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Abstract
WaveguideQEDoffers the possibility of generating strong coherent atomic interactions either
through appropriate atomic configurations in the dissipative regime or in the bandgap regime. In this
work, we showhow to harness these interactions in order to herald the generation of highly entangled
atomic states, which afterwards can bemapped to generate singlemodemulti-photonic states with
highfidelities.We introduce two protocols for the preparation of the atomic states, we discuss their
performance and compare them to previous proposals. In particular, we show that one of them
reaches high probability of success for systemswithmany atoms but lowPurcell factors.

1. Introduction

Non-classical states of few photons can be generated in a variety of physical systems. Triggered single photon-
sources [1] can be found in solid state systems [2–4], in neutral atoms or ions coupled to optical cavities [5–10]
and in collective atomic ensembles [11–18]. By combining these single-photon sources with linear optics tools
and post-selection, it is possible to achieve higher photon number states butwith an exponentially small
probability, which precludes the generation of larger photon numbers (see [19] and references therein) and,
typically, destroying the state after heralding.

The enhanced light–matter interactions provided bywaveguideQED [20–31] presents an excellent arena for
the generation ofmulti-photon states. One possibility is to use atom-likemetastable states of atom-like systems
as quantummemories that can afterwards be triggered to generate photonic states with controllable temporal
shape [32, 33] andwith a very favorable scaling of the infidelity I m NP dphot

2
1µ ( ), withN being the number of

quantum emitters and P d1 the (single atom)Purcell factor of the systemwhich characterizes howmuch emission
goes into thewaveguide with respect to free space emission.Hence, the generation of arbitrary photonic states
reduces to the preparation of arbitrary symmetric excitations in an ensemble of quantum emitters, which is the
main focus of this work.

In recent proposals [33, 34], we designed both deterministic and probabilisticmethods to generate collective
atomic states using equally spaced atomswithin the purely dissipative waveguide regime. It was shown that this
simple atomic configuration allows one to prepare collective atomic states ofm excitations with either the
fidelity [33] or the heralding probability [34] deviating fromunity only by a factor scalingwith P d1

1 2- . The key
resource of these protocols is the long-range dissipative coupling induced by thewaveguide which enforces
effective unitary dynamics through the quantumZeno effect.

In this work, we present two protocols that harness long-range coherent interactions induced by the guided
modes to generate collective atomic excitationswithin an ensemble of atoms.

• Thefirst protocol (‘doublemirrors’) is designed for emitters, whose resonance frequency corresponds to some
guidedmode in the band, see figure 1(a), andwhich is, e.g., well suited for optical fiber setups. In this case, the
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atomic configuration determines the coherent and the dissipative interaction between the emitters. The
atomic configuration in our protocol was inspired by [35], inwhich a pair of atomicmirrors are placed next to
a single emitter andwhere the analogy to cavityQEDwith g Nµ was shown. By placing another set of
mirrors around this atomic cavity, we obtain the tools necessary for the heralded generation of collective
atomic excitations in thefirst pair ofmirrors.

• The second protocol (‘dipole–dipole’) is designed for emitters, whose resonance frequency is in the bandgap,
see figure 1(b), andwhich is, e.g., well suited for engineered dielectrics. In this regime, dipole–dipole
interactionsmediated by an atom–photon bound state formed in the bandgap emerge [36–40]. Here, the
advantage is that dissipation (through thewaveguidemodes) is strongly suppressed.

We analyze in detail the performance of both protocols, and compare it to previous ones.
The rest of themanuscript is divided as follows: in section 2, we introduce the two configurations and

explain how the coherent coupling emerges in each case togetherwith the common ideas of the protocol. In
section 3, we discuss the situation for the doublemirrors setup, explaining onemain protocol, together with
different variations of it. In section 4, we discuss how to adapt the protocol in the dissipative regime for the
situationwhere dipole–dipole interactions aremediated by atom–photon bound states. Finally, in section 5we
summarize thefigures ofmerit and scaling of the different protocols andmake a comparisonwith previous
proposals [33, 34].

2. System and general protocol

As shown infigure 1, the common ingredient for both the dissipative and bandgap regime is to have three
individually addressable ensembles, namely, a source atom, used to transfer single excitations to the target
ensemble, whichwe herald with a change of state in the detector ensemble.Moreover, the emittersmust have two
dipole transitions g eñ « ñ∣ ∣ and s eñ « ñ∣ ∣ coupled to twowaveguidemodes6 as shown infigures 2(a) and (b) in
which either coupling can be controlled, e.g., by using aM-type level scheme (see figure 2(b) or by Stark-shifting
the respective levels out of resonance. The two guidedmodes are required so that the source emitter and the
detector ensemble can couple to differentmodes. This ensures that no direct excitation transfer between them
can take place. An excitation in the source emitter can only excite the detector atomswhen a collective excitation
is created in the target ensemble. Furthermore, we require in both cases that the source/target/detector
ensembles are individually addressable.

Figure 1.Ensembles of emitters coupled to one-dimensional reservoirs. The common ingredient is to have an individually adressable
source atom, used to transfer single excitations to the target ensemble, whichwe herald with a change of state in the detector atoms. (a)
Doublemirrors configuration to achieve strong coherent interactions in the dissipative regime. (b)Engineered dielectric configuration
which gives rise to strong coherent interactions in the bandgap regime.

Figure 2. (a) Simplest internal level structure of emitters, in which two transitions in a three-level system are coupled to thewaveguide.

(b) Internal level structurewith control over the effective decay rates to thewaveguide, d1 4

2
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, where

iW is the Rabi coupling strength between eñ∣ and eiñ∣ , see footnote 6. (c)Protocol for the repeated heralded addition of single excitations
to the target ensemble. The heraldingmeasurement is performed on the gñ∣ -state of the detector ensemble.

6
For the dissipative regime, thewaveguidemode is propagating, whereas in the bandgap regime an atom–photon bound state is formed. In

both cases we assume the propagation length of themodes to bemuch larger than the system size.

2

New J. Phys. 19 (2017) 043004 VPaulisch et al



Apart from these common ingredients, the two protocols in the dissipative and bandgap regime require
additional conditions. For example, in the dissipative regimewe demand that:

(i) The two guided modes mediating the interaction have equal wavelength 0l , defined by the characteristic
atomic frequency: q q q 2es eg 0 0w w p l= º =( ) ( ) . This can be achieved, e.g., by the use of two different
polarizationmodes.

(ii) The emitters inside the target/detector ensemble are placed at distances commensurate with 0l , whereas
the source/target and target/detector are placed at a distance n40 0l l+ with n 0Î 7.

(iii) We can neglect finite propagation lengths and non-Markovian effects and thus use aMarkovian description
to analyze the performance. The impact of these effects has been discussed in [41–43]. This requires that the
maximal distance between atoms is small compared to the propagation length, v Tg , during the time of
operations, where vg is the group velocity in thewaveguide.

For the configurationwithin the bandgap regime, the only additional requirement is the existence of a
bandgap for the two guidedmodes, such that their interactions can bemediated by virtual guidedmodes.

2.1. Theoretical description in the dissipative regime
In the dissipative regimewe usewhat we denote as doublemirrors configuration as sketched infigure 1(a), in
which the source atom is embedded by two atomic cavitymirrors withN atoms eachwhich play the role of target
atoms.Moreover, we embed the source/target systemwithin two other atomicmirrors withN atoms each, that
altogether form the detector ensemble.When tracing out the reservoir degrees of freedom,we obtain an effective
master equationwhich describes the atomic dynamics. In this configuration, thewaveguide induces strong and
long-range coherent spin interactions between the different ensembles described by theHamiltonian8

H S S S
2 2

h.c ., 1wg
d

g

ge
s

eg
t d

s

es
d

se
t1

,
1

, ,s=
G

+
G

++ - - ( )( ) ( ) ( ) ( )

where S S Sy y y
,

1 2= ab ab ab
( ) ( ) ( ) are the collective operators within each ensemble S y

j y
js= åab abÎ

( ) , for the target

ensembles y t= and for the detector ensembles y d= , andwhere j
js a b= ñ áab ∣ ∣. The renormalized

spontaneous emission rate of the atoms, i.e., gd q q e q1
2

,d w wG = å -h h
h h∣ ∣ ( ), depends on both the energy

dispersion ( q,w n) and guidedmode profile (contained in g
q
h∣ ∣) [44]. Togetherwith the coherent spin interactions

also collective decay terms emerge, which are given by

D D D D
2 2 2 2
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d

g

S
d

s

S
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1 1 1 1

ge
s

ge
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se
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, , ,
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+
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+
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where D O O O O O O2O r r r r= - -[ ] † † † . Obviously, apart from the decay into the desiredwaveguidemodes,
the excited states e nñ∣ may also emit photons into free space, or even to other non-guidedwaveguidemodes.We
include all these processes into a rate, *G , typically of the order of the natural linewidth aG , which can be
described through an additional Lindblad term in the Liouvillian as

2
h.c ., 3

i
e

i
e
i

e
i

e
i

,
*

*
 år s rs rs s=

G
- +

h
h h h h( ) ( ) ( )

which gives rise to the so-called Purcell Factor P d d1 1
g *= G G , andwhere the index idenotes the different atoms

and η the different hyperfine level where quantum jumps occur. Another important parameter is the ratio of
decay rates d

s
d

g
1 1G G whichmay be tunable or not, depending on the particular setup.

The source/target configuration is inspired by [35], where it was shown that thismodel can bemapped to a
cavityQED configuration, where the source atomplays the role of the two-level systemwith effective decay

d
g
1 *g = G + G which couples coherently to an effective cavity defined by S

N eg
1

2 ,
t
+

( ) , with rate g N2 d1
g= G , as

shown in equation (1)which is subradiant, i.e., the cavity loss is given by *k = G . It is known [45] that within the
strong nonlinear coupling regime, e.g., when g ,k g , thismodel can generate deterministically any arbitrary

superposition of the cavity-likemode up tom photonswith an error m

g

m

N
e » µk g+( ) . In standard cavity

QED, one could improve the scaling to C1e ~ , using off-resonant Raman transitions [46], where
C g 2 kg= ( ) is the so-called cooperativity. In the effectivemodel within thewaveguide setup, however, both

d
g
1G and *G (and consequently the effective cavityQEDparameters g , ,k g) renormalize in the samewaywhen
using off-resonant transitions such that the optimization is not possible.

7
In fact, the protocol alsoworks for distances within an ensemble of 20l (ormultiples thereof) and/or distances between source/target or

target/detector of oddmultiples of 40l if the collective external drivings are adjusted accordingly.
8
See appendix for (i) a discussion on the atomic dynamics and (ii) details of the protocol in thedissipative regime.
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2.2. Theoretical description in the bandgap regime
If we assume that both the e−g and the e−s transitions arewithin the bandgap regime, it can be shown [39, 40]
that the excited atomic states are dressed by a photon cloud of size dx which allows to exchange interaction
between the emitters, which are assumed to have an equidistant spacing d a2p= , where a is the period of the
photonic crystal. This distance is well-suited for the generation of photonic states in a later step and also avoids
the sign alternation due to the phase acquired by the Blochmode at the cut-off frequency [47]. The photon cloud
can be seen as an off-resonant atom-induced cavity of length dx , that allows to exchange interactions between
the emitters described by theHamiltonian

H
2

e
2

e h.c., 4bg
d

g

n
ge
s

n eg
t d

s

n m
n es
d

m se
t1

,
1

,
, ,

z s zn
t

d
zn

t zm
d

då åx
s s

x
s s=

G
+

G
+- -x x

- -
( )( ) ( ) ( ) ( )∣ ( ) ( ) ∣ ∣ ( ) ( ) ∣

where d
g s
1

,G are the decay rates at the bandgap frequency cutoff, e z z dn m x- -∣ ∣ is the overlap between the effective
cavity of the nth atomwith themth atom, and the 1 x dependence is the decrease of the coupling strength to the
cavity due to the increase of themode length.Notice that apart fromHbg, the photon cloud also induces dipole–
dipole couplingswithin the target (and detector ensemble).We did notwrite themhere explicitly, because their
effect on our protocols can be compensatedwith appropriate laser detunings aswill be explained in section 4. In
the limit of L d Nx  , where L is the length of the photonic crystal, theHamiltonian of equation (4)
converges to the one of equation (1)with a renormalized d

g s
1

,G by the factor 1 x butwith the advantage of
eliminating the collective quantum jumps of equation (2).

2.3. Protocol
The basic principle of our protocol for both the dissipative and the bandgap regimes is depicted infigure 2(c). In
order to add one (symmetric) excitation to the target ensemble already containing m 1- excitations, (i) the
source atom is excited, (ii) by dipole–dipole coupling the excitation is collectively transfered to the target
ensemble through the d

g
1G -mode, and further to the detector ensemble through the d

s
1G -mode, andfinally (iii) a

fastπ-pulse on the detector ensemble’s g eñ « ñ∣ ∣ -transition terminates the dynamics. If a heralding
measurement on the gñ∣ state on the emitters of the detector ensemble is successful, a symmetric excitation in the
target ensemblemust have been generatedwith a heralding probability that we denote as pm m1-  and an error
or infidelity Im m1-  . If a collective excitation has been added, the source emitter and the detector ensemble are
reinitialized and the process is repeated.Hence, to reach any statewithm (symmetric) excitations in the target
ensemble, onewill have to repeat the above procedure successfullym times.

If at some point a heraldingmeasurement fails, either a quantum jump in one of the ensembles has occurred
or the excitation has not been transfered to the detector ensemble yet. Some of these processes do not spoil the
coherence of the target ensemble state andwould be correctable. However, because all these processes are
indistinguishable, thewhole protocol has to be repeated from the very beginning to avoid a lowfidelity of the
final state, that is, a low overlapwith the target state. Thefinal protocol to accumulatem excitationswill be
characterized by the average number of operations R pm k

m
k k1 1

1=  = - 
-( ) , which is in general exponential in

m, and has a total infidelity

I 1 , 5m t ty r y= - á ñ∣ ∣ ( )

where ty ñ∣ is the target state and ρ is the actual final state.
In section 3, wefirst discuss in detail the protocol in the dissipative regime andwill find an ultimate limit that

is imposed by the collective quantum jumps of equation (2). Then, in section 4we discuss how to adapt the
protocol to the case offinite range of the dipole–dipole couplings dx and the limitations imposed by it.

3.Detailed protocol in the dissipative regime

The practicality of the outlined protocol is gauged by the heralding probability and the fidelity of the final state
with respect to the target state, ct m my yñ = å ñ∣ ∣ with Sm sg

m
, 0y yñ µ ñ-∣ ∣ , where the initial state is g N

0
t 2y ñ = ñÄ∣ ∣ ( ) .

Because theHamiltonianHwg of equation (1) leaves the excitation numberm invariant and because the state is
heralded at the end of every cycle, we only need to treat the case inwhich one excitation is added to the state of
the target ensemble m 1y ñ-∣ . If the heraldingmeasurement is successful, the state is then my ñ∣ . The full initial state
of the system is denoted by s sm s

m
d N

0 1
2f yñ = ñ Ä ñ Ä ñ-

Ä∣ ∣ ∣ ∣( ) ( ) . In the following analysis, wewill skipmost of
the technical details and refer the interested reader to the appendix (see footnote 6).

4

New J. Phys. 19 (2017) 043004 VPaulisch et al



3.1.Holstein–Primakoff-approximation: calculation of probability
For large ensemble sizes, which are necessary for the photon generation step, the low excitation regime, i.e.,
m N , is approximately bosonic. In this case, themultilevel Holstein–Primakoff approximation (see [48, 49])
can be applied9. Then, the spin operators in the ensembles t1 and t2 are approximated by bosonic operators b j,h

up to
N

1( ) as
S N b S b b, . 6eg

t
e se

t
s e,1 2 ,1 2 ,1 2 ,1 2 ,1 2» = ( )( )

( )
( )

†
( )

( )
( )

†
( )

Then, theHamiltonianHwg of equation (1) couples the initial state to two other normalized states, that is,

b b

m
b b

N
S

1

2
1

2

1

2
. 7

es
s m N

gs
s

e e
m

Nm

gs
s

s s es
d m

0

2

,1 ,2 0

2

,1 ,2 , 0

d
g

d
s

1

1

s f s f

s f

ñ + ñ

- ñ

G

G
-

∣ ⟷ ( )∣

⟷ ( ) ∣ ( )

( ) ( ) † †

( ) † † ( )

Other non-excited states that are reached by quantum jumps can be neglected because of the heralding step.

The dynamics is then governed by the non-HermitianHamiltonian H O Owg k k
i

2
- å † , where the sum runs over

all Lindblad operatorsOk of the Liouvillian d of equation (2). The coupling strength between the states scales
with N due to the enhanced coupling of the collective states and the scalingwith m appears because the
symmetric excitation of the target ensemble is superradiant with respect to the d

s
1G -mode [50].

Amaximal population transfer of the excitation in the source to the detector ensemble is obtained for
tunable coupling strengths, in particular, md

g
d

s
1 1G = G , and for an evolution endingwith aπ-pulse on the

detector ensemble after T N2 2 d
g
1

1p= G -( ) . Other choices for the parameters, in particular the ones allowing
for d

g
d

s
1 1G = G , may also lead to a sufficiently high success probability and fidelity. These variations are discussed

at the end of this section. In the optimal case, the success probability of the heraldingmeasurement (figure 3(a))
is (see footnote 6)

p
N

m Pexp
2

8 2
3 2 8 . 8m m d1 1

1p
» - + +- 

-
⎡
⎣⎢

⎤
⎦⎥( ) ( )

The scaling originates from the fact that the process is very fast,T N 1 2µ - , and that the non-Hermitian terms,
which lead to the reduction of the success probability, scale with d

g
1G and m md

s
d

g
1 1G = G . This enhanced decay

rate can also be avoided by variations of this protocol. The prefactors in the exponential in front of Td
g
1G and

m Td
g
1G arise from the population of the specific states which are subject to the respective quantum jumps, that

is S t td
T

T
ee

s1

0
2 3

8ò y ñ » ∣ ( )( ) and S t td
T

T
ee

t1

0
2 2

8ò y ñ » ∣ ( )( ) . The dependence on the Purcell Factor is exact

because the evolution takes place in the subspace of a single excitation and every state is affected in the sameway
by spontaneous emission.

By repeatedly adding heralded single excitations, the state withm collective excitations my ñ∣ can be reached.
Clearly, the average number of repetitions is exponential in the number of excitations, i.e.,

R p em k
m

k k
m m N

1 1
1=  µ= - 

- , for m N1   .Within theHolstein–Primakoff approximation, no other
states are coupled and therefore therewould be no error.However, wewill see that this is not truewhen one
considers the corrections to the dynamics in theHolstein–Primakoff picture.

Figure 3. (a) For the success probability, equation (8) is a good approximation (solid line) of the full solution (circles)with P 10d1 = .
The inset (a lin-log plot) shows the scalingwith the Purcell Factor forN=500 andm=2, which satisfies p Pln m m d1 1

1µ- 
-( ) . (b)

The infidelity Im to accumulatem excitations is shown as a function ofN.Within theHolstein–Primakoff-approximation unit overlap
can be reached. The infidelity is independent of the Purcell Factor.

9
In this case, also themapping of the source and target ensemble to cavityQED is perfect.
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3.2. BeyondHolstein–Primakoff approximation: calculation offidelities
For the generation of a single excitation theHolstein–Primakoff Approximation is exact. However, for higher
excitations, the non-Hermitian part of theHamiltonian leads to a coupling to additional states, that are linearly
independent of the three states treated above. Also, themapping of the source and target ensemble to cavityQED
is no longer perfect andwill suffer from a similar loss infidelity as our protocol. The deviations from the
approximation can be investigated numerically by using the exactHolstein–Primakoff Transformation (see
appendix). Instead of three orthonormal states as above, one then has to consider m4 1+ orthonormal states,
which are symmetric in each ensemble. For obtaining the results, the bosonic operators be i, and bs i, are cut-off at
2 and m 1+ , respectively.

Themultitude of additional states that the non-HermitianHamiltonian couples tomay lead to a non-unit
overlapwith the target state my ñ∣ , which should go to unity in the limit of large ensemble size N 1 . Therefore,
also the new initial state of the target deviates from m 1y ñ-∣ and has to be obtained from the final state of the
preceding step. The results from the full numerical analysis (figure 3) agree verywell with the results obtained by
applying theHolstein–Primakoff-approximation for N m . Furthermore, the average accumulated infidelity
as defined in equation (5) is very close to unity and scales (for m N ) as

I
m m

N
0.061

1
, 9m 2

»
-· ( ) ( )

where the prefactor was obtained by afit of the results fromnumerical integration of themaster equation. The
fidelity is independent of the Purcell Factor because every state is affected in the sameway by spontaneous
emission and the transitions to unwanted states only happens through collective operators.

3.3. Variations of the protocols
The protocol described in the previous section used several requirements, e.g., tunable coupling to guided
modes or fastπ-pulses, tomaximize the heralding probability while keeping the infidelityminimal. If some of
these ingredients are not available there exist several alternatives to obtain still high heralding probabilities. For
example10,

• Fixed coupling to waveguidemodes.Typically, the Purcell factor P d d
g

1 1 *º G G and the target ensemble sizeN
are fixed, leaving the ratio of decay rates d

s
d

g
1 1G G and thefinal timeT at which the detector atoms are de-

excited as the parameters open for optimization.
When the decay rates have afixed ratio, e.g., 1d

g
d

s
1 1G G = , a full population transfer to the detector ensemble

is not possible. For large ensemble sizes, the heralding probability approaches

p
m

m

4

1
, 10m m

N

1 2+- 
¥~

⟶
( )

( )

see appendix for details. Interestingly, the infidelity of equation (9) is unchanged.

• Replacing fastπ-pulses.The fastπ-pulse on the source atomat the beginning and on the detector ensemble at
the end of each step can be avoided by applying a continuous externalfieldwith the sameRabi coupling
strengthΩ to the respective transitions. These are the s eñ - ñ∣ ∣ -transition of the source atom and the
g eñ - ñ∣ ∣ -transition of the detector ensemble. The success probability is thenmaximized for the same ratio of

the decay rates, i.e., md
g

d
s

1 1G = G , for N2 d
g2

3 1W = G and forT 3p= W. The scaling of the success
probability with the parameters remains the same and only some prefactors in the exponent change slightly,
so that

p
N

m
Pexp

6

2

10 9

64

29

64
. 11m m d1 1

1p
= -

+
+- 

- ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

• Using only one guidedmode.Even if only a single guidedmode is available, say the d
g
1G -mode, the proposed

protocol can still be applied if an additionalmetastable state cñ∣ in the target ensemble is available towhich
spontaneous emission c* *G G is strongly suppressed [51, 52]. Thefidelity is then limited by the precision of
aπ-pulse between the twometastable ground states gñ∣ and sñ∣ and the ratio Nc d

g
1

*G G( ) (see appendix for
details).

• Addingm excitations at once. Instead of generating single excitations in every step through a single source
atom, one could in principle also use a source ensemble of sizem and transfer all excitations to the target

10
In principle, one can also consider the case inwhich the target ensemble and the detector ensemble are not of the same sizeN, but this does

not lead to qualitatively different results.
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ensemble to generatem collective excitations at once. However, the source atoms are then superradiant and
decaywith an enhanced decay rate of at least m d1G . On the other hand, the dipole couplings are only enhanced

by mN d1G , which implies that the probability would still scale exponentially with m

N
. In addition, one

requires ameasurement device which can resolve the excitation number of the detector ensemble to guarantee
the transfer ofm excitations to the target ensemble. Even if that is possible, e.g., the probability for generating
two excitations at once is lower than the probability, p p0 1 1 2  , obtained through the original protocol (see
appendix).

In all of these variations, the final goal is to accumulate several excitations within the same hyperfine level sñ∣ .
When the heralding fails, we reinitialize the process all over again, which yields an exponential number of
operationsRmwith the number of excitationswewant to create.Moreover, the existence ofm excitations already
in the state s causes the enhanced decay m d

s
1G of the target ensemble, which leads to a scaling of the success

probability with m and to the necessity of a tunable ratio d
g

d
s

1 1G G formaximizing the success probability. The
former can be avoided if after each heralding of a single collective excitation, it is stored in other hyperfine levels
available snñ∣ to combine them a posteriori using Raman two-photon andmicrowave transitions plus atomic
detection. It can then be shown [34, 53, 54] that by using only one additional hyperfine level, s1, the number of
operations is still exponential R em

mµ , whereas, if we use mlog2 levels a subexponential scaling ofRm can be
achieved. In these cases, carefully constructed repumping schemes have to be used to avoid introducing
additional errors during the repumping step [34].

4. Protocol in the bandgap regime

In the previous section, we showed how the success probability of the protocol in the dissipative regime is limited
by quantum jumps into thewaveguide, which leads to the scalingwith p m N1 m m1- µ-  . Aswe showed in
section 2, a possibility to get rid of the quantum jumpswhilemaintaining the dipole–dipole interactions is to use
interactionsmediated by the bandgap [36–40]. This can be interpreted as the formation of an atom–photon
bound statemediating the exchange of interactions between emitters. By using this configurationwe eliminate
the quantum jumps into thewaveguide at the price of reducing the dipole–dipole couplings due to their finite
range dx . In principle, one canmake dx much larger than the characteristic length of the system, Nd , so that all
the emitters couple homogeneously as in the dissipative regime.However, this comes at a price of enlarging the
length of the atom-induced cavity and therefore the subsequent reduction of the dipole–dipole coupling. In this
section, we first discuss the scaling of the success probability and infidelity in the ideal limit Nx  . In realistic
cases, dx is limited by the length of the photonic crystal L, that is we require afinite d Lx  . Thus, we also
explore the limitations imposed by this trade-off to generatemultipartite entangled states.

4.1. Ideal case
The idea of the protocol is analogous to the one in the dissipative regime: transfer a single excitation from the
source atom to the target ensemble through the d

g
1G mode, and then from the target to the detector through d

s
1G .

In the limit Nx  theHamiltonianHbg of equation (4) converges to

H S S S S S S H
2 2

, 12bg
d

g

eg
s

ge
t

eg
t

ge
s d

s

es
t

se
d

es
d

se
t

LS
1 1

x
s s

x
=

G
+ +

G
+ +( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

where the dipole–dipole couplings within the ensembles have been included in theHamiltonianHLS. The
dynamics of the system can be again best analyzed by using theHolstein–Primakoff-transformation. Themain
differences to the dissipative regime are the following:

(i) The emitters within each ensemble suffer dipole–dipole interactions irrespective of their position, whereas
in the dissipative regime these can be canceled by choosing the 2p (orπ)distances. These dipole–dipole
interactions for equidistantly spaced atoms lead to a collective Lamb-shift, which is, e.g., for the Seg

t( ) mode

equal to L
N

2

m d
g
1D =

x
G
, where N N m 1m = - + . Therefore, in order tomake the coherent transfer of

excitations resonant, this Lamb-shifts in each ensemble have to be compensated through either appropriate
Stark-shifts ormagnetic field gradients for the source atom, target and detector ensembles.

(ii) The effective coherent couplingG between the source atom and the collectivemode of the target ensemble is

alsomodified by the effective cavity length dx and is given by G
N

2
d

g
1=

x
G

. Therefore, the optimal time for a

full population transfer to the target ensemble isT Gp= , if the detector ensemble is neglected. If one
takes into account the second step, themaximal population transfer to the detector ensemble occurs for
tunable coupling strengths, in particular again for md

g
d

s
1 1G = G , at a time G2p .
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From the previous analysis, we infer that the success probability of adding another excitation in the optimal
case is

p
N P

exp , 13m m
m d

1
1

px
» -- 

⎡
⎣⎢

⎤
⎦⎥ ( )

where N N m 1m = - + . This scaling orginates in the fact that the timescale of the transferT Nm d
g
1xµ G( ),

whereas the only process thatmakes the normdecay is the spontaneous emission probability with rate *G .
In general, this scaling is not better than in the dissipative regime. But aswe showed in the previous section,

the imperfect fidelity was arising from the collective quantum jump terms, which are vanishing in this case such
that the infidelity with thefinal state satisfies I 0m = .

4.2. Realistic case L dx ~
So farwe have neglected the effect of afinite effective cavity length dx on the state itself. In order to avoid un-
necessary overlap between section, we focus on analyzing the effect of finite ξ in thefirst step, i.e., for the transfer
of a single excitation from the source atom to the target ensemble in state g NñÄ∣ . Even though, this does not grasp
the full process, it gives insight into the scaling of the infidelity with thefinite effective cavity length ξ. The
simplifiedHamiltonian in the bandgap regime (with explicit dipole–dipole shifts of the ensemble) for thefirst
step is then

H
2

e h.c. e . 14d
g

n
ge
s

n eg
t

ee
s

n m
n eg
t

m ge
t1

,
,

, ,

z s zn
t

d
zn

t zm
d

då åx
s s s s s=

G
+ + +- -x x

- -⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥ ( )( ) ( ) ( ) ( ) ( )∣ ( ) ( ) ∣ ∣ ( ) ( ) ∣

For finite ξ one needs to take into account the changes in the collective Lamb-shifts and the coherent
couplings.When taking this into account, the dynamics still lead to a (almost full) depletion of the population in
the excited state of the source atom, see figure 4(a) forN=100 and 100x = . At the point ofmaximal
population transfer we plotted the phase carg n( ) and the intensity distribution cn

2∣ ∣ for the coefficients cn of
gn eg

t t N
,s ñÄ∣( ) ( ) in the target ensemble infigure 4(b).We see that in spite of the limited range Nx ~ , the collective

mode is approximately homogeneous. For smaller ξ, the phase and intensity distributions become
inhomogeneous and therefore cannot be used to transfer the excitations coherently. Infigure 4(c)we show the
scaling of the infidelity of the intermediate state with respect to the completely symmetric state and see that the
infidelity scales favorably with the cavity length, i.e., as I 2xµ - .

5. Comparison between different protocols

The protocols presented in thismanuscript together with the ones presented in [33, 34] constitute a set of
methods for quantum state preparation using different resources present in waveguide setups. To give a full
understanding, we summarize the conditions and figures ofmerit for each protocol, identifyingwhich ones are
more suitable depending on the available resources (see Table 1):

• In [33], we use atomicΛ-systemswith equally spaced atoms to build up arbitrary superpositions of atomic/
photonic states. The protocol requires P 1d1  , is deterministic and its infidelity to generate up tom
excitations scales as I m P Pm d d1 1

1» + -( ). This protocols is well suited for engineered dielectrics or in
general any systemwith P 1d1  [20–25]. They can also be extended to lowmode cavityQED systems if the

Figure 4. (a)Population dynamics of the coherent transfer of a collective excitation from source (blue) to a collectivemode of the
target ensemble (orange) for a situationwith N 100 x= = andm=1 and 0*G = . (b) Intensity and phase distribution of the target
ensemble as defined in the text at the optimal time of the transfer for the same values as in (a). (c) Scaling of the infidelity of the
intermediate statewith respect to the fully symmetric state S geg

t NñÄ∣( ) after projection onto the subspace of states inwhich the excitation
is in the target ensemble. The solid lines are a fit to the numerical values showing a scalingwith 2x- .
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same conditions hold, i.e., if oneworks in the bad-cavity limit and has an ancilla atomwhich can be addressed
individually.

• Thefirst protocol discussed in [34] also usesΛ-systems, requires N P 1d1  and the use of an external single
photon detector. The protocol heralds (by a photodetector with efficiency η) the transfer of single collective
excitations with probability p, which can be controlled at will, but with a trade-off with the infidelities, which
scales as I pm m1 µ-  . To accumulate excitations, the average number of operations is exponential
R pm

mµ - , which hinders its extension for very large excitation numbers. However, it is especially suited for
generating lowphoton numbers in systemswith either large P d1 or systemswith P 1d1 < and large atom
numberN like current experimental setups for opticalfibers [26–31].

• The other protocols discussed in [34], also exploit the long-range dissipative coupling for equally spaced
atoms, and require P 1d1  . The advantage is that the probability of heralding a single collective excitation
p e P d1µ - can bemade close to 1 for systemswith P 1d1  .Moreover, the infidelity of accumulatingm
excitations is strictly Im= 0. This is certainly the best suitedmethod in terms offidelities but to obtain high
probabilities we require systemswith P 1d1  .

• The protocol within the dissipative regime discussed along thismanuscript allows to overcome the limitations
of probabilities for systemswith low P d1 , by putting the difficulty in amore elaborate configuration of atomic
positions (see figure 1(a)). The heralding probability of a single collective excitation is only dependent onN,
i.e., p e m Nµ - . The average infidelity to accumulatem excitations, though not being 0, is still very small,
I m Nm

2 2µ . This is probably the bestmethod for opticalfiber setups [26–31].

• The protocol within the bandgap regime is only suited for engineered dielectrics where the existence of
bandgaps is possible. Though it has the advantage of eliminating quantum jumps into thewaveguide, the
finite range of the interactions ξ, leads to aworse heralding probability scaling with p e N Pm d1µ x- ( ) with the
advantage of a possibly better infidelity Im

2 x= -( ) in the ideal regimewhere the length of the photon-
bound statemediating the interaction is larger than the ensemble size.

6. Conclusions

In conclusion, we have proposed severalmethods for the heralded preparation of symmetric states in ensembles
of emitters using coherent atom–atom interactions induced by their coupling to two guidedmodes inwaveguide
QED setups in both the dissipative and the bandgap regime. In the dissipative regime, we showed how the
collective quantum jumps into thewaveguide limit the single excitation heralding probability

p em m
m N

1  p
- 

- which can still be close to 1 for systems evenwith P 1d1 < , which is very relevant for the
experiments with opticalfiber setups [26–29].We also consider the situation of enginereed dielectrics within the
bandgap regime inwhich thefinite range of atom-induced cavities gives amore limited scaling of the
probabilities. In all cases by using atomic detection and post-selectionwe rule outmost of the errors, giving rise
to very low global infidelities in both the dissipative (I m Nm

2 2µ ) and bandgap regimes (Im= 0, for Nx  )
for the preparation of atomic states.

These prepared states can then bemapped to a photonic state of thewaveguide with controllable temporal
shape [32, 33]. Thismapping scales favorably with the systemparameters, in particular the emitter numberN
and the Purcell factor P d1 , that is the infidelity (or error) of this process scales as I m NP dph

2
1µ ( ). Therefore,

this protocol can be used for the efficient preparation of triggeredmultiphoton states.

Table 1. Summary of different protocols with the scaling for the accumulated error and the
success probability for largem. See text for details of the protocols. For simplicity we leave out
various constants tomake clear the scalingwith the relevant parameters.

Protocol Error F1 - Success probability pm Requirements

Deterministic [33] m P1d 1 P 1d1 
Probabilistic I [34] m x1 2h-( ) x m2h( ) x T N 1= W 
Probabilistic II [34] 0 e m P d1- P 1d1 
‘Doublemirrors’ m N2 2 e m P1m

N d1
1- + -( ) N 1

‘Dipole–dipole’ 2 x-( ) e N Pm d1x- ( ) Nx 
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AppendixA. Atomic dynamics in dissipative regime

A.1.Derivation of themaster equation
Under the assumptions described in themainmanuscript, the interactionHamiltonian between the emitters
and the one-dimensional reservoir takes the form ( 1 = )

H g a e h.c. , A.1I
n q

q e
n

q
qz

, ,
,

iå s= +
h

h
h h( ) ( )

where the sum runs over all emitters andwhere g
q
h is the single photon coupling constant for the dipole

transition e hñ « ñ∣ ∣ , which is independent of the atomic position. The atomic operator is denoted by
n

ns a b= ñ áab ∣ ∣and the photonic annihilation operator for the respectivemode is aq,h. The one-dimensional

bosonic reservoir is described by H a ab q q q q, , , ,w= å h h h h
† , where q,w h is thefield dispersion relation. The atomic

free energy of the dipole transition is given by Ha e j ee
j

s j ss
j

g j gg
jw s w s w s= å + å + å , where e ew w w= -h h are

the relevant atomic frequencies for the interactionwith thewaveguidemodes.
Typically, the relaxation timescales of the reservoir aremuch faster than the atomic timescales. This

separation of timescales justifies the so-called Born–Markov approximation that allows to calculate the
evolution of the atoms, through their reduced densitymatrix ρ, after tracing out the reservoir degrees of
freedom. This approximation requires that one can neglect finite propagation lengths and non-Markovian
effects, which requires that themaximal distance between atoms is small compared to the propagation length,
v Tg , during the time of operations, where vg is the group velocity in thewaveguide. In the case of a one-
dimensional reservoir the evolution is then governed by themaster equation [55]

t
H

d

d
i , , A.2dd d 

r
r r r= = - +[ ] [ ] [ ] ( )

H q z
2

sin , A.3dd
m n

d
mn e

m
e

n

, ,

1
0å s s=

G

h

h

h h( ∣ ∣) ( )

q z
2

cos h. c., A.4d
m n

d
mn e

m
e
n

e
n

e
m

, ,

1
0 år s rs rs s=

G
- +

h

h

h h h h[ ] ( ∣ ∣)( ) ( )

where q q qeg es0 w w= =( ) ( ) is assumed to be the same for bothmodes andwhere the renormalized spontaneous
emission rate of the atoms, i.e., gd q q e q1

2
,d w wG = å -h h

h h∣ ∣ ( ), depends on both the energy dispersion ( q,w n) and
guidedmode profile (contained in g

q
h∣ ∣) [44]. Note, that themaster equation above allows for two very distinct

regimes for different interatomic spacings:

• If the distance between two emitters is amultiple of q 20 0p l= the coherent terms vanish and the evolution
is purely dissipative and the atoms decay through a collective operator.

• If the distance between two emitters is an oddmultiple of q2 40 0p l=( ) , the dipole–dipole interactions are
at theirmaximum.

In this work, we exploit coherent dipole–dipole interactions such that a beneficial configuration is based on
two atomicmirrors (seefigure 1(a)) surrounding an atom acting as a source for distributing atomic excitations
symmetrically to the innermirrors (target ensembles t1 and t2). Collective and individual quantum jumps and
other experimental imperfections cause transitions to undesired states. These transitions can be corrected by
using the second guidedmode and heraldingmeasurements on the outermirror emitters, the detector ensembles
d1 and d2.

In particular, the coherent dynamics in the doublemirrors configuration (in the frame rotating at the
frequency of the atomic frequencies) is then described by
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H S S S
2 2

h.c ., A.5dd
d
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ge
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eg
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se
t1

,
1

, ,s=
G

+
G
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where S S Sy y y
,

1 2= ab ab ab
( ) ( ) ( ) are the collective operators S y

j y
js= åab abÎ

( ) within each ensemble, for the target
ensembles y t= and for the detector ensembles y d= . In addition, the Lindblad terms describing the collective
decay are given by

D D D D
2 2 2 2
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d
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ge
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where D O O O O O O2O r r r r= - -[ ] † † † .
Apart from interactingwith thewaveguidemodes, the excited states e nñ∣ may also emit photons into free

space, or even to other polarizations that do no create collective coupling between emitters.We embedded all
these processes into a rate, *G , typically of the order of the natural linewidth aG , which can be described through
an additional Lindblad term in the Liouvillian as

2
h. c.. A.7

n
e

n
e
n

e
n

e
n

,
*

*
 år s rs rs s=

G
- +

h
h h h h( ) ( ) ( )

Thus, one relevantfigure ofmerit of these system is the Purcell Factor P d d
g

1 1 *= G G . Another important
experimental resource is the number of atomsN trappedwithin the target and detector ensembles.

A.2.Obtaining tuneable decay rates by using anM-type structure
The decay rates d1G

h can in principle be tuned by using anM-type level scheme (see figure 2(b))which is
equivalent to aΛ-type system after adiabatic elimination of the far-detuned excited states e ñh∣ . To show this,
consider the fullHamiltonian for the former system for a single atom, that is

H H H
1

2
e h.c. A.8a b e e e
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e e,

i
,

Lå åw s s= + + + W +
h h

h
w

h h h h( ) ( )

g a e h.c. . A.9
q

q e q
qz

,
, ,

iå s+ +
h

h
h hh( ) ( )

Transforming into the frame rotatingwith H L e e0 ,w s= åh h h and adiabatically eliminating the e ñh∣ states leads to
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where e ew wD = -h h . Therefore, the decay operators now turn to be d d
t

1 1 2
2G  Gh h W

D
h

h
∣ ∣( )

and can thus be

controlled via the Rabi-coupling tWh ( ). The Stark-shifts that are induced by this coupling can be incorporated
into the corresponding frequencies.

A.3. Simplifications

(i) Considering that the detector is reinitialized to the state s d N2ñÄ∣ ( ) after each step, it can only couple to the

state S ses
d d N
,

2ñ-
Ä∣( ) ( ) . Both these states are darkwith respect to the jumpoperator Sse

d
,+

( ) , i.e., they do not decay.
Thus the decay operator for the detector ensemble can be neglected and the fourth decay term in
equation (A.6) vanishes.

(ii) Due to the heralding at the end of each step, the relevant dynamics is governed by the no-jump evolution.
This in turn is fully described by the non-HermitianHamiltonian H H O Oidd k k knh = - å † , whereOk are
all the Lindblad operators of the Liouvillian of equation (A.6). Hence, the non-HermitianHamiltonian is
given by

H S S S

S S S S 1
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- G + G + G + G
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( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

(iii) Furthermore, the total excitation number m of the system is invariant under the action of the non-
HermitianHamiltonian.Hence, for superposition states cm my yñ = å ñ∣ ∣ each excitation can be treated
separately. Therefore, we only treat dynamics of the case inwhich m m1y yñ  ñ-∣ ∣ .

11

New J. Phys. 19 (2017) 043004 VPaulisch et al



Appendix B.Details of the protocol in the dissipative regime

B.1. Scheme of the protocol
The protocol is based on repeated heralded additions of single (symmetric) excitations to the target ensemble in
themetastable state sñ∣ . Afterm steps, the reinitialized state is s sm s

m
d N

0 1
2f yñ = ñ Ä ñ Ä ñ-

Ä∣ ∣ ∣ ∣( ) ( ) . An excitation
is added by (see figure 2(c))

(i) Repumping the source atom: a single excitation is added to the system by a fast excitation of the source
atom,

e s . B.1m m
es
s m

m
d N

0 1 0
s

1
2f f s f yñ  ñ = ñ = ñ Ä ñ Ä ñ-

Ä∣ ∣ ∣ ∣ ∣ ∣ ( )( ) ( ) ( )

Clearly, this avoids any double excitations in the system.

(ii) Free evolution: the dipole–dipole coupling induced by the first guided mode, d
g
1G , de-excites the source

atom anddistributes the excitation symmetrically over the target ensemble in the state eñ∣ . The dipole–
dipole coupling induced by the second guidedmode, d

s
1G , moves the excitation in the target ensemble to the

ground state sñ∣ and excites the detector ensemble:

t e , B.2m H t mi
0

nhf fñ = ñ-∣ ( ) ∣ ( )

whereHnh is the non-HermitianHamiltonian of equation (A.12) determining the dynamics as explained
above.

(iii) Heralding on the state of the detector ensemble: After some time T, the detector atoms are quickly de-
excited to gñ∣ , halting any further evolution of the system:

S T . B.3m
ge
d m

out ,f fñ = ñ+∣ ∣ ( ) ( )( )

Then, the gñ∣ -state of the detector ensemble is probed and if an excitation is detected, an excitationmust
have been added to the target ensemble and steps (i)–(iii) can be repeated after the source emitter and the
detector ensemble have been reinitialized.

When no excitation in the detector ensemble is detected, this can be due to several indistinguishable reasons.
The case inwhich emission into free space or into the guidedmode in either the source atomor the detector
ensemble happened, do not affect the state of the target ensemble, such that one could repeat steps (i)–(iii) to try
adding an excitation again. The same is true for collective emission in the d

g
1G -mode of the target ensemble.

However, spontaneous emission and collective emission in the d
s
1G -mode of the target ensemble are not

correctable without introducing additional errors. Therefore, one should restart thewhole procedure if no
excitation is detected. Clearly, this will lead to an exponential scaling of the success probability with the number
of excitations,m.We discuss variations of the protocol to avoid this scaling.

B.2.MultilevelHolstein–Primakoff transformation and approximation
By using theHolstein–Primakoff-transformation [48], it is possible tomap a spin operator onto bosonic
operators. This transformation is especially useful to describe the symmetric subspace ofN two-level quantum
systems. Formultilevel systems this transformation can be generalized, see e.g. [49]. In particular, one needs
d 1- bosonic operators to describe the symmetric states of d-level systems.

Because this paper focuses on (effective) three-level systemswe only discuss the transformation for this case
here. The ground, excited and target states of one three-level system are denoted by gñ∣ , eñ∣ and sñ∣ . Any
symmetric state can then be described by

m m s e g, sym . B.4s e
m m N m ms e s eñ µ ñ Ä ñ Ä ñÄ Ä Ä - -∣ (∣ ∣ ∣ ) ( )

Wedenote the two bosonic operators by bs for the annihilation operator of sñ∣ -state, and be for the excited state.
These operators should satisfy

b m m m m m b b m m m m m, 1, , , , , B.5s s e s s e s s s e s s eñ = - ñ ñ = ñ∣ ∣ ∣ ∣ ( )†

b m m m m m b b m m m m m, , 1 , , , , B.6e s e e s e e e s e e s eñ = - ñ ñ = ñ∣ ∣ ∣ ∣ ( )†

and hence, they also commute b b b b b b, , , 0s e s e s e= = =[ ] [ ] [ ]† † † .

The spin operators S j
N j

1s= åab ab= can then be expressed by the above bosonic operators as

S N s S b b S b b, , , B.7gg ss s s ee e e= - = = ( )† †

12

New J. Phys. 19 (2017) 043004 VPaulisch et al



S b N s S b N s S b b, , , B.8sg s eg e se s e= - = - = ( )† † †

where s b b b bs s e e= +† † . In the low excitations regime, m s N= á ñ  , the operators are linear in each bosonic

operator up tofirst order m

N
( ).

B.3.DynamicswithinHolstein–Primakoff-approximation: probabilities
The spin operators of the target ensemble can bemapped to commuting bosonic operators b j,h in the low
excitation regime m N , wherem is the number of excitations (in either sñ∣ or eñ∣ ) of the state. The spin
operators can then be replaced by

S N b b b b N , B.9gg
t

s s e e,1 2 ,1 2 ,1 2 ,1 2 ,1 2= - - » ( )( )
( )

( )
†

( ) ( )
†

( )

S b N b b b b N b , B.10eg
t

e s s e e e,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2= - - » ( )( )
( )

( )
†

( )
†

( ) ( )
†

( ) ( )
†

S b N b b b b N b , B.11sg
t

s s s e e s,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2= - - » ( )( )
( )

( )
†

( )
†

( ) ( )
†

( ) ( )
†

S b b . B.12se
t

s e,1 2 ,1 2 ,1 2= ( )( )
( )

( )
†

( )

Within this approximation, the relevant states coupled trough the non-HermitianHamiltonian of
equation (A.12) are

, B.13m
es
s m

1 0f s fñ = ñ∣ ∣ ( )( )

b b
1

2
, B.14m

gs
s

e e
m

2 ,1 ,2 0f s fñ = + ñ∣ ( )∣ ( )( ) † †

m
b b

N
S S

1

2

1

2
, B.15m

gs
s

s s es
d m

gs
s

es
d m

3 ,1 ,2 , 0 , 0
1f s f s fñ = - ñ µ ñ- -

+∣ ( ) ∣ ∣ ( )( ) † † ( ) ( ) ( )

where the reference state is s sm s
m

d N
0 1

2f yñ = ñ Ä ñ Ä ñ-
Ä∣ ∣ ∣ ∣( ) ( ) . The normalization of m

3f ñ∣ is due to the fact, that
we consider an initial state of the target ensemble m 1y ñ-∣ , which already containsm excitations. In particular

m
b b g

1

2
. B.16m m e e

m t N
,1 ,2

2y ñ = - ñ∣
· !

( ) ∣ ( )† † ( )

In the basis of the states i
mf ñ∣ , the non-HermitianHamiltonian in them-excitation subspace canwritten as

H

N

N m Nm

Nm

1

2

i 2 0

2 i 2

0 2 i

. B.17
d

g
d

g

d
g

d
s

d
s

d
s

nh

1 1

1 1 1

1

*

*

*

=

- G + G G

G - G + G G

G - G

~
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

( )
( ) ( )

Amaximal population transfer between m
1f ñ∣ and m

3f ñ∣ is reached for tunable md
g

d
s

1 1G = G after time

T N2 2 d
g
1

1p= G -( ) . Other choices for the parameters, in particular ones allowing for d
g

d
s

1 1G = G , may also
lead to high enough success probability and are discussed later.

The protocol is limited by the success probability for each of the steps m m1y yñ  ñ-∣ ∣ , that is, the probability
of one of the detector atoms being in gñ∣ and therefore the generation of my ñ∣ in the target ensemble. To quantify
it, one needs to calculate

p S e , B.18m m ge
d H T m

1 ,
i

1
2nh f= ñ-  +

- ∣ ( )( )

after the de-excitationwith Sge
d
,+

( ) . In the optimal case, the success probability of the heraldingmeasurement
(figure 3(a)) is

p
N

m Pexp
2

8 2
3 2 8 . B.19m m d1 1

1p
» - + +- 

-
⎡
⎣⎢

⎤
⎦⎥( ) ( )

The scaling originates in the fact that the process is very fast,T N 1 2µ - , and that the non-Hermitian terms
scale as d

g
1G and m md

s
d

g
1 1G = G . The scalings arise from the population of the specific states which are subject

to the quantum jumps.
Clearly, the fidelity of the process, that is the overlap between the goal state m

3f ñ∣ and thefinal projected state

S ege
d H T m
,

i
1

nh f ñ+
- ∣( ) after normalization is unitywithin theHolstein–Primakoff approximation.Weneglect errors

originating from finite detection efficiencies and dark counts, because the detection via the detector ensemble
can be repeated asmany times as necessary.

By repeatedly adding excitations, we can accumulate several excitations within the samemode
Sm sg

m
,

t
0y yñ µ ñ-∣ ( ) ∣( ) . Clearly, the average number of operations R pm k

m
k k1 1

1=  = - 
- to obtain this state is,

according to the previous discussion, exponential in the number of excitations and scales approximately as

R em
m m

Nµ for large excitation numbers m N1   .
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Superpositions are obtained by alternately adding a single excitation and applying a displacement operator
[56]. The displacement operators can be easily applied through awell-controlledmicrowave transition between
themetastable ground states of the target atoms.

B.4. BeyondHolstein–Primakoff approximation: fidelities
Without theHolstein–Primakoff-approximation the non-hermitianHamiltonian couples to additional states.
In particular, the decay operator S Sd

g
eg

t
ge
t

1 , ,G - -
( ) ( ) couples the state Seg

t m
, 1f ñ+∣( ) to states that are linearly independent of

the basis states defined in equations (B.15). Because the operators no longer satisfy the bosonic commutation
relations, a coupling between the symmetric and antisymmetric states of the target ensemble is possible. In fact,
instead of three orthonormal states one nowhas to consider m4 1+ orthonormal states. The states under
consideration are always symmetric in each ensemble and thus a target ensemble state can be denoted by

k l k l S S S S g, ; , , B.20sg
k

eg
l

sg
k

eg
l N

1 1 2 2 ,1 ,1 ,2 ,2
21 1 2 2ñ µ ñÄ∣ ∣ ( )

where for simplicity the superindex t( )was omitted. The restrictions on k l k l, , ,1 1 2 2( ), i.e.,
k l k l m 11 1 2 2+ + + = - orm and l l, 0, 0 , 1, 0 , 0, 11 2 =( ) ( ) ( ) ( ), leave the m4 1+ states,

e m i i s i m1 , 0; , 0 , 0, 1, B.21s d N2ñ Ä - - ñ Ä ñ = ¼ -Ä∣ ∣ ∣ ( )( ) ( )

g m i i s i m1 , 1; , 0 , 0, 1, B.22s d N2ñ Ä - - ñ Ä ñ = ¼ -Ä∣ ∣ ∣ ( )( ) ( )

g m i i s i m1 , 0; , 1 , 0, 1, B.23s d N2ñ Ä - - ñ Ä ñ = ¼ -Ä∣ ∣ ∣ ( )( ) ( )

g m i i S s i m, 0; , 0 , 0, . B.24s
es

d N
,

2ñ Ä - ñ Ä ñ = ¼-
Ä∣ ∣ ∣ ( )( ) ( )

Themultitude of additional states thatHnh couples tomay lead to a non-unit overlapwith the goal target
state S gm sg

m t Ngoal
,

2y ñ µ ñ-
Ä∣ ∣ ( ) . Clearly, in the limit of large ensemble sizeN, thefidelity has to go to unity to agree

with theHolstein–Primakoff-approximation.
The numerical results can then be obtained by applying the exactHolstein–Primakoff-transformation, see

equation (B.12) and using a cut-off parameter of m 1+ for the operators bs i, and 2 for the operators be i, . For the
generation ofm excitations, the new input state has to be obtained from the output state of the step before, i.e.

e s , B.25m s m d N
in in

2f yñ = ñ Ä ñ Ä ñÄ∣ ∣ ∣ ∣ ( )( ) ( )

STr e . B.26m
d ge

d H T m
in s, ,

i
in

1nhy fñ µ ñ+
- -∣ ( ∣ ) ( )( )

The results from the full numerical analysis (figure 3) agree verywell with the results obtained by applying
theHolstein–Primakoff-approximation. The infidelity scales as I 0.061m

m

N

2
2» for m N1   , where the

prefactor was found by a numerical fit. Thefidelity is independent of the Purcell Factor because the error stems
fromnonlinear corrections to theHolstein–Primakoff picture that enter through collective rather than
spontaneous emission events which affect every state in the the sameway.

B.5. Variations of the protocol
The scheme previously proposed can bemodified if some of the demanded ingredients are not available. The
goal is tomaximize the success probability (equation (B.18)) constrained by the parameters that are
experimentally achievable:

(i) Fixed ratio d
s

d
g

1 1G G . The previous analysis showed that, e.g., when d
s

d
g

1 1G G can be tuned around orders of
m 1= ( ), then almost unit probability can be reached. If on the contrary the ratio between decay rates is

fixed, e.g., d
s

d
g

1 1G = G , then themaximal success probability occurs atT
N m

2

2 1 d
s
1

= p
+ G( )

and scales within

theHolstein–Primakoff approximation as

p
m

m

4

1
e . B.27m m

m m
m

P

1 2

3 1
2 1N m d

2
2 1

2

2 1
1

=
+- 

- + +
+

+p
+

-
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥˜

( )
( )( )( )

The success probability goes to a constant value for m 1> :

p
m

m

4

2
. B.28m m

N

1 2+- 
¥

⟶
( )

( )
˜

whereas the resulting infidelity still scales as

I
m m

N
0.061

1
B.29m 2

»
-( ) ( )

for m N , are depicted in figure B1. The prefactor was obtained from anumericalfit.
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(ii) Replacing fast π-pulse for continuous driving. The fastπ-pulse on the source atom at the beginning and on the
detector ensemble at the end of each step can be avoided by applying a continuous external field offinite
Rabi coupling strength to the respective transitions, i.e., the s eñ - ñ∣ ∣ -transition of the source atom and the
g eñ - ñ∣ ∣ -transition of the detector ensemble. The dynamics (see figure B2(a)) then containsfive states
(within theHolstein–Primakoff-approximation). These states are mf ñ∣ , for m 0, 3= ¼ from the definitions

above and Sge
d

4 3f fñ µ ñ∣ ∣( ) . A full population transfer to the desired state is obtained for md
g

d
s

1 1G = G as for

themain protocol and for a coupling strength of N2 d
g2

3 1W = G . The success probability ismaximized at

timeT N6 2 3d
g
1

1p p= G = W-( ) and in this optimal case the scaling of the success probability withN,
m and P d1 is then approximately (see figure B2(b))

p
N

m
Pexp

6

2

10 9

64

29

64
. B.30m m d1 1

1p
= -

+
+- 

- ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

Thatmeans, the scaling remains the same and only some prefactors in the exponent change slightly.

(iii) Using a single guided mode. Even if only a single guided mode is available, say the d
g
1G -mode, the proposed

protocol can still be applied. To ensure that thefidelity of the desired state is still close to 1, one requires an
additionalmetastable state cñ∣ in the target ensemble towhich spontaneous emission, c*G , is strongly
suppressed, and good control over aπ-pulse between the twometastable ground states gñ∣ and sñ∣ .
The step (ii) is then split up into two steps as schematically depicted infigure B3(a). Thefirst one involves the
transfer of excitations from the source atom to the target ensemble. The excitation is stored in the additional
metastable state cñ∣ . The role of the gñ∣ and sñ∣ state is then reversed by applying awell controlledπ-pulse
between these states on every atom. Finally, aπ-pulse from cñ∣ to eñ∣ is applied and the dipole coupling
transfers the excitation to the detector ensemble. Clearly, the detector atoms should be in the gñ∣ -state
initially for this and themeasurement is then done on the sñ∣ -state, towhich the detector ensemble should
be de-excited to.

The infidelity then contains additional terms N TMW
2D W( ) and

N
c

d
g
1

*G
G

, where optimally the pulse area is

TMW pW = for the full population transfer between themetastable ground states and TMWD W( ) is the

Figure B1. (a) For the success probability, equation (B.27) is a good approximation (solid line) of the full solution (circles). The gray
horizontal lines depict the limit of the success probability, equation (B.28), caused by an incomplete population transfer. The results
here do not include the P d1 term. (b)The overlapwith the goal state is 1within theHolstein–Primakoff-approximation and form=0
and slightly deviates fromunity by N1 2 for the full solution. As expected, they agree in the limit of large ensemble sizes N 1 .

Figure B2. (a)The time evolutionwhen including afinite Rabi coupling strength andwhen one needs to consider additional states. For
N=100,m=1 and the optimal parameters discussed in the text a full population transfer (when quantum jumps are neglected) is
still possible. (b) For the optimal parameters and the time for a full population transferT, the success probability of theHolstein–
Primakoff-approximated evolution scales as in equation (B.30) (solid lines) agrees well with the numerical results obtained by the
Holstein–Primakoff-transformation (circles).
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deviation from this value. As before, the error induced in every stepwill accumulate such that thefinal
infidelity I Im k

m
k k1 1= å = -  .

(iv) Adding m excitations at once. Instead of generating single excitations in every step through a single source
atom, one could in principle also use a source ensemble of sizem and transfer all excitations to the target
ensemble to generatem collective excitations at once. However, the source atoms are then superradiant and
decaywith an enhanced decay rate of at least m d1G . On the other hand, the dipole couplings are only

enhanced by mN d1G , which implies that the probability would still scale exponentially in m

N
. In addition,

one requires ameasurement device which can resolve the excitation number of the detector ensemble to
guarantee the transfer ofm excitations to the target ensemble. Even if that is possible, e.g., the probability for
generating two excitations at once, p0 2 , is lower than the probability, p p0 1 1 2  , obtained through the
original protocol (see figure B3(d)).

B.6. Intermediate storage in furthermetastable ground states
For a large excitation numberm the m N -term in the success probability of equation (B.19) causes a fast decay
of the probability withm. This is due to the fact that the target ensemble decays super-radiantly with respect to
the d

s
1G -mode, that is with an enhanced decay rate of m d

s
1G . This can be avoided if the sñ∣ -state of the target

ensemble does not contain any excitations in the beginning of each step. The excitations are then not
accumulated in the sñ∣ -state, but in othermetastable ground states of the target ensemble, siñ∣ . The number of
additionalmetastable ground states necessary depends on the approach of how to add up the excitations
a posteriori.

The success probability of adding another excitations when them excitations are stored in different
hyperfine levels, siñ∣ , different from s ismodified as follows:

p
N

Pexp
2

8 2
5 8 , . B.31m m d1 1

1p
» - +- 

-
⎡
⎣⎢

⎤
⎦⎥( ) ( )

which, as expected, does not show the additional scaling with m .
Moreover, it is important to highlight another difference with respect to the previous protocol. Previously,

when a heraldingmeasurement failedwe reinitialize the target ensemble back to gñ∣ destroying the storedm
excitations. However, in this case the excitations stored in siñ∣ can be salvagedwithminimal error by using an
appropriate repumping scheme inwhich the symmetry of the state is unaffected. This is achieved by switching

0d
s
1G = , applying a repumpingHamiltonian H S h.c.se

t
RP ,= W ++

( ) andwaiting for this state to decay to the state
gñ∣ . In fact, this decay is superradiant with respect to the d

g
1G -mode due to the symmetry of the state of the target

ensemble. There are two types of errors: (i) a spontaneous jump in the target ensemble can already have occured
before the repumping step, inwhich case the error probabiliy scales as ;

N P

1

d1
or (ii) a collective jump in the target

ensemble has occured (which happenswith probability
N

1 ), but during the repumping step a spontaneous

jumphappend, inwhich case the total error probability scales as
N NP

1 1

d1
. Because the overlapwith the

symmetric state scales as 1 m

N
- after spontaneous emission events, the error is upper bounded by

N N d
g
1

*G
G

after

the repumping step.
Concerning themethods to accumulate excitations into a single level, there aremultiple approaches that

sketch briefly:

Figure B3. (a) If only a single guidedmode is available, the protocol can still be applied if anothermetastable state with strongly
suppressed spontaneous emission is available. (b)Beam-splitter-like transformations betweenmetastable states are obtained by
applying a corresponding external driving field. (c)Excitations can also be added by using the decay through the guidedmode. (d)The
heralding probability for generating two excitations at once is lower than the heralding probability of the original protocol.
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(i) Beam-splitter-like transformations (see figure B3(b)) can be used to accumulate excitations, for a detailed
analysis see for example [34]. A ‘beam-splitter’ between themetastable ground states siñ∣ can be applied by
switching on an externalfield coupling two of those states for a certain time. The pulse area determines the
transmittance of the beam-splitter. To add up the population in two of these states, one has to herald on
detecting no excitations in one of themetastable states. If the excitations are added one-by-one, thefinal
success probability is exponential in the number of excitationsm. However, when doubling the excitations
at each step, one can reach polynomial scaling for Fock states and subexponential scaling for superpositions.

(ii) In principle, excitations in the metastable states siñ∣ can also be added by using the d
s
1G -mode of the

waveguide and the detector ensemble. This case is clearly equivalent to adding the excitations directly one
by one. In principle, this scheme can be used to addmultiple excitations at once. These are however difficult
to detect and require number-resolvingmeasurements in the detector ensemble.

(iii) To increase the success probability significantly, one can use the fact that an excited state has to decay after
some time, either through the guidedmode or spontaneously to free space (or other guidedmodes different
to themode of interest). If only decay to the level sñ∣ is possible (see figure B3(c)) and the detector atom is
decoupled, an excitation in eñ∣ is certainly added to sñ∣ . However, because no heraldingmeasurements are
applied, thefidelity is reduced due to spontaneous emission events. For adding excitations one by one, the

fidelity is reduced by
m d

s
1

*G
G

in the step m m1-  . If only excitations are added one-by-one, the averaged

infidelity at the end is k
m

k1
d

s
1

*å =
G
G

. In principle, this can be improved, e.g., by adding two or evenmore

excitations at once.
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