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Abstract

Waveguide QED offers the possibility of generating strong coherent atomic interactions either
through appropriate atomic configurations in the dissipative regime or in the bandgap regime. In this
work, we show how to harness these interactions in order to herald the generation of highly entangled
atomic states, which afterwards can be mapped to generate single mode multi-photonic states with
high fidelities. We introduce two protocols for the preparation of the atomic states, we discuss their
performance and compare them to previous proposals. In particular, we show that one of them
reaches high probability of success for systems with many atoms but low Purcell factors.

1. Introduction

Non-classical states of few photons can be generated in a variety of physical systems. Triggered single photon-
sources [1] can be found in solid state systems [2—4], in neutral atoms or ions coupled to optical cavities [5—10]
and in collective atomic ensembles [11-18]. By combining these single-photon sources with linear optics tools
and post-selection, it is possible to achieve higher photon number states but with an exponentially small
probability, which precludes the generation of larger photon numbers (see [19] and references therein) and,
typically, destroying the state after heralding.

The enhanced light-matter interactions provided by waveguide QED [20-31] presents an excellent arena for
the generation of multi-photon states. One possibility is to use atom-like metastable states of atom-like systems
as quantum memories that can afterwards be triggered to generate photonic states with controllable temporal
shape [32, 33] and with a very favorable scaling of the infidelity Iho o< 12/ (NP, 4), with N being the number of
quantum emitters and P4 the (single atom) Purcell factor of the system which characterizes how much emission
goes into the waveguide with respect to free space emission. Hence, the generation of arbitrary photonic states
reduces to the preparation of arbitrary symmetric excitations in an ensemble of quantum emitters, which is the
main focus of this work.

Inrecent proposals [33, 34], we designed both deterministic and probabilistic methods to generate collective
atomic states using equally spaced atoms within the purely dissipative waveguide regime. It was shown that this
simple atomic configuration allows one to prepare collective atomic states of m excitations with either the
fidelity [33] or the heralding probability [34] deviating from unity only by a factor scaling with P} /2 The key
resource of these protocols is the long-range dissipative coupling induced by the waveguide which enforces
effective unitary dynamics through the quantum Zeno effect.

In this work, we present two protocols that harness long-range coherent interactions induced by the guided
modes to generate collective atomic excitations within an ensemble of atoms.

+ The first protocol (‘double mirrors’) is designed for emitters, whose resonance frequency corresponds to some
guided mode in the band, see figure 1(a), and which is, e.g., well suited for optical fiber setups. In this case, the

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Ensembles of emitters coupled to one-dimensional reservoirs. The common ingredient is to have an individually adressable
source atom, used to transfer single excitations to the target ensemble, which we herald with a change of state in the detector atoms. (a)
Double mirrors configuration to achieve strong coherent interactions in the dissipative regime. (b) Engineered dielectric configuration
which gives rise to strong coherent interactions in the bandgap regime.
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Figure 2. (a) Simplest internal level structure of emitters, in which two transitions in a three-level system are coupled to the waveguide.
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(b) Internal level structure with control over the effective decay rates to the waveguide, I}/ AL ,and to free space, 3° I'* 1 | ,where
1d a2 Al

Q; is the Rabi coupling strength between |e) and |e;), see footnote 6. (c) Protocol for the repeated heralded addition of single excitations

to the target ensemble. The heralding measurement is performed on the |g)-state of the detector ensemble.

atomic configuration determines the coherent and the dissipative interaction between the emitters. The
atomic configuration in our protocol was inspired by [35], in which a pair of atomic mirrors are placed next to
a single emitter and where the analogy to cavity QED with g oc /N was shown. By placing another set of
mirrors around this atomic cavity, we obtain the tools necessary for the heralded generation of collective
atomic excitations in the first pair of mirrors.

+ The second protocol (‘dipole—dipole’) is designed for emitters, whose resonance frequency is in the bandgap,
see figure 1(b), and which is, e.g., well suited for engineered dielectrics. In this regime, dipole—dipole
interactions mediated by an atom—photon bound state formed in the bandgap emerge [36—40]. Here, the
advantage is that dissipation (through the waveguide modes) is strongly suppressed.

We analyze in detail the performance of both protocols, and compare it to previous ones.

The rest of the manuscript is divided as follows: in section 2, we introduce the two configurations and
explain how the coherent coupling emerges in each case together with the common ideas of the protocol. In
section 3, we discuss the situation for the double mirrors setup, explaining one main protocol, together with
different variations of it. In section 4, we discuss how to adapt the protocol in the dissipative regime for the
situation where dipole—dipole interactions are mediated by atom—photon bound states. Finally, in section 5 we
summarize the figures of merit and scaling of the different protocols and make a comparison with previous
proposals [33, 34].

2. System and general protocol

As shown in figure 1, the common ingredient for both the dissipative and bandgap regime is to have three
individually addressable ensembles, namely, a source atom, used to transfer single excitations to the target
ensemble, which we herald with a change of state in the detector ensemble. Moreover, the emitters must have two
dipole transitions |g) < |e)and|s) <> |e) coupled to two waveguide modes® as shown in figures 2(a) and (b) in
which either coupling can be controlled, e.g., by using a M-type level scheme (see figure 2(b) or by Stark-shifting
the respective levels out of resonance. The two guided modes are required so that the source emitter and the
detector ensemble can couple to different modes. This ensures that no direct excitation transfer between them
can take place. An excitation in the source emitter can only excite the detector atoms when a collective excitation
is created in the target ensemble. Furthermore, we require in both cases that the source/target/detector
ensembles are individually addressable.

For the dissipative regime, the waveguide mode is propagating, whereas in the bandgap regime an atom—photon bound state is formed. In
both cases we assume the propagation length of the modes to be much larger than the system size.

2
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Apart from these common ingredients, the two protocols in the dissipative and bandgap regime require
additional conditions. For example, in the dissipative regime we demand that:

(i) The two guided modes mediating the interaction have equal wavelength Ay, defined by the characteristic
atomic frequency: q(wes) = q(we) = g, = 27/Xo. This can be achieved, e.g., by the use of two different
polarization modes.

(ii) The emitters inside the target/detector ensemble are placed at distances commensurate with \,, whereas
the source/target and target/detector are placed at a distance \y /4 + n\owithn € Ny’

(iii) We can neglect finite propagation lengths and non-Markovian effects and thus use a Markovian description
to analyze the performance. The impact of these effects has been discussed in [41-43]. This requires that the
maximal distance between atoms is small compared to the propagation length, v, T', during the time of
operations, where v, is the group velocity in the waveguide.

For the configuration within the bandgap regime, the only additional requirement is the existence of a
bandgap for the two guided modes, such that their interactions can be mediated by virtual guided modes.

2.1. Theoretical description in the dissipative regime

In the dissipative regime we use what we denote as double mirrors configuration as sketched in figure 1(a), in
which the source atom is embedded by two atomic cavity mirrors with N atoms each which play the role of target
atoms. Moreover, we embed the source/target system within two other atomic mirrors with N atoms each, that
altogether form the detector ensemble. When tracing out the reservoir degrees of freedom, we obtain an effective
master equation which describes the atomic dynamics. In this configuration, the waveguide induces strong and
long-range coherent spin interactions between the different ensembles described by the Hamiltonian®

Ié
d d o(d
H,, = —21 o9 + 1 s; 'SE + he. (1)
where S((ly; S(”l S(i, are the collective operators within each ensemble é’? =5 jcy a,,, for the target

ensembles y =t and for the detector ensembles y = d,and where & 3 = |a); (0. The renormalized
spontaneous emission rate of the atoms, i.e., I'; = 3° ql gq”lzé (Weyy — wy,p)> depends on both the energy
dispersion (w;,,) and guided mode profile (contained in | gq”l) [44]. Together with the coherent spin interactions
also collective decay terms emerge, which are given by

I, I, Iy I,
Lalp]l = TD(,;)[p] + TDsgj,[P] + TDSEEL['O] + TDS;Q [ol, 2

where Do [p] = 20pO" — O'Op — pO’O. Obviously, apart from the decay into the desired waveguide modes,
the excited states |e), may also emit photons into free space, or even to other non-guided waveguide modes. We
include all these processes into a rate, I'*, typically of the order of the natural linewidth I,, which can be
described through an additional Lindblad term in the Liouvillian as
I o
E*(p) = Z T(U;Iepo'én - po’;nojr]e) + h.C., (3)
i,n
which gives rise to the so-called Purcell Factor P;; = I'¥, /T'*, and where the index i denotes the different atoms
and 7 the different hyperfine level where quantum jumps occur. Another important parameter is the ratio of
decay rates I'}; /T'{, which may be tunable or not, depending on the particular setup.
The source/ target configuration is inspired by [35], where it was shown that this model can be mapped to a
cavity QED configuration, where the source atom plays the role of the two- level system with effective decay
v = I'§, + I'’* which couples coherently to an effective cavity defined by — F —8W o> With rate g = J2NT%,, as

shown in equation (1) which is subradiant, i.e., the cavityloss is given by k = F*. Itis known [45] that within the
strong nonlinear coupling regime, e.g., when g > K, 7, this model can generate deterministically any arbitrary

m(x + 1)

superposition of the cavity-like mode up to 1 photons with an error £ ~ X In standard cavity

N
QED, one could improve the scaling to & ~ 1/+/C, using off-resonant Raman transitions [46], where

C = g%/ (kry) is the so-called cooperativity. In the effective model within the waveguide setup, however, both
I}, and I'* (and consequently the effective cavity QED parameters g, x, ) renormalize in the same way when
using off-resonant transitions such that the optimization is not possible.

7 In fact, the protocol also works for distances within an ensemble of A /2 (or multiples thereof) and/or distances between source/target or
target/detector of odd multiples of Ay /4 if the collective external drivings are adjusted accordingly.

See appendix for (i) a discussion on the atomic dynamics and (ii) details of the protocol in thedissipative regime.
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2.2. Theoretical description in the bandgap regime

If we assume that both the e—gand the e—s transitions are within the bandgap regime, it can be shown [39, 40]
that the excited atomic states are dressed by a photon cloud of size £d which allows to exchange interaction
between the emitters, which are assumed to have an equidistant spacing d = 27 /a, where ais the period of the
photonic crystal. This distance is well-suited for the generation of photonic states in a later step and also avoids
the sign alternation due to the phase acquired by the Bloch mode at the cut-off frequency [47]. The photon cloud
can be seen as an off-resonant atom-induced cavity of length £d, that allows to exchange interactions between
the emitters described by the Hamiltonian

1d \z(>z,,| ¢ ld 7Zn Zml d t
= Ze B Z Tainse + hec, )

where T} are the decay rates at the bandgap frequency cutoff, e ~1%—2I/¢ is the overlap between the effective
cavity of the nth atom with the mth atom, and the 1/¢ dependence is the decrease of the coupling strength to the
cavity due to the increase of the mode length. Notice that apart from Hy,, the photon cloud also induces dipole—
dipole couplings within the target (and detector ensemble). We did not write them here explicitly, because their
effect on our protocols can be compensated with appropriate laser detunings as will be explained in section 4. In
thelimitof L/d > £ > N, where Lis thelength of the photonic crystal, the Hamiltonian of equation (4)
converges to the one of equation (1) with a renormalized I'{’ by the factor 1/¢ but with the advantage of
eliminating the collective quantum jumps of equation (2).

2.3.Protocol

The basic principle of our protocol for both the dissipative and the bandgap regimes is depicted in figure 2(c). In
order to add one (symmetric) excitation to the target ensemble already containing m — 1 excitations, (i) the
source atom is excited, (ii) by dipole—dipole coupling the excitation is collectively transfered to the target
ensemble through the I'f ,-mode, and further to the detector ensemble through the I'] ;-mode, and finally (iii) a
fast m-pulse on the detector ensemble’s |g) < |e)-transition terminates the dynamics. If a heralding
measurement on the |¢) state on the emitters of the detector ensemble is successful, a symmetric excitation in the
target ensemble must have been generated with a heralding probability that we denoteas p, ,_,, andanerror
orinfidelity I,,,_,_.,,. Ifa collective excitation has been added, the source emitter and the detector ensemble are
reinitialized and the process is repeated. Hence, to reach any state with m (symmetric) excitations in the target
ensemble, one will have to repeat the above procedure successfully 71 times.

Ifat some point a heralding measurement fails, either a quantum jump in one of the ensembles has occurred
or the excitation has not been transfered to the detector ensemble yet. Some of these processes do not spoil the
coherence of the target ensemble state and would be correctable. However, because all these processes are
indistinguishable, the whole protocol has to be repeated from the very beginning to avoid a low fidelity of the
final state, that is, alow overlap with the target state. The final protocol to accumulate m excitations will be
characterized by the average number of operations R,, = ([Tj_, p,_,_;) > which is in general exponential in
m, and has a total infidelity

L,=1- <¢t|/’|¢t> > (5

where [1),) is the target state and p is the actual final state.

In section 3, we first discuss in detail the protocol in the dissipative regime and will find an ultimate limit that
is imposed by the collective quantum jumps of equation (2). Then, in section 4 we discuss how to adapt the
protocol to the case of finite range of the dipole—dipole couplings £d and the limitations imposed by it.

3. Detailed protocol in the dissipative regime

The practicality of the outlined protocol is gauged by the heralding probability and the fidelity of the final state
with respect to the target state, |1);) = 3 cu|t)) With [1),) o< S _|tho), where the initial state is [)g) = |g®)¥N.
Because the Hamiltonian H,, of equation (1) leaves the excitation number m invariant and because the state is
heralded at the end of every cycle, we only need to treat the case in which one excitation is added to the state of
the target ensemble ¢}, 1). If the heralding measurement is successful, the state is then [¢,,,). The full initial state
of the system is denoted by |§f)") = [s)) ® [1)y—1) @ [s¢D)?*N. In the following analysis, we will skip most of
the technical details and refer the interested reader to the appendix (see footnote 6).
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Figure 3. (a) For the success probability, equation (8) is a good approximation (solid line) of the full solution (circles) with P; = 10.
The inset (alin-log plot) shows the scaling with the Purcell Factor for N = 500 and m = 2, which satisfies In(p,,_, ) o P;".(b)
The infidelity I,,, to accumulate m excitations is shown as a function of N. Within the Holstein—Primakoff-approximation unit overlap
can be reached. The infidelity is independent of the Purcell Factor.

3.1. Holstein—Primakoff-approximation: calculation of probability

For large ensemble sizes, which are necessary for the photon generation step, the low excitation regime, i.e.,

m < N, is approximately bosonic. In this case, the multilevel Holstein—Primakoff approximation (see [48, 49])
can be applied’. Then, the spin operators in the ensembles # and t, are approximated by bosonic operators by

up to (9(%) as
Se(g 12 =~ \/—be 12)° se 1(2) = b ,1(2) be,l(Z)- (6)

Then, the Hamiltonian H,,, of equation (1) couples the initial state to two other normalized states, that s,

o9|gm “>j_( "t B)lem

— @/, - b, )FS§51|¢>5">- )

~'2Nm Fld (5)

J_

Other non-excited states that are reached by quantum jumps can be neglected because of the heralding step.
The dynamics is then governed by the non-Hermitian Hamiltonian H,,, — %Z O,/ Oy, where the sum runs over
all Lindblad operators O, of the Liouvillian £; of equation (2). The coupling strength between the states scales
with +/N due to the enhanced coupling of the collective states and the scaling with /717 appears because the
symmetric excitation of the target ensemble is superradiant with respect to the I'j ;-mode [50].

A maximal population transfer of the excitation in the source to the detector ensemble is obtained for
tunable coupling strengths, in particular, I'f; = /m I'};, and for an evolution ending with a 7-pulse on the
detector ensemble after T = 2 7 (v2N ¥ d)‘l. Other choices for the parameters, in particular the ones allowing
for I, = I'};, may also lead to a sufficiently high success probability and fidelity. These variations are discussed
at the end of this section. In the optimal case, the success probability of the heralding measurement (figure 3(a))
is (see footnote 6)

p, ~ eX — ﬁﬂ.
m—1—m P Sm

G+ 2vm + spldl)]. (8)

The scaling originates from the fact that the process is very fast, T oc N~! /2 and that the non-Hermitian terms,
which lead to the reduction of the success probability, scale with I}, and mI'}; = /m I'{,. This enhanced decay
rate can also be avoided by variations of this protocol. The prefactors in the exponential in front of I'{ ;T and
Jm Fl T arise from the populatlon of the specific states Wthh are subject to the respective quantum )umps, that

is — f 1S90 (1)) |Pdt ~ = and f (1SDO1eh (1)) |Pde ~ 2. The dependence on the Purcell Factor is exact
because the evolution takes place in the subspace of a single excitation and every state is affected in the same way
by spontaneous emission.

By repeatedly adding heralded single excitations, the state with m collective excitations |1),,) can be reached.
Clearly, the average number of repetitions is exponential in the number of excitations, i.e.,
R, =111, p]:_ll i X e™m/N for1 < m < N.Within the Holstein—Primakoff approximation, no other
states are coupled and therefore there would be no error. However, we will see that this is not true when one
considers the corrections to the dynamics in the Holstein—Primakoff picture.

? In this case, also the mapping of the source and target ensemble to cavity QED is perfect.
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3.2. Beyond Holstein—Primakoff approximation: calculation of fidelities

For the generation of a single excitation the Holstein—Primakoff Approximation is exact. However, for higher
excitations, the non-Hermitian part of the Hamiltonian leads to a coupling to additional states, that are linearly
independent of the three states treated above. Also, the mapping of the source and target ensemble to cavity QED
is no longer perfect and will suffer from a similar loss in fidelity as our protocol. The deviations from the
approximation can be investigated numerically by using the exact Holstein—Primakoff Transformation (see
appendix). Instead of three orthonormal states as above, one then has to consider 4m + 1orthonormal states,
which are symmetric in each ensemble. For obtaining the results, the bosonic operators b, ; and b; ; are cut-oft at
2and m + 1, respectively.

The multitude of additional states that the non-Hermitian Hamiltonian couples to may lead to a non-unit
overlap with the target state |1/,,), which should go to unity in the limit of large ensemble size N > 1. Therefore,
also the new initial state of the target deviates from |1, ;) and has to be obtained from the final state of the
preceding step. The results from the full numerical analysis (figure 3) agree very well with the results obtained by
applying the Holstein—Primakoff-approximation for N >> m. Furthermore, the average accumulated infidelity
as defined in equation (5) is very close to unity and scales (for m < N)as

m(m — 1)

I % 0061 - ————=, )
where the prefactor was obtained by a fit of the results from numerical integration of the master equation. The
fidelity is independent of the Purcell Factor because every state is affected in the same way by spontaneous
emission and the transitions to unwanted states only happens through collective operators.

3.3. Variations of the protocols

The protocol described in the previous section used several requirements, e.g., tunable coupling to guided
modes or fast T-pulses, to maximize the heralding probability while keeping the infidelity minimal. If some of
these ingredients are not available there exist several alternatives to obtain still high heralding probabilities. For
example'’,

* Fixed coupling to waveguide modes. Typically, the Purcell factor P;; = I'{,/T"* and the target ensemble size N
are fixed, leaving the ratio of decay rates I' ; /T'{, and the final time T'at which the detector atoms are de-
excited as the parameters open for optimization.

When the decay rates have a fixed ratio, e.g., I, /T'}; = 1,a full population transfer to the detector ensemble
is not possible. For large ensemble sizes, the heralding probability approaches

~ N—oo 4m

, 10
pmflﬂm - (m+ 1)2 ( )

see appendix for details. Interestingly, the infidelity of equation (9) is unchanged.

* Replacing fast w-pulses. The fast 7-pulse on the source atom at the beginning and on the detector ensemble at
the end of each step can be avoided by applying a continuous external field with the same Rabi coupling
strength € to the respective transitions. These are the |s) — |e)-transition of the source atom and the
|g) — |e)-transition of the detector ensemble. The success probability is then maximized for the same ratio of

the decay rates, i.e., Ffd = JmIij, for Q2 = \/gw/ ZNFfd and for T = 37 /(. The scaling of the success

probability with the parameters remains the same and only some prefactors in the exponent change slightly,
so that

JEW(10+9M N 29P1d1):|- an

Poiom exp[m =z

64 64

* Using only one guided mode. Even if only a single guided mode is available, say the I'¥ ,-mode, the proposed
protocol can still be applied if an additional metastable state |c) in the target ensemble is available to which
spontaneous emission I} < T'* is strongly suppressed [51, 52]. The fidelity is then limited by the precision of
am-pulse between the two metastable ground states |g) and |s) and the ratio T'*/ (VNT¥,) (see appendix for
details).

+ Adding m excitations at once. Instead of generating single excitations in every step through a single source
atom, one could in principle also use a source ensemble of size 1 and transfer all excitations to the target

10 . . . . . .
In principle, one can also consider the case in which the target ensemble and the detector ensemble are not of the same size N, but this does
not lead to qualitatively different results.
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ensemble to generate m collective excitations at once. However, the source atoms are then superradiant and
decay with an enhanced decay rate of at least m1 ;. On the other hand, the dipole couplings are only enhanced
by mNT,,, which implies that the probability would still scale exponentially with \/% .Inaddition, one
requires a measurement device which can resolve the excitation number of the detector ensemble to guarantee
the transfer of m excitations to the target ensemble. Even if that is possible, e.g., the probability for generating

two excitations at once is lower than the probability, p,_,,p, _,,, obtained through the original protocol (see
appendix).

In all of these variations, the final goal is to accumulate several excitations within the same hyperfine level |s).
When the heralding fails, we reinitialize the process all over again, which yields an exponential number of
operations R, with the number of excitations we want to create. Moreover, the existence of m excitations already
in the state s causes the enhanced decay mI'j; of the target ensemble, which leads to a scaling of the success
probability with /71 and to the necessity of a tunable ratio I'{, /T"} ; for maximizing the success probability. The
former can be avoided if after each heralding of a single collective excitation, it is stored in other hyperfine levels
available |s,,) to combine them a posteriori using Raman two-photon and microwave transitions plus atomic
detection. It can then be shown [34, 53, 54] that by using only one additional hyperfine level, s, the number of
operations is still exponential R,, oc e™, whereas, if we use log,m levels a subexponential scaling of R,,, can be
achieved. In these cases, carefully constructed repumping schemes have to be used to avoid introducing
additional errors during the repumping step [34].

4. Protocol in the bandgap regime

In the previous section, we showed how the success probability of the protocol in the dissipative regime is limited
by quantum jumps into the waveguide, which leads to the scalingwith1 — p, | o y/m/N.Asweshowedin
section 2, a possibility to get rid of the quantum jumps while maintaining the dipole—dipole interactions is to use
interactions mediated by the bandgap [36—40]. This can be interpreted as the formation of an atom—photon
bound state mediating the exchange of interactions between emitters. By using this configuration we eliminate
the quantum jumps into the waveguide at the price of reducing the dipole—dipole couplings due to their finite
range &d. In principle, one can make &4 much larger than the characteristic length of the system, Nd, so thatall
the emitters couple homogeneously as in the dissipative regime. However, this comes at a price of enlarging the
length of the atom-induced cavity and therefore the subsequent reduction of the dipole—dipole coupling. In this
section, we first discuss the scaling of the success probability and infidelity in the ideal limit £ > N. Inrealistic
cases, £d is limited by the length of the photonic crystal L, that is we require a finite £d < L. Thus, we also
explore the limitations imposed by this trade-off to generate multipartite entangled states.

4.1.1deal case
The idea of the protocol is analogous to the one in the dissipative regime: transfer a single excitation from the
source atom to the target ensemble through the I ; mode, and then from the target to the detector through I'} ;.
Inthelimit { > N the Hamiltonian Hj, of equation (4) converges to

Iy

Fg
Hy = f(aé?sgf? + 80 + E(sf,f:)s};’) + S + His, (12)

where the dipole—dipole couplings within the ensembles have been included in the Hamiltonian Hyg. The

dynamics of the system can be again best analyzed by using the Holstein—Primakoff-transformation. The main
differences to the dissipative regime are the following:

(1) The emitters within each ensemble suffer dipole—dipole interactions irrespective of their position, whereas
in the dissipative regime these can be canceled by choosing the 27 (or 7) distances. These dipole—dipole
interactions for equidistantly spaced atoms lead to a collective Lamb-shift, which is, e.g., for the Se(gf) mode

N, ¥ .
25“’ ,where N, = N — m + 1. Therefore, in order to make the coherent transfer of

equalto A; =

excitations resonant, this Lamb-shifts in each ensemble have to be compensated through either appropriate
Stark-shifts or magnetic field gradients for the source atom, target and detector ensembles.

(ii) The effective coherent coupling G between the source atom and the collective mode of the target ensemble is

VN

also modified by the effective cavity length £d and is given by G = 2—?‘1 Therefore, the optimal time for a

full population transfer to the target ensembleis T = /G, if the detector ensemble is neglected. If one

takes into account the second step, the maximal population transfer to the detector ensemble occurs for
tunable coupling strengths, in particular again for I'f, = m T}, atatime v27/G.
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Figure 4. (a) Population dynamics of the coherent transfer of a collective excitation from source (blue) to a collective mode of the
target ensemble (orange) for a situation with N = 100 = £ andm = 1 and I'* = 0. (b) Intensity and phase distribution of the target
ensemble as defined in the text at the optimal time of the transfer for the same values as in (a). (c) Scaling of the infidelity of the
intermediate state with respect to the fully symmetric state Séé) |g)®N after projection onto the subspace of states in which the excitation
is in the target ensemble. The solid lines are a fit to the numerical values showing a scaling with £ 2.

From the previous analysis, we infer that the success probability of adding another excitation in the optimal

caseis

pmflﬂm ~ exp[— /—Z\’;rgpld]) (13)

where N,, = N — m + 1. This scaling orginates in the fact that the timescale of the transfer T oc £ / (VN ),
whereas the only process that makes the norm decay is the spontaneous emission probability with rate T'*,

In general, this scaling is not better than in the dissipative regime. But as we showed in the previous section,
the imperfect fidelity was arising from the collective quantum jump terms, which are vanishing in this case such
that the infidelity with the final state satisfies I,, = 0.

4.2.Realisticcase { ~ L/d

So far we have neglected the effect of a finite effective cavity length £d on the state itself. In order to avoid un-
necessary overlap between section, we focus on analyzing the effect of finite £ in the first step, i.e., for the transfer
of asingle excitation from the source atom to the target ensemble in state |g)*N . Even though, this does not grasp
the full process, it gives insight into the scaling of the infidelity with the finite effective cavity length . The
simplified Hamiltonian in the bandgap regime (with explicit dipole—dipole shifts of the ensemble) for the first
step is then

Iy, _ 19—z [

H=_4 Z(e @ a(s)affy)eg + h.c.) + 08+ e w U(nf)egaﬁf,?ge . (14)
n

26 &

For finite £ one needs to take into account the changes in the collective Lamb-shifts and the coherent
couplings. When taking this into account, the dynamics still lead to a (almost full) depletion of the population in
the excited state of the source atom, see figure 4(a) for N = 100 and £ = 100. At the point of maximal
population transfer we plotted the phase arg(c,) and the intensity distribution |c,|? for the coefficients c,, of
o\ 1g® )N in the target ensemble in figure 4(b). We see that in spite of the limited range £ ~ N, the collective
mode is approximately homogeneous. For smaller &, the phase and intensity distributions become
inhomogeneous and therefore cannot be used to transfer the excitations coherently. In figure 4(c) we show the
scaling of the infidelity of the intermediate state with respect to the completely symmetric state and see that the
infidelity scales favorably with the cavity length, i.e.,as I oc £72.

n,m

5. Comparison between different protocols

The protocols presented in this manuscript together with the ones presented in [33, 34] constitute a set of
methods for quantum state preparation using different resources present in waveguide setups. To give a full
understanding, we summarize the conditions and figures of merit for each protocol, identifying which ones are
more suitable depending on the available resources (see Table 1):

+ In[33], we use atomic A-systems with equally spaced atoms to build up arbitrary superpositions of atomic/
photonic states. The protocol requires P; >> 1, is deterministic and its infidelity to generate up to m
excitations scales as I, ~ m/ \/E + O(P;;"). This protocols is well suited for engineered dielectrics or in
general any system with P;; > 1[20-25]. They can also be extended to low mode cavity QED systems if the

8



I0OP Publishing NewJ. Phys. 19 (2017) 043004 V Paulisch et al

Table 1. Summary of different protocols with the scaling for the accumulated error and the
success probability for large m. See text for details of the protocols. For simplicity we leave out
various constants to make clear the scaling with the relevant parameters.

Protocol Errorl — F Success probability p,,, Requirements
Deterministic [33] m/ \/m 1 Py>1
Probabilistic I [34] m(1l — n)x? (nx2)m x=QTJN <« 1
Probabilistic IT[34] 0 e’L’/‘/P_ld Py>1

‘Double mirrors’ m?/N? e N HPED N>1
‘Dipole—dipole’ O™ e 8/ (NmP1a) &SN

same conditions hold, i.e., if one works in the bad-cavity limit and has an ancilla atom which can be addressed
individually.

+ The first protocol discussed in [34] also uses A-systems, requires N Pp; > 1and the use of an external single
photon detector. The protocol heralds (by a photodetector with efficiency ) the transfer of single collective
excitations with probability p, which can be controlled at will, but with a trade-off with the infidelities, which
scalesas I,,—1_,, x p.Toaccumulate excitations, the average number of operations is exponential
R,, o< p~™, which hinders its extension for very large excitation numbers. However, it is especially suited for
generating low photon numbers in systems with either large P;; or systems with P;; < 1andlarge atom
number N like current experimental setups for optical fibers [26-31].

+ The other protocols discussed in [34], also exploit the long-range dissipative coupling for equally spaced
atoms, and require Py; > 1. The advantage is that the probability of heralding a single collective excitation
p o e VPia can be made close to 1 for systems with Piz >> 1. Moreover, the infidelity of accumulating
excitations is strictly I,, = 0. This is certainly the best suited method in terms of fidelities but to obtain high
probabilities we require systems with P; > 1.

+ The protocol within the dissipative regime discussed along this manuscript allows to overcome the limitations
of probabilities for systems with low Py 4, by putting the difficulty in a more elaborate configuration of atomic
positions (see figure 1(a)). The heralding probability of a single collective excitation is only dependent on N,
ie,poxe Jm/N The average infidelity to accumulate m excitations, though not being 0, is still very small,

I, o< m?/N?2. Thisis probably the best method for optical fiber setups [26-31].

+ The protocol within the bandgap regime is only suited for engineered dielectrics where the existence of
bandgaps is possible. Though it has the advantage of eliminating quantum jumps into the waveguide, the
finite range of the interactions &, leads to a worse heralding probability scaling with p o e~¢/VNuPid) with the
advantage of a possibly better infidelity I, = O(£2) in the ideal regime where the length of the photon-
bound state mediating the interaction is larger than the ensemble size.

6. Conclusions

In conclusion, we have proposed several methods for the heralded preparation of symmetric states in ensembles
of emitters using coherent atom—atom interactions induced by their coupling to two guided modes in waveguide
QED setups in both the dissipative and the bandgap regime. In the dissipative regime, we showed how the
collective quantum jumps into the waveguide limit the single excitation heralding probability

Poim = e=™/m/N which can still be close to 1 for systems even with P;; < 1, which is very relevant for the
experiments with optical fiber setups [26—29]. We also consider the situation of enginereed dielectrics within the
bandgap regime in which the finite range of atom-induced cavities gives a more limited scaling of the
probabilities. In all cases by using atomic detection and post-selection we rule out most of the errors, giving rise
to very low global infidelities in both the dissipative (I,,, < m?/N?)and bandgap regimes (I,,, =0, for £ > N)
for the preparation of atomic states.

These prepared states can then be mapped to a photonic state of the waveguide with controllable temporal
shape [32, 33]. This mapping scales favorably with the system parameters, in particular the emitter number N
and the Purcell factor P4, that is the infidelity (or error) of this process scales as L, o< m?/(NPy4). Therefore,
this protocol can be used for the efficient preparation of triggered multiphoton states.
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Appendix A. Atomic dynamics in dissipative regime

A.1. Derivation of the master equation
Under the assumptions described in the main manuscript, the interaction Hamiltonian between the emitters
and the one-dimensional reservoir takes the form (%2 = 1)

H; = qu”(o’gnaq,neiqz + h.c), (A.1)
,q,1

where the sum runs over all emitters and where gq" is the single photon coupling constant for the dipole
transition |e) < |n), which is independent of the atomic position. The atomic operator is denoted by

ons = |a), (Bland the photonic annihilation operator for the respective mode is a,,,,. The one-dimensional
bosonic reservoir is described by H, = 3, wq,na;;,] a,,» where w; ,, is the field dispersion relation. The atomic
free energy of the dipole transition is given by H, = w,}; ol + ws > ol + W ai,g, where w,, = w, — w, are
the relevant atomic frequencies for the interaction with the waveguide modes.

Typically, the relaxation timescales of the reservoir are much faster than the atomic timescales. This
separation of timescales justifies the so-called Born—Markov approximation that allows to calculate the
evolution of the atoms, through their reduced density matrix p, after tracing out the reservoir degrees of
freedom. This approximation requires that one can neglect finite propagation lengths and non-Markovian
effects, which requires that the maximal distance between atoms is small compared to the propagation length,
% T, during the time of operations, where v, is the group velocity in the waveguide. In the case of a one-
dimensional reservoir the evolution is then governed by the master equation [55]

d .
d—f = LIp] = —i[Haw p] + Lalpl, (A2)
F?d . m __n
Hdd = Z — S§in (qolzmnl)aenane’ (A3)
m,n,n
Fir]d m n n _m
Lalpl = > — cos Qolzmn) (O3 pO ey — pogy o) + h.c., (A.4)
m,n,n

where g, = q(wyy) = q(ws) is assumed to be the same for both modes and where the renormalized spontaneous
emission rate of the atoms, i.e.,, I'; = 3 ql gq” 6 (Weyy — wy,yy)» depends on both the energy dispersion (w;,,,) and
guided mode profile (contained in | gq” [) [44]. Note, that the master equation above allows for two very distinct
regimes for different interatomic spacings:

+ Ifthe distance between two emitters is a multiple of 7 /g, = A /2 the coherent terms vanish and the evolution
is purely dissipative and the atoms decay through a collective operator.

+ Ifthe distance between two emitters is an odd multiple of 7 /(2q,) = Ao /4, the dipole—dipole interactions are
at their maximum.

In this work, we exploit coherent dipole—dipole interactions such that a beneficial configuration is based on
two atomic mirrors (see figure 1(a)) surrounding an atom acting as a source for distributing atomic excitations
symmetrically to the inner mirrors (target ensembles ¢; and t,). Collective and individual quantum jumps and
other experimental imperfections cause transitions to undesired states. These transitions can be corrected by
using the second guided mode and heralding measurements on the outer mirror emitters, the detector ensembles
d,and d,.

In particular, the coherent dynamics in the double mirrors configuration (in the frame rotating at the
frequency of the atomic frequencies) is then described by
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s
Hyy = 21d (S)S(t) §F S(d) SO 4 he. (A.5)

eg,+ se,—

where S (y ) =S, O i £, ) 7 are the collective operators S(%) = Z]e ) a 3 within each ensemble, for the target

ensembles y=t and for the detector ensembles y = d. In addition, the Lindblad terms describing the collective
decay are given by

Catol = S4p o1 + Dap | Hap i) (A.6)
2 O-ge 2 Sge,— 2 Sse,+ > :

where Dp[p] = 20p0" — O'0Op — pOTO.

Apart from interacting with the waveguide modes, the excited states |e), may also emit photons into free
space, or even to other polarizations that do no create collective coupling between emitters. We embedded all
these processes into a rate, I'*, typically of the order of the natural linewidth I}, which can be described through
an additional Lindblad term in the Liouvillian as

r* n n n _n
L*(ﬂ) = 27(0773/)0—677 - pger]o—ne) + h.c. (A7)

1

Thus, one relevant figure of merit of these system is the Purcell Factor P;; = I'f,/T"*. Another important
experimental resource is the number of atoms N trapped within the target and detector ensembles.

A.2. Obtaining tuneable decay rates by using an M-type structure

The decay rates I'}, can in principle be tuned by using an M-type level scheme (see figure 2(b)) which is
equivalent to a A-type system after adiabatic elimination of the far-detuned excited states |e,). To show this,
consider the full Hamiltonian for the former system for a single atom, that is

H=H,+ H,+ Zwe" Tepe, + Z (Q,e“t'o, . + h.c.) (A.8)
n

+ Zg (o, ,,aq,ne Z + h.c.). (A.9)

Transforming into the frame rotating with Hy = Zn w0, ., and adiabatically eliminating the |e,,) states leads to

Q|
Hyg ~ (u)g — wp + Z A2 Ope + Zwka;’naq,,, (A.10)
k.n
gn*gn Vl *
+ Z qA : a;naq/ ez 4 Z Uenaq e, (A.11)
29" 7

T |Q,,<r>

where A, = w,, — w,. Therefore, the decay operators now turn tobe I'}; — [> and can thus be

7

controlled via the Rabi-coupling €2, (¢). The Stark-shifts that are induced by thls coupling can be incorporated
into the corresponding frequencies.

A.3. Simplifications

(i) Considering that the detector is reinitialized to the state |s(¥)*2N after each step, it can only couple to the
state Se(s‘f)_ls(d) ¥#2N_ Both these states are dark with respect to the jump operator Sse %, 1.e., they do not decay.
Thus the decay operator for the detector ensemble can be neglected and the fourth decay term in
equation (A.6) vanishes.

(ii) Due to the heralding at the end of each step, the relevant dynamics is governed by the no-jump evolution.
This in turn is fully described by the non-Hermitian Hamiltonian Hy, = Hyy — 1D O,j Oy, where O are
all the Lindblad operators of the Liouvillian of equation (A.6). Hence, the non-Hermitian Hamiltonian is
given by

Hyp = _(r1 So0SY .+ T1,89 89 4+ hee)

_ _(Fldagse) Fg S(t) S(f) 4 F S(l) S(l)

eg, —ge,— es, —se, —

+ T*1). (A.12)

(iii) Furthermore, the total excitation number m of the system is invariant under the action of the non-
Hermitian Hamiltonian. Hence, for superposition states [¢)) = 3 c,,|¢,) each excitation can be treated
separately. Therefore, we only treat dynamics of the case in which |, 1) — [1,,).
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Appendix B. Details of the protocol in the dissipative regime

B.1. Scheme of the protocol

The protocol is based on repeated heralded additions of single (symmetric) excitations to the target ensemble in
the metastable state |s). After m steps, the reinitialized state is |¢)") = [s¢)) @ [¢),—1) ® |s)*2N. An excitation
is added by (see figure 2(c))

(i) Repumping the source atom: a single excitation is added to the system by a fast excitation of the source
atom,

lor)y — [o") = oQ107) = [e9) & [Yhp_1) @ |s@)22N, (B.1)

Clearly, this avoids any double excitations in the system.

(ii) Free evolution: the dipole—dipole coupling induced by the first guided mode, I'{,, de-excites the source
atom and distributes the excitation symmetrically over the target ensemble in the state |e). The dipole—
dipole coupling induced by the second guided mode, I'j;, moves the excitation in the target ensemble to the
ground state |s) and excites the detector ensemble:

[p™ (1)) = e Hmt|r), (B.2)

where H 1, is the non-Hermitian Hamiltonian of equation (A.12) determining the dynamics as explained
above.

(iii) Heralding on the state of the detector ensemble: After some time T, the detector atoms are quickly de-
excited to |g), halting any further evolution of the system:

) = S 1¢™(T)). (B.3)

Then, the |g)-state of the detector ensemble is probed and if an excitation is detected, an excitation must
have been added to the target ensemble and steps (i)—(iii) can be repeated after the source emitter and the
detector ensemble have been reinitialized.

When no excitation in the detector ensemble is detected, this can be due to several indistinguishable reasons.
The case in which emission into free space or into the guided mode in either the source atom or the detector
ensemble happened, do not affect the state of the target ensemble, such that one could repeat steps (i)—(iii) to try
adding an excitation again. The same is true for collective emission in the I'} -mode of the target ensemble.
However, spontaneous emission and collective emission in the I'} j-mode of the target ensemble are not
correctable without introducing additional errors. Therefore, one should restart the whole procedure if no
excitation is detected. Clearly, this will lead to an exponential scaling of the success probability with the number
of excitations, m. We discuss variations of the protocol to avoid this scaling.

B.2. Multilevel Holstein—Primakoff transformation and approximation
By using the Holstein—Primakoff-transformation [48], it is possible to map a spin operator onto bosonic
operators. This transformation is especially useful to describe the symmetric subspace of N two-level quantum
systems. For multilevel systems this transformation can be generalized, see e.g. [49]. In particular, one needs
d — 1bosonic operators to describe the symmetric states of d-level systems.

Because this paper focuses on (effective) three-level systems we only discuss the transformation for this case
here. The ground, excited and target states of one three-level system are denoted by |g), ) and |s). Any
symmetric state can then be described by

Ims, me) oc sym(|s)*™ @ |e)*" @ |g)N "), (B.4)

We denote the two bosonic operators by b; for the annihilation operator of |s)-state, and b, for the excited state.
These operators should satisfy

bSImS) me> =+ mslms -1, me>) bjbslmsy me> = mslms> me>> (BS)
be|m5) me> = VmelmS) me — ]->’ b:belms’ me> = me|msy me>) (B6)

and hence, they also commute [b;, b,] = [bf, b:] = [b,, b: ]1=0.
The spin operators S5 = E;\I: Lo 5 can then be expressed by the above bosonic operators as

S =N —5, Ss="0blbs, S.="blb,, (B.7)
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Sge=bVN =5, Su=bVN -5, S.=b/b,, (B.8)

where s = b/ b, + b b,. In the low excitations regime, m = (s) < N, the operators are linear in each bosonic
operator up to first order (’)(%)

B.3. Dynamics within Holstein—-Primakoff-approximation: probabilities

The spin operators of the target ensemble can be mapped to commuting bosonic operators b, ; in the low
excitation regime m < N, where m is the number of excitations (in either |s) or |e)) of the state. The spin
operators can then be replaced by

4
Sg 10 =N = b bs1) — b ,1(2) be,12) = N, (B.9)

S o 2,12 — ,1(2) \/N - 51,-1(2) bsi) — b 1(2) be12) ~ ‘/_bel(z)’ (B.10)
S$he = bl YN = bl bue — bl bare ~ VN o), (B.11)
Sse 12) = b:,l(z) be,12) (B.12)

Within this approximation, the relevant states coupled trough the non-Hermitian Hamiltonian of
equation (A.12) are

o) = o160, (B.13)
l¢3) = (S)J—(bI R IDICIOR (B.14)
lo7) = o) J_( D) mSé:? o) oc oS | th), (B.15)

where the reference state is |¢)") = [s¢)) @ [¢h,—1) ® [s)*2N. The normalization of |¢') is due to the fact, that
we consider an initial state of the target ensemble |1}, ), which already contains m excitations. In particular

1

[Vm) = W(bil — b)) @ ). (B.16)
In the basis of the states |¢!"), the non-Hermitian Hamiltonian in the m-excitation subspace can written as
—i(T%, +T%  J2NT¥, 0
Hp = % V2NTE,  — il + T*) V2NmTj, | (B.17)

0 V2NmT3, —ir*

A maximal population transfer between |¢]") and |$}') is reached for tunable I, = /m I'}; after time
T = V27 (J2NT%,)"1. Other choices for the parameters, in particular ones allowing for I'f, = I'j;, may also
lead to high enough success probability and are discussed later.

The protocol is limited by the success probability for each of the steps |15,,_1) — |t),,), that s, the probability
of one of the detector atoms being in |¢) and therefore the generation of |),,) in the target ensemble. To quantify
it, one needs to calculate

P 1o = IS5 =T (o) |2, (B.18)

after the de-excitation with S (d) .In the optimal case, the success probability of the heralding measurement
(figure 3(a)) is

p, ~ exp| — \/Eﬂ—
m—1—m p 8 m

The scaling originates in the fact that the process is very fast, T oc N~ /2 and that the non-Hermitian terms
scaleas I}, and mI'}; = /mT¥,. The scalings arise from the population of the specific states which are subject
to the quantum jumps.

Clearly, the fidelity of the process, that is the overlap between the goal state | ¢}') and the final projected state

3+ 2vm + 8P;;)]. (B.19)

Séile*iH"h T|¢") after normalization is unity within the Holstein—Primakoff approximation. We neglect errors
originating from finite detection efficiencies and dark counts, because the detection via the detector ensemble
can be repeated as many times as necessary.

By repeatedly adding excitations, we can accumulate several excitations within the same mode
[1,) o S(t) _)"|tby). Clearly, the average number of operations R,, = [[;_, pkill _; toobtain this state s,
accordlng to the previous discussion, exponential in the number of excitations and scales approximately as
R,, x eV for large excitation numbers 1 < m < N.

13



10P Publishing

NewJ. Phys. 19 (2017) 043004 V Paulisch et al

Superpositions are obtained by alternately adding a single excitation and applying a displacement operator
[56]. The displacement operators can be easily applied through a well-controlled microwave transition between
the metastable ground states of the target atoms.

B.4. Beyond Holstein—Primakoff approximation: fidelities

Without the Holstein—Primakoff-approximation the non-hermitian Hamiltonian couples to additional states.
In particular, the decay operator I d55£?75§5?7 couples the state Se(g . |¢}") to states that are linearly independent of
the basis states defined in equations (B.15). Because the operators no longer satisfy the bosonic commutation
relations, a coupling between the symmetric and antisymmetric states of the target ensemble is possible. In fact,
instead of three orthonormal states one now has to consider 4m + 1 orthonormal states. The states under

consideration are always symmetric in each ensemble and thus a target ensemble state can be denoted by

ki, bs ko, L) o SB 1 Sh S8, 8% 1g)#2N, (B.20)

where for simplicity the superindex (¢) was omitted. The restrictions on (ky, 4, k, L), 1.e.,
k+L+k+L=m-—1lormand(l, L) = (0, 0), (1, 0), (0, 1),leave the 4m + 1 states,

1e9) @ m — 1 —i, 054, 0) ® [s@D)*N, i=0, .m—1, (B.21)
89) @ Im — 1 —1i, 154, 0) @ |s)*N, i=0,..m — 1, (B.22)
89) ® Im — 1 =, 054, 1) @ [s@)*N, i=0,..m—1, (B.23)

189) @ |m — i, 05 i, 0) ® Ses,_|s@D)*N, i = 0, ...m. (B.24)

The multitude of additional states that H,,}, couples to may lead to a non-unit overlap with the goal target
state [1)&%) o Sie.—|g"”)?*N. Clearly, in the limit of large ensemble size N, the fidelity has to go to unity to agree
with the Holstein—Primakoff-approximation.

The numerical results can then be obtained by applying the exact Holstein—Primakoff-transformation, see
equation (B.12) and using a cut-off parameter of m + 1 for the operators b, ; and 2 for the operators b, ;. For the
generation of m excitations, the new input state has to be obtained from the output state of the step before, i.e.

[9f) = [e9) @ [Yh) @ [s@)=N, (B.25)
i) oc Try a(SE) e T 1)), (B.26)

The results from the full numerical analysis (figure 3) agree very well with the results obtained by applying
the Holstein—Primakoff-approximation. The infidelity scales as I,,, ~ 0.061%3 for1 <« m < N,wherethe
prefactor was found by a numerical fit. The fidelity is independent of the Purcell Factor because the error stems
from nonlinear corrections to the Holstein—Primakoff picture that enter through collective rather than
spontaneous emission events which affect every state in the the same way.

B.5. Variations of the protocol

The scheme previously proposed can be modified if some of the demanded ingredients are not available. The
goal is to maximize the success probability (equation (B.18)) constrained by the parameters that are
experimentally achievable:

(i) Fixed ratio I'};/T'{,. The previous analysis showed that, e.g., when I'};/T'}, can be tuned around orders of
Jm = O(1), then almost unit probability can be reached. If on the contrary the ratio between decay rates is

fixed, e.g., I'l; = I}, then the maximal success probability occursat T = W—ZI)F and scales within
1d
the Holstein—Primakoff approximation as
- 3m? 1
- _ 4m e ( ?(erfW;; +P1d1]:|
Potm = —¢ : (B.27)
(m + 1)?
The success probability goes to a constant value for m > 1:
- N—oco 4dm
i S — (B.28)
Pm 1—m (m + 2)2
whereas the resulting infidelity still scales as
m(m — 1)
Iy = 0.061————= (B.29)

for m < N, are depicted in figure B1. The prefactor was obtained from a numerical fit.
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Figure B1. (a) For the success probability, equation (B.27) is a good approximation (solid line) of the full solution (circles). The gray
horizontal lines depict the limit of the success probability, equation (B.28), caused by an incomplete population transfer. The results
here do not include the Py, term. (b) The overlap with the goal state is 1 within the Holstein—Primakoff-approximation and for m = 0
and slightly deviates from unity by 1/N? for the full solution. As expected, they agree in the limit of large ensemble sizes N > 1.
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Figure B2. (a) The time evolution when including a finite Rabi coupling strength and when one needs to consider additional states. For
N = 100, m = 1 and the optimal parameters discussed in the text a full population transfer (when quantum jumps are neglected) is
still possible. (b) For the optimal parameters and the time for a full population transfer T, the success probability of the Holstein—
Primakoff-approximated evolution scales as in equation (B.30) (solid lines) agrees well with the numerical results obtained by the
Holstein—Primakoff-transformation (circles).
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Replacing fast m-pulse for continuous driving. The fast m-pulse on the source atom at the beginning and on the
detector ensemble at the end of each step can be avoided by applying a continuous external field of finite
Rabi coupling strength to the respective transitions, i.e., the |s) — |e)-transition of the source atom and the
|g) — |e)-transition of the detector ensemble. The dynamics (see figure B2(a)) then contains five states
(within the Holstein—Primakoff-approximation). These states are | ¢,,), for m = 0, ...3 from the definitions
aboveand |¢,) x Séf )|¢,). A full population transfer to the desired state is obtained for I'f, = /m I}, as for

the main protocol and for a coupling strength of {2 = \/g V2NT¥,. The success probability is maximized at
time T = 76 (2NT¥))"! = 37/Q and in this optimal case the scaling of the success probability with N,
mand Py, is then approximately (see figure B2(b))
_ JEW(10+9M 29 1)
= exp| — + —Py ||
pm— 1—m p [ \/m 1d

B.30
64 64 ( )
That means, the scaling remains the same and only some prefactors in the exponent change slightly.

Using a single guided mode. Even if only a single guided mode is available, say the I'};-mode, the proposed
protocol can still be applied. To ensure that the fidelity of the desired state is still close to 1, one requires an
additional metastable state |c) in the target ensemble to which spontaneous emission, I', is strongly
suppressed, and good control over a 7-pulse between the two metastable ground states |g) and |s).

The step (ii) is then split up into two steps as schematically depicted in figure B3(a). The first one involves the
transfer of excitations from the source atom to the target ensemble. The excitation is stored in the additional
metastable state |c). Therole of the |g) and |s) state is then reversed by applying a well controlled 7-pulse
between these states on every atom. Finally, a w-pulse from |c) to |e) is applied and the dipole coupling
transfers the excitation to the detector ensemble. Clearly, the detector atoms should be in the |g)-state
initially for this and the measurement is then done on the |s)-state, to which the detector ensemble should
be de-excited to.

The infidelity then contains additional terms N A (2w T)? and I

VNI
Omw T =  for the full population transfer between the metastable ground states and A (Qyw T') is the

, where optimally the pulse area is
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Figure B3. (a) If only a single guided mode is available, the protocol can still be applied if another metastable state with strongly
suppressed spontaneous emission is available. (b) Beam-splitter-like transformations between metastable states are obtained by
applying a corresponding external driving field. (c) Excitations can also be added by using the decay through the guided mode. (d) The
heralding probability for generating two excitations at once is lower than the heralding probability of the original protocol.

deviation from this value. As before, the error induced in every step will accumulate such that the final
1nﬁdehty L, = Z;(nzl L_q1_&.

(iv) Adding m excitations at once. Instead of generating single excitations in every step through a single source
atom, one could in principle also use a source ensemble of size m and transfer all excitations to the target
ensemble to generate m collective excitations at once. However, the source atoms are then superradiant and
decay with an enhanced decay rate of at least mI ;. On the other hand, the dipole couplings are only
enhanced by JmNT, 4, which implies that the probability would still scale exponentially in \/% .In addition,
one requires a measurement device which can resolve the excitation number of the detector ensemble to
guarantee the transfer of m excitations to the target ensemble. Even if that is possible, e.g., the probability for
generating two excitations at once, p,_, ,,is lower than the probability, p,_,,p,_,,, obtained through the
original protocol (see figure B3(d)).

B.6. Intermediate storage in further metastable ground states
For alarge excitation number m the \/#,/N -term in the success probability of equation (B.19) causes a fast decay
of the probability with . This is due to the fact that the target ensemble decays super-radiantly with respect to
the I'} ;-mode, that is with an enhanced decay rate of mI'} ;. This can be avoided if the |s)-state of the target
ensemble does not contain any excitations in the beginning of each step. The excitations are then not
accumulated in the |s)-state, but in other metastable ground states of the target ensemble, [s;). The number of
additional metastable ground states necessary depends on the approach of how to add up the excitations
a posteriori.

The success probability of adding another excitations when the m excitations are stored in different
hyperfinelevels, |s;), different from s is modified as follows:

=~ €X] \/—W
pm—l—’m p 8\/2_

which, as expected, does not show the additional scaling with /1.

Moreover, itis important to highlight another difference with respect to the previous protocol. Previously,
when a heralding measurement failed we reinitialize the target ensemble back to |g) destroying the stored m
excitations. However, in this case the excitations stored in |s;) can be salvaged with minimal error by using an
appropriate repumping scheme in which the symmetry of the state is unaffected. This is achieved by switching
I'j; = 0, applyinga repumping Hamiltonian Hgp = QS{), + h.c.and waiting for this state to decay to the state
|g)- In fact, this decay is superradiant with respect to the I'{ ,-mode due to the symmetry of the state of the target
ensemble. There are two types of errors: (i) a spontaneous jump in the target ensemble can already have occured

before the repumping step, in which case the error probabiliy scales as \/ﬁlp

ensemble has occured (which happens with probability f)’ but during the repumping step a spontaneous

(5 + 8P, ] (B.31)

; or (ii) a collective jump in the target

jump happend, in which case the total error probability scales as — ——. Because the overlap with the

«/— N NPy
symmetric state scalesas 1 — N ™ after spontaneous emission events, the error is upper bounded by W after
1d
the repumping step.
Concerning the methods to accumulate excitations into a single level, there are multiple approaches that
sketch briefly:
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(i) Beam-splitter-like transformations (see figure B3(b)) can be used to accumulate excitations, for a detailed
analysis see for example [34]. A ‘beam-splitter’ between the metastable ground states |s;) can be applied by
switching on an external field coupling two of those states for a certain time. The pulse area determines the
transmittance of the beam-splitter. To add up the population in two of these states, one has to herald on
detecting no excitations in one of the metastable states. If the excitations are added one-by-one, the final
success probability is exponential in the number of excitations m. However, when doubling the excitations
at each step, one can reach polynomial scaling for Fock states and subexponential scaling for superpositions.

(i) In principle, excitations in the metastable states |s;) can also be added by using the I'{;-mode of the
waveguide and the detector ensemble. This case is clearly equivalent to adding the excitations directly one
by one. In principle, this scheme can be used to add multiple excitations at once. These are however difficult
to detect and require number-resolving measurements in the detector ensemble.

(iii) To increase the success probability significantly, one can use the fact that an excited state has to decay after
some time, either through the guided mode or spontaneously to free space (or other guided modes different
to the mode of interest). If only decay to the level |s) is possible (see figure B3(c)) and the detector atom is
decoupled, an excitation in e} is certainly added to |s). However, because no heralding measurements are
applied, the fidelity is reduced due to spontaneous emission events. For adding excitations one by one, the
fidelity is reduced by L

ml'5,

inthestepm — 1 — m.Ifonly excitations are added one-by-one, the averaged

infidelity at theendis }_}*, kFT* In principle, this can be improved, e.g., by adding two or even more
1d

excitations at once.
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