased substantially while maintain-
ing a high fidelity. To simulate a non-local version of the
logical CNOT gate, we assume that such a scheme is
used to generate high fidelity (F ∼ 1) entanglement be-
tween cavities in a minimalistic setup shown in Fig. 3.
The logical qubit and the resource state are assumed to
be held in two different cavities that are spatially close
to each other while optical fibers are used as channels
between different nodes in the network. We have numer-
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FIG. 3. Structure of the minimalistic quantum network with
optical cavities considered for the simulation of the non-local
CNOT gate. Each node consists of two cavities - one contain-
ing the encoded qubit state and one containing a resource
state for logical operations. The nodes are assumed to be
connected through optical fibers.

ically optimized the distributed CNOT gate and found
the optimal encoding level for a given success probability
of the heralded gate.

The result of the optimization is shown in Fig. 2b. As
before, we have assumed a single qubit coherence time of
1 s and a heralded error of the CZ gate of 10−4. The gate
time was assumed to be 10 µs while the Bell state prepa-
ration time was assumed to be 160 µs corresponding to
internodal distances around 10 km assuming that fiber
losses at telecom wavelength limit the rate. The entan-
glement generation time between cavities within the same
node was assumed to be 10 µs. The heralded error of a
Bell state was assumed to be 10−4 and we have neglected
any measurement error. Compared to Fig. 2a, the error
in Fig. 2b is enhanced due to the relatively long prepa-
ration time of the Bell states. Furthermore, the scaling
of the error with the success probability is less favorable
due to the extra CZ-gates necessary to teleport the gate

operation through the Bell pairs. Nonetheless, the error
only increases by a factor ∼ 15 as the failure probability
decreases from 99.5% to 70% in this minimalistic setup.
An encoded error rate of 1% can be obtained with a suc-
cess probability of ∼ 89% for the heralded gates. The
combination of heralded schemes ensuring high-fidelity
operations in cavity setups with logical encoding is thus
a promising approach to realize high-fidelity operations
in an extended quantum network.

In conclusion, we have shown how heralded gate op-
erations can be combined with logical encoding from
LOQC to make efficient non-local operations in a quan-
tum network. As opposed to the alternative method of
using probabilistic gates for one way quantum compu-
tation our approach circumvents the generation of large
graph states. In particular, it was argued in Ref. [28]
that in order to simulate a quantum circuit of logical
depth d involving n qubtis, an upper bound on the size
of the graph state is on the order of n3d. The approach
considered here thus gives a more efficient approach to-
wards distributed quantum computing [6, 7] based on
probabilistic gates, where separated resources are com-
bined in order to perform a quantum algorithm. Given
the difficulty in scaling up systems locally, the possibil-
ity of combining spatial separated resources might be an
important step towards realizing realistic quantum com-
putation. Non-local quantum gates are also naturally
applicable in delegated quantum computing [43, 44] and
secure multiparty function evaluation [9, 10] where quan-
tum operations are performed on encrypted data in order
to ensure the privacy of the involved parties. Other appli-
cations of quantum networks such as quantum enhanced
metrology [12], anonymous quantum communication [45]
and cryptographic conferencing [46] use non-local GHZ
states between the nodes as resources. Such non-local
GHZ states could be obtained using the deterministic
non-local CNOT gate described here to fuse smaller GHZ
state together in a repeater like setup.
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